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a b s t r a c t

With the proposed of Generative Adversarial Networks (GANs), the generative adversarial models
have been extensively studied in recent years. Although probability-based methods have achieved
remarkable results in image synthesis tasks, there are still some unsolved challenges that are difficult
to overcome. In this paper, we propose a novel model, called Discriminative Metric-based Generative
Adversarial Networks (DMGANs), for generating real-like samples from the perspective of deep metric
learning. To be specific, the generator is trained to generate realistic samples by reducing the distance
between real and generated samples. Instead of outputting probability, the discriminator in our model
is conducted as a feature extractor, which is well constrained by introducing a combination of identity
preserving loss and discriminative loss. Meanwhile, to reduce the identity preserving loss, we calculate
the distance between samples and their corresponding center and update these centers during training
to improve the stability of our model. In addition, a data-dependent strategy of weight adaption
is proposed to further improve the quality of generated samples. Experiments on several datasets
illustrate the potential of our model.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Generative Adversarial Networks (GANs) [1] as a convincing
branch of deep generative models have attracted tremendous at-
tention. Specifically, the emergence of GANs has brought signifi-
cant improvements in many tasks, such as image generation [2,3],
image super-resolution [4], image-to-image translation [5,6], and
other related applications [7–10]. Compared to deep Boltzmann
machines [11] or generative stochastic networks [12], which
require intractable probabilistic computations explicitly, GANs
avoid these computations by deriving back-propagation signals
through a competitive process involving a pair of networks.
Nevertheless, vanilla GAN [1] could only generate low-resolution
gray-scale samples, yet the training process of vanilla GAN is
notoriously difficult and often suffers from mode collapse. To
alleviate these problems, researchers have explored various as-
pects of GANs, such as the choice of the architectures [13–15],
regularization and normalization schemes [16,17], and the design
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of loss functions [18–20]. Even though tremendous improve-
ments [15,21] have been achieved, these models still pay little
attention to deep metric learning, which is widely applied in
supervised classification tasks.

As a popular method for extracting more discriminative fea-
tures, deep metric learning has witnessed its success in clas-
sification tasks, such as face recognition [22,23] and objective
recognition [24,25]. By designing appropriate objective functions,
deep metric learning approaches [26–28] can obtain intra-class
compact and inter-class separable features and achieve state-of-
the-art results on many tasks. The success of deep metric learning
in achieving classification tasks has motivated researchers to
investigate the use of deep metric learning in other relevant tasks
such as image generation. Recently, MBGAN [29] and MLGAN [30]
apply deep metric learning to GAN models to generation tasks.
They view the discriminator as a feature extractor that maps
samples into a feature space, where the distances between real
samples are minimized as well as the distances between real and
fake samples are maximized. At the same time, the generator
is trained to generate samples that are close to real data under
the learned metric. Furthermore, by adding a term called ‘‘center
penalty’’, which punishes the discriminator if it learns inappropri-
ate features for images away from their predefined center vectors,
MLGAN improves the quality of generated images. However, it
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is still limited because hand-engineered centers are inflexible,
i.e., they cannot suit the distribution of data during training.
On the other hand, MBGAN adopts a data-dependent margin
and needs a triplet of samples in each iteration. However, they
only calculate the distance between samples, which means they
cannot effectively utilize the information on the distribution of
data and are sensitive to samples with noise during training. It is
difficult to get enough representative features only by calculating
the distance between samples in transformed space.

Inspired by the works mentioned above, we propose a novel
generative adversarial model from the perspective of deep metric
learning, named Discriminative Metric-based Generative Adver-
sarial Network (DMGAN). Different from traditional GANs, the
generator in our model aims to capture the distribution of real
data by reducing the distance between synthesized images and
real ones in feature space. Simultaneously, we conduct the dis-
criminator as a feature extractor that maps samples into a latent
feature space to measure whether a given sample belongs to
real data or not. Similar to [31–33] which optimize their model
with group decision making (GDM) method, our discriminator
is trained under the joint supervision of discriminative loss and
identity preserving loss. On the one hand, we maximize the
distance between real and fake samples using discriminative loss.
On the other hand, the identity preserving loss is optimized to
minimize the distance between samples and their correspond-
ing centers in feature space. It should be noted that centers of
samples utilized in our model are constantly updated during the
training process following the strategy in center loss [28]. Thus
the discriminator can extract illustrative features to distinguish
real samples from false ones as well as faithfully preserve the
local structure of samples in feature space. To further improve
the quality of samples generated by our model, we introduce a
data-dependent weight adaptive strategy for the discriminative
loss. That is to say, if the distance between generated samples
and real samples in features is large, the corresponding weight
will be small, otherwise, the weight will be large. With the adap-
tive strategy, our model can focus more attention on improving
those poorly-produced samples instead of wasting energy on
well-produced samples.

