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A B S T R A C T

Convolutional Neural Network has been widely used in pattern recognition community, especially face
recognition. Loss function, as a supervisory signal to learn a CNN model, plays an important role in obtaining
the desired facial features. However, how to design a loss function to make the features more compact and
discriminative for unconstrained face recognition, is still an open problem. In this paper, we propose two novel
loss functions, Compact Discriminative loss and Advanced Compact Discriminative loss. They supervise CNN to
map the raw data onto the face feature space, where the intra-class space is compact and inter-class spaces have
sensible gaps, by constraining the intra-class variations and the inter-class variations simultaneously. Three
CNNs (i.e. LeNet, CNN-M and ResNet-50) are used to analyze the effectiveness of the proposed approaches,
the obtained models are evaluated on several famous benchmark databases, such as MNIST, LFW, FGLFW,
YTF and IJB-A. Experimental results show that the proposed losses are effective for face recognition, and can
easily generate comparable results than related state-of-the-art methods.

1. Introduction

Face recognition, non-intrusive and natural, has been widely studied
in computer vision and pattern recognition community due to its
close relationship with many real-world applications, such as human–
machine interaction, digital entertainment, photo album management
in social networks and commercial security system. Both face verifi-
cation task and face identification task contain two main stages: one
is feature extraction (e.g. Local Binary Patterns [1], Gabor [2] and
Scale-Invariant Feature Transform [3]), and the other one is classi-
fication (e.g. Nearest Neighbor [4], K-Nearest Neighbor [5], Sparse
Representation Classification [6], Collaborative Representation Classi-
fication [7], and their variants [8,9]). Particularly, feature extraction
plays an important role because the representation capacity of the
feature influences the performance of face recognition. With suitable
classifiers, the mentioned feature extraction methods have achieved
respectable performance on many face recognition tasks. However, the
representations composed by hand-crafted descriptors are too shallow
to satisfy the increasing demand for more and more complex applica-
tions. Especially, when it comes to unconstrained environments, the
performance may degrade dramatically due to the complex and large
intra-personal variations, such as pose, illumination and occlusion.
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Nowadays, Convolutional Neural Network (CNN), which emerging
as an automatic and powerful feature extraction method, has achieved
impressive results [10–14]. Notably, the methods based on CNN [15–
19] continuously won the champions of the ImageNet LSVRC contests1

from 2012 to present. These phenomenal successes make more and
more researchers pay attention to the development of CNN. It should
be stressed here that deep CNNs, such as DeepID series [20–23], Deep-
Face [24], FaceNet [25], VGG [26], ResNet based approach [27,28],
have achieved great success on face recognition. These approaches even
made the face recognition systems surpass human-level face verification
performance on LFW database [29]. CNN based feature extraction
becomes a new trend for face recognition.

For enhancing the performance of CNN based feature extraction on
face recognition, a variety of methods have been proposed in recent
years, which can be mainly classified into four categories:

• producing powerful CNN architecture [21,25,26,30];
• pursuing high quality data preprocessing [24,31];
• extending the training face images to million orders of magni-

tude [25,26,31];
• designing suitable loss functions [21,25,28,32–34].
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Fig. 1. The figure shows a representative framework about obtaining a desired CNN
model for extracting face features. The loss function, one of the three primary attributes,
plays an important role for learning the CNN model.

To our best knowledge, designing suitable loss functions, that super-
vising CNNs to obtain face features with high discrimination, is one
of the most simple and effective efforts to improve performance for
face recognition. The typical method can even achieve comparable face
verification performance with less than 0.5 million training face images
compared to the others. However, how to design a loss function to
make the learned features more suitable for face recognition, even more
compact and discriminative in unconstrained circumstances, is still an
open problem.

In this paper, we focus on constructing suitable loss functions to
supervise CNN for more compact and discriminative face representa-
tions. To this end, two loss functions, Compact Discriminative (CD)
loss and Advanced Compact Discriminative (ACD) loss, are proposed.
Both the losses supervise CNN to map the raw data onto the feature
space, where the intra-class space is compact and inter-class spaces
have sensible gaps, by adaptively constraining the intra-class varia-
tions and the inter-class variations. Further, ACD loss is designed to
alleviate the imbalanced computation of CD loss. To illustrate the
effectiveness and the adaption of our proposed loss functions, we
conduct extensive experiments for face recognition, which consist of
a small-scale face verification task, three different levels of large-scale
image-to-image face verification tasks, a large-scale video-to-video face
verification task, a template-to-template face verification task, and
two challenging face identification tasks. Famous public benchmark
databases, including MNIST [10], LFW [29,35], FGLFW [36], YTF [37]
and CASIA-WebFace [38], are used for training and evaluation. Ex-
perimental results show that our proposed loss functions are effective,
and can easily generate more comparable results with some existing
state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 illus-
trates the related works; Section 3 describes the proposed approaches;
Section 4 provides a wide range of experiments; Section 5 gives the
conclusion.

2. Related works

As is shown in Fig. 1, CNN based feature extraction benefits from
three primary attributes: the available training data, the suitable CNN
architecture, and the carefully designed loss function. Here we focus
on the loss function to enhance the discriminative power of the deeply
learned face features.

Generally, the optimization objective can be expressed as

𝜽∗ = min
𝜽

(𝑋,𝑅,𝜽)

where (𝑋,𝑅,𝜽) is a general loss function to supervise the CNN model,
𝑋 = {𝒙1,𝒙2,… ,𝒙𝑛} is the training data set, 𝑅 = {𝑟1, 𝑟2,… , 𝑟𝑛} is the
corresponding real label set, and 𝜽 is the parameter set. In the proposed
approaches, we also use the predicted label 𝑝𝑚 (𝑚 = 1,… , 𝑛), which is
obtained from the softmax prediction in the last layer of a given CNN.

For most CNN models, Softmax loss 𝑆 is the favorite supervisory
signal:

𝑆 = − 1
𝑀

𝑀
∑

𝑚=1
log 𝑒𝒘

⊤
𝑟𝑚

�̂�𝑚+𝒃𝑟𝑚

∑𝑁
𝑗=1 𝑒

𝒘⊤
𝑗 �̂�𝑚+𝒃𝑗

,

where �̂�𝑚 is the CNN feature for the 𝑚th sample 𝒙𝑚, 𝑀 is the mini-batch
size, 𝑁 is the class number, 𝒘𝑗 and 𝒃𝑗 are the parameters that belong
to 𝜽. Softmax loss is a classical and effective loss for supervising CNN
to obtain face features. Unfortunately, the learned features still lack
sufficient discriminative information.

