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a b s t r a c t 

Generative Adversarial Networks (GANs) have achieved great success in generating realistic images. Most 

of these are conditional models, although acquisition of class labels is expensive and time-consuming in 

practice. To reduce the dependence on labeled data, we propose an un-conditional generative adversarial 

model, called K-Means-GAN (KM-GAN), which incorporates the idea of updating centers in K-Means into 

GANs. Specifically, we redesign the framework of GANs by applying K-Means on the features extracted 

from the discriminator. With obtained labels from K-Means, we propose new objective functions from 

the perspective of deep metric learning (DML). Distinct from previous works, the discriminator is treated 

as a feature extractor rather than a classifier in KM-GAN. Meanwhile, the utilization of K-Means makes 

features of the discriminator more representative. Experiments are conducted on various datasets, such 

as MNIST, Fashion-10, CIFAR-10 and CelebA, and show that the quality of samples generated by KM-GAN 

is comparable to some conditional generative adversarial models. 

© 2019 Published by Elsevier B.V. 
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1. Introduction 

Generative modeling has been an active but challenging

research field in traditional machine learning because of the

intractability of many probabilistic computations arising in ap-

proximating maximum likelihood estimation (MLE). To avoid these

computations, Generative Adversarial Network (GAN) [1] greatly

improves the quality of generated images by implicitly modeling

the target distribution via neural networks instead of approx-

imation of intractable likelihood functions in capturing data

distribution. To better utilize the information of data structure in

labeled data, Conditional GAN (CGAN) [2] feeds real labels along

with images and generates more realistic images. Unfortunately,

CGAN and subsequent extensions [3–7] suffer from a challenge

that they require large amounts of labeled data which is expensive

or even impossible to acquire in practice. 

To decrease the dependence of GANs on labeled data, it would

be nicer to find a substitution to replace the role of real labels. It

is well known that representation learning enables machine learn-

ing models to get more information about data structure and class

distribution. A commonly and widely used technique in represen-

tation learning is employing K-Means. Recent works [8–11] have
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mproved clustering results via jointly training K-Means and deep

eural networks. By fusing K-Means with the powerful nonlin-

ar expressiveness of neural networks, they get “K-Means-friendly”

9] representations, i.e., features that are more representative for

lustering tasks. But most of these neural networks are realized by

 pre-trained auto-encoder on large-scale datasets, such as Ima-

eNet, which means they still utilize prior knowledge (real-label)

s supervision. 

Inspired by the success of jointly training neural networks and

-Means on clustering tasks, Variational deep embedding (VaDE)

12] and Joint Generative MomentMatching Network (JGMMN)

13] instead combine generative models with clustering methods,

nd achieve competitive results not only on clustering, but also

n generating tasks. More specifically, VaDE proposes continuous

lustering objectives for Variational Autoencoder (VAE) [14] and

GMMN augments original loss functions of Generative Moment

atching Networks (GMMN) [15] with regularization terms to con-

train latent variables. On the other hand, authors of [16] perform

-Means on features of the top layer of discriminators in GAN

nd Info-GAN [17] , respectively, and show that features of Info-

AN are obviously more “K-Means-friendly” than those of regu-

ar GAN. This implies that constraints on the latent space of GANs

nduce more representative features. Furthermore, extensions of

ANs [18,19] achieve state-of-the-art results on clustering by fus-

ng GANs with clustering methods. Although these works have

https://doi.org/10.1016/j.neucom.2019.06.041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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Fig. 1. The framework of KM-GAN. Notice that the first forward pass is to get the clustering labels. In the second forward pass, the clustering labels and data are fed to 

back-propagate the obtained loss functions. 
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chieved exciting results on clustering by combining advantages of

ANs and clustering method, utilizing clustering methods to im-

rove the quality of generating images of GANs still deserves more

ttentions. This brings the main motivation of our work: can we

e-design the framework of GANs in an un-conditional manner and

tilize the capability of K-Means on representation learning to replace

he role of real labels? 

In order to make use of clustering labels of K-Means to direct

he generating process as real labels in GANs, we consider operat-

ng K-Means on the top layer of the discriminator. But the main

ifficulty is how to deal with the un-differentiable objective of K-

eans using Stochastic Gradient Decent (SGD) [20] . Deep Embed-

ed Clustering (DEC) [8] straightforwardly separates the optimiza-

ion into updating centers and network parameters successively.

nother CNN-based method [21] also adopts this technique and

urther proposes a feature drift compensation scheme to mitigate

he drift error caused by different optimization directions of K-

eans and regular loss functions. Then Deep Clustering Network

DCN) [9] introduces a defined “pretext” objective, a mathematical

ombination of reconstruction loss and K-Means clustering objec-

ive, and optimizes K-Means with back-propagation. Quite recently,

eep K-Means [22] proposes a continuous reparametrization of the

bjective of K-Means clustering to optimizes it with SGD. 

Motivated by these works, we propose an un-conditional

enerative adversarial model, named K-Means-GAN (KM-GAN), 

hich embeds the idea of updating centroids of K-Means into the

ramework of GANs. As the framework illustrated in Fig. 1 , our

odel conducts the discriminator as a nonlinear feature extractor

nd utilizes K-Means clustering algorithm for getting more repre-

entative features. Further, we employ obtained results of K-Means

nstead of one-hot real labels to direct the generator in the gen-

rating process. Then we propose objectives containing clustering

abels from the perspective of deep metric learning (DML) to let

he optimization direction of K-Means agree with the generating

rocess. The specific optimization process includes three terms to

lternately optimize, of which the “center-loss” term tries to pull

he corresponding centers of real and generated images closer.

urthermore, the objective of the discriminator is proposed to min-

mize the distance between real samples and their corresponding

enters and maximize the distance between fake samples and their

orresponding real centers. Meanwhile, the loss function of the

enerator, which is interpreted as an adversarial term, attempts

o approximate the target distribution by decreasing the distance

etween generated samples and their corresponding real centers. 

Contribution . To the best of our knowledge, our work is the first

ttempt to combine the training of unsupervised K-Means algo-

ithm with GAN simultaneously through SGD for generating tasks.
ur main contributions are summarized as follows: t  
• We propose an un-conditional implementation of GANs, called

K-Means-GAN (KM-GAN), and equip it with new objective func-

tions from the perspective of DML. 

• We incorporate GANs with the idea of traditional K-Means and

utilize obtained labels, replacing the role of real labels, to direct

the generating process and get more representative features. 

• We empirically show that KM-GAN is capable of generating

diverse samples and the quality of generated images on sev-

eral real-world datasets is competitive with that of conditional

GANs. 

. Background 

In this section, we introduce notations and briefly review pre-

iminary knowledge, including the framework of GANs and K-

eans. The notations provided in this section will also be used in

ubsequent sections. 

.1. Notations 

Throughout the paper, we use b for the batch size, D for the dis-

riminator, G for the generator and k for the pre-defined number

f classes. 

