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a b s t r a c t 

With the remarkable success achieved by the Convolutional Neural Networks (CNNs) in object recognition 

recently, deep learning is being widely used in the computer vision community. Deep Metric Learning 

(DML), integrating deep learning with conventional metric learning, has set new records in many fields, 

especially in classification task. In this paper, we propose a replicable DML method, called Include and 

Exclude (IE) loss, to force the distance between a sample and its designated class center away from the 

mean distance of this sample to other class centers with a large margin in the exponential feature pro- 

jection space. With the supervision of IE loss, we can train CNNs to enhance the intra-class compactness 

and inter-class separability, leading to great improvements on several public datasets ranging from object 

recognition to face verification. We conduct a comparative study of our algorithm with several typical 

DML methods on three kinds of networks with different capacity. Extensive experiments on three ob- 

ject recognition datasets and two face recognition datasets demonstrate that IE loss is always superior to 

other mainstream DML methods and approach the state-of-the-art results. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Recently, Convolutional Neural Networks (CNNs) are continu-

ously setting new records in classification aspect, such as object

recognition [1–4] , scene recognition [5,6] , face recognition [7–12] ,

age estimation [13,14] and so on. Facing the more and more com-

plex data, the deeper and wider CNNs tend to obtain better ac-

curacies. Meanwhile, many troubles will show up, such as gradi-

ent saturating, model overfitting, parameter augmentation, etc. To

solve the first problem, some non-linear activations [15–17] have

been proposed. Considerable efforts have been made to reduce

model overfitting, such as data augmentation [1,18] , dropout [1,19] ,

regularization [15,20] . Besides, some model compressing methods

[21,22] have largely reduced the computing complexity of original

models, with the performance improved simultaneously. 

In general object recognition, scene recognition and age estima-

tion, the identities of the possible testing samples are within the

training set. So the training and testing sets have the same object

classes but not the same images. In this case, softmax classifier is

often used to designate a label to the input. 

For face recognition, the deeply learned features need to be not

only separable but also discriminative. It can be roughly divided
∗ Corresponding author. 

E-mail addresses: wbw@mail.nankai.edu.cn , 986381313@qq.com (B. Wu). 
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nto two aspects, namely face identification and face verification.

he former is the same as object recognition, the training and test-

ng sets have the same face identities, aims at classifying an input

mage into a large number of identity classes. Face verification is

o classify a pair of images as belonging to the same identity or

ot (i.e. binary classification). Since it is impractical to pre-collect

nough number of all the possible testing identities for training,

ace verification is becoming the mainstream in this field. As clari-

ed by DeepID series [9,10,23] : classifying all the identities simul-

aneously instead of binary classifiers for training can make the

earned features more discriminative between different classes. So

e decide to use the joint supervision of softmax classifier and

etric loss function to train and the verification signal of feature

imilarity discriminant to test as shown in Section 4.3 . Fig. 1 illus-

rates the general face recognition pipeline, which maps the input

mages to the discriminative deep features progressively, then to

he predicted labels. 

A recent trend towards deep learning with more discrimina-

ive features is to reinforce CNNs with better metric loss func-

ions, namely Deep Metric Learning (DML), such that the intra-

lass compactness and inter-class separability are simultaneously

aximized. Inspired by this idea, many metric learning methods

ave been proposed. It can be traced back to early subspace face

ecognition methods such as Linear Discriminant Analysis (LDA)

24] , Bayesian face [25] , and unified subspace [26] . For exam-

le, LDA aims at maximizing the ratio between inter-class and

https://doi.org/10.1016/j.neucom.2018.02.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.02.040&domain=pdf
mailto:wbw@mail.nankai.edu.cn
mailto:986381313@qq.com
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Fig. 1. The typical framework of face recognition. The process of deep feature learning and metric learning is shown in the second row. 
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ntra-class variations by finding the optimal projection direction.

ome metric learning methods [27–29] have been proposed to

roject the original feature space into another metric space, such

hat the features of the same identity are close and those of dif-

erent identities stay apart. Subsequent contrastive loss [23] and

riplet loss [11] have witnessed their success in face recognition. 

Interestingly, closely related to DML is the Learning to Hash,

hich is one of the major solutions to nearest neighbor search

roblem. Given the high dimensionality and high complexity of

ultimedia data, the cost of finding the exact nearest neighbor is

rohibitively high. Learning to Hash, a data-dependent hashing ap-

roach, aims to learn hash functions from a specific dataset so that

he nearest neighbor search result in the hash coding space is as

lose as possible to the search result in the original space, signif-

cantly improving the search efficiency and space cost. The main

ethodology of Learning to Hash is similarity preserving, i.e., min-

mizing the gap between the similarities computed in the origi-

al space and the similarities in the hash coding space in var-

ous forms. [30] utilizes linear LDA with trace ratio criterion to

earn hash functions, where the pseudo labels and the hash codes

re jointly learned. [31] proposes a semi-supervised deep learning

ashing method for fast multimedia retrieval, to simultaneously

earn a good multimedia representation and hash function. More

omprehensive survey about dimension reduction and using dif-

erent similarity preserving algorithms to hashing can be found in

32,33] . Surprisingly, most of the similarity metric loss functions

ould be used for Learning to Hash. 

Because of the large scale of training set, it is unreasonable to

ddress all of them in each iteration. Mini-batch based Stochas-

ic Gradient Descent (SGD) algorithm [34] does not reflect the real

istribution of the total training set, so a superior sampling strat-

gy becomes very important to the training process. Besides, se-

ecting appropriate pairs or triplets like previous may dramatically

ncrease the number of training samples. As a result, it is inevitably

ard to converge to an optimum steadily. In this paper, we pro-

ose a novel well-generalized metric loss function, named Include

nd Exclude (IE) loss, to make the deeply learned features more

iscriminative between different classes and closer to each other

etween images of the same class. This idea is verified by Fig. 2

n Section 3.1 . Obviously, the inter-class distance is away from the

ntra-class distance with a large margin. When training, we learn

 center for each class like center loss [12] does. Subsequently,

e show that center loss is a variant of the special case of our

ethod. There is another parameter σ 2 to regularize the distance

etween the features and their corresponding class centers. Fur-

hermore, we use a hyperparameter Q to control the number of
aluable inter-class distances to accelerate the convergence of our

odel. We simultaneously use the supervision signals of softmax

oss and IE loss to train the network. Extensive experiments on ob-

ect recognition and face verification validate the effectiveness of

E loss. Our method significantly improves the performance com-

ared to the original softmax method, and competitive with other

owadays mainstream DML algorithms. The main contributions are

ummarized as follows: 

• To the best of our knowledge, we are the first to practice the

idea of enforcing the mean inter-class distance larger than the

intra-class distance with a margin in the exponential feature

projection space, as opposed to the distance between a sam-

ple and its nearest cluster centers in magnet loss [35] , avoiding

the large intra-class distances. 

