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A B S T R A C T

Vehicular edge computing (VEC) pushes the computational resources to the logical edge of the networks,
thus enabling vehicles to run resource-hungry and time-sensitive applications by outsourcing operations. Many
studies revolved around VEC focus on the optimization of response latency, energy consumption, or both of
them, assuming that the computational resources in VEC can be utilized for free. However, VEC provisions
computational resources on a pay-as-you-go basis, which means VEC can obtain revenues by leasing the
computational resources. In this paper, we focus on the real-time computational resource pricing in VEC,
in the hope to reach a win–win situation where both VEC and vehicles can optimize their respective utility
values. To reach such a mutually satisfactory result, we adopt the Stackelberg game to model the computational
resource pricing problem in this paper. In this game, vehicles are followers and the edge server serves as the
leader. Furthermore, we have proven that a unique Stackelberg equilibrium exists in the proposed pricing
game. A distributed algorithm is put forward to solve our problem, which considers the privacy of vehicles.
The distributed approach is evaluated by extensive experiments, in terms of convergence rate, running time
and so on. The simulation results demonstrate that the distributed approach can achieve satisfactory results
without privacy disclosure compared to the centralized approach.
1. Introduction

Vehicular edge computing (VEC) has generated a vast amount of
attention recently for bringing considerable benefits to smart trans-
portation. As a newly emerging computing paradigm, VEC pushes the
computational resources to the logical edge of the networks such as
road side unit (RSU), thus enabling vehicles to run resource-hungry
and time-sensitive applications by outsourcing operations. Compared
to vehicle-mounted computers, VEC has much more computational
resources. Hence, vehicles can rent these resources close to them, to
support resource-greedy applications, e.g., in-car interactive gaming
and natural language understanding and processing [1,2]. In contrast
to the sensor-to-cloud paradigm where applications are outsourced and
performed in a remote cloud center, such a cloud-similar computing
paradigm can substantially alleviate traffic congestion in the network
core, owing to the computational resources in close proximity to data
sources (i.e., moving vehicles) [3]. Accordingly, VEC has become one
of the key enablers for smart transportation (e.g., unmanned vehicles).

It shall be noted that a remote cloud center is indispensable in
VEC. On one hand, VEC is introduced as an intermediate layer between
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vehicles and the cloud center with the purpose of extending the com-
puting and storage capabilities at cloud to the network edge to satisfy
vehicular applications with strict delay requirements. VEC resorts to
the cloud center by renting the computational resources when its own
resources are not sufficient. On the other hand, for those vehicular
applications which are resource hungry but not time sensitive, cloud
computing remains the first choice for application outsourcing, due to
the fact that there are unlimited computational and storage resources
in the cloud center.

Against this background, many studies revolved around VEC have
been carried out in both industry and academia fields, such as [4–7].
Currently, most of these works focus on the optimization of response
latency, energy consumption, or both of them, when vehicular applica-
tions are offloaded and computational resources are scheduled in VEC.
An implying assumption among these works is that the computational
resources in VEC or the cloud center can be used for free. As with cloud
computing, VEC provisions computational resources on a pay-as-you-
go basis. Thus, the resources in either VEC or the cloud center are not
for unconditional use in reality. Furthermore, monetary rewards have
always been a strong incentive for resource providers in VEC. From the
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perspective of resource providers, they attempt to maximize the rev-
enues by leasing the computational resources in VEC. In contrast, the
vehicles strive to accomplish their application outsourcing at the least
cost, e.g., with regards to (w.r.t.) response time, energy consumption
and monetary expenditure. The pricing for computational resources
will play an important role in the maximization of their respective
profits. For instance, a higher price for computational resources will
bring more revenues to service providers in VEC. In the meanwhile,
a lower price for computational resources will encourage vehicles to
outsource more vehicular applications and thus the quality of service
(QoS) can be improved in terms of response time.

Nevertheless, few existing works have recognized the importance of
computational resource pricing for application outsourcing in VEC [8,
9]. In this paper, we concentrate on the real-time pricing scheme for
computational resources in VEC. In our view, a reasonable pricing
scheme is very important, since it not only stimulates more efforts for
computational resources contribution in VEC, but also avoids damp-
ening the enthusiasm of vehicles for resource renting. Specifically, the
contributions of this paper are summarized as follows.

• We propose an optimal computational resource pricing scheme
in VEC. The proposed pricing scheme can guarantee a mutually
satisfactory result for vehicles and the edge server. To this end,
both vehicles and VEC can optimize respective utility values
according to the price per workload set by VEC.

• We adopt the Stackelberg game for real-time computational re-
source pricing in this paper. Vehicles are followers and the edge
server is the leader in this one-leader multi-followers game. Vehi-
cles determine their own workloads to be undertaken by VEC by
observing the leader’s strategy (i.e., the price per workload). On
the other hand, the edge server adjusts the price per workload
based on the offloaded workloads of the vehicles. Furthermore,
we have proven that a unique Stackelberg equilibrium exists in
this pricing game.

• Considering the fact that vehicles generally refuse to disclose
their private information to the public, a distributed algorithm
is proposed to solve this optimal computational resource pric-
ing issue in VEC. Extensive simulation is conducted to evaluate
the performance of our approach, and the simulation results
demonstrate the advantages of our approach.

The rest of this paper is organized as follows. We review some
elated works in Section 2. Section 3 introduces our system model. Our
ptimization problem is mathematically formulated in Section 4, which
trives to optimize the utility values of vehicles and the edge server,
espectively. In Section 5, the centralized and distributed algorithms
re put forward to solve the computational resource pricing in VEC,
espectively. Simulation and result analysis come in Section 6, followed
y the conclusion in Section 7.

. Related works

With the advent of VEC, computing capabilities have been brought
o the edge of the network, which brings considerable benefits to smart
ransportation and the corresponding sub-ecosystems including con-
ected vehicles and RSU. The computational resources are provisioned
t the edge to such entities, enabling vehicles to run resource-hungry
nd time-sensitive applications by outsourcing operations. Accordingly,
EC has been regarded as one of the key enablers to accelerate the
rosperity of smart transportation. In this section, we will review some
elated works in this field.

.1. Computation offloading in VEC

In smart transportation and VEC systems, it is pretty difficult to
redict the routes of moving vehicles [10]. Quick mobility of vehicles
2

nd different driver preferences further contribute to such difficulty.
To tackle this challenge, Liu et al. in [7] proposed to use one particular
type of vehicle to serve as moving servers. Such vehicles (e.g., buses)
are usually deployed with a timetable and follow the prescribed route.
In this context, they propose an offloading algorithm based on learning
technology to perceive the fluctuation of vehicles. Base stations, as
agents, are responsible for learning the state of the moving server.
Multi-access edge computing is considered to enhance the performance
of vehicles by outsourcing computation-intensive tasks to the edge.
Thus, authors in [11] put forward an energy-aware computation out-
sourcing for VEC. They strive to seek a tradeoff between latency and
energy consumption.

Parked vehicles usually have unexploited computational resources
with idle states in the parking slots. By leveraging these idle computa-
tional resources of parked vehicles, authors in [12] aim to maximize
user-centric utility and optimize the network-wide task scheduling.
Owing to the high dynamics of vehicular networks, it is hard to make
time-varying offloading decisions in vehicular networks. Thus, authors
in [13] utilized the synchronized random walk model and proposed
a reinforcement learning-based scheme for processing delay reduction
and dynamic scene adaptability. Similarly, authors in [14] proposed
an intelligent task offloading approach using deep Q learning to miti-
gate the pressure on the computational capabilities of vehicle-mounted
computers.