To enhance the discrimination of the face features, Schroff et al.
[25] proposed Triplet loss 𝑇 :

𝑇 =
𝑀
∑

𝑚=1
[‖𝑓 (�̂�𝑎𝑚) − 𝑓 (�̂�𝑝𝑚)‖

2 − ‖𝑓 (�̂�𝑎𝑚) − 𝑓 (�̂�𝑛𝑚)‖
2 + 𝜙]+,

where 𝜙 is a relative distance constraint, (�̂�𝑎𝑚, �̂�
𝑝
𝑚, �̂�

𝑛
𝑚) is a triplet, �̂�𝑎𝑚 and

�̂�𝑝𝑚 are in the same class, �̂�𝑎𝑚 and �̂�𝑛𝑚 are in the different classes. It makes
a triplet constraint for reducing the intra-class variations and enlarging
the inter-class variations, simultaneously. However, the selection of
triplets is not an easy work, which may result in a collapsed model.

Recently, Wen et al. [28] proposed Center loss 𝑐 to assist Softmax
loss 𝑆 with the identity-related information instead of triplet informa-
tion to enhance the discrimination of the face features. The whole loss
function is formalized as

𝐶 = 𝑆 + 𝜆𝑐 ,

where

𝑐 =
1

2𝑀

𝑀
∑

𝑚=1
‖�̂�𝑚 − 𝒄𝑟𝑚‖

2,

𝒄𝑟𝑚 denotes the center feature for 𝑟𝑚th class. 𝑐 is designed to enhance
the discriminative power of the features by penalizing the distances
between the features and their corresponding center features.

Other famous approaches to enhance the discrimination of CNN
learned face features include NormFace [33], L-Softmax [27] and
SphereFace [32]. NormFace generalized the center feature to an con-
cept of ‘‘agent vector’’ for each class, they studied the effect of nor-
malization during training and optimized cosine similarity instead of
inner-product, finally improved performance by between 0.2% to 0.4%
on LFW by finetuning the CNN model released in [33]. L-Softmax
employed a margin constraint in the original Softmax loss. SphereFace
extended L-Softmax loss by considering the cosine normalization, and
achieved excellent performance on face recognition by adopting deeper
well designed CNN architectures.

Review the loss functions mentioned above, Softmax loss only con-
siders the identity-related information for separating features into dif-
ferent classes. Triplet loss needs a lot of manual intervention to deal
with the intractable selection of the training triplets for increasing the
inter-class variations and reducing the intra-class variations. Center loss
focuses on the relationship with the feature and the center feature in
the same class while does not emphasize the relationship with the inter-
class features. L-Softmax may face more difficult convergence problem
than Softmax loss when there are too many subjects. NormFace and
SphereFace depend on careful designed CNN architectures and need
to optimize cosine similarity instead of trivial inner-product. These
phenomena motivate us to find an easy and adaptive way to further
improve the performance of the learned features.

3. Proposed approaches

Given the CNN details, and treating it as a black box (see Fig. 1),
the most important part of our approach lies in extracting the compact
and discriminative features in the end-to-end learning. To this end,
we propose Compact Discriminative (CD) loss for creating a feature
space where the intra-class features are as close as possible and the
inter-class features are as far as possible. And then, Advanced Compact
Discriminative (ACD) loss is proposed to alleviate the imbalanced
computation of CD loss. Both the proposed loss functions reduce the
differences of the intra-class features and make the inter-class features
to have sensible gaps corresponding to the comparison of the real label
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Table 1
Unified notations.

Notations

𝑀 the mini-batch size
𝑁 the class number
𝒙𝑚 the 𝑚th training sample
�̂�𝑚 the CNN feature of 𝒙𝑚
𝒄𝑚 the center feature for 𝑚th class
𝑟𝑚 the real label for 𝒙𝑚 or �̂�𝑚
𝑝𝑚 the predicted label for 𝒙𝑚 or �̂�𝑚

and the predicted label, which is obtained from the softmax prediction
in the last layer of a given CNN.

For convenience, we use the following unified notations in Table 1
and only consider the computation in a mini-batch without declaration.

3.1. Compact discriminative loss

To give the concept of Compact Discriminative loss, we first intro-
duce two functions, namely, intra compact function and inter discrim-
inative function, which characterize the relationship with intra-class
features or the relationship with the inter-class features, respectively.

3.1.1. Intra compact function
Intra compact function 𝐹𝐼𝐶 measures the distance2 between the

feature �̂�𝑚 and the corresponding center feature 𝒄𝑝𝑚 , which is defined
as

𝐹𝐼𝐶 = I(𝑝𝑚 = 𝑟𝑚)‖�̂�𝑚 − 𝒄𝑝𝑚‖
2,

where I is an indicator function, defined by

I(condition) =

{

1 if the condition is true,
0 otherwise.

It aims to make sure that the intra-class features of a specific class are
close to the corresponding center feature, which causes the intra-class
space to be compact.

3.1.2. Inter discriminative function
In contrast, inter discriminative function 𝐹𝐼𝐷 focuses on the distance

between the misclassified feature �̂�𝑚 (𝑝𝑚 ≠ 𝑟𝑚) and the feature �̂�𝑡 in
𝑝𝑚th class : ‖�̂�𝑚 − �̂�𝑡‖2, it is defined as

𝐹𝐼𝐷 =
𝑇𝑚
∑

𝑡=1
I(𝑝𝑚 ≠ 𝑟𝑚)‖�̂�𝑚 − �̂�𝑡‖2,

where 𝑇𝑚 is the number of features in 𝑝𝑚th class. It aims to force the
misclassified features �̂�𝑚 be away from its predicted (𝑝𝑚th) class for
expecting �̂�𝑚 to return to its true (𝑟𝑚th) class.