• Instead of some off-line complicated sampling strategies, our

DML method can achieve a satisfactory result only using the

mini-batch based SGD, greatly simplifying the training process. 

• To achieve a better performance rapidly, we introduce a hyper-

parameter Q to restrict the number of nearest inter-class dis-

tances in each mini-batch to accelerate the convergence of our

model. 

• We do extensive experiments on several common datasets, in-

cluding MNIST, CIFAR10, CIFAR100, Labeled Faces in the Wild

(LFW) and YouTube Faces (YTF), to verify the effectiveness, ro-

bustness and generalization of IE loss. 

. Related work 

In recent years, deep learning has been successfully applied in

omputer vision and other AI domains, such as object recognition

3] , face recognition [11] , image retrieval [36,37] , speech recogni-

ion [38] and natural language processing [39] . Most of the time,

eep learning models are prone to be deeper and wider. But more

omplicated deep networks are accompanied by larger training set,

odel overfitting and costly computational overhead. Considering

hese, there produce some new DML methods, which concatenate

he conventional metric learning losses to the end of the deeply

earned features. In classification aspect, DML generally aims at

apping the originally learned features into a more discriminative

eature space by maximizing the inter-class variations and mini-

izing the intra-class variations. To some degree, a properly cho-

en metric loss function would make the training easy to con-

erge to an optimal model without too much training data. We will

riefly discuss some typical DML methods below. 
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Fig. 2. Visualization of the deeply learned 2D features on training and testing sets of MNIST, regarding softmax loss, L-Softmax loss, center loss and IE loss, respectively. The 

points with different colors correspond to the features from different classes. 
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Sun et al. [23] encourage all faces of one identity to be pro-

jected onto a single point in the embedding space. They use an

ensemble of 25 networks on different face patches to get the fi-

nal concatenated features. Both PCA and Joint Bayesian classifier

[27] are used to achieve the final performance of 99.47% on LFW.

The loss function is mainly based on the idea of contrastive loss,

which minimizes the intra-class distance and enforces the inter-

class distance larger than a fixed margin. 

Schroff et al. [11] employ the triplet loss, which stems from

LMNN [28] , to encourage a distance constraint similar to the con-

trastive loss. Differently, the triplet loss requires a triple of training

samples as input at a time, not a pair. The triplet loss minimizes

the distance between an anchor sample and a positive sample, and

maximizes the distance between the anchor sample and a nega-

tive sample, in order to make the inter-class distance larger than

the intra-class distance by a margin relatively. They also use the so

far largest training database about 200M face images, and set an

insurmountable record on LFW of 99.63%. 

Rippel et al. [35] propose a novel magnet loss, which is ex-

plicitly designed to maintain the distribution of different classes

in feature space. In terms of computational performance, it allevi-

ates the training inefficiency of the traditional triplet loss, which

is verified from classification task to attribute concentration. But,

the complicated off-line sampling strategy makes it too difficult to

reproduce. In addition, the intra-class distribution maintaining by

local clusters would impair the inter-class separability in general

classification tasks, especially in face recognition. 

3. The proposed approaches 

We first clarify the notations which will be used in subse-

quential sections. Let us assume the training set consists of M

input-label pairs D = { x n , y n } M 

n =1 
belonging to C classes. We con-

sider a parameterized map f (x n , �) , n = 1 , . . . , M, and � are the

model parameters. In this work, the transformation is selected as

some complex CNN architectures. We further define C ( f n ) as the
lass label of feature f n , and μC( f n ) as the corresponding class

enter. 

.1. Some existing methods 

In this section, some existing superior DML methods are first

resented. 

Triplet Loss Schroff et al. [11] have verified the effectiveness

f triplet loss with a large training set. But the exponentially in-

reased computational complexity of training examples and the

ifficulty of convergence impede its general application. The for-

ula is as follows: 

 (�) = 

M ∑ 

i =1 

{‖ f (x a i ) − f (x p 
i 
) ‖ 

2 
2 − ‖ f (x a i ) − f (x n i ) ‖ 

2 
2 + α

}
+ . (1)

ere, x a 
i 
, x 

p 
i 

and x n 
i 

refer to the anchor, positive and negative im-

ges in a triplet, respectively. α is the predefined margin. 

L − Sof tmax Loss Liu et al. [40] achieve a flexible learning ob-

ective with adjustable difficulty, by altering the classification an-

le margin between classes. Although the relatively rigorous learn-

ng objective with adjustable angle margin can avoid overfitting,

he difficult convergence hinders its generalization to many other

eep networks. It is crucial to continuously adjust the component

eight between softmax and L-Softmax to guarantee the progress-

ng of training. 

 (�) = − 1 

M 

M ∑ 

i =1 

log 

×
(

exp( ‖ W y i ‖‖ x i ‖ ψ( θy i ) ) 

exp( ‖ W y i ‖‖ x i ‖ ψ(θy i ) ) + 

∑ 

j � = y i exp ( ‖ W j ‖‖ x i ‖ cos (θ j ) ) 

)
. 

(2)

t generally requires that 

(θ ) = 

{
cos (mθ ) , 0 ≤ θ ≤ π

m 

D(θ ) , π
m 

< θ ≤ π
(3)
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here W is the weight matrix of the fully connected layer before

oftmax layer, and W y i is the y i th column of W . θy i is the angle

etween x i and its corresponding weight vector W y i , and m is an

nteger to control the learning objective. Meanwhile, D(θ ) must be

onotonically decreased to satisfy the requirement for any θ . 