.2. Framework of GANs 

GAN [1] consists of two components: a discriminator D and a

enerator G which are both realized by the neural networks. The

ain idea is actually an adversarial training procedure between

hem. Throughout the adversarial training, the generator G maps

amples from a prior noise distribution, such as gaussian distri-

ution, to the data space, while the discriminator D estimates the

robability that its inputs come from real data distribution rather

han the generated distribution. 

More specifically, given a noise distribution P z and training

amples x ∼ P x , the adversarial training contains two steps. Firstly,

e fix parameters of the generator, generate G ( z ) from samples z

f the noise distribution P z , and update parameters of the discrim-

nator by optimizing the objective of D as follows: 

in 

D 
E x ∼p x [ log D (x )] + E z ∼p z [ log (1 − D (G (z )))] . (1)

Then we fix parameters of D and update parameters of G to

pproximate target distribution by optimizing the loss function of

 as follows: 

ax 
G 

E z ∼p z [ log (1 − D (G (z )))] . (2)

In order to generate more realistic images, CGANs [2] imple-

ents GANs with one-hot real labels, which provides supplemen-

ary information of class distribution for the generating process.
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This method qualitatively and quantitatively improves the perfor-

mance of GANs in generating tasks. Recent works [23,24] then

extend VAE and GMMN based on this technique for more realis-

tic images. Furthermore, Deep Convolutional GAN (DCGAN) [4] de-

signs a stable architecture utilizing convolutional neural networks

and raises several tricks to stabilize the adversarial training pro-

cess. On the other hand, lots of works [3,5,25–28] propose objec-

tives for GANs to improve stability and image quality. 

2.3. K-Means 

K-Means [29] is a traditional clustering method used to group a

set of given data points { x i } i =1 , 2 , ... ,N ∈ R 

m into k clusters, where k

is a pre-defined number. After randomly choosing k points of data

samples as initialized center, the main algorithm is composed of

two steps. The first is to assign clustering labels to each point ac-

cording to the Euclidean distance between the point and the cur-

rent k centers. Then we compute new centers as the weighted av-

erage of points in each class. The algorithm stops when each center

does not change. Formally, the cost function is as follows: 

min 

M ∈ R m ∗k , s i ∈ R k 

N ∑ 

i =1 

‖ x i − Ms i ‖ 

2 
2 

s.t. s i j ∈ { 0 , 1 } , 1 

T s i = 1 , ∀ i, j, (3)

where s i is the one-hot clustering label of data point x i , s ij denotes

the j th element of vector s i , and M is a matrix whose k columns

correspond to the k centers. 

Although K-Means is widely employed as a part of other mod-

els [8,9,21] , the performance of K-Means depends heavily on the

initialized centers. To remedy this issue, K-Means++ [30] pro-

poses a better procedure to initialize centers. Later extensions

[16,21,22] adopt the procedure and achieve improvements on other

applications, such as deep clustering and representation learning.

Moreover, Minibatch K-Means [31] instead updates centers using a

batch of samples in each iteration to generalize original K-Means

for dealing with large-scale datasets and online scenarios. 

3. Proposed method 

As mentioned before, we consider re-designing the framework

of GANs and utilize results of K-means to replace the role of one-

hot real labels in an un-conditional manner. So we treat the dis-

criminator as a feature extractor rather than a classifier and op-

erate K-Means on extracted features to produce clustering labels

which are viewed as the substitution of real labels. With obtained

features and labels, we propose our objectives from the perspec-

tive of DML to carry out adversarial learning. More importantly,

we come up with a “center-loss” term to connect the optimization

of adversarial learning and centers updating in K-Means. In the fol-

lowing subsections, we first introduce our proposed objectives and

the optimization procedure of regular KM-GAN. Then we general-

ize it with regularization terms in order to deal with more general

datasets. 

3.1. Regular KM-GAN 

We first introduce the “center-loss” term since it fills the gap of

two different optimization directions between adversarial learning

and K-Means, and it is fairly important for the whole algorithm

to work effectively. The term is interpreted as a role to decrease

the distance between corresponding centers of real and generated

images. Formally, the formula is as follows: 

min 

D,G 
L center = 

∥∥∥∥
k ∑ 

m =1 

c m 

+ 

∑ j c m 
j=1 

D (x n j,c m 
) 

1 + j c m 
−
k ∑ 

m =1 

̂ c m 

+ 

∑ j ̂ c m 

j=1 
D (G (z n j, ̂ c m 

)) 

1 + j ̂ c m 

∥∥∥∥
1 

.t. L center ≥ d round , (4)

here k is the pre-defined number of classes, c m 

( ̂  c m 

) is the m th

enter of features of real data (generated data) updated after last

teration, j c m ( j ̂ c m ) is the number of features belonging to the cen-

er c m 

( ̂  c m 

), n j,c m ( n j, ̂ c m ) denotes the position of corresponding fea-

ure of real data (generated data) that is in class m according to

esults of K-Means in the first forward pass and d round is a hyper-

arameter needed to tune according to different datasets to avoid

egeneration. 

Indeed, L center calculates the difference of a second order sta-

istical magnitude, i.e., the average of k centers, between features

f real and generated images. The intension is to keep centers of

ynthesized data not far away from that of real data and acceler-

te distribution approximation. The exploration of minimizing sta-

istical magnitudes is motivated by the success of recent works

5,15,32] on classification and generation tasks. Especially, GMMN

uccessfully approximates data distribution through minimizing all

rders of statistics, which is realized by the Gaussian kernel. So

e intuitively utilize the second order statistics and reuse the re-

ults of K-Means to propose the continuous term. Experimental re-

ults further show that KM-GAN fails to generate meaningful im-

ges even on MNIST without “center-loss” term. 

Although the “center-loss” term is proposed to approximate the

arget distribution, we still need objective functions for the dis-

riminator and the generator to finish the regular adversarial train-

ng. Firstly, we define the objective function of discriminator as fol-

ows: 

in 

D 
L D = ‖ D (x ) − C real ‖ 2 − ‖ D (G (z )) − C gen ‖ 2 , (5)

here C real ( C gen ), computed based on real centers, consists of b

enter pieces for the pre-defined batch size b . Each of these cen-

er pieces is the centroid of the real class where the feature piece

n the corresponding position of this batch belongs. It is natural to

ee that L D penalizes the distance between each class of real data

nd their corresponding k centers. The interpretation is to mini-

ize intra-class distance of each class in the feature space of real

ata from the viewpoint of DML. On the contrary, L D maximizes

he distance between generated data and centers of their corre-

ponding real classes to discriminate the counterfeit from real data.

On the other hand, the corresponding objective function of the

enerator is defined as follows: 

in 

G 
L G = ‖ D (G (z )) − C gen ‖ 2 . (6)

Obviously, the effect of the objective is to compete with the dis-

riminator to approximate the target distribution. When decreasing

he distance between synthesized data and centers of their corre-

ponding k real classes, the features of generated images are dis-

ributed around each real center like features of real data. Then

ith the impact of “center-loss” to pull centers of real and fake

ata close, fake data distribution would approximate the target dis-

ribution finally. The term also plays a role as an adversarial term

n the framework of KM-GAN. 