Combining the above two defined functions in a mini-batch 𝑀 ,
Compact Discriminative (CD) loss 𝑐𝑑 is defined as

𝑐𝑑 = 1
2𝑀

𝑀
∑

𝑚=1
[𝜏𝐹𝐼𝐶 − (1 − 𝜏)𝐹𝐼𝐷]

= 1
2𝑀

𝑀
∑

𝑚=1
[𝜏I(𝑝𝑚 = 𝑟𝑚)‖�̂�𝑚 − 𝒄𝑝𝑚‖

2

−(1 − 𝜏)
𝑇𝑚
∑

𝑡=1
I(𝑝𝑚 ≠ 𝑟𝑚)‖�̂�𝑚 − �̂�𝑡‖2],

where 𝜏 ∈ (0, 1) is a hyper-parameter to balance 𝐹𝐼𝐶 and 𝐹𝐼𝐷. By
minimizing 𝑐𝑑 when fixing a 𝑚, the gap between the feature �̂�𝑚 and
each feature �̂�𝑡 in the 𝑝𝑚th class will be widened if 𝑝𝑚 ≠ 𝑟𝑚, and

2 We simply adopt the commonly used L2-distance, other distances are
beyond the scope of consideration.

Fig. 2. A flowchart about joint supervision of Softmax loss and CD loss for CNN.
Particularly, CD loss supervises the learning of CNN by judging whether a feature is
misclassified, where the judge reflects in the feature’s attribute (the comparison of the
real label and the predicted label).

the distance between �̂�𝑚 and the corresponding center feature 𝒄𝑝𝑚
will be penalized if 𝑝𝑚 = 𝑟𝑚. Considering all features in a mini-batch
(𝑚 ∈ {1, 2,… ,𝑀}), 𝑐𝑑 will give clear restraint for both the inter-class
variations and the intra-class variations during the CNN optimization.

By taking advantage of the joint supervision of Softmax loss and CD
loss for CNN, the whole loss function is formalized as

𝐶𝐷 = 𝑆 + 𝜆𝑐𝑑 , (1)

where 𝜆 ∈ (0, 1) is a trade-off hyper-parameter. The flowchart about the
joint supervision is shown in Fig. 2.

3.2. Advanced compact discriminative loss

Aforementioned, CD loss 𝑐𝑑 aims to enlarge the gaps between
the inter-class spaces by reducing the sum of distances between the
misclassified feature �̂�𝑚 (𝑝𝑚 ≠ 𝑟𝑚) and the features in the 𝑝𝑚th class.
Although it avoids using plenty of triplet features, it still faces the
imbalanced problem in computation. Specifically, it computes 𝑇𝑚 (the
number of features in 𝑝𝑚th class) times inter-distances for �̂�𝑚 (𝑝𝑚 ≠ 𝑟𝑚),
while only computes once intra-distance.

To alleviate this problem, we propose Advanced Compact Discrim-
inative (ACD) loss, which is defined by

𝑎𝑐𝑑 = 1
2𝑀

𝑀
∑

𝑚=1
[𝜏𝐹𝐼𝐶 − (1 − 𝜏)𝐹𝐴𝐼𝐷],

where

𝐹𝐴𝐼𝐷 = I(𝑝𝑚 ≠ 𝑟𝑚)‖�̂�𝑚 − 𝒄𝑝𝑚‖
2.

It alleviates the imbalanced computation by only computing the dis-
tance between �̂�𝑚 and the center feature 𝒄𝑝𝑚 for inter-distance. Simi-
larly, the whole loss supervising CNN is formalized as

𝐴𝐶𝐷 = 𝑆 + 𝜆𝑎𝑐𝑑 . (2)

3.3. Computation and algorithm

In the subsection, we tell how the proposed losses supervise the
feature learning for CNN. The optimization objectives corresponding
to the proposed approaches are

𝜽∗1 = min
𝜽

𝐶𝐷(𝑋,𝑅,𝜽), (3)
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𝜽∗2 = min
𝜽

𝐴𝐶𝐷(𝑋,𝑅,𝜽), (4)

which can be easily optimized by the stochastic gradient descent algo-
rithm.

For (3), the gradients of 𝑐𝑑 with respect to �̂�𝑚 and 𝒄𝑝𝑚 are

𝜕𝑐𝑑
𝜕�̂�𝑚

= 1
2𝑀

𝑀
∑

𝑚=1
[𝜏
𝜕𝐹𝐼𝐶
𝜕�̂�𝑚

− (1 − 𝜏)
𝜕𝐹𝐼𝐷
𝜕�̂�𝑚

]

= 1
𝑀

𝑀
∑

𝑚=1
[𝜏I(𝑝𝑚 = 𝑟𝑚)(�̂�𝑚 − 𝒄𝑝𝑚 )

−(1 − 𝜏)
𝑇𝑚
∑

𝑡=1
I(𝑝𝑚 ≠ 𝑟𝑚)(�̂�𝑚 − �̂�𝑡)], (5)

and

𝜕𝑐𝑑
𝜕𝒄𝑝𝑚

= 𝜏
2𝑀

𝑀
∑

𝑚=1

𝜕𝐹𝐼𝐶
𝜕𝒄𝑝𝑚

= 𝜏
𝑀

𝑀
∑

𝑚=1
I(𝑝𝑚 = 𝑟𝑚)(𝒄𝑝𝑚 − �̂�𝑚). (6)

Similarly, for (4), the gradients of 𝑎𝑐𝑑 with respect to �̂�𝑚 and 𝒄𝑝𝑚 are

𝜕𝑎𝑐𝑑
𝜕�̂�𝑚

= 1
2𝑀

𝑀
∑

𝑚=1
[𝜏
𝜕𝐹𝐼𝐶
𝜕�̂�𝑚

− (1 − 𝜏)
𝜕𝐹𝐴𝐼𝐷
𝜕�̂�𝑚

]

= 1
𝑀

𝑀
∑

𝑚=1
[𝜏I(𝑝𝑚 = 𝑟𝑚)(�̂�𝑚 − 𝒄𝑝𝑚 )

−(1 − 𝜏)I(𝑝𝑚 ≠ 𝑟𝑚)(�̂�𝑚 − 𝒄𝑝𝑚 )], (7)

and

𝜕𝑎𝑐𝑑
𝜕𝒄𝑝𝑚

= 1
2𝑀

𝑀
∑

𝑚=1
[𝜏
𝜕𝐹𝐼𝐶
𝜕𝒄𝑝𝑚

− (1 − 𝜏)
𝜕𝐹𝐴𝐼𝐷
𝜕𝒄𝑝𝑚

]

= 1
𝑀

𝑀
∑

𝑚=1
[𝜏I(𝑝𝑚 = 𝑟𝑚)(𝒄𝑝𝑚 − �̂�𝑚)

−(1 − 𝜏)I(𝑝𝑚 ≠ 𝑟𝑚)(𝒄𝑝𝑚 − �̂�𝑚)]. (8)

Here we only take Compact Discriminative loss for example, the
corresponding algorithm is summarized in Algorithm 1.