VEC guarantees that computationally intensive workloads can be
offloaded to the computing infrastructure in the vicinity. Speak of
autonomous vehicles, however, it is very hard for them to efficiently
obtain satisfactory performance by leveraging the VEC systems. In this
context, authors in [15] proposed a vehicular edge orchestrator based
on two-stage machine learning. This orchestrator considers the success
rate of task performing and the service time. The simulation results
have demonstrated the efficiency and effectiveness of the proposed
approach.

Actually, extensive works have focused on computation offloading
in VEC for multiple purposes, e.g., energy reduction [16,17], response
latency optimization [18–20], trustiness issue [21,22] and the reduc-
tion of pressure on the vehicular computational resources. Readers who
are interested can refer to the aforementioned works, and we do not
review them in detail anymore.

2.2. Resource pricing for computation undertaking

We notice that few of the current works have paid attention to the
issue of computational resource pricing in VEC. One possible reason
is that few of them have recognized the importance of computational
resource pricing for application outsourcing in VEC [23]. The IoT de-
vices usually have numerous tasks and thus urgently require computing
resources for undertaking the computation. The computation is usually
undertaken based on a pay-as-you-go model. Therefore, the resource
pricing will become more and more important with the increasing
number of entities that can provide computing resources.

For example, authors in [24] strived to maximize the revenues of the
mobile edge computing (MEC) system. The edge server deployed at an
access point can provide sufficient computing resources for resource-
hungry users. Thus, the edge server can earn revenues by charging
users with the task offloading requests. A policy gradient-based re-
inforcement learning algorithm is put forward to solve this revenue
maximization problem. Authors in [25] put forward a market-based
framework, which can make full use of the resources of edge nodes for
serving the requestors at the network edge. They can generate a market
equilibrium solution, i.e., the utility of the edge can be maximized and
optimal resources can be allocated to the requestors while considering
multiple constraints.

Authors in [26] proposed an edge-intelligent hierarchical dynamic
pricing mechanism. In this mechanism, the collaboration among the
cloud, edge, and client is modeled as a double-layer Stackelberg game.

A pricing prediction algorithm is put forward to solve the problem. A
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computing and networking paradigm based on multi-access edge com-
puting was proposed in [27], which tries to cope with the increasingly
complicated requirements of Internet of Things users. To model price
negotiation between the service providers and the edge nodes, they put
forward a distributed algorithm for negotiating the price.

Tasks are also offloaded in multi-access edge computing. Authors
in [28] investigated the task offloading and resource allocation in
this computing paradigm from the market and economic perspective.
They designed an economy-inspired commercial model to realize the
resource quota sharing among requestors, in the hope to maximize the
overall welfare of requestors. In particular, they designed a distributed
pricing mechanism.

2.3. Performance optimization with Stackelberg game for computation un-
dertaking

The Stackelberg game provides a well-suited solution to the multi-
level decision-making process, and has been widely applied to scenarios
where two entities pursue their respective profits or revenues maxi-
mization. For instance, authors in [8] leverage the parked vehicle to
assist VEC in undertaking workloads in vehicular networks. Specifi-
cally, they studied the assignment of tasks with aid of Stackelberg
game, for minimizing the overall costs. A price-based distributed ap-
proach is put forward in [29], with the purpose of managing the tasks
offloaded. Specifically, a Stackelberg game is applied to the situation
for realizing the respective profits from the viewpoints of the edge and
users.

IoT devices require a dependable environment for performance
guarantee and the blockchain technology can provide a promising solu-
tion to the requirement. However, the blockchain tasks are featured by
intensive computation while these IoT devices have limited computing
resources. Thus, task offloading is necessary for these IoT devices.
Usually, the cloud center and edge servers are the places to undertake
these offloaded computations. Therefore, authors in [30] state that
the costs and profits of computing resources providers can greatly
affect the decisions of the task allocation. Specifically, they formulate
a Stackelberg game where the cloud center and edge servers are the
leader and the followers in the computing resource management, re-
spectively. Furthermore, they model resource pricing as a mixed-integer
programming problem.

Different from the aforementioned works, in this paper we focus on
pricing per workload which is undertaken by VEC with strict latency
requirements in VEC. Vehicles can determine the number of their
workloads to be offloaded given the unit price. In the meanwhile, the
privacy of vehicles are considered in this paper.

3. System model

An application scenario is shown in Fig. 1, which consists of one
RSU, one remote cloud center and multiple vehicles. The edge server
is deployed at RSU to provide computational resources to the vehicles
in the vicinity. The set of vehicles is denoted by 𝑉 = {𝑣1,… , 𝑣𝑛}. Each
vehicle in 𝑉 can communicate with each other and RSU, using Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication
technologies, respectively. The maximal communication distance of
RSU is 𝐷 as shown in Fig. 1. As a result, the dwell time for any 𝑣𝑖 in
𝑉 within the communication range of RSU is limited. In this context,
assume there exists a set of applications denoted by 𝐴 = {𝑎1,… , 𝑎𝑛}
with 𝑎𝑖(1 ≤ 𝑖 ≤ 𝑛) denoting the application that 𝑣𝑖 wants to outsource to
the edge server for execution. Specifically, 𝑎𝑖 is a 2-tuple of (𝑑𝑖, 𝑤𝑖,𝑚𝑎𝑥),
where 𝑑𝑖 represents the size of task-input data to be offloaded via the
wireless channel, and 𝑤𝑖,𝑚𝑎𝑥 is the workload described by the number of
CPU cycles required for accomplishing 𝑎𝑖 when 𝑎𝑖 is totally outsourced
to the edge.

Let 𝑝 denote the unit price for processing per workload in VEC. Usu-
ally, the price 𝑝 is set by the resource provider in VEC. Considering the
3

Fig. 1. Application scenario considered in this paper.

effect of 𝑝 on the computing resource demands of vehicle 𝑣𝑖, we have
𝑤𝑖 ≤ 𝑤𝑖,𝑚𝑎𝑥, where 𝑤𝑖 represents the real workload that is offloaded by
𝑣𝑖 to the edge server. 𝑤𝑖,𝑚𝑎𝑥 − 𝑤𝑖 is the residual workload that needs
to be accomplished with the local vehicular computational resources.
It shall be noted that 𝑤𝑖,𝑚𝑎𝑥 − 𝑤𝑖 actually violates the willingness of
𝑣𝑖, since the residual workloads are supposed to be kept for any other
individual purposes. Thus, to express such unwillingness, we define
a subjective dissatisfaction as 𝛿(𝑤𝑖,𝑚𝑎𝑥 − 𝑤𝑖), where 𝛿 is a controlling
factor that reflects the level of dissatisfaction for the vehicles. For
simplicity, we assume that 𝛿 is the same for all the vehicles and is
also available to RSU. For instance, 𝛿 can be incorporated into the
beacon information when vehicles interact with RSU. Moreover, for
easy discussion, hereafter we use the three words ‘‘RSU’’, ‘‘the edge
server’’ and ‘‘the edge’’ exchangeably for the same meaning through
the rest of the paper.