.2. Three-Step alternating optimization 

It is straightforward to optimize network parameters of GANs

nd update centers step by step as in DEC [8] . But the different di-

ections of these two steps make the optimization more difficult.

o deal with this issue, we utilize “center-loss” term to bridge the

ap. Especially, the “center-loss” term reuses results of K-Means

nd obtained features from the discriminator, which builds a con-

ection between these two steps. In the specific optimization, we
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Table 1 

Details of synthetic data and real-world datasets. 

Dataset Numbers of Images Feature dimensions Classes 

Synthesis 10,000 100 4 

MNIST 70,000 28 × 28 10 

Fashion-10 70,000 28 × 28 10 

CIFAR-10 70,000 32 × 32 × 3 10 

CelebA 202,599 64 × 64 × 3 No 
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rst solve the subproblem of adversarial learning, i.e., updating pa-

ameters of the discriminator and generator, respectively. Then in-

pired by alternating optimization in [9] , we utilize “center-loss”

o re-update parameters of D and G via SGD. With current pa-

ameters, we obtain centers in feature space at last by computing

q. (3) . The concretely three-step alternating optimization proce-

ure is shown in Algorithm 1 . 

lgorithm 1 Training algorithm for regular KM-GAN. 

Input: Real images X , noise distribution P Z ,pre-defined number of

classes k , number of iterations T , batch size b=64, learning rate

r = 0 . 0 0 02 and the hyper-parameter of Adam β1 = 0 . 5 

Output: Generated samples G (z ) 

Initialize parameters of D and G networks 

Initialize k real centers of mapped features D (X ) by K-Means++ 

for t = 1 : T do 

Sample a batch { x i } b i =1 
from real data X 

Sample a batch { z i } b i =1 
from noise distribution P Z 

Obtain features { D (x i ) } b i =1 
and { D (G (z i )) } b i =1 

Obtain clustering labels according to Euclidean distance with

current k centers 

grad θd 
= � θd 

L D 

θd = Adam( grad θd 
, θd , α, β1 , β2 ) 

grad θg 
= � θg 

L G 

θg = Adam( grad θg 
, θg , α, β1 , β2 ) 

grad θd ,θg 
= � θd ,θg 

L center 

θd , θg = Adam( grad θd ,θg 
, θd , θg , α, β1 , β2 ) 

Update centers via K-Means objective in Eq. (3) 

end for 

In the described algorithm, we conduct K-Means++ technique to

etter initialize centers of features. In addition, since the optimiza-

ion of network parameters employs Adam [20] and depends on

he pre-defined batch size, it is natural to come up with Minibatch

-Means. With this procedure, the “center-loss” further plays a role

o mitigate the error caused by different optimization directions of

-Means and regular loss functions in each iteration, which is sim-

lar to Hsu and Lin [21] . 

.3. Generalized KM-GAN 

Although commonly used datasets have obvious criterions to

luster, such as MNIST [33] and CIFAR-10 [34] , there exist datasets

hat do not have these obvious criterions. For example, CelebA

35] and LFW [36] contains too many personalities and images for

ach personality are not enough for generation tasks. It is even

arder to find a suitable number for the pre-defined k . In this case,

perating K-Means to cluster features is too difficult. To handle

ith such problem, we generalize regular KM-GAN with two regu-

arization terms. They act as constraints [5] on the whole class of

eal and fake images. Before explaining the constraints, we define

wo necessary terms L intra and L inter used to generalize KM-GAN as

ollows: 

 intra = 

∑ 

x i , x j ∈ B d 
‖ D (x i ) − D (x j ) ‖ 1 

+ 

∑ 

G (z i ) ,G (z j ) ∈ B g 
‖ D (G (z i )) − D (G (z j )) ‖ 1 , 

L inter = 

∑ 

x i ∈ B d ,G (z j ) ∈ B g 
‖ D (x i ) − D (G (z j ))) ‖ 1 , 

here B d and B g denote the corresponding batch of real samples

 x i } b i =1 and generated samples { G (z i ) } b i =1 , respectively. 
Then the objective functions of the discriminator and the gen-

rator become: 

 D = min 

θD 

‖ D (X ) − C real ‖ 2 − ‖ D (G (z)) 

− C gen ‖ 2 + λ ∗ (L intra − L inter ) , 

L G = min 

θG 

‖ D (G (z)) − C gen ‖ 2 + λ ∗ L inter . (7) 

In the case described above, the objective functions of regular

M-GAN are not effective enough since they depends heavily on

 . However, these two terms, one decreasing intra-class distances

f the whole real and fake data in feature space while the other

inimizing inter-class distance to approximate data distribution,

elp to approximate the data distribution as a whole class. With

bove regularization terms, experimental results also show that the

nal centers reduce to the same one whatever the pre-defined k is

such as k = 10 or k = 20 ), which coincides with the goal of these

egularization terms. This implies that KM-GAN could be applied

o more general scenarios with them. We use the hyperparameter

in experiments to balance the regular loss functions and these

wo regularization terms. 

. Experiments 

Datasets: In this section, we first conduct experiments on a syn-

hetic dataset to show the capability of the discriminator of KM-

AN to represent features. Then we qualitatively and quantitatively

how that KM-GAN is able to generate realistic and diverse images

n real-world datasets including MNIST, Fashion-10, CIFAR-10 and

elebA. Details about these datasets are shown in Table 1 . Note

hat the hyperparameter λ is only used on CelebA dataset. 

Model Architecture and Notations: Experimental results 

28] show that deeper and more complex architectures, such 

s architectures of ResNet [37] , could improve the performance of

ANs. To keep a fair comparison, we use architectures similar to

CGAN [1] for all tested models in the following experiments. This

eans we do not consider models based on ResNet or other com-

lex architectures. The detailed architectures of the discriminator

nd the generator are shown in later experiments. We now explain

he symbols which will be used to show architectures. We use FC,

onv, Upconv, ReLU, LReLU and BN to represent fully connected

ayer, convolutional layer, de-convolutional layer, ReLU activation

ayer, Leaky-ReLU activation layer and batch normalization layer.

pecifically, “FC 4 × 4 × 512 BN LReLU” implies that the inputs are

ully connected to 4 × 4 × 512 outputs and then are connected

ith BN and LReLU in sequence. Similarly, “5 × 5 Conv 128 stride

 BN LReLU” shows that the inputs are transformed first by a

-stride convolutional layer with 5 × 5 kernels and 128 output

hannels, and then connected with BN and LReLU in sequence. 