Algorithm 1 Deep compact discriminative representation learning
algorithm

Input: Training data set {𝑋,𝑅} = {(𝒙1, 𝑟1),… , (𝒙𝑛, 𝑟𝑛)}, two hyper-
parameters 𝜆 and 𝜏, center learning rate 𝛾; mini-batch size 𝑀 ,
maximum iteration 𝑡𝑚𝑎𝑥, weight decay 𝜇, momentum 𝛼, learning
policy 𝜅, step size set 𝜍, learning rate 𝛽; center feature 𝒄𝑡𝑝𝑚 ,
parameters 𝜽𝑡 and 𝜹𝑡, 𝑡 ← 0.

Output: Parameters 𝜽𝑡𝑚𝑎𝑥 ;
while not convergence and 𝑡 < 𝑡𝑚𝑎𝑥 do:

1. 𝑡 = 𝑡 + 1;
2. Compute CD loss by (1);
3.Update the centers 𝒄𝑡+1𝑝𝑚

= 𝒄𝑡𝑝𝑚 − 𝛾 𝜕𝑐𝑑
𝜕𝒄𝑡𝑝𝑚

by (6);

4. Update the parameters 𝜽𝑡+1 = 𝜽𝑡 + 𝜹𝑡+1 by (5), where 𝜹𝑡+1 =
𝛼𝜹𝑡 − 𝛽[

∑

𝑚(
𝜕𝑆
𝜕�̂�𝑡𝑚

+ 𝜆 𝜕𝑐𝑑
𝜕�̂�𝑡𝑚

) 𝜕�̂�
𝑡
𝑚

𝜕𝜽𝑡 + 𝜇𝜽𝑡];
if 𝑡 is divisible by �̂� ∈ 𝜍 do:

𝛽 = 𝜅𝛽;

end if
end while

3.4. Discussions

The strategy, combining Softmax loss 𝑆 and an auxiliary loss (𝑐 ,
𝑐𝑑 or 𝑎𝑐𝑑) to jointly supervise CNN, reinforces the learned features

Fig. 3. Trained on LeNet with MNIST database, the misclassified rate is displayed for
𝐶 , 𝐶𝐷 and 𝐴𝐶𝐷 , respectively.

with more discriminative information than only using Softmax loss
𝑆 . In addition, this strategy, which avoiding the inescapable step of
selecting training triplets in 𝑇 , is more easy and trainable. Although 𝑐
appears as a simple and effective way to learn discriminative features,
it mainly focuses on the intra-class relationship, which may give not
enough treatment for the inter-class variations. Intuitively, giving clear
statement for both intra-class relationship and the inter-class relation-
ship can further restrain the intra-class variations and the inter-class
variations for more accurate performance.

Either 𝑐𝑑 or 𝑎𝑐𝑑 compresses the intra-class feature space and
enlarges the gaps between inter-class feature spaces simultaneously
to supervise the learning of CNN by judging whether a feature is
misclassified or not. In fact, the experiment results, as shown in Fig. 3,
demonstrates that the proposed losses exactly impose better restraint
for the misclassified rate (the normalization of the total number of the
misclassified features every 100 batches), compared to 𝐶 . More im-
portantly, compared to 𝑐𝑑 , 𝑎𝑐𝑑 takes advantage of both the intra-class
information and inter-class information to update the center features in
(8) compared to 𝑐𝑑 ’s intra-class information in (6), which seems more
beneficial to improve the discrimination of the learned feature.

4. Experiments

In this section, we use three CNN architectures and six databases to
demonstrate the effectiveness of the proposed CD loss and ACD loss on
face verification tasks and face identification tasks. All experiments are
implemented in the Caffe library [39] on Linux OS with the NVIDIA
Tesla K80.

4.1. Experimental setup

4.1.1. Databases
• MNIST [10] is a classical handwritten digit database, which con-

tains 60,000 training examples and 10,000 testing examples. It is
used to illustrate the effectiveness of the proposed approaches for
restricting the misclassified rate in Fig. 3.

• LFW [29] is one of the most challenging face databases, which has
been widely used for image-to-image face recognition. We choose
it as a benchmark database for face verification in Section 4.3 and
for face identification in Section 4.4. Besides, we use LFW-SUB,
which is the verification subset of LFW and consisted of 10 splits
of face matches, for small-scale face verification in Section 4.2.
And the related details are as same as the descriptions in the
literature [38,40,41].
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• FGLFW [36] is a database which shares the same 3,000 genius
matches in LFW, however, replaces the random impostor matches
by seeking another 3,000 similarly-looking face pairs to reduce
the inter-class variance. It emphasizes both the large intra-class
variance and the tiny inter-class variance simultaneously com-
pared to LFW. We choose it as a more challenging image-to-image
face verification benchmark in Section 4.3.

• YTF database [37] is a popular video-to-video face verification
benchmark database, which contains 3,425 videos of 1,595 dif-
ferent people. Each subject contains several videos with different
size of frames ranging from 48 to 6,070. It not only has large
unconstrained face variations, but also suffers from different lev-
els of low resolutions. The test set of YTF contains 5,000 pairs
of face videos, dividing into 10 splits for reporting performance
as LFW does. We choose it as the video-to-video face verification
benchmark, shown in Section 4.3.

• IJB-A [42] is a public database with full pose variations which
contains 500 subjects with manually localized face images of a
mixture of images and videos, where every subject in the database
contains at least five images and one video. The images in the
IJB-A dataset contain extreme pose, illumination and expres-
sion variations, which makes it a more challenging mixture face
benchmark database for face recognition. We choose it for both
template-to-template face verification and template-to-template
face identification in Sections 4.3 and 4.4, respectively.