The main contributions of our work lie in four folds:

• We propose the Discriminative Metric-based Generative Ad-
versarial Network (DMGAN) with a simple and robust train-
ing procedure from the perspective of deep metric learning.

• We combine the discriminative loss and identity preserving
loss to exactly recover the implicit distribution of real data.
Furthermore, we integrate identity preserving loss and dis-
criminative loss using an adaptive weight dependent on data
to drive the model to pay more attention to improving those
poorly-produced samples.

• We calculate the center of samples according to the labels of
samples and then minimize the distance between samples
and their data-dependent centers, so that our model can
learn representative features in transformed space.

• We adopt the point that we can generate samples with the
same distribution as real samples by using a deep met-
ric learning method. Experimental results demonstrate that
our model outperforms state-of-the-art results on several
datasets.

2. Related works

We briefly review prior works related to our proposed ap-
proach in this section. For clarity, we group them into two as-
pects: deep metric learning and generative adversarial networks.

2.1. Deep metric learning

Facing with large amounts of data and complex deep models,
researchers put forward deep metric learning methods, which
adopt conventional metric learning approaches on the top of deep
features. Generally, deep metric learning methods are utilized
to learn powerful deep nonlinear transformations into a feature
space whose metric is in correspondence with a predefined sim-
ilarity. As a typical deep metric learning method, contrastive
loss [26] learns a globally coherent nonlinear function that min-
imizes intra-class distance and forces inter-class distance to be
larger than a fixed margin. On the other hand, rather than a pair
of samples, triplet loss [27] requires a triplet of training samples
as input and minimizes the distance between an anchor sample
and a positive sample while maximizes the distance between
the anchor sample and a negative sample, which is to make
the inter-class gap distance larger than the intra-class gap by a
margin relatively. However, the applications of contrastive loss
and triplet loss are limited because penalizing pairs or triplets
of samples suffer from dramatic data expansion. To alleviate this
problem, center loss [28] targets more directly on the learning
objective of the intra-class variations by constraining the dis-
tance between samples and their corresponding centers, which
is very beneficial to the discriminative feature learning. Actually,
through the joint supervision of center loss and softmax loss, the
discriminative power of deep features can be highly enhanced.
Furthermore, each class of samples in magnet loss [34] are further
grouped into several clusters and local discrimination is achieved
by adaptively penalizing the distance between samples and their
clustering centers. In summary, as an essential statistic of sam-
ples, the center plays a crucial role in many deep metric learning
algorithms, and the success of utilizing deep metric learning algo-
rithms on classification tasks motivates us to devote more efforts
to improving generative adversarial models from the perspective
of deep metric learning.

2.2. Generative adversarial networks

GAN [1] is a machine learning technique that learns to gener-
ate fake samples indistinguishable from real ones via a competi-
tive game. The architectures of GAN are composed of two neural
networks, a discriminator and a generator. The discriminator D is
equipped to maximize the probability of assigning correct labels
to both real samples and generated samples while the generator G
is trained to fool the discriminator with synthesized data. During
the last few years, a large amount of GANs [35–37] have been
proposed in two categories: unconditional GANs and conditional
GANs.

As the primitive generative adversarial model, vanilla GAN [1]
always encounters training instability and mode collapse during
the process of achieving the Nash equilibrium of the generator
and the discriminator. To alleviate the problem of mode collapse
and increase the stability of the model, CatGAN [38] puts forward
an unconditional categorical generative adversarial model by uti-
lizing mutual information between real and generated samples.
Besides, MLGAN [30] pays its attention to the way to measure the
similarity between the distribution of real data and synthesized
samples and proposes a novel model based on distance metric
learning without condition. Recently, KM-GAN [39] presents an
unconditional generative adversarial model by incorporating the
idea of updating centers in K-means into GANs. Although the
quality of samples generated by these unconditional GANs has
exceedingly improved, they always suffer from problems during
training.