Center Loss Wen et al. [12] propose a new loss function, which

egards the distance of a sample away from its corresponding class

enter as the objective penalization. The joint supervision of center

oss and softmax loss makes this approach outperform most exist-

ng best results on some face recognition benchmark databases. 

 (�) = 

1 

2 M 

M ∑ 

i =1 

‖ f (x i ) − μ( f (x i )) ‖ 

2 
2 , (4)

here μ( f ( x i )) is the class center of f ( x i ). 

.2. IE loss 

As clarified in [35] , magnet loss liberates us from the unrea-

onable prior target neighborhood assignments, and divides each

lass into several clusters, aims at maintaining the distributions

f different classes in the representation space. As a result, the

imilar samples in different classes may be closer than that in

he same classes. Specifically, intra-class variations may be larger

han inter-class variations in object recognition and face recogni-

ion. Thus some local distribution maintaining loss functions like

agnet loss will not bring so many benefits to the practical clas-

ification tasks. Despite the great performance on LFW by triplet

oss on GoogLeNet [3] , its training ineffectiveness and the expo-

entially increased training samples hinder the widespread appli-

ation to generic classification tasks. 

Considering the difficulty of magnet loss to reproduce and

he disadvantages mentioned above, we propose a replicable DML

ethod, called IE loss, to learn the discriminative features. We cal-

ulate all the distances between a sample and other class centers

n a mini-batch to take of advantage of batch information, as com-

ared to the pair/triplet samples like previous. The objective is ini-

ially defined as follows: 

 (�) = 

1 

M 

M ∑ 

n =1 

{
−log 

exp( − 1 
2 σ 2 ‖ f n − μC( f n ) ‖ 

2 
2 − α) ∑ 

c � = C( f n ) 
exp( − 1 

2 σ 2 ‖ f n − μc ‖ 

2 
2 
) 

}
+ 
, (5) 

here {·} + is the hinge loss function, α is a predefined mar-

in hyperparameter, σ 2 = 

1 
M−1 

∑ 

n ∈D ‖ f n − μC( f n ) ‖ 2 2 is the variance

f examples away from their respective class centers in the fea-

ure space. When training, the class center μC( f n ) and variance σ 2 

hould update together with the deep feature f n . This means we

hould use the entire training set in each iteration. Obviously, it is

mpractical. So we decide to employ the mini-batch based SGD al-

orithm to update the parameters. The denominator in log part is

omputed by summing all the inter-class distances between a sam-

le and other class centers appear in the mini-batch. This approach

eems to be a natural choice with the probability interpretation,

he same to softmax loss. 

Some existing similar DML methods express that a sample

uite far away from the corresponding class center should vanish

rom its term in our objective, approximating the denominator of

q. (5) with a small number of nearest classes. Variance stan- 

ardization also renders the objective invariant to the character-

stic length scale of the problem. Whereas, all these benefits are

ased on a superb neighborhood sampling strategy for each class

o keep the local distribution. Different from the strategy exploited

n [35] which sampling the nearest K clusters in each class, we de-

ide to use the Q nearest class centers to obtain the objective. The
mproved objective loss function is formulated as follows: 

 (�) = 

1 

M 

M ∑ 

n =1 

{ 

−log 
exp( − 1 

2 σ 2 ‖ f n − μC( f n ) ‖ 

2 
2 − α) ∑ Q 

c=1 ,c � = C( f n ) 
exp( − 1 

2 σ 2 Q 
‖ f n − μc ‖ 

2 
2 
) 

} 

+ 

, (6) 

here Q is an effectively selected number of different inter-class

istances between a sample and other class centers in a mini-

atch, and these distances are sorted in ascending order. We can

hoose a proper Q according to different training datasets to ac-

uire the best performance. One can notice that the sophisticated

ff-line nearest clusters sampling strategy is avoided, and the mini-

atch based SGD works well for our training. Besides, the too large

nter-class distances are removed to accelerate the convergence,

hich is especially valid for the datasets with many classes. Subse-

uent results will show that the proposed method can greatly im-

rove the training efficiency without sacrificing speed, since these

uxiliary loss layers are removed in the classification step. 

When we set Q = 1 and σ 2 = 0 . 5 , Eq. (6) immediately reduces

o Eq. (7) . 

 (�) = 

1 

M 

M ∑ 

n =1 

{
‖ f n − μC( f n ) ‖ 

2 
2 + α − min 

c � = C( f n ) 
‖ f n − μc ‖ 

2 
2 

}
+ 
. (7) 

t is clear that this formula is a variant of the efficient center

oss and triplet loss. This loss function seems more appropriate

o reflect the characteristics of our proposed method. It apparently

orces the minimum inter-class distance larger than the intra-class

istance with a margin α. 

The effectiveness of our method is shown in Fig. 2 . The visu-

lization of 2-D features on training and testing sets sufficiently

eflects the relative intra-class compactness and inter-class separa-

ility of IE loss, compared to softmax loss. One can also find that

-Softmax loss obviously amplifies the angle of features between

ifferent classes, and center loss seriously shrinks the intra-class

istances such that the deeply learned features are discriminative

n a small subspace. 

Considering the classical back-propagation algorithm, the en-

ire parameter updating process of IE loss is summarized in

lgorithm 1 . Softmax loss is incorporated to accelerate the con-

lgorithm 1 The parameter updating algorithm of IE loss. 

Input: training set D = { x n , y n } M 

n =1 
, initialized parameters θc in

convolutional layers, W , σ 2 and μq (q = 0 , 1 , . . . , Q ) in loss

layer where q = 0 corresponds to the case of μC( f n ) , hyperpa-

rameters α and λ, learning rate ηt and total iterative steps T . 

Output: model parameters θc . 