• CASIA-WebFace [38] is a typical public face database, which con-
tains 10,575 subjects and 494,414 images collected from Internet.
We choose it as the training database for obtaining CNN model
since it is almost independent of the LFW and YTF benchmarks,
and can dispel the chaos of evaluations.

4.1.2. CNN architectures
• LeNet [10] is a famous CNN architecture, which consists 3 convo-

lutional layers, 3 max-pooling layers and 1 fully-connected layer.
It is chosen to investigate the influence of the proposed approach
toward handwritten digit recognition.

• CNN-M has 3 convolutional layers, 3 max-pooling layers and
1 fully-connected layer, its first appearance was in the litera-
ture [40]. We use it for evaluating the effect of proposed losses
on the small-scale face verification on LFW-SUB, which will be
described in Section 4.2.

• ResNet [19] is a residual learning framework for building deeper
network, which introduces a short-cut layer to make the CNN
architectures to reach 1,000 layers, and has achieved the state-of-
the-art performance on many vision tasks. In our experiment, we
use the released ResNet-50 architecture and model,3 to investigate
the performance of the proposed losses for unconstrained face
verification and face identification. For convenience, we modify
the ResNet-50 architecture by adding a fully-connected layer of
dimension 512.

For LeNet and CNN-M, the output of the last second layer is de-
fined as the CNN feature. For ResNet-50, the CNN feature is defined
according to [28].

4.1.3. Parameters
Especially, the parameters in Algorithm 1 are divided into two parts:

one is the default algorithm parameters (𝑀 , 𝑡𝑚𝑎𝑥, 𝜇, 𝛼, 𝜅, 𝛽 and 𝜍), the
other one is the parameters related to the proposed losses (𝜏, 𝛾 and
𝜆). The default parameter setting for the related CNNs4 is according to
Table 2.

3 [Online]. Available: https://github.com/KaimingHe/deep-residual-
networks.

4 Since ResNet-50 is not so easy to train, we update the parameters of the
focused losses every 10 mini-batches when training ResNet-50.

Table 2
Default parameter setting for each CNN architecture.

CNN 𝑀 𝑡𝑚𝑎𝑥 𝜇 𝛼 𝜅 𝛽 𝜍

LeNet 64 10,000 0.0005 0.9 0.8 0.01 {8, 000}
CNN-M 100 100,000 0.0005 0.9 1 0.001 {100, 000}
ResNet-50 28 20,000 0.0001 0.9 0.1 0.1 {10, 000, 15, 000}

Table 3
Parameter setting for 𝐶𝐷 and 𝐴𝐶𝐷 .

CNN 𝐶𝐷 𝐴𝐶𝐷

𝜏 𝛾 𝜆 𝜏 𝛾 𝜆

LeNet 0.2 0.001 0.001 0.5 0.01 0.001
CNN-M 0.8 0.0001 0.05 0.8 0.0001 0.05
ResNet-50 0.7 0.01 0.01 0.8 0.01 0.01

Table 4
Results on LFW-SUB database.

Model �̂� ± 𝑆𝐸 (%)

Baseline [38] 78.95 ± 0.36
CNN-M-𝑆 78.18 ± 0.46
CNN-M-𝐶 90.25 ± 0.29
CNN-M-𝐶𝐷 90.97 ± 0.31
CNN-M-𝐴𝐶𝐷 91.25 ± 0.33

For parameters that related to the proposed losses, we consider the
hyper-parameters 𝜆, 𝜏, and the learning rate 𝛾 for 𝐶𝐷 and 𝐴𝐶𝐷 on
ResNet-50. Since the CNN optimization is complex and non-convex, we
use cross-validation to find the best hyper-parameters in the premise of
CNN convergence, by varying 𝜏 in the range {0.1, 0.2,… , 0.9}, and vary-
ing 𝜆 and 𝛾 in the range {0.0001, 0.001, 0.01, 0.1, 1}. The final parameter
settings are listed in Table 3.

4.2. Small-scale face verification

Unlike most existing CNN learning based models with large CNN
architectures and large private training databases for addressing face
verification, we choose CNN-M and LFW-SUB to evaluate whether
the proposed loss functions can improve the performance with the
small-scale CNN architecture and training database.

4.2.1. Detailed settings
For evaluation, LFW-SUB is divided into 10 predefined splits. Each

time nine of them are used for CNN-M training and the remaining one
is used for testing, according to [40]. The face images are detected by
MTCNN [43] and mapped to a face template of size 58 × 58 based on
5 facial landmarks (two eyes, two mouse corners and a nose tip). The
performance is evaluated by the estimated mean accuracy �̂� and the
standard error of the mean 𝑆𝐸 :

�̂� =
∑10

𝑖=1 𝑝𝑖
10

, 𝑆𝐸 =

√

∑10
𝑖=1(𝑝𝑖 − �̂�)2

90
, (9)

where 𝑝𝑖 is the perception of correct classification, using 𝑖th fold for
testing, which is described in [29]. The cosine metric and threshold
comparison are used for computing 𝑝𝑖 for both face verification and
identification throughout the article.

4.2.2. Results
According to the detailed settings, the final results are listed in

Table 4.
It can be seen that both CNN-M-𝐶𝐷 and CNN-M-𝐴𝐶𝐷 perform bet-

ter than CNN-M-𝑆 and CNN-M-𝐶 . Especially, CNN-M-𝐴𝐶𝐷 increases
1% compared to CNN-M-𝐶 , indicating that giving clear restraint for
the inter-class variations is necessary to learn more compact and dis-
criminative face features. Further, CNN-M-𝐴𝐶𝐷 performs better than
CNN-M-𝐶𝐷, implying that 𝑎𝑐𝑑 can give a better description of the
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relationship with different classes and make the center features better
adapt to the feature learning than 𝑐𝑑 . In a word, our proposed losses
can learn more discriminative face features for CNN-M than the other
two losses.

4.3. Large-scale face verification

For further evaluating the effectiveness of the proposed losses, we
design experiments based on ResNet-50 and large-scale training CASIA-
WebFace database, the face verification tasks include three different
levels of Image-to-Image Face Verification (IIFV), a Video-to-Video
Face Verification (VVFV) and a Template-to-Template Face Verification
(TTFV), which will be detailed in the following.