To solve the problems mentioned above and further improve
the performance of generative adversarial models, researchers
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start to pay more attention to conditional GANs [13,18,29,40].
Indeed, CGAN [40] has greatly improved the model stability and
quality of synthesized samples by fusing one-hot labels into the
adversarial learning process. Subsequently, DCGAN [13] designs
a stable architecture utilizing convolutional neural networks and
provides several tricks to stabilize the adversarial training of
conditional GANs. Based on these efforts, a growing number of
conditional GANs [2,6,14,18–21,41] are proposed. Among them,
some conditional GANs [2,6,14,21] dedicate to redesigning the
architecture of models while some models [18–20,41] adopt dif-
ferent criteria to distinguish between real and fake samples.
For instance, EBGAN [19] regards the discriminator as an en-
ergy function, and LSGAN [20] adopts the least square loss for
the discriminator. Inspired by the successful utilization of deep
metric learning in the tasks of supervised classification, MBGAN
further [29] extends the framework of GAN from the perspective
of deep metric learning. To be specific, the discriminator adopts
a triplet of inputs and learns a nonlinear transformation to map
these samples from the original space into a feature space. How-
ever, only penalizing triplets of samples cannot employ sufficient
insights of data structure, which would hinder the performance of
the model. The key challenge for generating high-quality images
is whether the discriminator can learn representative features
for metric-based generative models. Therefore, it is desirable to
tell the algorithm to concentrate on the statistics of features in
representation space for extracting illustrative features as well as
generating more realistic images.

3. Proposed method

In this section, we introduce our generative adversarial model,
Discriminative Metric-based Generative Adversarial Network
(DMGAN), which borrows the idea from deep metric learning.
Firstly, we give a detailed description of our model in regular.
Then a strategy of weight adaption is introduced to improve the
performance of DMGAN.

3.1. Regular DMGAN

The diagram in Fig. 1 shows the framework of our model.
Given a random vector z ∼ pz , the generator G directly learns
a mapping that maps the latent variable z to a real-like fake
sample G(z). The discriminator, as a feature extractor, utilizes
the proposed metric function to distinguish real samples from
synthesized ones. To be specific, the discriminator embeds the
real sample x or generated sample G(z) into a feature space where
samples are measured by Euclidean distance. Indeed, many differ-
ent distance metrics can be selected for DMGAN, and we focus
on Euclidean distance for ease of presentation. The discussion
and analysis can easily be extended to other types of metrics.
To accurately measure the distance between generated samples
and real samples, we adopt a group decision making method
and introduce an objective for the discriminator that contains
two parts, i.e., discriminative loss and identity preserving loss.
The discriminative loss is used to enlarge the distance between
real samples and fake ones so that real and fake samples can
be distinguished, and the specific objective function is listed as
follows:

Ld = −∥D(G(z)) − D(x)∥2 (discriminative loss) (1)

where D(x) and D(G(z)) are the output features of real and gen-
erated samples of the discriminator, respectively.

Since Ld is a part of the loss function of our discriminator for
a pair of dissimilar samples, we can separate real samples and
synthetic samples in feature space by minimizing the objective
function Ld. Nevertheless, only optimizing Ld during training

Algorithm 1 Training algorithm for DMGAN

Input: Training set X , random noise z ∼ Pz , batch size m, hyper-
parameters λ, γ , number of epochs T , Adam hyper-parameters
α, β1, β2

Output: Generated samples G(z)
Initialize parameters of D and G
Initialize centers c = ĉ = (0, 0, · · · , 0)
for t = 1 : T do

Sample m samples {xi}mi=1 from real data X
Sample m noise samples {z i}mi=1 from random noise distribu-
tion Pz
LD = Lip + λ · Ld

gradθd = ∇θdLip + λ · ∇θdLd

θd = Adam(gradθ , θd, α, β1, β2)
LG = −Ld

gradθg = ∇θgLG

θg = Adam(gradθ , θg , α, β1, β2)