1: for t = 1 , 2 , . . . , T do 

2: compute the loss function 

3: L 

t = L 

t 
sof tmax 

+ λL 

t 
IE 

4: compute the gradients 

5: 
∂L t 
∂ f t n 

= 

∂L t 
sof tmax 

∂ f t n 
+ λ

∂L t 
IE 

∂ f t n 

6: 
∂L t 
∂W 

t = 

∂L t 
sof tmax 

∂W 

t + λ
∂L t 

IE 
∂W 

t = λ
∂L t 

IE 
∂W 

t 

7: 
∂L t 
∂μt 

q 
= 

∂L t 
sof tmax 

∂μt 
q 

+ λ
∂L t 

IE 

∂μt 
q 

= λ
∂L t 

IE 

∂μt 
q 

8: 
∂L t 
∂σ 2 

t 

= 

∂L t 
sof tmax 

∂σ 2 
t 

+ λ
∂L t 

IE 

∂σ 2 
t 

= λ
∂L t 

IE 

∂σ 2 
t 

9: update parameters 

10: W 

t+1 = W 

t − ηt · ∂L t 
∂W 

t = W 

t − ηt · λ · ∂L t 
IE 

∂W 

t 

11: μt+1 
q = μt 

q − ηt · ∂L t 
∂μt 

q 
= μt 

q − ηt · λ · ∂L t 
IE 

∂μt 
q 

12: σ 2 
t+1 

= σ 2 
t − ηt · ∂L t 

∂σ 2 
t 

= σ 2 
t − ηt · λ · ∂L t 

IE 

∂σ 2 
t 

13: θ t+1 
c = θ t 

c − ηt 
∑ M 

n =1 
∂L t 
∂ f t n 

· ∂ f t n 
∂θ t 

c 

14: end for 
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Table 1 

Some normal CNN architectures for different benchmark datasets. Conv1.x, Conv2.x and Conv3.x denote structures 

that may contain multiple successive convolutional layers. Batch normalization is used in these networks. 

MNIST (for Fig.2) Conv0.x Conv1.x Pool1 Conv2.x Pool2 Conv3.x Pool3 Fully connected 

Num Layer – 2 1 2 1 2 1 1 

Filt Dim – 5 2 5 2 5 2 1 

Num Filt – 32 – 64 – 128 – 2 

Stride – 1 2 1 2 1 2 1 

Pad – 2 – 2 – 2 – –

MNIST Conv0.x Conv1.x Pool1 Conv2.x Pool2 Conv3.x Pool3 Fully Connected 

Num Layer 1 3 1 3 1 3 1 1 

Filt Dim 3 3 2 3 2 3 2 1 

Num Filt 64 64 – 64 – 64 – 256 

Stride 1 1 2 1 2 1 2 1 

Pad 1 1 – 1 – 1 – –

CIFAR10 Conv0.x Conv1.x Pool1 Conv2.x Pool2 Conv3.x Pool3 Fully Connected 

Num Layer 1 4 1 4 1 4 1 1 

Filt Dim 3 3 2 3 2 3 2 1 

Num Filt 64 64 – 96 — 128 – 256 

Stride 1 1 2 1 2 1 2 1 

Pad 1 1 – 1 – 1 — –

CIFAR100 Conv0.x Conv1.x Pool1 Conv2.x Pool2 Conv3.x Pool3 Fully Connected 

Num Layer 1 4 1 4 1 4 1 1 

Filt Dim 3 3 2 3 2 3 2 1 

Num Filt 96 96 – 192 – 384 – 512 

Stride 1 1 2 1 2 1 2 1 

Pad 1 1 – 1 – 1 – –
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verge of our training process. λ is the weighting parameter be-

tween softmax loss and IE loss in our final objective, to keep the

balance between these two supervision symbols. 

To alleviate the computational complexity of real gradients, we

assume f n , μc , σ 2 are three independent variables. One can refer

to Appendix A for the complete derivation process. The gradients

of L IE (�) with respect to f n , μc , σ 2 are estimated as follows: 

∂L IE (�) 

∂ f n 
= 

1 

M 

M ∑ 

n =1 

(
f n − μC( f n ) 

σ 2 
− f n 

σ 2 Q 

+ 

∑ Q 
c=1 ,c � = C( f n ) 

exp( − 1 
2 σ 2 Q 

‖ f n − μc ‖ 

2 
2 ) · μc 

σ 2 Q 

∑ Q 
c=1 ,c � = C( f n ) 

exp( − 1 
2 σ 2 Q 

‖ f n − μc ‖ 

2 
2 
) 

) 

, (8)

∂L IE (�) 

∂μq 
= 

⎧ ⎨ 

⎩ 

1 
M 

∑ M 

n =1 

(
exp( − 1 

2 σ2 Q 
‖ f n −μq ‖ 2 2 ) ·

f n −μq 

σ2 Q ∑ Q 
c=1 ,c � = C( f n ) 

exp( − 1 

2 σ2 Q 
‖ f n −μc ‖ 2 2 

) 

)
, q � = C( f n )

− 1 
M 

∑ M 

n =1 
f n −μq 

σ 2 , q = C( f n )

(9)

∂L IE (�) 

∂σ 2 
= 

1 

M 

M ∑ 

n =1 

( ∑ Q 
c=1 ,c � = C( f n ) 

exp( − 1 
2 σ 2 Q 

‖ f n − μc ‖ 

2 
2 ) ·

‖ f n −μc ‖ 2 2 

2 σ 4 Q ∑ Q 
c=1 ,c � = C( f n ) 

exp( − 1 
2 σ 2 Q 

‖ f n − μc ‖ 

2 
2 
) 

−‖ f n − μ
C( f n ) 

‖ 

2 
2 

2 σ 4 

) 

. (10)

4. Experiments 

The concrete implementation details are given in Section 4.1 . In

Section 4.2 , three kinds of CNNs with different capacity are given

to validate the effectiveness of our algorithm on object recognition

databases (MNIST [41] , CIFAR10 [42] and CIFAR100 [42] ). Some ex-

periments on face recognition databases (LFW [43] and YTF [44] )