The response time for performing 𝑎𝑖 mainly includes three parts,
i.e., the time taken to perform 𝑤𝑖,𝑚𝑎𝑥 − 𝑤𝑖 locally, the time taken to
offload 𝑑𝑖 to VEC, and the time taken to perform 𝑤𝑖 at RSU. Denote the
three kinds of time by 𝑡𝑙𝑜𝑐𝑖 , 𝑡𝑜𝑓𝑓𝑖 and 𝑡𝑒𝑖 , respectively. 𝑡𝑙𝑜𝑐𝑖 can be given
as:

𝑡𝑙𝑜𝑐𝑖 =
𝑤𝑖,𝑚𝑎𝑥 −𝑤𝑖

𝑓𝑖
, (1)

where 𝑓𝑖 denotes the computing capability of 𝑣𝑖. Denote by 𝑔𝑖 and 𝑝𝑖
the channel gain between 𝑣𝑖 and RSU, and the transmission power of
𝑣𝑖, respectively. The offloading rate for 𝑎𝑖 can be calculated as:

𝑟𝑖 = 𝐵 log2(1 +
𝑝𝑖𝑔𝑖
𝜎2

), (2)

where 𝐵 is the channel bandwidth and 𝜎2 is the noise power.
Thus, the offloading time 𝑡𝑜𝑓𝑓𝑖 is:

𝑡𝑜𝑓𝑓𝑖 =
𝑑𝑖
𝑟𝑖
. (3)

The execution time of 𝑎𝑖 at the edge can be expressed as:

𝑡𝑒𝑖 = 𝑡𝑖𝑛𝑖𝑡 +
𝑆𝑖
𝑓𝑒

, (4)

where 𝑡𝑖𝑛𝑖𝑡 is the time taken to initialize the virtual environment and
𝑓𝑒 denotes the computing capability of RSU. For simplicity, we assume
there are sufficient computational resources at RSU, since RSU can also
rent these resources from the cloud center. Therefore, there is no extra
queuing time for the arrived applications. On the other hand, following
other works such as [31,32], we neglect the return time, i.e., the time
taken to return the execution result back to 𝑣𝑖, based on the consensus
that the size of computational result is much smaller than that of task-
input data in most cases. Therefore, the response time for 𝑎𝑖 can be
expressed as:

𝑡𝑟𝑡 = max{𝑡𝑙𝑜𝑐 , 𝑡𝑜𝑓𝑓 + 𝑡𝑒}. (5)
𝑖 𝑖 𝑖 𝑖
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On the other hand, the dwell time of 𝑣𝑖 within the communication
range of RSU can be estimated as:

𝑑𝑡𝑖 =
2𝐷 sin (𝜃∕2)

𝑟𝑖
, (6)

where 𝜃 is the angle formed between 𝑅 and the points where 𝑣𝑖 enters
nd leaves the communication range of 𝑅, respectively, as shown in
ig. 1.

The application 𝑎𝑖 should be completed before 𝑣𝑖 leaves the com-
unication range of 𝑅, so the following inequality holds:

𝑟𝑡
𝑖 ≤ 𝑑𝑡𝑖, ∀𝑖 ∈ {1,… , 𝑛}. (7)

Based on the descriptions above, the utility of 𝑣𝑖 can be defined as:

𝑖 = 𝛼𝑖 log(1 +𝑤𝑖) + 𝛿(𝑤𝑖,𝑚𝑎𝑥 −𝑤𝑖) − 𝑝 ⋅𝑤𝑖, (8)

here 𝛼𝑖 is the satisfaction level toward the workload offloading. For
he right-hand side of this equation, the first term represents the utility
arned by offloading workload 𝑤𝑖 using a logistic function, the second
erm evaluates the unwillingness of using local computational resources
o undertake the residual workload, and the last term denotes the
ayments for renting resources from VEC. Generally, the larger the
alue of 𝑖, the higher the level of satisfaction for vehicles.

On the other hand, the computational resource provider in VEC
s encouraged to pursue their own profits by leasing the resources to
ehicles in the vicinity. It shall be noted that VEC occasionally turns
o the cloud center for help, if the amount of computational resources
n VEC is not sufficient. Accordingly, there exists a certain cost for
EC to provide computational resources. Given the unit price 𝑝 for
rocessing per workload offloaded from vehicles, the utility of the
esource provider in VEC can be defined as:

𝑒 = 𝑝
𝑛
∑

𝑖=1
𝑤𝑖 − 𝜂

𝑛
∑

𝑖=1
𝑤𝑖, (9)

here 𝜂 denotes the cost for undertaking per workload offloaded from
he vehicles, the first term at the right-hand side is the profits obtained
y leasing computing resources and the second term denotes the costs
hen VEC provide computational resources to vehicles. Generally, the

arger the value of 𝑒, the more the revenues for VEC.

. Problem formulation

.1. Preliminaries

According to the above descriptions, we hope that (1) vehicles can
etermine their own workloads to be offloaded based on the price
er workload that is set by VEC, such that they can optimize their
wn utility values; (2) VEC can maximize its own revenues by pricing
he computational resources while considering the real demands of
ehicles in the vicinity for computational resources. Therefore, it is
ery important to design an efficient and reasonable pricing scheme
or computational resources in VEC, for the reason that an appropriate
rice 𝑝 can help both vehicles and RSU reach a mutually satisfactory
esult, i.e., utility optimization for vehicles and revenues maximization
or VEC, respectively. However, it is very challenging to reach such a
in-win situation in which both vehicles and RSU can achieve their
wn goals for the following reasons.

On one hand, vehicles are selfish in the sense that they are not
illing to disclose their true resource demands to other vehicles except
SU. From the perspective of privacy protection [33], vehicles are not
upposed to reveal their resource demands to other vehicles either. In
his context, vehicles individually adjust their resource demands based
n the price towards their own utility maximization. No information on
esource demands (e.g., the satisfaction level 𝛼𝑖 of 𝑣𝑖) is shared among
hese vehicles. Therefore, a centralized algorithm is inapplicable in this
4

ase, which necessitates a distributed approach for utility optimization.
On the other hand, the high mobility of vehicles poses strict delay
equirements to application outsourcing. For instance, the response
ime of an outsourced application should be strictly less than the
orresponding dwell time as denoted by Eq. (7). The price per workload
hould be determined before the application outsourcing actually takes
lace. As a consequence, the computational resource pricing is sup-
osed to be real-time, which contributes to the difficulty of interactions
etween vehicles and RSU.

Before going further, the dynamic procedure of computational re-
ource pricing can be briefly described below. In the beginning, a
rice per workload 𝑝 is initialized and then broadcasted by RSU to

the vehicles in the vicinity. Such information can be incorporated
into the beacon information and disseminated among vehicles. Upon
receiving these beacons, vehicles with the outsourcing need to estimate
the number of workloads to be undertaken by VEC, according to 𝑝.
Then, the estimated amount of workloads is respectively sent to RSU by
each vehicle during the beacon information exchanging. After receiving
these demands, the edge will evaluate and determine a new 𝑝 such that
its revenues can gradually increase. The resulting 𝑝 is then broadcasted
to vehicles again where the amount of workloads to be undertaken
is recalculated based on 𝑝, with an aim to gradually increase their
own utility values. Such a procedure will not stop until a mutually
satisfactory result is achieved, e.g., neither the revenues of VEC nor
the utility values of vehicles increase anymore.