Update centers c and ĉ by c t+1
= c t − γ · △c t

end for

cannot guarantee that the features learned by the discriminator
are representative. Hence, we introduce identity preserving loss
to the discriminator to learn robust features. To be specific, as
another part of the objective function of the discriminator, the
identity preserving loss tries to push each sample close to its
corresponding center. Let c and ĉ denote centers of deep features
D(x) and D(G(z)), then the objective can be formulated as follows:

Lip = ∥D(x)−c∥2+∥D(G(z))− ĉ∥2 (identity preserving loss) (2)

Lip is an objective to minimize the intra-class variations by enforc-
ing D(x) (or D(G(z))) to have small distance with its corresponding
center c (or ĉ) in feature space. Centers in our model share the
same dimension with the output of the discriminator and are
initialized to (0, 0, . . . , 0). Furthermore, to alleviate the limitation
of hand-engineered centers on training, we constantly update
them during training as deep features of samples are changed.
The updated criteria is computed as:

△ c i =

∑m
j=1 δ(yj = i)(c i − xj)

1 +
∑m

j=1 δ(yj = i)
(3)

cnewi = c i − γ · △c i (4)

where m is the size of mini-batch. δ is an indicator function
that means δ(condition) = 1 if the condition is satisfied, and
δ(condition) = 0 if not. c i represents the center of deep features
of real samples in category i. If there is no label in given data,
the model treats all the training data as the same class, that
means | i |= 1 (| i | represents the number of different i). On
the contrary, | i |= k (k > 1), where k refers to the number
of classes of data. ĉ has the same update rule as c , but the
difference is that updating ĉ depends on generated samples. γ is
a hyper-parameter introduced for controlling the updated ratio
of data-dependent centers. When the value of γ is large, the new
data-dependent center depends more heavily on the features of
the current stage and has less memory of the previous features.
On the other hand, when γ is small, it will depend heavily on the
center of the last step. So we can see that fixing centers in MLGAN
can be considered as a special case when γ is set to 0.

To learn more discriminative features and accurately distin-
guish real samples from generated ones, we adopt the joint
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Fig. 1. Architectures of the proposed DMGAN. Similar to regular GANs, the generator and discriminator in DMGAN can be realized by multi-layer perceptron (MLP)
or convolutional neural network (CNN). The generator aims to synthesize realistic images while the discriminator aims to extract representative features through
joint supervision of identity preserving loss Lip and discriminative loss Ld . ĉ and c in the objective of Lip represent the centers corresponding to samples G(z)
and x.

supervision of Ld and Lip to train the discriminator, and the final
objective is a weighted sum of Ld and Lip:

min
D

LD = Lip + λ · Ld (5)

where λ is a predefined hyper-parameter to govern the relative
importance of discriminative loss compared with the identity
preserving loss. On the other hand, the generator attempts to
synthesize real-like samples by minimizing the distance between
real samples and generated samples in feature space, and the
objective of the generator is listed as:

min
G

LG = −Ld (6)

In DMGAN, the generator and the discriminator can be trained
with stochastic gradient descent (SGD) [42] by backpropagation.
The details of the learning algorithm are given in Algorithm 1.

3.2. waDMGAN

In regular DMGAN, the discriminative loss Ld assigns the same
weight for different generated samples, although some synthe-
sized samples are of good quality while others are not. This way
of setting weights limits the convergence of our model due to
the lack of considering the difference between samples. In this
section, instead of using a fixed weight of Ld as in Eq. (5), we
improve regular DMGAN by providing a data-dependent weight
adaptive strategy. That is to say, we assign different weights
to different samples according to the quality of samples gener-
ated during the training process. By adding the data-dependent
weights, the model can automatically adapt the weights to guide
the discriminator to extract more robust and representative fea-
tures and make the generator pay more attention to improving
poor-produced samples. The ith adaptive weight is defined as
follows:

weighti = exp
{ 1

m

∑m
i=1 ∥G(z i) − xi∥1

∥G(z i) − xi∥1

}
(i = 1, 2, . . . ,m) (7)

Given a mini-batch samples, we calculate the pixel-wise gap
between each real and generated sample and then count the
average distance of batch samples in each step of training. When
the distance between real samples and synthesized samples is
smaller than the average value, the weight is larger. Similarly, the
weight will be a lower value if the distance between the real and
generated samples is larger than the average distance. Besides, we
add an exponential term to change the degree of the variation