are also performed in Section 4.3 . 
.1. Implementation details 

We use the Caffe library [45] to implement our experiments,

nd a speed-up parallel computing technique by two Tesla K80

PUs is exploited. All the networks in this part are based on some

xisting CNNs. We partition them into three classes: the lighter,

he normal and the powerful. We will refer to [L], [N] and [P] as

heir respective notations in the following experiments. The nor-

al networks are shown in Tables 1 and 5 which are inspired by

12,40] . Also, the powerful ones are similar to [4,46] . We adopt

eLU [1] as the default activation function except in Table 1 where

he PReLU [16] is used. The weight decay and momentum is set to

.0 0 05 and 0.9. Note that the mean subtraction image preprocess-

ng is performed if not mentioned. The normally used SGD works

ell for the training. The lighter networks are some known struc-

ures built in Caffe library, and we comply with their original set-

ings. In all these cases, we set α as 0.1 and Q as the entire inter-

lass distances in the mini-batch, if not specified. The joint super-

ision of softmax loss and IE loss is necessary to accelerate the

onvergence of training process. When testing, the softmax classi-

er is used for object recognition, and cosine similarity metric is

omputed to obtain the face verification accuracies. For a fair com-

arison, we train four kinds of models in each experiment, namely

nder the supervision of softmax loss, softmax loss and L-Softmax

oss, softmax loss and center loss, softmax loss and IE loss. For

implicity, we refer to the four original loss names as their cor-

esponding methods. The details of every experiment about the

raining setups will be presented in their respective subsections

ubsequently. In all the experiments, only a single model is used

o achieve the final performance. 

.2. Object recognition 

MNIST This handwritten dataset has 60,0 0 0 training images

nd 10,0 0 0 testing images. In this section, we use two CNNs to val-

date the generalization of our algorithm. One is the lighter LeNet

ncluded in Caffe library. We train it according to the default up-

ating strategy of learning rate and parameter initialization, even-

ually terminate it at 12k. The normal one is depicted in Table 1 .

his model is trained with the batch size of 256, and the learning

ate is started from 0.01, divided by 10 at 12 k and 15 k iterations,
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Table 2 

Recognition error rate (%) on MNIST dataset. 

Method Error r ate (%) 

DropConnect [20] 0.57 

CNN [47] 0.53 

Maxout [15] 0.45 

DSN [48] 0.39 

R-CNN [49] 0.31 

GenPool [50] 0.31 

Softmax [L] 0.83 

L-Softmax [L] 0.74 

Center [L] 0.76 

IE [L] 0.49 

Softmax [N] 0.61 

L-Softmax [N] 0.47 

Center [N] 0.58 

IE [N] 0.31 

Table 3 

Recognition error rate (%) on CIFAR10 dataset. 

Method Error r ate (%) 

Maxout [15] 11.68 

DSN [48] 9.69 

DropConnect [20] 9.41 

All-CNN [51] 9.08 

R-CNN [49] 8.69 

GenPool [50] 7.62 

Softmax [L] 21.88 

L-Softmax [L] - 

Center [L] 19.40 

IE [L] 18.98 

Softmax [N] 11.56 

L-Softmax [N] 9.59 

Center [N] 10.25 

IE [N] 8.77 

Softmax [P] 6.59 

L-Softmax [P] 6.46 

Center [P] 6.17 

IE [P] 5.97 
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Table 4 

Recognition error rate (%) on CIFAR100 dataset. 

Method Error rate (%) 

Maxout [15] 38.57 

DSN [48] 34.57 

All-CNN [51] 33.71 

R-CNN [49] 31.75 

Softmax [N] 33.31 

L-Softmax [N] 30.79 

Center [N] 29.39 

IE [N] 28.42 

Softmax [P] 27.06 

L-Softmax [P] 26.21 

Center [P] 26.15 

IE [P] 25.32 
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ventually terminated at 20k iterations. In all these experiments,

e only preprocess the images by dividing by 256 to provide them

n range [0,1] as inputs. Some existing best results and the com-

ared methods are shown in Table 2 . It is obvious that IE loss not

nly outperforms other DML methods under the same setings, but

lso among the top performance compared to other state-of-the-

rt methods. 

CIFAR10 This dataset has 10 classes of objects with 50k for

raining and 10k for testing. The experiments on three CNNs are

arried out here. The lighter one is the Cifar10 network built in

affe library. The updating strategy and initialization of parame-

ers follow the original settings. The normal one is depicted in

able 1 . We start with a learning rate of 0.01, divide it by 10 at

0k and 17 k iterations, and eventually terminate it at 22 k itera-

ions. Simple mean/std normalization and horizontal flips are used

o preprocess the dataset. The powerful one is WRN-28-10 as il-

ustrated in [46] , with some differences. The WRN-28-10 network

s said to achieve a comparable accuracy with more than 10 0 0

ayers raw ResNet [4] on CIFAR10. To speed up the training pro-

ess, we fine-tune the other three compared DML methods from

he softmax baseline model. In this experiment, the dataset is pre-

rocessed by global contrast normalization and mean/std normal-

zation. We follow the standard data augmentation [40] for train-

ng, and the batch size is 128. The results are listed in Table 3 . We

an observe that our method always achieves the best performance

mong the four compared DML methods regardless of the size of

NNs. 

CIFAR100 The final part of this section, we will verify the ef-

ectiveness of IE loss on CIFAR100 dataset. This dataset is just like
he CIFAR10, except it has 100 classes containing 600 images per

lass, where 500 for training and 100 for testing. The 100 classes

n CIFAR100 are grouped into 20 superclasses. Each image comes

ith a “fine” label (the class to which it belongs) and a “coarse”

abel (the superclass to which it belongs). We use the former pro-

ocol here. By convention, the normal network is shown in Table 1 ,

nd the powerful one is WRN-28-10. Also, the training strategy is

he same as which described in CIFAR10. For the powerful WRN-

8-10, we fine-tune the other three compared DML methods from

he softmax baseline model. Differently, to better inspect the effec-

iveness of the compared methods with the capacity of networks

rowing, we preprocess the dataset in the same way on the nor-

al and powerful networks, only by simple mean/std normaliza-

ion and horizontal flips to augment data. In Table 4 , we can clearly

nd that our method consistently performs better than other com-

ared approaches. 

From the results presented above, one can find that our IE

oss always achieves the best results among the four compared

ML methods on three object recognition datasets. Specifically,

he performance of center loss and L-Softmax loss fluctuates sig-

ificantly with different network structures. In Fig. 3 , the train-

ng and testing process on CIFAR10 and CIFAR100 with the nor-

al CNNs are displayed. It can be seen that the convergence rate

f our IE loss is comparable with other compared loss functions,

voiding the notoriously slow convergence of triplet loss. Con-

idering the performance gap between training and testing, one

an observe that IE loss can mitigate the serious overfitting of

oftmax loss and the difficult convergence of L-Softmax loss. The

esting accuracies of our method about different λ and α, and

he best settings of them on the normal networks are shown 

n Appendix B . 