4.2. Stackelberg game

In this paper, we resort to the Stackelberg game for modeling
this dynamic procedure of computational resource pricing as described
above. As introduced earlier, the Stackelberg game offers a promising
solution to the multilevel decision-making process consisting of the
followers and the leader. At the beginning, the followers observe the
leader’s strategy. Then, they select their own strategies for the sake of
their own utility optimization. In the next, they respond to the leader
by the chosen strategies. Finally, the leader redesigns the strategy in
response to the followers. This procedure repeats until a so-called Stack-
elberg equilibrium is achieved if the equilibrium exists. Accordingly,
we utilize this one-leader multi-followers Stackelberg game to solve
our computational resource pricing scheme for VEC in this paper. In
this noncooperative game, RSU serves as the leader and vehicles are
the followers. To be specific, the game of the computational resource
pricing scheme in VEC is given as:

 = (𝑉 ∪ 𝑅𝑆𝑈, (𝑝,𝑤𝑖), (𝑒{𝑤𝑖},𝑖{𝑝})), (10)

where 𝑉 ∪ 𝑅𝑆𝑈 is the set of players, including the followers (i.e., the
set of vehicles) and the game leader (i.e., RSU), (𝑝,𝑤𝑖) denotes the set
f strategies VEC and vehicles take respectively, and (𝑒{𝑤𝑖},𝑖{𝑝})
enotes the set of utility values of VEC and vehicles, respectively.
enerally, the Stackelberg consists of the set of players, the set of

trategies and the utility set in this paper.
In the next section, we mathematically formulate the optimization

roblem from the viewpoints of vehicles and RSU, respectively.

.3. Vehicle utility optimization

Given the price per workload 𝑝, vehicles with the outsourcing needs
trive to optimize their own utility values by adjusting their workloads
o be undertaken by VEC. Accordingly, the optimization problem for
ach vehicle can be mathematically given as:

1 ∶ max
𝑝

𝑖 (11)

.t.:

𝑖 ≤ 𝑤𝑖,𝑚𝑎𝑥, ∀𝑖 ∈ {1,… , 𝑛}, (12)
𝑟𝑡
𝑖 ≤ 𝑑𝑡𝑖, ∀𝑖 ∈ {1,… , 𝑛}, (13)
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where in Eq. (11) represents that the assigned workloads to VEC 𝑤𝑖
hould not exceed 𝑤𝑖,𝑚𝑎𝑥. In the meanwhile, the response time for the
orkload 𝑤𝑖 should not exceed the dwell time of 𝑣𝑖 within the com-
unication range of RSU, which can be guaranteed by the constraint

13).
Suppose that the offloaded workloads 𝑤𝑖 is continuous. For the util-

ty function of vehicle 𝑣𝑖, i.e., 𝑖, take the first and second derivatives
f 𝑖 with respect to 𝑤𝑖 respectively, we can obtain:
𝜕𝑖
𝜕𝑤𝑖

=
𝛼𝑖

(1 +𝑤𝑖) ln 2
− 𝛿 − 𝑝, (14)

𝜕2𝑖

𝜕𝑤2
𝑖

=
−𝛼𝑖

(1 +𝑤𝑖)2 ln 2
< 0. (15)

Due to the fact that the second derivative of 𝑖 is always negative
in the feasible domain, the utility function 𝑖 is thus convex in terms
of the workloads 𝑤𝑖. As a result, problem 𝑃 1 is a convex optimization
problem. We can easily infer that the maximum of 𝑖 exists, and the
corresponding maximal value can be obtained by making 𝜕𝑖∕𝜕𝑤𝑖 = 0
hold, given below:

𝑤∗
𝑖 =

𝛼𝑖
(𝑝 + 𝛿) ln 2

− 1. (16)

It shall be noted that 𝛼𝑖 is private to each vehicle 𝑣𝑖, so 𝑣𝑖 does not
ant to disclose it to other vehicles for the sake of privacy protection.
n the other hand, the value of 𝛼𝑖 should be appropriately set such

hat 𝑤𝑖 > 0 holds. It can be easily observed that the workloads 𝑤𝑖 to be
ndertaken by VEC decreases with the increasing 𝑝. Namely, the price
should be set reasonably, since higher pricing for the computational

esources will hold back the enthusiasm of vehicles with outsourcing
eeds in the vicinity.

.4. Revenue maximization for VEC

It is costly to deploy the edge server together with RSU in the
raffic dense area, let alone daily maintenance costs. In this context,
esource providers are encouraged to contribute their resources to VEC.
n one hand, this way benefits vehicles in the vicinity a lot since
ehicular applications can be offloaded and executed in VEC instead of
cloud center, which can drastically reduces the response time of the

utsourced applications. On the other hand, resource provisioning in a
ay-as-you-go model will stimulate providers to lease computational re-
ources with QoS satisfaction. Therefore, the purpose of VEC (i.e., RSU)
n this paper is to maximize its revenues defined in Eq. (9). To be more
pecific, the optimization problem for RSU is mathematically given as:

2 ∶ max
𝒘

𝑒 (17)

.t.

> 𝜂, (18)

here 𝒘 = (𝑤1,… , 𝑤𝑛) is a vector to denote the workloads of all the
ehicles which are about to be undertaken by VEC. Constraint (18)
uarantees that the revenues of VEC are positive, i.e., it is profitable
or providers to lease the computational resources in VEC.

Let us suppose that 𝑝 is a continuous variable and take the first
erivative of 𝑒 in terms of 𝑝, i.e.,

𝜕𝑒
𝜕𝑝

=
𝜕(𝑝

∑𝑛
𝑖=1 𝑤𝑖 − 𝜂

∑𝑛
𝑖=1 𝑤𝑖)

𝜕𝑝
. (19)

ubstitute 𝑤𝑖 with 𝑝 as shown in Eq. (16), and we have

𝑒 = 𝜕
[

𝑝
𝑛
∑

𝑖=1

𝛼𝑖
(𝑝 + 𝛿) ln 2

− 𝜂
𝑛
∑

𝑖=1

𝛼𝑖
(𝑝 + 𝛿) ln 2

− (𝑝 − 𝜂)𝑛
]

. (20)

Let 𝜕𝑒∕𝜕𝑝 = 0, namely,

𝜕𝑒 =
𝑛
∑ 𝛼𝑖(𝛿 + 𝜂)

2
− 𝑛 = 0. (21)
5

𝜕𝑝 𝑖=1 (𝑝 + 𝛿) ln 2 a
Thus, the price 𝑝∗ can be calculated as:

𝑝∗ =

√

√

√

√

𝛿 + 𝜂
𝑛 ln 2

𝑛
∑

𝑖=1
𝛼𝑖 − 𝛿. (22)

Take the second of derivative of 𝑒 with respect to 𝑝, we have:

𝜕2𝑒

𝜕𝑝2
=

𝜕(
∑𝑛

𝑖=1
𝛼𝑖(𝛿+𝜂)

(𝑝+𝛿)2 ln 2 − 𝑛)

𝜕𝑝
= −

𝑛
∑

𝑖=1

2𝛼𝑖(𝛿 + 𝜂)
(𝑝 + 𝛿)3 ln 2

< 0. (23)

Due to the fact that the second derivative of 𝑒 is always negative
n the feasible domain, the utility function 𝑒 is thus convex in terms
f the workloads 𝑝. Therefore, problem 𝑃 2 is a convex optimization
roblem. We can infer that 𝑝∗ is the best price that can maximize
𝑒. In the meanwhile, it can also be easily observed that the optimal
rice 𝑝∗ totally depends upon the number of vehicles 𝑛, the cost for
ndertaking per workload 𝜂, and the satisfaction level toward the
utsourced workload for each vehicle 𝛼𝑖. Accordingly, the optimal price
∗ is actually independent of the workload vector 𝒘.