Evaluations: The evaluation of generative models is also an im-

ortant issue that helps us compare the performance of models

n different aspects, including image quality, diversity and even

verfitting problems [38,39] . Although different architectures and

ifferent datasets make it hard to measure these aspects with a

ertain metric, researchers have also proposed several methods to

ridge the gap, such as Inception Score [40] , FID [41] , GILBO [42] ,

nd the criterion in [43] . To qualitatively and quantitatively show
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Fig. 2. Subfigure (a) is the visualization of the intrinsic 2-dimensional structure of synthetic data. Subfigures (b)–(e) are visualizations of features on the top layer of 

corresponding discriminators of DCGAN and KM-GAN in the training process on synthetic dataset. The first line belongs to DCGAN while the second line is of KM-GAN. 

Besides, the four kinds of colored points represent different categories. Obviously, the features of KM-GAN could separate most of them while that of DCGAN is ineffective. 

Table 2 

Architectures of M , generator and discriminator. 

Mapping function M Generator Discriminator 

Input { h i } n i =1 ∈ R 2 Input { z i } n i =1 ∈ R 100 Input { x i } n i =1 ∈ R 100 

FC 10 Sigmoid FC 10 BN ReLU FC 100 BN ReLU 

FC 100 Sigmoid FC 50 BN ReLU FC 50 BN ReLU 

{ x i } n i =1 ∈ R 100 FC 100 BN ReLU FC 10 BN ReLU 

{ G (z i ) } n i =1 ∈ R 100 FC 2 Sigmoid 

{ D (x i ) , D (G (z i )) } n i =1 ∈ R 2 
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the performance of KM-GAN, we choose different ways to measure

our model on above real-world datasets. For MNIST and Fashion-

10, we both compare generated images of KM-GAN with samples

generated by DCGAN. Besides, we classify generated images of KM-

GAN and DCGAN via a well-trained classifier (realized by a multi-

layer perceptron) on Fashion-10 to show the diversity of gener-

ated samples. Furthermore, we apply Inception Score and FID on

CIFAR-10 and CelebA, respectively. Inception Score is the first pro-

posed to evaluate generated images on CIFAR-10 and ImageNet.

Then researchers generalize this metric to FID for evaluations on

more datasets. We apply different metrics to test generated im-

ages of KM-GAN from different perspectives and avoid overfitting

problems [38] . 

Except for the choice of metrics, we also need to consider

hyperparameters in KM-GAN. In the following experiments, we

first experiment with different values of some hyperparameter

while keeping others fixed, and run KM-GAN for a certain number

of epochs. Then we choose the best values for these hyperpa-

rameters via validating techniques. With these carefully chosen

hyperparameters, we rerun KM-GAN several times and com-

pare the final results with other conditional and un-conditional

models. 

4.1. KM-GAN on synthetic data 

The synthetic dataset consists of 10,0 0 0 points that belong to

R 

100 and has K-Means-friendly [9] structure in a two-dimensional

domain which we could not observe from the original data. In

fact, we first choose four two-dimensional Gaussian distributions

with different means and covariance matrices as in Fig. 2 (a). Then

we sample 2500 points from each distribution and map them into

R 

100 via a mapping function M , which is realized by a non-linear

neural network shown in Table 2 . On this toy dataset, we simply

set d round to be 0. The network structures of DCGAN [1] and KM-

GAN are the same and shown in Table 2 . The obtained features of

KM-GAN and DCGAN on the synthetic dataset in the training pro-

cess are shown in Fig. 2 . 

As we can see from Eqs. (5) and (6) of KM-GAN, extracted fea-

tures of the discriminator play an important role not only on the
bjective function of the discriminator itself, but also on that of the

enerator. To demonstrate that extracted features of KM-GAN are

epresentative enough to do representation learning, we compare

ith those of DCGAN in different epochs. From the visualization

f the features produced by discriminators of these two models in

he training process as shown in Fig. 2 , features of different classes

f DCGAN degenerate to similar points. Obviously, those features of

ur proposed KM-GAN are more representative to show the intrin-

ic structure although they are both capable of generating high-

uality images on real-world datasets. 

.2. KM-GAN on MNIST 

MNIST [33] dataset has 70,0 0 0 gray images of handwritten dig-

ts of size 28 × 28. We first conduct experiments to compare KM-

AN with its reduced version which operates K-Means in pixel

pace as introduced in Algorithm. Then we improve KM-GAN with

eight-clipping which stabilizes the training process. The network

tructures of KM-GAN for training MNIST are the same as that

f DCGAN, the hyperparameter d round is set to be 10,0 0 0, and all

ested models on MNIST is trained for 24 epochs. 

.2.1. Feature space vs. original space 

To demonstrate the effect of carrying out K-Means in feature

pace rather than pixel space, we compare KM-GAN with reduced

M-GAN, in which we operate K-Means to cluster data in pixel

pace. In fact, computations of K-Means appear to increase quickly

s the dimensionality of data increases when experimenting with

educed KM-GAN. However, the capability of dimensionality reduc-

ion of KM-GAN avoids such computational difficulties. In the fol-

owing, we further qualitatively show the advantage of operating

-Means in latent space as exhibited images in Fig. 3 . 

From images in Fig. 3 (b) and (c), it is obvious that the quality of

enerated digits is significantly better when clustering is operated

n the feature space. Regular KM-GAN successfully generates real-

stic handwritten digits in both different classes and different an-

les while reduced KM-GAN even suffers mode collapse, i.e., most

f these generated images are similar or identical. Besides, syn-

hesized images seem to be different from original classes since

e feed no real labels to direct generating process, which gives a

hance to generate more diverse images. 

.2.2. Improvement on KM-GAN 

Although KM-GAN is proven to be capable of generating re-

listic and diverse images, it still fails to generate images some-

imes. So we utilize a common technique called weight clipping to

onstrain parameters of the discriminator (feature extractor) in a

maller bounding box. Specifically, we clamp the weights of D to

 fixed box so that it could only output values in a certain range.
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Fig. 3. Comparison of generated samples of KM-GAN and reduced version of KM-GAN on MNIST dataset. 

Algorithm 2 Training algorithm for reduced KM-GAN. 

Input: Real Images X , noise distribution P Z ,pre-defined number of 

classes k , number of iterations T , batch size b = 64 , learning rate 

r = 0 . 0 0 02 and the hyper-parameter of Adam β1 = 0 . 5 

Output: Generated samples G (z ) 

Initialize k real centers ˜ C of data X by K-Means++ 

Initialize parameters of D and G networks 

for t = 1 : T do 

Sample a batch { x i } b i =1 
from real data X 

Sample a batch { z i } b i =1 
from noise distribution P Z 

Obtain features { D (x i ) } b i =1 
and { D (G (z i )) } b i =1 

Obtain clustering labels according to Euclidean distance with 

current k centers 

˜ L center = ‖ D ( ̃  C real ) − D ( ̃  C gen ) ‖ 1 
grad θd ,θg 

= � θd ,θg ̃
 L center 

θd , θg = Adam( grad θd ,θg 
, θd , θg , α, β1 , β2 ) 

˜ L D = ‖ D (x ) − D ( ̃  C real ) ‖ 2 
grad θd 

= � θd ̃

 L D 

θd = Adam( grad θd 
, θd , α, β1 , β2 ) 

˜ L G = ‖ D (G (z )) − D ( ̃  C gen ) ‖ 2 
grad θg 

= � θg ̃
 L G 

θg = Adam( grad θg 
, θg , α, β1 , β2 ) 

Update centers in original pixel space via K-Means objective 

in Eq. (3) 

end for 
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he technique further guarantees the property that points close in

ixel space are not far away from each other after being mapped

nto feature space. 