4.3.1. Detailed settings
We use MTCNN [43] to detect the CASIA-WebFace database, and

the obtained face images are aligned by five facial landmarks (locations
of two eye centers, two mouth corners and a nose tip) with a given
face template. After detection and alignment, we finally obtain about
0.49M face images for training. In addition, we keep the detection and
alignment of the training database and the testing database the same for
each task. The face features were extracted from ResNet-505 trained by
compared supervisory signals, namely, 𝑆 , 𝐶 , 𝐶𝐷 and 𝐴𝐶𝐷. And we
denote the final obtained best CNN models by ResNet-𝑆 , ResNet-𝐶 ,
ResNet-𝐶𝐷 and ResNet-𝐴𝐶𝐷, respectively.

For large-scale face verification on LFW, the standard LFW protocol
is chosen for evaluation. Actually, the standard LFW protocol is very
limited. According to Deng et al. [36], the impostor matches are very
easy since the natural inter-class variance are large on LFW. Liao
et al. [41] also claimed that the performance on LFW may be too
optimistic because the underlying false accept rate may still be high,
and performance evaluation at low FARs is not statistically sound by
the standard protocol due to limited number of impostor matches.
Based on these, we extend our IIFV tasks on FGLFW database, and
also conduct IIFV on LFW according to the BLUFR [41] by considering
more impostor matches. Further, we conduct experiments on YTF for
the more challenging VVFV. For evaluation, we randomly select 100
pairs of frames per video and use the average cosine similarity of 100
pairs as the similarity of a test video pair. In the last, we choose a more
challenging IJB-A database to evaluate the performance of the proposed
approaches on TTFV.

4.3.2. LFW evaluation
The face verification is to determine whether one of the given 6,000

face pairs is belong to the same identity or not, where the 6,000 face
pairs consist of 3,000 genuine matches and 3,000 impostor matches
for classification. We report the performance of �̂� and 𝑆𝐸 in Table 5
for comparison. Namely, we list the state-of-the-art methods for IIFV
in the first part of Table 5, and compare the performance of the most
related methods under the same experiment environment in the second
part of Table 5 for fairness.

From the first part of the table, we can see that the CNN mod-
els supervised by the proposed losses still have room for improve-
ment compared to the state-of-the-art, such as Center Approach with
more training data, NormFace with cosine similarity optimization, and
SphereFace with both careful designed CNN architecture and cosine
similarity optimization. What is acceptable is that, the CNN models
supervised by the proposed losses performs better than several state-
of-the-art methods on LFW, such as VGG, L-Softmax, WebFaceCNN,
DeepID and DeepFace. Besides, the second part of the table shows that
the CNN models supervised by the proposed losses perform much better
than the related models for IIFV. Particularly, ResNet-𝐴𝐶𝐷 performs
best and ResNet-𝐶𝐷 gets the second place.

5 We fine tune the ResNet-50 with the compared supervision signals on a
pretrained CNN model, which achieves 97.67% accuracy on LFW.

Table 5
Comparing performance (%) on LFW.

Method #Train #Model �̂� (± 𝑆𝐸 )

FaceNet [25] 200M 1 99.63
SphereFace [32] 0.49M 1 99.42
Center Approach [28] 0.7M 1 99.28
NormFace [33] 1.5M 1 99.19
DeepID2 [23] 0.2M 200 99.15
VGG [18] 2.6M 1 98.95
L-Softmax [27] 0.49M 1 98.71
WebFaceCNN [38] 0.49M 1 97.73
DeepID [20] 0.2M 1 97.45
DeepFace [24] 4M 3 97.35

ResNet-𝑆 0.49M 1 98.67 ± 0.16
ResNet-𝐶 0.49M 1 98.92 ± 0.14
ResNet-𝐶𝐷 0.49M 1 99.10 ± 0.13
ResNet-𝐴𝐶𝐷 0.49M 1 99.08 ± 0.14

Table 6
Comparing performance (%) on FGLFW.

Method #Train �̂� (± 𝑆𝐸 )

Noisy softmax [44] 0.5M 94.50
Human [36] n/a 92.00
DCMN [36] 0.5M 91.00
VGG [18,36] 2.6M 85.78
DeepFace [24,36] 0.5M 78.78
DeepID2 [21,36] 0.2M 78.25

ResNet-𝑆 0.49M 91.72 ± 0.35
ResNet-𝐶 0.49M 93.02 ± 0.43
ResNet-𝐶𝐷 0.49M 94.18 ± 0.22
ResNet-𝐴𝐶𝐷 0.49M 94.07 ± 0.27

Fig. 4. ROC curves on LFW database for related models.

In addition, we also illustrate the corresponding ROC curves for
related method in Fig. 4. Specially, the true positive rate for ResNet-
𝐶𝐷 and ResNet-𝐴𝐶𝐷 almost surpass ResNet-𝐶 by clear margin in
(0, 0.02). These all show the superiority of proposed approach.

4.3.3. FGLFW evaluation
Since FGLFW only modifies the negative face pairs defined in the

standard LFW protocol, the testing paradigms of LFW can be directly
used. Similarly, we list the state-of-the-art results and also report our
final performance in Table 6 and Fig. 5.

Compared with the first part of Table 6, ResNet-𝐶𝐷 and
ResNet-𝐴𝐶𝐷 perform better than human performance, and also achieve
better accuracy than the state-of-the-art methods, such as DCMN, VGG,
DeepFace and DeepID2. Specifically, when it comes to comparison
under the same experimental environment, the second part of the table
shows that the CNN models supervised by the proposed losses perform
best. Particularly, ResNet-𝐶𝐷 performs best, surpassing the baseline
ResNet-𝑆 by 2.46%; ResNet-𝐴𝐶𝐷 gets the second place, and also
surpassing the third place ResNet-𝐶 by 1.05%.
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Fig. 5. ROC curves on FGLFW database for related models.

Table 7
Performance (%) for the verification scenario of BLUFR evaluation.