.3. Face verification 

Different from object recognition, face verification is to compute

he feature similarity of two images, and threshold comparison is

xploited to decide whether the same person or not. Specifically,

e use softmax classifier and metric loss functions to jointly su-

ervise the training process, and the cosine similarity of two fea-

ures is used to obtain the testing accuracy ( Fig. 4 ). In this sec-

ion, we evaluate our approach for face verification on LFW and

TF datasets. These two face datasets are the recognized bench-

arks for face image and video, respectively. We use the publicly

vailable CASIA-WebFace [52] as the training set, which originally

as 494,414 labeled face images from 10,575 individuals. After re-

oving the images failing to detect and mislabeled, the resulting

ataset for our training is just over 430 K images. The cropped

aces of all images are detected by [53] , and 5 facial landmarks

re labeled to globally align the face images by similarity transfor-

ation [54] . The normal network is depicted in Table 5 , which is
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Fig. 3. Accuracy vs. iteration curves using the normal networks on (a) CIFAR10 dataset and (b) CIFAR100 dataset. 
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a reduced version of ResNet [4] with 27 convolutional layers. The

input faces are cropped to 112 × 96 RGB images, and the batch size

is 256. Besides, the images are normalized by subtracting the mean

image and dividing by 128. We start the training with a learning

rate of 0.1, and divide it by 10 at 16 K, 24 K iterations, then ter-

minate it at 28 K iterations. For face images, we find that using

wider ResNet with fewer layers like WRN-28-10 does not bring

so many benefits, and accompanied by rapidly growing memory

space. So we decide to widen the network listed in Table 5 to ob-

tain the powerful one. Specifically, we widen all the convolutional

layers between Conv1 and Conv4 with a widening factor 2. When

testing, we extract the features from both the frontal face and its

mirror image, and merge the two features by element-wise sum-
ation. All the evaluations are based on the similarity scores of

mage pairs, which are computed by the cosine similarity of two

epresentations after PCA. 

Considering the difference from previous experiments, we se-

ect Q as the first 20% inter-class distances in every mini-batch to

alculate the objective here. The reason is that some datasets like

ASIA-WebFace have too many subjects, most of the inter-class dis-

ances tend to be very large in our method, thus leading to the

ifficult convergence of training process. Fig. 5 a shows the verifica-

ion accuracies on LFW with Q ranging from 0 to 100% of the num-

er of inter-class distances. The importance of choosing a proper Q

s displayed clearly. Here, we regard the case when Q = 0 as the

riginal softmax method. 
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Fig. 4. The general pipeline for face verification in this paper, where classifier loss function is used to train and similarity discriminant is used to obtain the final verification 

accuracy. 

Table 5 

The normal ResNet architecture used for face verification. Resblock is the classical Residual 

unit which consists of two consecutive convolutional layers and a unit mapping. 

Layer Type Filter Size/Stride Output Size Depth Params 

Conv0 Convolution 3 × 3/1 110 × 94 × 32 1 0.86K 

Conv1 Convolution 3 × 3/1 108 × 92 × 64 1 18K 

Pool1 Max pooling 2 × 2/2 54 × 46 × 64 0 –

Resblock1 Convolution 3 × 3/1 54 × 46 × 64 2 73K 

Conv2 Convolution 3 × 3/1 52 × 44 × 128 1 73K 

Pool2 Max pooling 2 × 2/2 26 × 22 × 128 0 –

Resblock2 Convolution 3 × 3/1 26 × 22 × 128 2 294K 

Resblock3 Convolution 3 × 3/1 26 × 22 × 128 2 294K 

Conv3 Convolution 3 × 3/1 24 × 20 × 256 1 294K 

Pool3 Max pooling 2 × 2/2 12 × 10 × 256 0 –

Resblock4 Convolution 3 × 3/1 12 × 10 × 256 2 1179K 

Resblock5 Convolution 3 × 3/1 12 × 10 × 256 2 1179K 

Resblock6 Convolution 3 × 3/1 12 × 10 × 256 2 1179K 

Resblock7 Convolution 3 × 3/1 12 × 10 × 256 2 1179K 

Resblock8 Convolution 3 × 3/1 12 × 10 × 256 2 1179K 

Conv4 Convolution 3 × 3/1 10 × 8 × 512 1 1179K 

Pool4 Max pooling 2 × 2/2 5 × 4 × 512 0 –

Resblock9 Convolution 3 × 3/1 5 × 4 × 512 2 4718K 

Resblock10 Convolution 3 × 3/1 5 × 4 × 512 2 4718K 

Resblock11 Convolution 3 × 3/1 5 × 4 × 512 2 4718K 

Fc5 Fully connection – 1 × 1 × 512 1 5242K 

Table 6 

Face verification performance (%) on LFW and YTF datasets. 

Method Points for Alig. Outside data Networks Acc. on LFW (%) Acc. on YTF (%) 

High-dim LBP [55] 27 100 K – 95.17 –

DeepFace [7] 73 4 M 3 97.35 91.40 

Gaussian Face [8] – 20 K 1 98.52 –

DeepID [9] 5 200 K 1 97.45 –

DeepID-2 + [10] 18 300 K 25 99.47 93.20 

FaceNet [11] – 200 M 1 99.63 95.10 

DCNN [56] 7 490 K 1 97.45 –

CASIA-WebFace [52] 2 490 K 1 97.73 90.60 

Softmax [N] 5 430 K 1 97.42 91.52 

Triplet Loss [N] 5 430 K 1 98.20 92.16 

L-Softmax [N] 5 430 K 1 98.86 94.14 

Center [N] 5 430 K 1 98.91 93.80 

IE [N] 5 430 K 1 99.10 94.12 

Softmax [P] 5 430 K 1 97.73 92.42 

Triplet Loss [P] 5 430 K 1 98.23 91.98 

L-Softmax [P] 5 430 K 1 98.67 92.66 

Center [P] 5 430 K 1 99.01 94.12 

IE [P] 5 430 K 1 99.15 94.12 
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Fig. 5. (a) Verification accuracies of IE loss with different Q / N on LFW using the normal network, where N is the number of inter-class distances regarding a sample in a 

mini-batch. (b) Face verification accuracies of IE Loss on LFW with different λ using the normal network. 