Algorithm 2 Training algorithm for waDMGAN

Input: Training set X , random noise z ∼ Pz , batch size m, hyper-
parameters λ, γ , number of epochs T , Adam hyper-parameters
α, β1, β2

Output: Generated samples G(z)
Initialize parameters of D and G
Initialize centers c = ĉ = (0, 0, · · · , 0)
for t = 1 : T do

Sample m samples {xi}mi=1 from real data X
Sample m noise samples {z i}mi=1 from random noise distribu-
tion Pz
for i = 1 : m do

weighti = exp
{ 1

m
∑m

i=1∥G(z i)−xi∥1
∥G(z i)−xi∥1

}
end for
weight = (weight1, weight2, · · · , weightm)
LD = Lip + λ · weight · Ld

gradθd = ∇θdLip + λ · weight · ∇θdLd

θd = Adam(gradθ , θd, α, β1, β2)
LG = −Ld

gradθg = ∇θgLG

θg = Adam(gradθ , θg , α, β1, β2)

Update centers c and ĉ by c t+1
= c t − γ · △c t

end for

of weights and the objective function of the discriminator with
weight adaption is as follows:

min
D

LD = Lip + λ · weight · Ld (8)

With this more relaxed condition, the discriminator in our
model can obtain more robust and discriminative features, thus
the strategy of weight adaption is an efficient way for generating
more realistic images. For convenience, we call DMGAN with
weight adaption waDMGAN and summarize the learning details
of waDMGAN in Algorithm 2.

4. Experiments

We implement our experiments on various datasets, includ-
ing MNIST [42], SVHN [43] and CIFAR-10 [44]. In the following
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Table 1
The structures of the generator and discriminator. ‘‘5c-2s-512o’’ denotes 5 × 5
kernel with stride 2 and 512 outputs. ‘‘UpConv’’ stands for fractionally-strided
convolution layer, ‘‘FC’’ is the abbreviation of fully connected layer. ‘‘BN’’
and ‘‘LReLU’’ imply batch normalization and leaky ReLU, respectively. The
dimensionality of the output vector of discriminator is set to 500.
Generator Discriminator

Input 100-D random noise Input 64 × 32 × 32 × 3 images

5c-2s-512o UpConv, BN, LReLU 5c-2s-64o Conv, BN, LReLU
5c-2s-256o UpConv, BN, LReLU 5c-2s-128o Conv, BN, LReLU
5c-2s-128o UpConv, BN, LReLU 5c-2s-256o Conv, BN, LReLU
5c-2s-64o UpConv, BN, LReLU 5c-2s-512o Conv, BN, LReLU
5c-2s-3o UpConv, BN, LReLU 500o FC
Tanh

Output 64 × 32 × 32 × 3 Output 500-D feature vector

sections, we first describe experimental details and then show
results on different datasets.

Experimental details and hyper-parameters Before present-
ing experiments, we briefly introduce some experimental details.
We use the TensorFlow [45] library (version 1.3.0) to implement
our experiments. Meanwhile, a speed-up computing technique
by TitanX GPU is exploited. The exact architectures of the dis-
criminator and the generator are typically implemented as MB-
GAN, which are described in Table 1. Besides, we constraint our
model with Lipschitz restriction, which is realized by adding
weight clipping in the discriminator. For the clipping threshold,
we experimentally set it to [−0.1, 0.1]. In our experiments, the
model requires techniques such as batch normalization [46] and
leaky ReLU [47] to achieve convergence. We use Adam opti-
mization [48] for training and set the learning rate to 0.0002,
momentum parameters α to 0.5, β1 and β2 to 0.9 and 0.99,
respectively. All models used in the following experiments are
trained with mini-batch size of 64. Without a special explana-
tion, these hyper-parameters are fixed for all the visualization
experiments.

Datasets We implement our experiments on various datasets,
including MNIST [42], SVHN [43] and CIFAR-10 [44]. We conduct
experiments on these datasets for the following reasons. Firstly,
they are all labeled databases, which meet the requirements of
our algorithm. It is suitable for us to learn faithful data-dependent
centers during training due to the little difference in the num-
ber of samples of different categories in these three datasets.
Secondly, many generative adversarial models conduct their ex-
periments on these datasets, and the complexity of samples in
MNIST, SVHN, and CIFAR-10 is gradually increasing. Experiments
on them can illustrate that our model not only performs very well
on simple images but also can deal with complex datasets. Fig. 2
shows some examples of these datasets, and details of them are
described as follows:

• MNIST [42] contains 60,000 training images and 10,000
test images of digits 0 to 9, and the images in MNIST are
grayscale with size 28.