Method FAR = 0.1% FAR = 1%

NormFace [33] 95.83 –
Center Approach [28,33] 93.35 –
LightenedCNN [45] 89.12 –
WebFaceCNN BaseLine [38] 80.26 –
HD-LBP + JB [41] 41.66 65.84
HD-LBP + LDA [41] 36.12 61.39

ResNet-𝑆 87.14 96.58
ResNet-𝐶 90.10 97.86
ResNet-𝐶𝐷 91.50 97.95
ResNet-𝐴𝐶𝐷 92.17 98.21

Besides, the ROC curves in Fig. 5 show that ResNet-𝐶𝐷 and ResNet-
𝐴𝐶𝐷 surpass ResNet-𝐶 by clear margin in (0, 0.15). These all show
the superiority of proposed approach. These show that the effect of
decreasing the intra-class variations and increasing the inter-class vari-
ations in CD loss and ACD loss is significant for further enhancing the
discrimination of the face feature for more challenging IIFV.

4.3.4. BLUFR evaluation
BLUFR is a more challenging protocol that containing both veri-

fication and open-set identification scenarios, it is designed to fully
exploit all the 13,233 LFW face images for large-scale unconstrained
face recognition evaluation, with a focus at low FARs. It introduces 10
trials of experiments, with each trial containing about 156,915 genuine
matching scores and 46, 960, 863 impostor matching scores on average
for performance evaluation.

According to [41], we report the mean verification rates (%) at
the false accept rate of 0.1% (or 1%) subtracted by the corresponding
standard deviations over 10 trials. The results are displayed in Table 7.
From the table, we see clearly that ResNet-𝐴𝐶𝐷 achieves the best
performance on both two evaluations. And ResNet-𝐶𝐷 also performs
better than both ResNet-𝑆 , and ResNet-𝐶 . ResNet-𝐴𝐶𝐷 surpasses
ResNet-𝐶 on the two cases by 2.07% and 0.35%, respectively.

Besides, we illustrate the face verification ROC curves in Fig. 6 for
better comparison. The figure shows that ResNet-𝐴𝐶𝐷 and ResNet-𝐶𝐷
get the better verification rate than the other two compared methods
almost from 10−4% to 102%. These all demonstrate the necessary of
restraining both the intra-class variations and the inter-class variations.
In a word, the experiments show that the proposed approaches are
more suitable to learn compact and discriminative face features for
IIFV.

4.3.5. YTF evaluation
For VVFV on YTF, we obey the protocol described in [29,38],

and report the estimated mean accuracy �̂� and the standard error of

Fig. 6. Verification ROC curves for related models under the BLUFR protocol.

Fig. 7. ROC curves on YTF database for related models.

Table 8
Comparing performance (%) on YTF.

Method #Train #Model �̂� (± 𝑆𝐸 )

VGG [18] 2.6M 1 97.3
DCFL [46] 4.7M 1 96.06
FaceNet [25] 200M 1 95.1
Center Approach [28] 0.7M 1 94.9
NormFace [33] 1.5M 1 94.72
DeepID2+ [23] 0.3M 25 93.2
WebFaceCNN [38] 0.49M 1 92.24
DeepFace [24] 4M 3 91.4

ResNet-𝑆 0.49M 1 92.88 ± 0.42
ResNet-𝐶 0.49M 1 93.38 ± 0.36
ResNet-𝐶𝐷 0.49M 1 93.54 ± 0.41
ResNet-𝐴𝐶𝐷 0.49M 1 93.50 ± 0.33

the mean 𝑆𝐸 for comparison. The comparison with the most recent
state-of-the-art on the two datasets is given in Table 8.

As shown in Table 8, ResNet-𝐶𝐷 and ResNet-𝐴𝐶𝐷 achieve the
accuracy of 93.54% and 93.50%, respectively. They perform not only
better than ResNet-𝑆 and ResNet-𝐶 in the same experiment environ-
ment, but also perform better than the state-of-the-art WebFaceCNN
and DeepFace, with more less training data. The ROC curves in Fig. 7
also show that ResNet-𝐶𝐷 and ResNet-𝐴𝐶𝐷 surpass ResNet-𝐶 almost
in (0, 0.2). The phenomena illuminate that the reliability of the pro-
posed 𝐶𝐷 and 𝐴𝐶𝐷 and show that they are effective for the more
challenging TTFV.

4.3.6. IJB-A evaluation
For TTFV on IJB-A, we obey the protocol described in [42], and

report the value of True Accept Rate (TAR) at a fixed False Accept Rate

124



M.M.Y. Zhang, K. Shang and H. Wu Signal Processing: Image Communication 75 (2019) 118–127

Table 9
Verification performance (%) on IJB-A for related models.

Method TAR@FAR = 0.1 TAR@FAR = 0.01 TAR@FAR = 0.001

DA-GAN [47] 99.1 97.6 93
Template Adaptation [48] 97.9 93.9 83.6
All-In-One Face [49] 97.6 92.2 82.3
VGG-Face [26,49] – 80.5 –
DCNN [50] 96.7 83.8 –
GOTS [42] 62.7 40.6 19.8

ResNet-𝑆 60.11 32.26 20.62
ResNet-𝐶 63.93 36.56 21.04
ResNet-𝐶𝐷 63.80 39.38 20.67
ResNet-𝐴𝐶𝐷 61.21 37.57 20.89

Table 10
Performance (%) for the identification scenario of the BLUFR protocol.

Method FAR = 1% FAR = 10%

NormFace [33] 77.18 –
Center Approach [28,33] 67.86 –
LightenedCNN [45] 61.79 –
WebFaceCNN [38] 28.9 –
HD-LBP + JB [41] 18.07 32.63
HD-LBP + LDA [41] 14.94 31.39

ResNet-𝑆 52.77 75.51
ResNet-𝐶 54.63 78.84
ResNet-𝐶𝐷 60.50 81.9
ResNet-𝐴𝐶𝐷 60.54 81.23

(FAR) for comparison. The comparisons with the state-of-the-art and
related models are given in Table 9.

From the table, the performance of the proposed approaches still
cannot reach the high level of the state-of-the-art, the reason will
be described in Section 4.5. However, the proposed approaches can
achieve respective performance under the same experiment setting in
the second part of the table. The proposed approaches need to be
further improved for more challenging TTFV tasks.