As synthesized images shown in Fig. 4 (a) and (b), the perfor-

ance of KM-GAN without weight clipping is already competitive

ith DCGAN on MNIST dataset. This demonstrates that the utiliza-

ion of clustering labels successfully replaces the role of real la-

els to direct generating process and encourages us to pay more

ttention to un-conditional generative models. What is more, to

tabilize the three-step alternating optimization process, we equip

M-GAN with weight clipping and the bounding box is set to be

 −1 , 1] . The synthesized images shown in Fig. 4 (c) are compet-

tive or even better than KM-GAN without weight clipping. This

echnique will be applied in later experiments, and we will intro-

uce how to choose the best bounding box for weight clipping and

 on CIFAR-10 dataset. 
round 
.3. KM-GAN on Fashion-10 

Fashion-10 dataset, consisting of various types of more com-

licated fashion products rather than handwritten digits, has the

ame number of images as MNIST and the size of each image is

lso 28 × 28. So we train with the same architectures as used on

NIST to examine KM-GAN on Fashion-10. The number of epochs

nd hyperparameter d round are also the same as on MNIST. From

he experimental results shown in Fig. 5 (a) and (b), the quality of

ynthesized images of KM-GAN is comparable to that of DCGAN. 

To further quantitatively show that our proposed method is

lso capable of generating diverse images without the help of one-

ot real labels, we train a three-layer convolutional classifier on

ashion-10 separately (97% accuracy on training set and 91% on

est set) and use the network to classify 50 0 0 synthesized images

f KM-GAN and DCGAN. The result of the frequency of each class

s shown in Fig. 5 (c). Since Fashion-10 equally contains images of

ach class, conditional models easily generate images equally for

ach class with the help of real labels. So we compare with re-

ults of DCGAN to further show that KM-GAN is also capable of

chieving this. Specifically, in the frequency chart of generated im-

ges, numbers 0–9 denote 10 classes of the dataset and two col-

rs, “blue” and “gray”, represent results of KM-GAN and DCGAN,

espectively. From the resulted class distributions, most classes are

enerated with probability close to 10% by KM-GAN except the

lass “shirts”, which is under-represented with 7.0%. We infer that

his is because the class “shirts” is very similar to “T-shirts” and

pullovers”. 

.4. KM-GAN on CIFAR-10 

CIFAR-10 [34] is a dataset with 60,0 0 0 RGB images of size

2 × 32 in 10 classes. There are 60 0 0 images in each class with

0 0 0 for training and 10 0 0 for testing. All these images are

sed here to train KM-GAN. The network structures are shown in

able 3 and we set d round to be 20,0 0 0 and bounding box to be

 −0 . 1 , 0 . 1] , which we will explain how to choose in later experi-

ents. 

We first qualitatively evaluate the generated images of KM-GAN

n CIFAR-10 dataset and show the experimental results in Fig. 6 . To

emonstrate the capability of our proposed objective functions, we

ompare with MBGAN which also proposes substituted objective

unctions from the perspective of DML. Results show that synthe-

ized images of KM-GAN are obviously more realistic and mean-

ngful. We further compare with DCGAN and there is no visual dif-

erence between the quality of synthesized images of these two

odels, which also demonstrates the effectiveness of KM-GAN. 
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Fig. 4. Subfigures (a) and (b) compare generated images of DCGAN and KM-GAN on MNIST dataset, and subfigure (c) shows generated images of KM-GAN improved with 

weight clipping. 

Fig. 5. Evaluation of synthesized images of KM-GAN on Fashion-10 dataset. Subfigures (a) and (b) exhibit a random batch of generated images of DCGAN and KM-GAN, and 

subfigure (c) shows the distributions of generated images of DCGAN and KM-GAN with gray and blue bars, respectively. 

Fig. 6. Comparison of generated samples of MBGAN, DCGAN and KM-GAN on CIFAR-10. Note that the last two lines in the bottom of each subfigure are chosen carefully 

from above generated samples for an intuitive comparison. 
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Since we use clustering labels of K-Means to replace one-hot

real labels in KM-GAN, i.e., a purely un-supervised training, we

quantitatively evaluate the diversity of images synthesized by our

model via another index called Inception Score [40] on CIFAR-10

dataset. The index applies Inception model [44] to every generated

image and computes the final score with the following formula: 

IS (G (z )) = exp (E z KL (p(y | G (z )) ‖ p(y ))) . (8)
ndeed, the main idea of Eq. (8) is that diverse images which con-

ain meaningful objects are supposed to have a conditional label

istribution p ( y | G ( z )) with low entropy and a marginal distribution

 p ( y | G ( z )) d z with high entropy. 

As we explain in the beginning of this section, GANs are sensi-

ive to hyperparameters, so we carefully choose the best bound-

ng box for weight clipping and d round from a set of candidates

efore the quantitatively evaluation. Specifically, we first run KM-

AN with each bounding box for 24 epochs three times and keep
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Table 3 

Architectures of generator and discriminator on CIFAR-10. 

Generator Discriminator 

Input { z i } n i =1 ∈ R 100 Input { x i } n i =1 ∈ R 64 ×64 ×3 

FC 4 × 4 × 512 BN LReLU 5 × 5 Conv 

64 stride 2 LReLU 

5 × 5 Upconv 5 × 5 Conv 

256 stride 2 BN LReLU 128 stride 2 BN LReLU 

5 × 5 Upconv 5 × 5 Conv 

128 stride 2 BN LReLU 256 stride 2 BN LReLU 

5 × 5 Upconv 5 × 5 Conv 

64 stride 2 BN LReLU 512 stride 2 BN LReLU 

5 × 5 Upconv FC 4096 BN LReLU 

3 Stride 2 Sigmoid 

FC 100 Sigmoid 

Table 4 

Inception Scores of different bounding boxes on CIFAR-10. 

bounding boxes None [ −1, 1] [ −0.1, 0.1] [ −0.01, 0.01] 

Inception Score Failed 3.15 ± 0.28 5.56 ± 0.12 4.02 ± 0.61 

Table 5 

Inception Scores of different values for d round on CIFAR-10. 

d round None 50 0 0 10,0 0 0 20,0 0 0 30,0 0 0 

Inception Score Failed 4.04 ± 0.32 4.46 ± 0.28 5.56 ± 0.12 Failed 

Table 6 

Inception Score on CIFAR-10 dataset. 