• SVHN [43] is a real-world dataset that is obtained from
house numbers in Google Street View pictures. As a dataset
composed of digital images, SVHN contains RGB samples
with more complication than MNIST.

• CIFAR-10 [44] contains 32 × 32 RGB images belong to 10
different classes, with 5000 training images and 1000 test
images per class. Both training images and test images are
utilized to train our model.

Evaluation metrics Quantitatively estimating GANmodels re-
mains a challenging task because likelihood cannot be efficiently
evaluated. An intuitive metric can be obtained by having human
annotators judge the visual quality of samples [2]. However, using

human annotators always suffers from a problem that the metric
varies depending on the setup of the task and the motivation of
annotators.

As a substitution to human annotators, Inception Score (IS) [3]
is proposed to evaluate samples automatically. In particular, gen-
erated samples are fed into the Inception model [49] to get a
conditional distribution. IS reveals the exponential result of the
entropy of samples, which corresponds to a higher value when
generated samples are of high quality and diversity, and a lower
value if the quality of generated images is poor.

As another evaluating criterion, Frechet Inception Distance (FID)
[50] measures the difference between real samples and generated
samples by Frechet distance. It should be noted that if the distri-
butions of generated images and real images are more similar,
the value of the corresponding FID is smaller. Both IS and FID are
well-performing approaches to measure the performance of GANs
and correlate well with human judgment. We use both of them
to quantify the diversity and quality of generated samples in our
experiments.

4.1. Experiments on MNIST

In this experiment, we use the network architectures listed
in Table 1 but reset the output dimensionality of the generator
and the input dimensionality of the discriminator to 64 × 28 ×

28 × 1. For a fair comparison, all GAN models use the same
network architectures. In regular DMGAN, we set the update ratio
of centers to 1.0 and the hyper-parameter λ in Eq. (5) to 1.2.
In MBGAN, there are two additional hyper-parameters α and K ,
where α is used to control the magnitude of the data-dependent
margin and K denotes the dimensionality of the output features.
According to the descriptions in MBGAN, we set α to 200 and K
to 500.

We compare our regular DMGAN with popular DCGAN and
MBGAN, which are also from the perspective of deep metric
learning. From the results shown in Fig. 3, we can see that
DMGAN generates real-like samples similar to DCGAN, although it
is trained without implicit calculations of probability. Meanwhile,
the generated images are more realistic than images synthesized
by MBGAN. Indeed, due to the lack of restrictions on the distri-
bution of features of the whole samples, MBGAN just generates
images with blurred backgrounds. And we own the superiority
of DMGAN to implicitly constraint the distribution of data by
utilizing data-dependent centers.

4.2. Experiments on SVHN

In our experiments, we use the training set of SVHN, which
consists of 73,527 RGB digits with all images having been resized
to a fixed resolution 32 × 32. We use the same architectures as
MBGAN shown in Table 1, and the metric criteria FID is utilized
to evaluate the quality of synthesized samples.

In our model, we introduce data-dependent centers to the
objective of the discriminator to extract representative features,
which are essential for generative models based on deep met-
ric learning. To demonstrate data-dependent centers can help
DMGAN to generate more realistic images, we first conduct ex-
periments to investigate the performance of our model related to
the update ratio of centers. For ease of exposition, DMGAN with
centers’ update ratio γ = 0 is called DMGAN-f, in which centers
utilized in the discriminative objective are fixed as initial vectors
during training. Then we compare DMGAN-f with regular DMGAN
models where centers are updated in the training process as in
Algorithm 1.

The hyper-parameter λ is introduced to balance the identity
preserving loss and discriminative loss in the objective of the
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Fig. 2. Some real samples of MNIST, SVHN and CIFAR-10.

Fig. 3. The generated samples on MNIST. By comparing subfigure (a) and (b), we find that our regular DMGAN can synthesize samples with comparable quality over
DCGAN. Besides, our model is capable to generate samples with clearer backgrounds than MBGAN by comparing subfigure (b) and (c).