The five different experiments on face verification, including three
different levels of IIFV tasks, a VVFV task and a TTFV task, demonstrate
that decreasing the intra-class variations and increasing the inter-class
variations simultaneously is significant to learn compact and discrim-
inative face features for more difficult face verification tasks and get
relatively more stable performance.

4.4. Face identification

In this section, we focus on the more challenging face identification
task, which aims to search for a person’s face in a set of enrolled
images or templates. For evaluation, we select LFW (BLUFR protocol)
and IJB-A database as the testing benchmarks, which are really more
challenging than the mentioned four face verification tasks.

4.4.1. Detailed setting
For BLUFR evaluation, it is based on 10 random trials of face

identification tasks, which fully exploit all the 13,233 face images in
LFW. Specially, in each test trial, there are 1,000 subjects to constitute
the gallery set, about 4,350 face images of 1,000 subjects to constitute
the genuine probe set, and about 4,357 images of 3,249 subjects to con-
stitute the impostor probe set. According to [41], the mean detection
and identification rates (%), close-set face identification CMC curves
and open-set face identification CMC curves at FAR= 1% are used for
reporting the performance of the related models.

4.4.2. BLUFR evaluation
We report the mean detection and identification rates (%) at Rank

1 subtracted by the corresponding standard deviations over 10 trials in
Table 10.

Fig. 8. Closed-set face identification ROC curves for related models.

Fig. 9. Open-set identification CMC curves at FAR=1% for related models.

It shows that ResNet-𝐴𝐶𝐷 and ResNet-𝐶𝐷 perform better than
the other two models by clear margins on both the two levels of
evaluations. They even surpass ResNet-𝐶 by about 6% when FAR = 1%
and surpass ResNet-𝐶 by more than 2% when FAR = 10%. These show
the superiority of the proposed approach on face identification tasks.

In addition, we illustrate the ROC curves at Rank 1 in Fig. 8,
and show the CMC curves to measure the closed-set identification
performance in Fig. 9 for a better comparison. The ROC performance in
Fig. 8 shows that the curves corresponding to ResNet-𝐴𝐶𝐷 and ResNet-
𝐶𝐷 surpass the others by clear margins almost from 10−1% to 102%.
CMC curves in Fig. 9 also shows the superior performance of ResNet-
𝐴𝐶𝐷 and ResNet-𝐶𝐷. These all demonstrate the proposed approach
helps to learn more compact and discriminative face features for face
recognition.

4.4.3. IJB-A evaluation
We report the overall face identification performance for related

CNN models in Table 11.
The table shows that ResNet-𝐶𝐷 and ResNet-𝐴𝐶𝐷 still cannot

reach the high level of the careful designed template-to-template meth-
ods shown in the first part of the table. However, they still give the
respectable performance when compared to several methods in the first
part of the table on Rank 1, such as Multi-Pose Face, DCNN and GOTS.
For the same experimental environment in the second part of the table,
ResNet-𝐴𝐶𝐷 achieves the best performance at Rank 1 and Rank 5, and
gets the second place at Rank 10. ResNet-𝐶𝐷 surpasses ResNet-𝐶 by
1.06%, 0.25% and 0.21% in Rank 1, Rank 5 and Rank 10, respectively.
These all show the effectiveness of the proposed approaches.

In short, experiments on the two face identification tasks show that
the proposed approaches are also effective to learn more compact and
discriminative face representations for identification.
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Table 11
Face identification performance (%) on the IJB-A dataset.

Method CMC (%) TPIR@FPIR’s of (%)

Rank-1 Rank-5 Rank-10 0.1 0.01

DA-GAN [47] 97.1 98.9 – 94.9 89
NAN [51] 95.8 – 98.6 91.7 81.7
All-In-One Face [49] 94.7 – 98.8 88.7 79.2
CNN𝑚𝑒𝑑𝑖𝑎+TPE [52] 93.2 – 97.7 86.3 75.3
Template Adaptation [48] 92.8 – 98.6 88.2 77.4
VGG-Face [26,49] 91.3 – 98.1 67 46
Multi-Pose Face [53] 85.8 93.8 – – –
DCNN [54] 85.2 – 95.4 – –
GOTS [42] 44.3 59.5 – 23.5 4.7

ResNet-𝑆 84.41 95.70 97.64 63.80 39.38
ResNet-𝐶 85.97 96.39 98.03 60.11 32.26
ResNet-𝐶𝐷 87.03 96.64 98.24 64.47 36.62
ResNet-𝐴𝐶𝐷 87.27 96.91 98.21 63.93 36.56

4.5. Discussions

The proposed approaches are verified to be effective in most ex-
periments of the preceding subsections. However, they still cannot
reach the level of the state-of-the-art when evaluated on IJB-A database
in both face verification and face identification. We take All-in-one
Face method [49] for example to give the limitations of the proposed
approaches:

1. Inaccurate face detection: we use MTCNN (v1) for detection [43]
and use 5 facial points for alignment, which results in 1,088
undetected faces. In contrast, All-In-One Face [49] uses 6 fiducial
point extraction by HyperFace method [55].

2. None usage of the training splits in IJB-A dataset for CNN training:
we only use the training data to compute the threshold for the
testing split. In contrast, All-In-One Face takes advantage of the
training splits in IJB-A for CNN training.

3. Unsuitable definition of final representation of a given template:
we just use the average of the features of a given template for
the final representation. In contrast, All-In-One Face flattens the
template features by media pooling.

It should be noticed that we use no template adaptation method for
reporting the final performance. The purpose of presentation of IJB-
A face recognition is only to verify the effectiveness of the proposed
approaches. We will pay more attention to the phenomenon of non-
optimistic performance of the proposed approaches on IJB-A in the
further.

5. Conclusions

In this paper, we have presented two novel loss functions, referred
to as Compact Discriminative loss and Advanced Compact Discrim-
inative loss. They reduce the intra-class variations and enlarge the
inter-class variations simultaneously by forcing the feature to be close
to the real class and escape from the misclassified class. We evaluate
the performance of the two losses on several typical CNN architectures,
and compare them with the state-of-the-art losses on several famous
face verification tasks and face identification tasks. Various evaluation
implementations show that the proposed losses help to result in more
compact and discriminative features for face recognition.
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