Fig. 6. (a)Verification accuracies of compared loss functions with two different similarity metrics on LFW using the normal network. (b) ROC curves of five compared loss 

functions on LFW. 
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LFW This dataset contains 13,233 face images of 5749 different

identities from the Internet, with large variations in pose, expres-

sion and illumination. For comparison purpose, algorithms typ-

ically report the mean face verification accuracies and the ROC

curves on 60 0 0 given face pairs, following the standard protocol

of unrestricted with labeled outside data [43] . According to previ-

ous experience, we find that a properly chosen λ which balances

the weight between softmax loss and IE loss can improve the per-

formance. So we experiment our method across a wide range of

λ from 0 to 0.1 to select the best setting. The results on LFW are

shown in Fig. 5 b. It can be seen that IE loss is stable with different

λ, and the best setting is 0.05. 

Fig. 6 a illustrates the verification accuracies of five loss func-

tions with two different similarity metrics for testing. The results
how that cosine similarity is more suitable than L2 similarity for

ur feature representations. Obviously, our method is robust to

oth cases, and always achieves the best performance. 

YTF This dataset consists of 3,425 videos from 1,595 different

eople, with an average of 2.15 videos for everyone. Besides, the

verage length of a video clip is 181.3 frames, with each clip du-

ation varying from 48 frames to 6070 frames. Just as the ex-

eriments on LFW, we report the results on 50 0 0 video pairs in

able 6 , according to the unrestricted protocol with labeled outside

ata in [44] . Also, Fig. 7 shows the accuracy of IE loss in regard to

ifferent λ ranging from 0 to 0.1 and the ROC curves of five com-

ared loss functions. 

From the verification results in Table 6 and ROC curves on

hese two datasets, we can find that the performance on the
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Fig. 7. (a) Face verification accuracies of IE Loss on YTF with different λ using the normal ResNet. (b) ROC curves of five compared loss functions on YTF. 

Fig. 8. Some examples of the datasets in our experiments. The image pairs in red are those positive pairs that our method succeeds to recognize, while the softmax method 

fails. Likewise, the green ones are some negative pairs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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owerful network is consistently superior to which on the nor-

al one except the L-Softmax loss. IE loss is always outstand-

ng in the five loss functions under a small training dataset of

ASIA-WebFace, and competitive with the state-of-the-art meth-

ds using larger training datasets or model ensemble. Noticeably,

he results of triplet loss and L-Softmax loss are not satisfactory,

nd there exhibits a large margin of triplet loss compared to the

esults in [11] . This convincingly demonstrates the difficult con-

ergence and big data dependence of triplet loss. We conjecture

hat maybe the performance of our method can be improved con-

iderably if a larger training set or a more powerful network is
 f  
sed. Anyway, the excellent performance undoubtedly verify the

reat generalization of IE loss. The visualization of some datasets is

hown in Fig. 8 . 

. Conclusion and future work 

In this paper, we propose a powerful and replicable DML

ethod, which enforces the mean inter-class distance larger than

he intra-class distance with a margin, to enhance the discrim-

nability of the deeply learned features in object recognition and

ace verification. Extensive experiments on several public datasets
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Table B.1 

The recognition accuracy of IE loss on MNIST regarding different value of λ and α, 

respectively with (a) LeNet built in Caffe library and (b) MNIST network depicted in 

Tab.1. 

(a) (b) 

λ Accuracy α Accuracy λ Accuracy α Accuracy 

0.110 0.9939 0.01 0.9945 0.001 0.9964 0.01 0.9961 

0.115 0.9936 0.03 0.9939 0.004 0.9958 0.03 0.9965 

0.120 0.9940 0.05 0.9938 0.007 0.9952 0.05 0.9962 

0.125 0.9949 0.07 0.9943 0.010 0.9963 0.07 0.9967 

0.130 0.9944 0.10 0.9951 0.030 0.9961 0.09 0.9962 

0.135 0.9940 0.15 0.9950 0.050 0.9962 0.10 0.9969 

0.140 0.9938 0.20 0.9936 0.070 0.9958 0.13 0.9956 

0.150 0.9937 0.25 0.9945 0.090 0.9961 0.15 0.9959 

0.170 0.9935 0.30 0.9943 0.110 0.9961 0.18 0.9958 

0.190 0.9938 0.35 0.9945 0.130 0.9961 0.21 0.9966 

0.210 0.9943 0.40 0.9951 0.150 0.9969 0.24 0.9967 

0.230 0.9945 0.45 0.9938 0.170 0.9963 0.27 0.9963 

0.250 0.9945 0.50 0.9942 0.190 0.9955 0.30 0.9958 

0.270 0.9945 0.55 0.9947 0.210 0.9963 

0.290 0.9946 0.60 0.9941 0.230 0.9960 

0.310 0.9944 0.65 0.9937 0.250 0.9957 

0.330 0.9945 0.70 0.9948 0.270 0.9959 

0.350 0.9943 0.75 0.9946 

0.370 0.9947 0.80 0.9942 

0.390 0.9938 0.85 0.9945 

0.410 0.9943 0.90 0.9940 

0.430 0.9951 0.95 0.9940 

0.450 0.9945 1.00 0.9938 

0.470 0.9945 

0.500 0.9948 

0.550 0.9946 

0.600 0.9943 

0.650 0.9942 

0.700 0.9937 

0.750 0.9945 

0.800 0.9942 

0.850 0.9944 

0.900 0.9941 

0.950 0.9949 

1.0 0 0 0.9938 
have convincingly demonstrated the effectiveness of our method.