Fig. 4. The curve shows the FID scores of regular DMGAN for different update
ratio of centers tested on SVHN. We find that DMGAN with data-dependent
centers (ratio > 0) could achieve superior performance compared with models
with fixed centers (ratio = 0). This demonstrates that utilizing data-dependent
centers significantly enhances the performance of DMGAN.

Table 2
The FID of regular DMGAN with different values for hyper-parameter λ. The
lower the score corresponding to the better the model.
λ 1.0 1.4 1.8 2.2 2.6 3.0

Regular DMGAN 191.25 64.76 46.79 60.87 52.76 51.28

discriminator. Specifically, the identity preserving loss can make
the discriminator learn more robust features, while the discrimi-
native loss is used to increase the distance between real samples
and generated ones. Therefore, it is very important to select an
appropriate λ before investigating the impact of data-dependent
centers. To select the most suitable λ, we fix the update ratio γ of
centers to 0.5 and vary λ from 1.0 to 3.0 to learn different models.
The FID of these models on SVHN listed in Table 2 shows that
the quality of generated samples is the best when λ is selected to
be 1.8.

After fixing λ, we vary the update ratio of centers from 0
to 3.0 to explore the effect of different update ratios on the
performance of our model. However, DMGAN encounters mode
collapse problem when γ is larger than 2.0, which may due to the
instability caused by too fast changes of centers during training.
Fig. 4 shows the results of FID on different models with the
update ratio of centers from 0 to 2.0. From these results, we can
make several observations:

• DMGAN with data-dependent centers could achieve supe-
rior performance compared with models with fixed cen-
ters. This result shows that utilizing data-dependent centers
significantly enhances the performance of DMGAN.

• The experimental results show that the performance of our
model remains stable across a wide range of γ , which illus-
trates the robustness of DMGAN.

In addition, we give a comparison of the synthesized samples
showed in Fig. 5 to demonstrate the advantage of data-dependent
centers in DMGAN. Specifically, DMGAN-f produces poorer im-
ages, while DMGAN with centers updated improves the quality
of generated images.

4.3. Experiments on CIFAR-10

Experimental results in Section 4.1 demonstrate that the gen-
erating tasks can be achieved by GAN models from the per-
spective of deep metric learning. Meanwhile, we also validate
the importance of data-dependent centers in DMGAN via exper-
iments on SVHN in Section 4.2. In this part, we first present a
comparison between our proposed regular DMGAN and waDM-
GAN to verify the crucial role of the strategy of weight adaption in
DMGAN. At the same time, we compare our model with state-of-
the-art GAN models and illustrate that waDMGAN can generate
samples with similar quality to other models on CIFAR-10 dataset.

4.3.1. DMGAN vs. waDMGAN
In our experiments, both training images and test images

are utilized to train DMGAN models. The architectures of the
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Fig. 5. Subfigure (a) shows samples synthesized by DMGAN with fixed centers
(DMGAN-f) and subfigure (b) exhibits samples generated by DMGAN with data-
dependent centers. The results of DMGAN-f and DMGAN on SVHN illustrate the
advantage of data-dependent centers in DMGAN.

Fig. 6. The comparison of IS scores of samples synthesized by waDMGAN and
regular DMGAN with different update ratios of centers. According to the results,
we find that the scores of waDMGAN are regularly higher than that of DMGAN
except for the case that the centers are fixed, which verifies that equipping
DMGAN with the strategy of weight adaption improve the performance of our
model.

discriminator and generator are the same as MBGAN with weight
clipping as shown in Table 1. To present the influence of the
strategy of weight adaption on DMGAN, we compare regular
DMGAN with waDMGAN. Before the comparison, we first select
appropriate hyper-parameter λ following the same procedure as
in experiments on SVHN in Section 4.2 and obtain the optimal λ

in Eq. (8) at 1.2. Differently, we use IS to evaluate the quality of
synthesized samples in this section.

In order to highlight the advantages of adaptive weights over
fixed weights, we compare the quality of generated samples
of waDMGAN and regular DMGAN with different update ratios
of centers in our experiment. Quantitative results are shown
in Fig. 6. According to the results, equipping DMGAN with the
strategy of weight adaption increases the performance within
the whole range of update ratios of centers, especially in the
case of update ratio at 1.0, which shows that waDMGAN has
the desired effect of improving the quality of generated samples.
Indeed, waDMGAN’s superiority is that it pays more attention
to poor synthesized samples by automatically adjusting updated
gradients. To further demonstrate the advantages of waDMGAN,
we visualize the results of waDMGAN and DMGAN in Fig. 7(a)
and (b). According to the results, images generated by waDMGAN
are clearer and containing more details than images generated by
DMGAN.