.5. Stackelberg equilibrium

𝑃 1 and 𝑃2 are the optimization goals of vehicles and RSU, respec-
ively. Let us investigate the optimization in depth from the game-
heoretical perspective. The Stackelberg game proposed for pricing the
omputational resources in this paper needs to find the Stackelberg
quilibrium (SE), since such a Stackelberg equilibrium can guarantee
hat a mutually satisfactory result can be reached for both vehicles and
EC, i.e., utility optimization for vehicles and revenues maximization

or VEC. In this section, we will prove the existence and uniqueness of
he Stackelberg Equilibrium (SE). By doing this, we can ensure that RSU
an obtain the optimal resource pricing and vehicles can determine the
ptimal amount of workloads to be undertaken by VEC.

Let 𝒘 = {𝑤1, 𝑤2,… , 𝑤𝑛} and 𝒑 denote the strategies of vehicles and
SU, respectively. Then we define the SE of  as below:

efinition 1. Assume there exists a pair of strategy profiles (𝒘∗, 𝑝∗)
or  and 𝒘∗ = {𝑤∗

1 , 𝑤
∗
2 ,… , 𝑤∗

𝑛}. For an arbitrary vehicle 𝑣𝑖(∈ 𝑉 ), it
annot increase its own utility value anymore by adjusting the strategy
nilaterally, i.e.,

𝑖(𝑤∗
𝑖 , 𝑤

∗
−𝑖, 𝑝

∗) ≥ 𝑖(𝑤′
𝑖 , 𝑤

∗
−𝑖, 𝑝

∗), ∀𝑖 ∈ {1, 2,… , 𝑛}, (24)

here 𝑤∗
−𝑖 = {𝑤∗

1 ,… , 𝑤∗
𝑖−1, 𝑤

∗
𝑖+1 ⋯ , 𝑤∗

𝑛} denotes the strategies of other
ehicles except 𝑣𝑖 and 𝑤′

𝑖 is an arbitrary strategy of 𝑣𝑖 except 𝑤∗
𝑖 . In the

eanwhile, RSU cannot obtain more revenues by adjusting the price 𝑝
ither, i.e.,

𝑒(𝑤∗
𝑖 , 𝑤

∗
−𝑖, 𝑝

∗) ≥ 𝑒(𝑤∗
𝑖 , 𝑤

∗
−𝑖, 𝑝

′), ∀𝑖 ∈ {1, 2,… , 𝑛}. (25)

n this case, we call this pair of strategy profiles (𝒘∗, 𝑝∗) is the SE of .

It is worthwhile mentioning that equilibrium does not always exist
n a non-cooperative Stackelberg game. As a result, it is necessary to
rove the existence and uniqueness of SE for  proposed in this paper.

heorem 1. A unique SE always exists in the proposed Stackelberg game
= (𝑉 ∪𝑅𝑆𝑈, (𝑝,𝑤𝑖), (𝑒{𝑤𝑖},𝑖{𝑝})) for computational resource pricing
n VEC.

roof. Existence: In this Stackelberg game, the vehicles (i.e., the
ollowers in ) are obviously independent of each other. According
o Eq. (8), the utility values of them only depend upon the price per
orkload 𝑝 and their own amount of workloads that are assigned to
EC. We have proven earlier that the utility function 𝑖 is strictly
onvex, for the reason that 𝜕2𝑖∕𝜕𝑤2

𝑖 < 0 always holds, for an arbitrary
ehicle 𝑣𝑖. As a result, after receiving a price 𝑝 broadcasted by VEC,
ehicle 𝑣𝑖 can adjust the workloads to be undertaken by VEC with an

im to maximize its utility value based on this price. The workloads
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𝑤𝑖 for vehicle 𝑣𝑖 vary between the interval [𝑤𝑖,𝑚𝑖𝑛, 𝑤𝑖,𝑚𝑎𝑥], with an
assumption that 𝑤𝑖,𝑚𝑖𝑛 is the minimal workloads for 𝑣𝑖 to offload.
Therefore, there only exist three candidate workloads that need to be
examined for the sake of the utility function maximization – 𝑤𝑖,𝑚𝑖𝑛,

𝑖,𝑚𝑎𝑥, and 𝛼𝑖∕((𝑝 + 𝛿) ln 2) − 1, respectively. According to Definition 1,
can reach SE if and only if an arbitrary vehicle 𝑣𝑖 and RSU obtain the
aximal utility and revenues, respectively. Therefore, the game  can

each the SE as long as RSU finds the optimal price 𝑝∗ and 𝑣𝑖 determines
n optimal amount of workloads to offload based on 𝑝∗.

As shown in Eq. (23), the second derivative of 𝑒 w.r.t. 𝑝 is negative,
hich makes sure that 𝑒 is strictly convex in the feasible domain w.r.t.

. Hence, the optimal price per workload 𝑝∗ can be obtained as shown
n Eq. (22). Furthermore, this optimal price is proven to be dependent
pon the number of vehicles 𝑛, the cost for undertaking per workload 𝜂,
nd the satisfaction level of each vehicle. It is thus totally independent
f 𝒘. As mentioned above, the optimal workload vector 𝒘∗ can be
alculated based on 𝑝∗. Accordingly, there always exists a unique SE
n .

Uniqueness: It is worthwhile mentioning that the optimal price 𝑝∗

btained in Eq. (22) is unique, for the reason that the other value
√

(𝛿 + 𝜂)∕(𝑛 ln 2)
∑𝑛

𝑖=1 𝛼𝑖 − 𝛿(< 0) is not qualified as the price per
workload. Thus, the workload vector 𝒘 ∗ is also unique. Accordingly,
the SE of  is unique in this paper. □

5. Algorithm design

An efficient algorithm is needed for optimal computational resource
pricing in VEC. First, both vehicles and VEC are satisfied with the
computational resource pricing. In other words, the algorithm must
be ensured to converge to the unique equilibrium of the proposed
Stackelberg game in this paper. Only at this particular time can a win-
win situation be reached. Second, the high mobility of vehicles has
posed strict delay requirements to the response time when applications
are outsourced. The computational price per workload should be de-
termined in almost real time in the stage of the beacon information
exchanging. That is to say, the remaining time within the commu-
nication range of RSU should be enough for the accomplishment of
application outsourcing. Accordingly, the proposed algorithm should be
of a fast convergence rate. Last but not least, there is an increasingly
urgent need for privacy protection in VEC. For instance, vehicles may
be unwilling to disclose their private information (e.g., the satisfaction
level and even the utility function) to the public (e.g., other vehicles
and RSU). It is challenging to design an efficient algorithm while
considering the privacy of each vehicle.

To tackle the above practical considerations, we propose centralized
and distributed algorithms respectively in the following two subsec-
tions.