Model Inception score 

MBGAN 4.27 ± 0.07 

MLGAN-clipping [5] 5.23 ± 0.29 

Conditional DCGAN 5.92 ± 0.17 

Models WGAN [15] (with labels) 5.88 ± 0.07 

WGAN-GP 6.46 ± 0.03 

MIX + WGAN [45] 4.04 ± 0.07 

Un-conditional Improved GANs [40] 4.36 ± 0.04 

Models ALI [46] (from [47] ) 4.79 

Wasserstein GANs [25] (from [45] ) 3.82 ± 0.06 

KM − GAN 5.61 ± 0.09 
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Table 7 

Architectures of generator and discriminator on CelebA. 

Generator Discriminator 

Input { z i } n i =1 ∈ R 100 Input { x i } n i =1 ∈ R 64 ×64 ×3 

FC 4 × 4 × 512 BN ReLU 5 × 5 Conv 

64 stride 2 BN LReLU 

5 × 5 Upconv 5 × 5 Conv 

256 stride 2 BN ReLU 128 stride 2 BN LReLU 

5 × 5 Upconv 5 × 5 Conv 

128 stride 2 BN ReLU 256 stride 2 BN LReLU 

5 × 5 Upconv 5 × 5 Conv 

128 stride 2 BN ReLU 512 stride 2 BN LReLU 

5 × 5 Upconv FC 100 Sigmoid 

3 Stride 2 Tanh 

Table 8 

FID with different λ on CelebA. 

λ 0 1 5 10 20 

FID Failed 32.90 ± 1.85 34.25 ± 0.89 31.71 ± 0.37 42.93 ± 13, 57 
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ther hyperparameters fixed ( d round is fixed to be 20,0 0 0). Then we

pply Inception Score to generated images and choose the candi-

ate with the best score (i.e., the highest score). The experimental

esults are shown in Table 4 . 

It is natural to see that KM-GAN performs the best when the

ounding box is set to be [ −0 . 1 , 0 . 1] . After choosing the best

ounding box for weight clipping, we fix it and seek out the best

 round is at 20,0 0 0 with the same procedure. The results are shown

n Table 5 . 

With the chosen bounding box and d round , we rerun the model

or 24 epochs five times and compare the mean inception score

ith both conditional and un-conditional models to characterize

he performance of KM-GAN as in Table 6 . Specifically, WGAN, Im-

roved GANs, and MIX+WGAN are trained without feeding real la-

els, while ALI itself is an un-conditional model utilizing an auto-

ncoder to assist the generator to approximate target distribution.

bviously, KM-GAN out-performs these models with a large mar-

in, which demonstrates the effectiveness of KM-GAN. Then we

ompare with two conditional methods based on DML, MLGAN and

BGAN. KM-GAN also works better than them. Furthermore, we

ompare with DCGAN and WGAN, which are very stable and com-

only used in the research field of GANs. Results show that KM-

AN is a little lower but competitive with them, which coincides

ith the qualitative evaluation in Fig. 6 . We infer that this is be-

ause synthesized images of KM-GAN shown in Fig. 6 (c) are more

eaningful while the backgrounds of generated images of DCGAN
hown in Fig. 6 (b) are clearer. However, the result is lower than

he state-of-the-art result achieved by WGAN-GP, which improves

GAN with gradient penalty. This issue is indeed out of the scope

f our exploration in this paper. But the issue is also compatible

ith KM-GAN, which means we could explore to constrain the gra-

ients of our model with such a penalty in our future works. 

.5. KM-GAN on CelebA 

CelebA [35] , as a large-scale face dataset, contains more than

0 0,0 0 0 RGB face images from 10,177 celebrity identities, and there

re 40 binary attributes and 5 landmarks for each image. We crop

hese images into 64 × 64 for the following experiments. 

.5.1. Qualitative and quantitative evaluation 

We first conduct experiments to qualitatively show the perfor-

ance of KM-GAN. We set hyperparameters d round to be 20,0 0 0

nd the bounding box for weight clipping to be [ −0 . 01 , 0 . 01] with

he same procedure as on CIFAR-10 dataset. The network structures

re shown in Table 7 . Besides, we set λ to be 10 which is cho-

en carefully by later quantitative evaluations. Generated samples

f DCGAN and KM-GAN are exhibited in Fig. 7 . 

From samples shown in Fig. 7 , KM-GAN also performs well on

elebA dataset. To further quantitatively evaluate the quality of

enerated images of KM-GAN, we compare it with several mod-

ls via FID [41] metric, which is a generalized version of Incep-

ion Score. FID metric assumes that each data distribution follows a

ultidimensional Gaussian distribution and measures the distance

etween any two such distributions via Wasserstein-2 metric. With

uch an assumption, FID could be applied to more datasets, such as

elebA and MNIST. The formula used for FID metric is as follows: 

ID ((m , C ) , ( ̃  m , ̃  C )) = ‖ m − ˜ m ‖ 

2 
2 + Tr (C + ̃

 C − 2(C ̃

 C ) 1 / 2 ) , (9) 

here ( m, C ) and ( ̃  m , ̃  C ) denote two distributions which follow

ultidimensional Gaussians. Note that lower FID is better. 

To give a better result, we also search the best λ for KM-

AN with other hyperparameters fixed as on CIFAR-10. We first

un KM-GAN with each candidate for 24 epochs three times. Then

e compute the mean FID between 10 k samples generated by the

odel and 10 k samples chosen randomly from the training set, and

hoose the best λ. The results are shown in Table 8 . 

When λ is set to be 10, KM-GAN is obviously more stable and

erforms the best. So we set λ to be 10, rerun the model for 24

pochs five times, and compute the mean FID as the final result.

hen we compare with several models, including WGAN, WGAN-

P, LS-GAN and BEGAN. They are recently proposed to extend the
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Fig. 7. Comparison of generated samples of DCGAN and KM-GAN on CelebA. 

Fig. 8. Interpolations of generated images on CelebA dataset. 

Table 9 

FID of different models on CelebA. 

Models FID 

WGAN [48] 41.3 ± 2.0 

WGAN-GP [48] 30.0 ± 1.0 

LSGAN [48] 53.9 ± 2.8 

BEGAN [48] 38.9 ± 0.9 

DCGAN 28.9 ± 1.9 

KMGAN 31.5 ± 0.5 
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objectives of GANs from different perspectives. The results of them

are reported in the large-scale study [48] with similar network

architectures and validating techniques to us. These models are

trained in an un-conditional manner since CelebA is of no real la-

bels. The final comparison with them is shown in Table 9 . 