Table 3
Inception scores and the time of each iteration on CIFAR-10. Among uncon-
ditional models, our models achieve state-of-the-art performance. With the
addition of condition information, waDMGAN outperforms all other supervised
algorithms except WGAN-GP. Besides, the time of per iteration of models
illustrate that our models are more relaxed to be optimized than other
state-of-the-art models.
Model Inception score Time (ms/per iteration)

DCGAN 5.92 ± 0.17 237
WGAN [51] 5.88 ± 0.07 397
MBGAN 5.07 ± 0.06 274
MLGAN-clipping [30] 5.23 ± 290 –
WGAN-GP 6.46 ± 0.03 413
KM-GAN 5.61 ± 0.09 650
SAGAN 5.72 ± 0.06 3563
DMGAN 5.69 ± 0.08 263
waDMGAN 6.04 ± 0.04 259

4.3.2. DMGAN vs. other GAN models
To further verify the effectiveness of our proposed approach,

we conduct experiments to compare our model with state-of-the-
art GAN models. The quantitative results of different models are
shown in Table 3. Compared with two popular models, DCGAN
and WGAN, waDMGAN achieves the IS of 6.04 that outperforms
5.88 and 5.92 gained by WGAN and DCGAN, respectively. These
results illustrate that GAN models, which is from the perspective
of deep metric learning, can generate similar or better sam-
ples than probability-based GANs. In addition, compared with
metric-based models such as MBGAN and KMGAN, both DMGAN
and waDMGAN outperform them with a large margin. These
results demonstrate the effectiveness of our models. However,
the results of our models are lower than WGAN-GP due to lack
of gradient penalty, which motivates us to introduce gradient
penalty into our model in further work.

On the other hand, we record the time of each iteration of
models during the learning process and show them in Table 3.
According to the results shown in Table 3, we find that our
models are slower than DCGAN due to the need of metric learn-
ing. Same as metric-based generative adversarial models, our
models achieve comparable speed with MBGAN, although our
models need to calculate data-dependent centers and adaptive
weights additionally. Meanwhile, our models have an apparent
advantage over KMGAN and SAGAN, which needs complex self-
attention calculations. This result illustrates that our models are
more relaxed to be optimized than other models.

Finally, Fig. 7 shows the images generated by DMGAN, waD-
MGAN and MBGAN on CIFAR-10 dataset. As we can see from
the figure, samples synthesized by waDMGAN have more details
and clearer backgrounds than those of regular DMGAN. On the
other hand, details of images generated by MBGAN degrade more
heavily. Through convincing visualization results and quantitative
evaluations, we demonstrate the performance of our method.

5. Conclusion and future work

In this paper, we proposed a novel GAN model, referred to
DMGAN, from the perspective of deep metric learning. Instead of
outputting probability, the discriminator in DMGAN is conducted
as a feature extractor whose outputs are multi-dimensional fea-
tures. In addition, identity preserving loss and discriminative loss
are introduced to constrain the discriminator for representative
features. Moreover, we introduce data-dependent centers in the
identity preserving loss to learn robust discriminative features.
Meanwhile, a strategy of weight adaption is proposed to make the
discriminator pay more attention to poor samples and improve
the quality of generated images. On the other hand, the generator
synthesizes realistic samples by minimizing the distance between
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Fig. 7. The visualization results of waDMGAN, DMGAN, and MBGAN on CIFAR-10. By comparing results of subfigures (a) and (b), we find that synthesized samples
by waDMGAN contain more clear background details than those of regular DMGAN. Compared with results of waDMGAN and DMGAN, samples generated of MBGAN
in subfigure (c) suffer from a serious lack of details.

real samples and generated samples. Extensive experiments on
several datasets demonstrate the effectiveness of our proposed
approach.

Unfortunately, our proposed model is conditioned on labels of
samples, and the acquisition of class labels is expensive and time-
consuming in practice. Therefore, we will improve our model to
fit more unlabeled datasets in future works.
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