5.1. Centralized algorithm

A centralized algorithm (CA) is proposed for pricing the computa-
tional resource in VEC as shown in Algorithm 1. It shall be noted that
CA does not need the frequent interactions between vehicles and RSU,
and thus can be implemented in real time. In Algorithm 1, CA needs not
only the number of vehicles, but also the satisfaction levels of vehicles.
As shown in lines 1–4 in this algorithm, each vehicle sends its own
satisfaction level to RSU together with the beacon information. After
receiving all the information from the vehicles, RSU can immediately
calculate the optimal price per workload 𝑝∗ (line 5) and then sent it to
all the vehicles. Upon receiving the optimal price, each vehicle 𝑣𝑖 can
calculate its best workloads to be undertaken by VEC 𝑤∗

𝑖 from the three
candidate workloads, i.e., 𝑤𝑖,𝑚𝑖𝑛, 𝑤𝑖,𝑚𝑎𝑥, and 𝛼𝑖∕((𝑝+ 𝛿) ln 2) − 1 (line 7).
Furthermore, the optimal utility value  ∗

𝑖 can also be obtained based
on Eq. (8). Finally, the optimal workload profile 𝒘∗ and price 𝑝∗ can
be returned.
6

r

Algorithm 1: Centralized Algorithm for Per-workload Pricing
(CAPP)
Input: 𝑛, 𝜂, 𝛿
Output: The optimal price 𝑝∗ and 𝒘∗

1 for each 𝑣𝑖 in 𝑉 do
2 𝑣𝑖 sends the satisfaction level 𝛼𝑖 to RSU together with

beacon information;
3 RSU receives and records 𝛼𝑖 for 𝑣𝑖;
4 end
5 RSU calculates the optimal 𝑝∗ based on Eq. (22):

𝑝∗ =
√

𝛿+𝜂
𝑛 ln 2

∑𝑛
𝑖=1 𝛼𝑖 − 𝛿;

6 RSU sends 𝑝∗ to 𝑛 vehicles;
7 𝑣𝑖 determines the best workload 𝑤∗

𝑖 from the following
candidates: {𝑤𝑖,𝑚𝑖𝑛, 𝑤𝑖,𝑚𝑎𝑥, 𝛼𝑖∕((𝑝 + 𝛿) ln 2) − 1};

8 Each vehicle 𝑣𝑖 calculates its own utility value by:
 ∗

𝑖 = 𝛼𝑖 log(1 +𝑤∗
𝑖 ) + 𝛿(𝑤𝑖,𝑚𝑎𝑥 −𝑤∗

𝑖 ) − 𝑝∗ ⋅𝑤∗
𝑖 ;

9 𝑣𝑖 sends 𝑤∗
𝑖 back to RSU;

0 return 𝑝∗ and 𝒘∗;

Complexity analysis. As discussed earlier, the time is mainly spent by
CS in collecting the information of vehicles such as the satisfaction level
(lines 1–4), which is of time complexity 𝑂(𝑛). Then, RSU calculates the
optimal 𝑝∗ with constant time. Then, the optimal price 𝑝∗ is sent to all
the vehicles, which requires the time complexity 𝑂(𝑛) (line 6). After
etermining the most suitable workloads to be offloaded, each vehicle
ends its respective workloads to RSU, which is of time complexity 𝑂(𝑛)

(line 9). To sum up, the total time complexity is 𝑂(𝑛) for the CS strategy.
However, an implicit assumption in CA is made that all the vehicles

are willing to disclose to RSU their private information such as the
satisfaction levels and the utility function. Only in this way, the optimal
price 𝑝∗ can be calculated, for the reason that the substitution of 𝑤𝑖 with
𝑝 during the calculation of the first derivative of 𝑒 w.r.t. 𝑝 requires
he utility function of 𝑣𝑖. From the perspective of privacy protection,
uch private information is not supposed to be revealed to the public.
n this context, it is very necessary to design a distributed algorithm for
omputational resource pricing in VEC while taking into consideration
he privacy protection from the perspective of vehicles.

.2. Distributed algorithm

Considering the fact that vehicles may not be willing to expose
rivate information to RSU, a distributed algorithm is therefore pro-
osed in this section for obtaining the optimal price. The purpose of
ur pricing game  is to reach the SE, which should be guaranteed in
he distributed algorithm. To that end, frequent interactions between
ehicles and RSU are required for alternating negotiations.

Generally, the procedure of alternating negotiations between vehi-
les and RSU can be sketched out as follows. First, a price per workload
s initialized randomly by RSU and then is sent to each vehicle with the
utsourcing needs. Upon receiving the price 𝑝, each vehicle begins to
ompute its own workloads 𝑤𝑖 and forwards it to RSU, respectively.

workload vector 𝒘 is constructed at the edge server, i.e., 𝒘 =
𝑤1, 𝑤2,… , 𝑤𝑛). According to 𝒘, the new revenue can be calculated
sing Eq. (9) at RSU. If the revenue is better than in the past, it means
hat the price can be further increased strategically, for the purpose
f profit maximization. The updated price is then sent back to the
ehicles where vehicles leverage it to determine new workloads to be
ndertaken in VEC.

The above procedure continues until the vehicles and RSU itera-
ively reach the SE of  in a distributed way, as defined in Definition 1.
pecifically, the corresponding two algorithms, one for vehicles side
nd the other for RSU side, are shown in Algorithm 2 and Algorithm 3,

espectively. Given the price 𝑝, the process of determining the optimal
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Algorithm 2: Distributed Algorithm for Determining Workloads
at Vehicles (DADW)
Input: 𝑝, 𝛿, 𝜂
Output: The optimal workload 𝑤∗

1 for each 𝑣𝑖 in 𝑉 do
// Initialize the best utility value for each

vehicle
2  ∗

𝑖 = 0;
3 end
// Vehicles execute the following codes in a

distributed way
4 for each iterative 𝑝 received from RSU do
5 for each 𝑣𝑖 in 𝑉 do
6 𝑤′

𝑖 = 𝛼𝑖∕((𝑝 + 𝛿) ln 2) − 1;
7 Given 𝑤′

𝑖 , compute 𝑡𝑟𝑡𝑖 based on Eq. (5);
8 Compute the dwell time 𝑑𝑡𝑖 based on Eq. (6);
9 if 𝑡𝑟𝑡𝑖 ≤ 𝑑𝑡𝑖 then
10 𝑤∗

𝑖 = 𝑤′
𝑖 ;

11 if 𝑤′
𝑖 < 𝑤𝑖,𝑚𝑖𝑛 then

12 𝑤∗
𝑖 = 𝑤𝑖,𝑚𝑖𝑛;

13 else
14 if 𝑤′

𝑖 > 𝑤𝑖,𝑚𝑎𝑥 then
15 𝑤∗

𝑖 = 𝑤𝑖,𝑚𝑎𝑥;
16 end
17 end
18 end
19 Vehicle 𝑣𝑖 calculates its utility by:

𝑖 = 𝛼𝑖 log(1 +𝑤∗
𝑖 ) + 𝛿(𝑤𝑖,𝑚𝑎𝑥 −𝑤∗

𝑖 ) − 𝑝 ⋅𝑤∗
𝑖 ;

20 if 𝑖 >  ∗
𝑖 then

21  ∗
𝑖 = 𝑖;

22 end
23 𝑣𝑖 sends 𝑤∗

𝑖 back to RSU;
24 return 𝑤∗

𝑖 ;
5 end
6 end

workload to be undertaken by RSU is shown in Algorithm 2. In the
beginning, the best utility for each vehicle is initially set to zero (lines
1–3). The currently optimal workload can be obtained according to
Eq. (16). Then the dwell time of the vehicle can be calculated based
on this workload. If the dwell time does not exceed the deadline, then
DADW checks whether the current workload is valid (lines 11–17) and
updates the optimal workload in case of invalidity. The vehicle then
calculates its own utility value. Finally, the current vehicle reports the
currently optimal workload to RSU.