From Table 9 , our model out-performs all other models by

a large margin except WGAN-GP and DCGAN. Among these two

models, DCGAN is designed with a suitable convolutional archi-

tectures while WGAN-GP extends WGAN with a proposed gradient

penalty to stabilize the optimization process. Although our result

is a little lower than theirs, we could explore these two direc-

tions for KM-GAN since the two directions are compatible with our

framework. Besides, the difference between results of KM-GAN and

WGAN-GP on CelebA is obviously smaller than on CIFAR-10, which

also demonstrates the potential of KM-GAN on un-labeled data. 
.5.2. Linear interpolation 

Then we interpolate synthesized images to demonstrate the

eneralization capability of KM-GAN rather than only generate the

raining face images. We first interpolate z ∈ R 

100 and then map in-

erpolated z with the generator. The results are as shown in Fig. 8 .

he leftmost and rightmost images are mapped from z 0 and z 1 ,

espectively. The other images are generated from z β = βz 0 + (1 −
) z 1 ( β ∈ [0, 1]), i.e., interpolations of corresponding noise vectors.

s shown in Fig. 8 , generated images change smoothly from left-

ost to rightmost. Indeed, we choose features of faces, including

air color, angles of faces, with or without eyeglasses and some

ther special features, to exhibit the continuous change clearly. Es-

ecially, on the first row, the face of a smiling woman with golden

air transits to the face of a seriously man with dark hair slowly.

n addition, on the second row, the face of a woman with dark

air and close mouth changes to the face of a smiling woman with

olden hair. These interpolations indicate that our proposed KM-

AN is able to generate images continuously instead of only mem-

rizing training data. 

. Conclusion 

In this paper, we propose an un-conditional extension of GANs,

alled KM-GAN, by fusing GANs with the idea of K-Means and uti-

izing the clustering results to propose objective functions that di-
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ect the generating process. The purpose is to replace the role of

ne-hot real labels with the clustering results, which generalizes

ANs to applications where real labels are expensive or impossi-

le to obtain. In addition, we conduct experiments on several real-

orld datasets to demonstrate that KM-GAN is really capable of

enerating realistic and diverse images without mode collapse. In

he future, we would further pay attention to proving the posi-

ive correlation between high-quality synthesized images and high

lustering accuracy and utilize the relationship to improve perfor-

ance of both tasks. 

eclarations of interest 

None. 

cknowledgments 

This work was supported by the National Natural Sci-

nce Foundation of China (Grant number: 61801325 ), the

atural Science Foundation of Tianjin City (Grant number:

8JCQNJC0 060 0 ), Huawei Innovation Research Program (Grant

umber: HO2018085347), and the authors would like to thank

ianshi Yan, Jiaxiang Guo, Tianli Liao, Yifang Xu, Bowen Wu,

engya Zhang, Chengdong Zhao and Dong Wang for their helpful

dvices. 

eferences 

[1] I. Goodfellow , J. Pouget-Abadie , M. Mirza , B. Xu , D. Warde-Farley , S. Ozair ,

A. Courville , Y. Bengio , Generative adversarial nets, in: Proceedings of the Ad-
vances in Neural Information Processing Systems, 2014, pp. 2672–2680 . 

[2] M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv preprint

arXiv:1411.1784(2014). 
[3] G. Dai , J. Xie , Y. Fang , Metric-based generative adversarial network, in: Pro-

ceedings of the 2017 ACM on Multimedia Conference, ACM, 2017, pp. 672–680 .
[4] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning

with deep convolutional generative adversarial networks, arXiv preprint
arXiv:1511.06434(2015). 

[5] Z.-Y. Dou, Metric learning-based generative adversarial network, arXiv preprint

arXiv:1711.02792(2017). 
[6] X. Mao , Q. Li , H. Xie , R.Y. Lau , Z. Wang , S.P. Smolley , Least squares generative

adversarial networks, in: Proceedings of the 2017 IEEE International Confer-
ence on Computer Vision (ICCV), IEEE, 2017, pp. 2813–2821 . 

[7] X. Huang , Y. Li , O. Poursaeed , J. Hopcroft , S. Belongie , Stacked generative ad-
versarial networks, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2, 2017 . 

[8] J. Xie , R. Girshick , A. Farhadi , Unsupervised deep embedding for clustering
analysis, in: Proceedings of the International conference on machine learning,

2016, pp. 478–487 . 
[9] B. Yang , X. Fu , N.D. Sidiropoulos , M. Hong , Towards k-means-friendly spaces:

Simultaneous deep learning and clustering, in: Proceedings of the International
Conference on Machine Learning, 2017, pp. 3861–3870 . 

[10] J. Yang , D. Parikh , D. Batra , Joint unsupervised learning of deep representations

and image clusters, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 5147–5156 . 

[11] E. Aljalbout, V. Golkov, Y. Siddiqui, D. Cremers, Clustering with deep learning:
taxonomy and new methods, arXiv preprint arXiv:1801.07648(2018). 

[12] Z. Jiang , Y. Zheng , H. Tan , B. Tang , H. Zhou , Variational deep embedding: an un-
supervised and generative approach to clustering, in: Proceedings of the Twen-

ty-sixth International Joint Conference on Artificial Intelligence, AAAI Press,

2017, pp. 1965–1972 . 
[13] H. Gao , H. Huang , Joint generative moment-matching network for learning

structural latent code., in: Proceedings of the IJCAI, 2018, pp. 2121–2127 . 
[14] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, arXiv preprint

arXiv:1312.6114(2013). 
[15] Y. Li , K. Swersky , R. Zemel , Generative moment matching networks, in:

Proceedings of the International Conference on Machine Learning, 2015,
pp. 1718–1727 . 

[16] V. Premachandran , A.L. Yuille , Unsupervised learning using generative adver-

sarial training and clustering, 2016 . 
[17] X. Chen , Y. Duan , R. Houthooft , J. Schulman , I. Sutskever , P. Abbeel , Infogan: in-

terpretable representation learning by information maximizing generative ad-
versarial nets, in: Proceedings of the Advances in Neural Information Process-

ing systems, 2016, pp. 2172–2180 . 
[18] M. Ben-Yosef, D. Weinshall, Gaussian mixture generative adversarial networks
for diverse datasets, and the unsupervised clustering of images, arXiv preprint

arXiv:1808.10356(2018). 
[19] S. Mukherjee, H. Asnani, E. Lin, S. Kannan, Clustergan: latent space clustering

in generative adversarial networks, arXiv preprint arXiv:1809.03627(2018). 
20] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint

arXiv:1412.6980(2014). 
[21] C.-C. Hsu , C.-W. Lin , Cnn-based joint clustering and representation learning

with feature drift compensation for large-scale image data, IEEE Trans. Mul-

timed. 20 (2) (2018) 421–429 . 
22] M.M. Fard, T. Thonet, E. Gaussier, Deep k -means: jointly clustering with k -

means and learning representations, arXiv preprint arXiv:1806.10069(2018). 
23] C. Doersch, Tutorial on variational autoencoders, arXiv preprint

arXiv:1606.05908(2016). 
[24] Y. Ren , J. Zhu , J. Li , Y. Luo , Conditional generative moment-matching networks,

in: Proceedings of the Advances in Neural Information Processing Systems,

2016, pp. 2928–2936 . 
25] M. Arjovsky , S. Chintala , L. Bottou , Wasserstein generative adversarial net-

works, in: Proceedings of the International Conference on Machine Learning,
2017, pp. 214–223 . 