The results also exhibit the excellent generalization of IE loss in

various size of CNNs. Instead of requiring a superior neighborhood

sampling strategy, our approach only uses mini-batch based SGD

to conduct the experiments, avoiding the exponentially increased

computational complexity of image pairs or triplets. Maybe a bet-

ter hard sample mining strategy could improve the performance

further. Inspired by the outstanding performance of IE loss in ob-

ject recognition and face recognition, we will explore its extension

in the case where the swarm intelligent methods are exploited to

optimize the clustering algorithm [57,58] in the following work. In

the future, we will delve into DML to explore its extensive appli-

cations to other tasks. 
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Appendix A 

In this section, we concretely describe the deduction of gradient

formulas (9) ∼ (11) listed in Section 3.2 . First, we rewrite Eq. (6) as

follows: 

L = 

1 

M 

M ∑ 

n =1 

{ 

−log 
exp( − 1 

2 σ 2 ‖ f n − μC( f n ) ‖ 

2 
2 − α) ∑ Q 

c=1 ,c � = C( f n ) 
exp( − 1 

2 σ 2 Q 
‖ f n − μc ‖ 

2 
2 
) 

} 

+ 

. (A.1)

We need to compute the gradient formulas of L with respect

to f n , μc and σ 2 . Note that directly computing the real gradients

of them leads to costly computational complexity in training. So

we will consider f n , μc and σ 2 as three independent variables. If

the value in { · } is positive, then 

∂L 

∂ f n 
= − 1 
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· ∂ 

∂ f n 
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M ∑ 
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log 
exp( − 1 

2 σ 2 ‖ f n − μC( f n ) ‖ 
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2 − α) ∑ Q 

c=1 ,c � = C( f n ) 
exp( − 1 

2 σ 2 Q 
‖ f n − μc ‖ 

2 
2 
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· ∂ 

∂ f n 
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2 
2 

2 σ 2 

+ α + log 

Q ∑ 

c=1 ,c � = C( f n ) 

exp( − 1 

2 σ 2 Q 

‖ f n − μc ‖ 

2 
2 ) 

) 

= 

1 

M 

M ∑ 

n =1 

(
f n − μC( f n ) 

σ 2 
− f n 

σ 2 Q 

+ 

∑ Q 
c=1 ,c � = C( f n ) 

exp( − 1 
2 σ 2 Q 

‖ f n − μc ‖ 

2 
2 ) · μc 

σ 2 Q 

∑ Q 
c=1 ,c � = C( f n ) 

exp( − 1 
2 σ 2 Q 

‖ f n − μc ‖ 

2 
2 
) 

) 

. (A.2)

∂L 

∂μq 
= 

1 

M 

· ∂ 

∂μq 

(‖ f n − μC( f n ) ‖ 

2 
2 

2 σ 2 

+ α + log 

Q ∑ 

c=1 ,c � = C( f n ) 

exp( − 1 

2 σ 2 Q 

‖ f n − μc ‖ 

2 
2 ) 

) 

. (A.3)

When q � = C ( f n ), we have 

∂L 

∂μq 
= 

1 

M 

M ∑ 

n =1 
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exp( − 1 
2 σ 2 Q 

‖ f n − μq ‖ 

2 
2 ) · f n −μq 

σ 2 Q ∑ Q 
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exp( − 1 
2 σ 2 Q 

‖ f n − μc ‖ 

2 
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) 

) 

. (A.4)
When q = C( f n ) , we have 

∂L 

∂μq 
= − 1 

M 

M ∑ 

n =1 

f n − μq 

σ 2 
. (A.5)
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ppendix B 

Here we describe the accuracy results about different hyperpa-

ameters and the optimal settings on object recognition using the

ittle and normal networks in details. All the experiments in this

art obey the following steps. First, we fix α to 0.1 and vary λ ac-

ording to its corresponding range in different databases. Then, we

x λ to the best setting from the previous results and vary α to

nd the final optimal setting. Both the optimal values of λ and α
re displayed in bold. 
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Table B.2 

The recognition accuracy of IE loss on CIFAR10 regarding different value of λ and 

α, respectively with (a) CIFAR10 built in Caffe library and (b) CIFAR10 network de- 

picted in Table 1. 

(a) (b) 

λ Accuracy α Accuracy λ Accuracy α Accuracy 

0.001 0.8028 0.001 0.8057 0.001 0.9086 0.001 0.9093 

0.004 0.8054 0.005 0.8018 0.005 0.9102 0.005 0.9087 

0.008 0.8064 0.010 0.8068 0.008 0.9109 0.010 0.9075 

0.010 0.8063 0.050 0.8029 0.011 0.9108 0.050 0.9066 

0.040 0.8011 0.100 0.8093 0.015 0.9088 0.100 0.9123 

0.080 0.7950 0.150 0.8032 0.030 0.9111 0.200 0.9100 

0.100 0.8033 0.200 0.7972 0.050 0.9078 0.250 0.9088 

0.130 0.8012 0.250 0.7989 0.070 0.9123 0.300 0.9073 

0.160 0.8064 0.300 0.7996 0.100 0.9099 

0.190 0.7959 0.350 0.8059 0.150 0.9111 

0.210 0.7998 0.40 0.8102 0.200 0.9057 

0.240 0.8002 0.450 0.8064 0.250 0.9043 

0.270 0.8093 0.500 0.8031 0.300 0.9035 

0.300 0.8073 0.550 0.8075 0.350 0.9078 

0.330 0.8055 0.600 0.7954 0.400 0.9061 

0.370 0.8049 0.650 0.8045 0.450 0.9091 

0.400 0.8078 0.700 0.8015 0.500 0.9095 

0.430 0.8042 0.750 0.8051 0.550 0.9084 

0.470 0.8019 0.800 0.8027 0.600 0.9070 

0.500 0.8066 0.850 0.8072 

0.530 0.8044 0.900 0.8058 

0.570 0.8028 

0.600 0.8005 

0.650 0.7911 

0.700 0.8074 

0.750 0.8018 

0.800 0.8082 

0.850 0.8022 

0.900 0.8006 

0.950 0.8076 

1.0 0 0 0.8094 

Table B.3 

The recognition accuracy of IE loss on CIFAR100 with the CIFAR100 network de- 

picted in Tab.1, in regard to different value of λ and α, respectively. 

λ 0.001 0.003 0.005 0.007 0.010 0.030 0.050 0.070 0.100 0.200 

Accuracy 70.41 71.41 71.14 71.58 70.72 70.72 70.85 71.11 70.80 70.62 

α 0.007 0.005 0.001 0.010 0.100 0.200 

Accuracy 71.06 70.97 71.16 70.82 71.58 71.18 
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