On the other hand, DAPW is responsible for describing the actions
of RSU after receiving the workloads from all the vehicles (i.e., 𝒘). In
he beginning, DAPW initializes the globally best utility value (i.e., the
rofits) and the per-workload price, respectively (lines 1–2). After
hat, RSU updates its best utility as long as the workload vector 𝒘
s constructed. It is noticeable that the utility function 𝑒 is of the

monotonic feature w.r.t. 𝑝. Therefore, from the perspective of VEC,
the more the pricing, the greater the benefits. Then, DAPW updates 𝑝
gradually. For instance, 𝑝 is increased with an increment 𝛥𝑝 each time.
The resulting 𝑝 is then sent back to the vehicles. This procedure repeats
until the best utility value does not change anymore.

Complexity Analysis. To reach a mutually satisfactory result, frequent
interactions for negotiation are required between vehicles and RSU,
which means DADW and DAPW are respectively executed by vehicles
and RSU in an alternating fashion. It is obvious that both DADW and
DAPW have constant-time complexity in theory. Furthermore, each
vehicle independently performs DADW, and DAPW is performed at RSU
7

with rich computational resources. These factors can guarantee that the
Algorithm 3: Distributed Algorithm for Pricing Per Workload at
RSU (DAPW)
Input: 𝑛, 𝜂, 𝛿, 𝒘
Output: The optimal price per workload 𝑝∗

1  ∗
𝑒 = 0;

2 𝑝∗ = 0;
3 𝑠 = 0;
4 for each element 𝑤𝑖 in 𝒘 do
5 𝑠+ = 𝑤𝑖;
6 end
7 𝑒 = (𝑝 − 𝜂) ⋅ 𝑠;
8 if 𝑒 − ∗

𝑒 > 𝜖 then
9  ∗

𝑒 = 𝑒;
0 𝑝∗ = 𝑝;
1 Update 𝑝 based on given strategy;
2 Send 𝑝 to each 𝑣𝑖;
3 end
4 return 𝑝∗;

two algorithms can be accomplished in real time. As a result, the time
is mainly spent on the interactions for negotiation, with the purpose
of reaching SE of the game. During this procedure, the update of step
increment (i.e., 𝛥𝑝) will have a great effect on the rate of convergence
to SE, this is because the convergence rate can be reduced when 𝛥𝑝
is small, and on the other hand, the convergence point can be missed
when 𝛥𝑝 is large. However, it is pretty hard to determine the optimal
value of 𝛥𝑝. Accordingly, in this paper the value of 𝛥𝑝 is mainly set
empirically and we will investigate it further in the next section.

6. Numerical results

The simulation results are reported and analyzed in this section.
Before going further, we have listed some key parameters to be used,
as denoted in Table 1. For instance, the number of vehicles in the
simulation is set to be 20. The communication range 𝐷 and the angle
𝜃 is 100 meters and 60 degrees, respectively. Thus, the dwell time of
each vehicle can be estimated. The unit cost 𝜂 and controlling factor
𝛿 are set to be 1 and 0.2, respectively. The satisfaction level ranges
from 500 to 1000 while 𝛿 is 0.2 for all the vehicles. In the meanwhile,
the increment to the price 𝛥𝑝 is set to 0.05 as the default value. On
another hand, all the simulation is run on a notebook with a 1.8 GHz
Intel(R) Core(TM) i5-8250U CPU, 8 GB of RAM, Microsoft Windows 10
Operating System, Python 3.7. The data involved in this simulation is
generated empirically, following the previous works such as [23,34].

On one hand, we compare the approach with the benchmark ap-
proach in terms of efficiency and effectiveness. In particular, the cen-
tralized approach CAPP is adopted as the benchmark algorithm in the
experiment. Since the benchmark approach can directly obtain the
optimal price for computing resources and the optimal workloads for
vehicles to offload, it avoids the frequent interactions between vehicles
and RSU. On the other hand, as far as the distributed approach itself
is concerned, several factors may affect its performance. Such factors
include the step and the number of applications which are offloaded.
Accordingly, we also need to evaluate the effects of these factors upon
the performance of our approach.

In the experiment, the evaluation metrics for efficiency and effec-
tiveness mainly include the utility value, optimal price, running time
and optimal workloads. By comparing these performance indicators
between the benchmark algorithm and the proposed approach, we can
investigate the feasibility of our approach. The metrics for the involved
parameters evaluation include the running time and utility values. By
running time, we mean the time taken to reach the SE of the game.
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Table 1
Parameter settings.

Notations Meanings Default values

𝑛 Number of vehicles 20
𝐷 Communication range 100
𝜃 Angle 60
𝜂 The unit cost 1
𝛿 The control factor 0.2
𝑤𝑖,𝑚𝑖𝑛 The minimal workloads undertaken by VEC 0
𝑤𝑖,𝑚𝑎𝑥 The maximal workloads undertaken by VEC [40, 600]
𝛼𝑖 The satisfaction level [500, 1000]
𝛥𝑝 The increment to price 𝑝 0.05

6.1. Performance evaluation for vehicle side

The SE of the real-time pricing game can be reached by iterative
interactions between vehicles and RSU. The vehicles update the strate-
gies, i.e., report to RSU their new workloads to be offloaded after
observing the new price per workload. The vehicles seek to find the
optimal workloads based on Eq. (16), such that their own utility values
can be optimized. The experiments are thus conducted to investigate
the performance of the proposed approach from the viewpoint of
vehicles. The experimental results are shown in the following. Specif-
ically, the workloads vary with the increasing number of interactions
and the result is shown in Fig. 2. In this experiment, the number of
vehicles is set to 20, i.e., the number of applications (𝑛) is also 20. We
randomly take four from these vehicles as the observation subjects. It
shall be noted that each iteration corresponds to one unique price per
workload. Thus, the figure also demonstrates workload variations with
the increasing number of prices.

It can be easily observed that each vehicle tends to decrease its
own workloads to be offloaded when the price per workload increases.
However, the decrement in the amount of workloads will stop when
the SE of the pricing game is reached. For example, the number of
workloads to be offloaded does not change anymore when the number
of iterations comes to 220 in Fig. 2. On the other hand, the variation of
utility value for each vehicle with the increasing number of iterations
is shown in Fig. 3. Similarly, each iteration also uniquely corresponds
to one price per workload, and this figure also demonstrates the utility
variations with the increasing price per workload.

It is noticeable that the utility values of the four vehicles decrease
with the increasing number of iterations. It is a procedure of gaming
between vehicles and RSU. The initial price 𝑝 is set to 25 for vehicles
empirically. However, from the viewpoint of RSU, the current 𝑝 may
ot be a satisfactory price, since the revenues obtained by leasing
omputational resources can still increase. Thus, RSU as the game
eader gradually increases the price in the game and vehicles follow
he strategy by decreasing their workloads, until the SE of the game
rrives. Accordingly, the utility values of these vehicles also decrease
ith the increasing number of iterations until the arrival of the SE of

he game.
The resource pricing game between vehicles and RUS usually takes

lace at the beacon exchanging stage. After that, computations are
ffloaded and undertaken by RSU. Therefore, the time taken to reach
he SE of game is supposed to be very soon. The dwell time of vehicles
ithin the coverage of RSU is limited. The application outsourcing

hould be accomplished during the dwell time, not to mention the
ecision-making for resource price. A set of experiments has been
onducted to investigate the time that is taken to reach the SE of game.
n particular, the average running time for one vehicle to reach SE of
he game is shown in Fig. 4. Based on the observations shown in Figs. 2
nd 3, the SE of the game can be reached with the number of iterations
qual to 220. As denoted in Fig. 4, it takes about 220 ms to reach the SE
f the game. The time is almost real time and thus acceptable for us,
8

specially considering our simulation settings. We believe that it will A
Fig. 2. The workload variations with the increasing number of interactions.