26] S. Nowozin , B. Cseke , R. Tomioka , F-GAN: Training generative neural samplers
using variational divergence minimization, in: Proceedings of the Advances in

Neural Information Processing Systems, 2016, pp. 271–279 . 

[27] G.-J. Qi, Loss-sensitive generative adversarial networks on lipschitz densities,
arXiv preprint arXiv:1701.06264(2017). 

28] I. Gulrajani , F. Ahmed , M. Arjovsky , V. Dumoulin , A.C. Courville , Improved
training of wasserstein gans, in: Proceedings of the Advances in Neural Infor-

mation Processing Systems, 2017, pp. 5767–5777 . 
29] J. MacQueen , et al. , Some methods for classification and analysis of multivari-

ate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathe-

matical Statistics and Probability, 1, Oakland, CA, USA, 1967, pp. 281–297 . 
30] D. Arthur , S. Vassilvitskii , k-means++: the advantages of careful seeding, in:

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035 . 

[31] D. Sculley , Web-scale k-means clustering, in: Proceedings of the Nineteenth
international conference on World wide web, ACM, 2010, pp. 1177–1178 . 

32] Y. Wen , K. Zhang , Z. Li , Y. Qiao , A discriminative feature learning approach for

deep face recognition, in: Proceedings of the European Conference on Com-
puter Vision, Springer, 2016, pp. 499–515 . 

[33] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 . 

34] Y. Netzer , T. Wang , A. Coates , A. Bissacco , B. Wu , A.Y. Ng , Reading digits in
natural images with unsupervised feature learning, in: Proceedings of the NIPS

Workshop on Deep Learning and Unsupervised Feature Learning, 2011, 2011,

p. 5 . 
[35] Z. Liu , P. Luo , X. Wang , X. Tang , Deep learning face attributes in the wild, in:

Proceedings of the IEEE International Conference on Computer Vision, 2015,
pp. 3730–3738 . 

36] E. Learned-Miller , G.B. Huang , A. RoyChowdhury , H. Li , G. Hua , Labeled faces
in the wild: a survey, in: Proceedings of the Advances in Face Detection and

Facial Image Analysis, Springer, 2016, pp. 189–248 . 
[37] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2016, pp. 770–778 . 
38] S. Barratt, R. Sharma, A note on the inception score, arXiv preprint

arXiv:1801.01973(2018). 
39] L. Theis, A.v. d. Oord, M. Bethge, A note on the evaluation of generative models,

arXiv preprint arXiv:1511.01844 (2015). 
40] T. Salimans , I. Goodfellow , W. Zaremba , V. Cheung , A. Radford , X. Chen , Im-

proved techniques for training GANs, in: Proceedings of the Advances in Neu-

ral Information Processing Systems, 2016, pp. 2234–2242 . 
[41] M. Heusel , H. Ramsauer , T. Unterthiner , B. Nessler , S. Hochreiter , Gans trained

by a two time-scale update rule converge to a local Nash equilibrium, in:
Proceedings of the Advances in Neural Information Processing Systems, 2017,

pp. 6626–6637 . 
42] A .A . Alemi , I. Fischer , Gilbo: One metric to measure them all, in: Pro-

ceedings of the Advances in Neural Information Processing Systems, 2018,

pp. 7037–7046 . 
43] K. Shmelkov , C. Schmid , K. Alahari , How good is my GAN? in: Proceedings of

the European Conference on Computer Vision (ECCV), 2018, pp. 213–229 . 
44] C. Szegedy , V. Vanhoucke , S. Ioffe , J. Shlens , Z. Wojna , Rethinking the inception

architecture for computer vision, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2818–2826 . 

45] S. Arora, R. Ge, Y. Liang, T. Ma, Y. Zhang, Generalization and equilibrium in

generative adversarial nets (GANs), arXiv preprint arXiv:1703.00573(2017). 
46] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Ar-

jovsky, A. Courville, Adversarially learned inference, arXiv preprint
arXiv:1606.00704(2016). 

[47] Y. Pu , W. Wang , R. Henao , L. Chen , Z. Gan , C. Li , L. Carin , Adversarial symmetric
variational autoencoder, in: Proceedings of the Advances in Neural Information

Processing Systems, 2017, pp. 4330–4339 . 

48] M. Lucic , K. Kurach , M. Michalski , S. Gelly , O. Bousquet , Are GANs created
equal? A large-scale study, in: Proceedings of the Advances in Neural Infor-

mation Processing Systems, 2018, pp. 698–707 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100006606
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30903-8/sbref0033


136 C. Wang, Z. Chen and K. Shang et al. / Neurocomputing 361 (2019) 126–136 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ce Wang received the B.S. degree from the Department

of Mathematics, Jilin University, in 2015. He is currently
pursuing the Ph.D. degree with the Center for Combina-

torics, Nankai University. His main interests include gen-

erative models, image processing, machine learning, and
deep learning. 

Zhangling Chen is currently a Ph.D. candidate who ma-
jors in applied mathematics Tianjin University. Her re-

search interests include deep learning, face recognition,
object recognition and generative models. 
Kun Shang received the B.S. degree from the Faculty

of mathematics and statistics, Hubei University, in 2011
and Ph.D. degree in the Center for Applied Mathematics

of Tianjin University, in 2018. He is currently an assis-

tant professor in the College of Mathematics and Econo-
metrics of Hunan University in China. His main interests

include pattern recognition, image processing, low-rank
tensor minimization and optimization theory and algo-

rithm. 

Huaming Wu received the B.E. and M.S. degrees from
Harbin Institute of Technology, China in 2009 and 2011,

respectively, both in electrical engineering. He received

the Ph.D. degree with the highest honor in computer sci-
ence at Freie Universitäat Berlin, Germany in 2015. He is

currently an associate professor in the Center for Applied
Mathematics, Tianjin University. His research interests in-

clude model-based evaluation, wireless and mobile net-
work systems, mobile cloud computing and deep learn-

ing. 


	Label-removed generative adversarial networks incorporating with K-Means
	1 Introduction
	2 Background
	2.1 Notations
	2.2 Framework of GANs
	2.3 K-Means

	3 Proposed method
	3.1 Regular KM-GAN
	3.2 Three-Step alternating optimization
	3.3 Generalized KM-GAN

	4 Experiments
	4.1 KM-GAN on synthetic data
	4.2 KM-GAN on MNIST
	4.2.1 Feature space vs. original space
	4.2.2 Improvement on KM-GAN

	4.3 KM-GAN on Fashion-10
	4.4 KM-GAN on CIFAR-10
	4.5 KM-GAN on CelebA
	4.5.1 Qualitative and quantitative evaluation
	4.5.2 Linear interpolation


	5 Conclusion
	Declarations of interest
	Acknowledgments
	References