Fig. 3. The utility variations with the increasing number of interactions.

Fig. 4. Average running time with the increasing number of iterations.

ake much less time for RSU with more powerful capabilities to reach
he SE of game.

To sum up, from the viewpoints of vehicles, both the amount of
orkloads to be undertaken and the utility values decrease with the

ncreasing number of iterations, until the SE of the game reaches.
urthermore, the SE of the game can be sought in almost real time.
fter reaching the SE of the game, the utility values for these vehicles
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Fig. 5. Performance comparison w.r.t. price between two different approaches.

Fig. 6. Performance comparison w.r.t. utility between two different approaches.

o not change anymore, which means that no vehicle can achieve a
igher utility value by adjusting its own strategy unilaterally in the SE
f the game.

.2. Performance evaluation for RSU side

For the RSU side, the price per workload and the utility are also
nvestigated. The experimental results are shown in Fig. 5 and Fig. 6,
espectively. The centralized approach serves as the benchmark al-
orithm to evaluate the performance of the distributed algorithm for
eal-time resource pricing in VEC. As mentioned earlier, RSU is assumed
o know the satisfaction levels of all vehicles and utility functions in
he centralized approach. According to Eq. (22), the optimal price per
orkload is determined at the beginning as shown in Fig. 5. Similarly,

he optimal utility value for RSU in the centralized approach is also
etermined at the beginning, as shown in Fig. 6. It is revealed from
igs. 5 and 6 that both the optimal price and the optimal utility value
ncrease when the price per workload increases. However, when the SE
f the game arrives, the optimal utility value for RSU does not increase
ny more as the price per workload increases. Similarly, the optimal
rice per workload remains the same even if the price per workload
ncreases. For example, a mutually satisfactory result (i.e., the SE of
he game) is reached in this experiment, when the number of iterations
omes to 220.

To sum up, the benchmark algorithm knows the satisfaction levels
f all vehicles and utility functions all the time, while the distributed
9

n

Fig. 7. Performance comparison w.r.t. step increment.

Fig. 8. Performance comparison w.r.t. the number of vehicles.

approach knows neither of them for the purpose of privacy protection.
Therefore, it needs to take a certain amount of time to converge to
the SE of the game. However, the time is acceptable as investigated
in Fig. 4. On another hand, the convergence rate of the distributed
approach is also restricted by other factors, such as the way 𝑝 is updated
nd the number of vehicles. For instance, 𝛥𝑝 should be determined
arefully, since small values of 𝛥𝑝 slow down the convergence rate
hile large values of 𝛥𝑝 could miss the convergence point. Furthermore,

he number of vehicles (i.e., applications) may affect the performance
f the distributed approach in terms of the convergence rate. We will
nvestigate the effects of these parameters upon the convergence rate
n the next subsection.

.3. The effects of other parameters on pricing game

Two sets of experiments have been carried out to evaluate the
ffects of the step and the number of applications upon the performance
f the distributed approach. To be more specific, the experimental
esults are shown in Fig. 7 and Fig. 8, respectively. Fig. 7 shows the
nfluence of the way how 𝑝 is updated, while Fig. 8 shows the influence
f the number of applications upon the distributed approach.

In the first set of experiments, the price is increased by a step of
.01, 0.02, 0.05 and 0.1 respectively. It is obvious that a larger value
ndeed helps reach the SE of the game at a higher rate. For instance,
hen the step is 0.1, the SE of the game can be reached with the

umber of iterations equal to 100. Compared to the step of 0.1, the step
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Fig. 9. Performance comparison w.r.t. utility values at RSU.

of 0.01 helps reach the SE of the game with the number of iterations
equal to about 930. By contrast, the former is about nine times faster
than the latter. Nevertheless, it does not mean that the larger the step,
the better the performance of the distributed approach. Despite a faster
convergence rate, the approach may miss the convergence point. We
cannot determine the optimal value for the step, but the value can be
carefully set empirically. As far as our experiment is concerned, the step
equal to 0.1 is currently the best one.

In the second set of experiments, we investigate the number of
vehicles (i.e., the applications) that could affect the performance of
the distributed approach in terms of running time. The experimental
result is shown in Fig. 8. In this experiment, the number of vehicles
ranges from 10 to 100. For each application, three update strategies
are applied to the distributed approach, i.e., the steps are 0.05, 0.075,
and 0.1, respectively. From this figure, we can observe that (1) The av-
erage running time increases roughly when the number of applications
increases, no matter which value the step is; (2) As far as the update
strategies are concerned, the step of 0.1 is undoubtedly the best, no
matter how many vehicles are considered; (3) The response is almost
real-time even if the number of vehicles is very large. For instance,
when the number of vehicles is 100, the running time is 88, 75 and
46, respectively.

To sum up, both the way the price is updated and the number
of applications can affect our approach in terms of the convergence
rate and the running time. Generally, the SE of the game can be
reached in almost real time as anticipated. Furthermore, compared to
the centralized approach, the distributed approach can efficiently solve
the real-time computational resource pricing issue while considering
the privacy of vehicles.

6.4. Approach comparison

We have investigated the advantage of the distributed approach
over the centralized approach, as well as the effects of involved pa-
rameters upon the distributed approach. Actually, there are other ap-
proaches for seeking the SE in the proposed game. In the following, we
investigate the performance of our approach such as the optimal values
at the edge, compared to other approach. In particular, two approaches
are used as the contrast, i.e., a ternary search based approach (TSA) [9]
and a random approach (RND). TSA sets four points, i.e., the lower and
upper bounds, two other values between them, so as to speed up the
searching process. However, there is no upper bound of the price in
our problem. To adjust TSA to our optimization, we in the simulation
assume that the value of the upper bound is twice that of the lower
bound, and the lower bound of the price is the same as that in DADW
and DAPW. For the random approach, the increment in the price per
10
workload is generated in a random way, while the price is increased by
a step of 0.1 in DAPW. The number of vehicles is 20 in the simulation.

The simulation result on performance comparison is shown in
Fig. 9, where the 𝑥-coordinate denotes the number of iterations and
𝑦-coordinate denotes the utility values of RSU. As far as the capabil-
ity to find the optimal utility values is concerned, our approach is
slightly better than TSA in general, while the random approach has
the worst performance among the three approaches. However, due to
the randomness, the random approach sometimes demonstrates better
performance. For example, it is slightly better than TSA when the
number of vehicles is 14. To sum up, our approach has shown better
performance w.r.t. the capability to obtain the optimal values at the
edge server.

7. Conclusion

The monetary reward has always been one of the most important
goals for computational resource providers in VEC. The revenues can
actually stimulate the providers to provide highly qualified services for
the offloaded vehicular applications. In this paper, we have proposed
an optimal computational resource pricing in VEC and aim to optimize
the utility values of both vehicles and the edge. To achieve this goal,
a Stackelberg game is applied for modeling the interactions between
vehicles and the edge. Furthermore, a distributed algorithm is put
forward to solve the real-time pricing game, which guarantees that
the private information of vehicles can be protected. We have proven
the existence of the Stackelberg equilibrium in our resource pricing
game theoretically and experimentally. For the future work, we plan
to design more efficient and scalable pricing schemes revolving around
VEC when tasks are offloaded and computation is undertaken at the
edge server.
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