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Abstract—Internet-of-Things (IoT) applications are becoming
more resource-hungry and latency-sensitive, which are severely
constrained by limited resources of current mobile hardware.
Mobile cloud computing (MCC) can provide abundant compu-
tation resources, while mobile-edge computing (MEC) aims to
reduce the transmission latency by offloading complex tasks from
IoT devices to nearby edge servers. It is still challenging to satisfy
the quality of service with different constraints of IoT devices in
a collaborative MCC and MEC environment. In this article, we
propose three constrained multiobjective evolutionary algorithms
(CMOEAs) for solving IoT-enabled computation offloading prob-
lems in collaborative edge and cloud computing networks. First
of all, a constrained multiobjective computation offloading model
considering time and energy consumption is established in the
mobile environment. Inspired by the push and pull search frame-
work, three CMOEAs are developed by combing the advantages
of population-based search algorithms with flexible constraint
handling mechanisms. On one hand, three popular and chal-
lenging constrained benchmark suites are selected to test the
performance of the proposed algorithms by comparing them to
the other seven state-of-the-art CMOEAs. On the other hand, a
multiserver multiuser multitask computation offloading experi-
mental scenario with a different number of IoT devices is used
to evaluate the performance of three proposed algorithms and
other compared algorithms as well as representative offloading
schemes. The experimental results of the benchmark suites and
computation offloading problems demonstrate the effectiveness
and superiority of the proposed algorithms.

Index Terms—Computation offloading, constrained
multiobjective optimization, Internet of Things (IoT), mobile
cloud computing (MCC), mobile-edge computing (MEC).

I. INTRODUCTION

W ITH the explosive development of mobile networks and
Internet of Things (IoT), more and more computation-

intensive and latency-sensitive applications are emerging and
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deployed into different IoT devices [1], [2]. However, due to
the inherent size constraints of IoT devices, limited computa-
tion capability and battery life cannot satisfy the Quality of
Service (QoS) of these complex applications, such as aug-
mented reality (AR), face recognition and online gaming [3].
Since the cloud servers have more powerful computation
resources than mobile devices (MDs), the computation tasks
can be offloaded to and processed at cloud servers, which
can enhance the computation capacity and reduce energy con-
sumption of these MDs [4]. The new computing paradigm that
offloads tasks to the cloud through wireless networks is known
as mobile cloud computing (MCC) [5].

Generally speaking, in MCC, cloud data centers are mostly
a little far away from MDs, which need more propagation
delay to the remote cloud. To address this problem, mobile-
edge computing (MEC) (or multiaccess edge computing) [6]
is a promising technique to overcome these challenges. In
MEC, the edge servers are deployed at the edge of cellular
networks, such as smart gateways, access points, and base
stations [7]. The latency-sensitive tasks can be offloaded to
edge servers with the aim to reduce the communication delay
between MDs and edge servers. Hence, computation offload-
ing is an attractive and challenging topic in MEC. A variety
of architectures and offloading policies have been investigated.
The literature [8] presented the challenges and methods of
realizing low latency and high reliability of several mission-
critical applications in MEC, such as virtual reality (VR),
vehicle-to-everything (V2X), edge artificial intelligence (AI).
Pham et al. [9] provided a holistic overview of MEC technol-
ogy and its potential use cases and applications under the 5G
mobile networks. Wang et al. [10] analyzed different architec-
tural design alternatives based on cloud/edge/fog computing
for connected vehicles. They also compared the characteris-
tics in different edge computing paradigms, including MCC,
Cloudlet, Fog computing and MEC.

Wu et al. [11] studied how to dynamically partition a
given application and determine whether the computation task
is executed locally or offloaded to edge/cloud servers. They
proposed a min-cost offloading partitioning (MCOP) algorithm
from the graph theory to reduce execution time and energy
consumption. Dinh et al. [12] designed an offloading frame-
work of a single MD and multiple edge nodes, and considered
two cases for the MD’s fixed and elastic CPU frequency. They
proposed a linear relaxation-based approach and a semidefinite
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relaxation (SDR) based approach for fixed and elastic CPU
frequency cases, respectively. Bi et al. [13] put forward a
joint optimization of service caching placement and computa-
tion offloading in MEC systems, a sequential task execution
model is set up in a single-user with the assistance of a single-
server. Wang et al. [14] proposed a cooperative task offloading
model to minimize task duration with the constraint of energy
consumption in three-tier mobile computing networks, and uti-
lized alternating direction method of multipliers (ADMMs)
method to solve the problem. Du et al. [15] defined the cost
as a weighted sum of latency and energy consumption of
computation offloading problem in a mixed fog/cloud system,
which considers the allocation of both computation resource
and radio bandwidth, and the final objective minimizes the
maximum cost among all users to guarantee the fairness for
all users.

Some other work used deep learning methods to solve
offloading problems [16]–[18]. Huang et al. [19] formulated
the optimization problem of joint offloading decision and
bandwidth allocation in MEC network, in which multiple wire-
less devices choose to offload their computation tasks to an
edge server. Then they proposed a distributed deep-learning-
based offloading (DDLO) algorithm to generate near-optimal
offloading decisions. Wu et al. [20] established the task
offloading model with the aim to reduce latency and save
energy in the collaboration of MCC and MEC, and proposed a
distributed deep learning-driven task offloading (DDTO) algo-
rithm to solve the offloading problems. Huang et al. [21] also
investigated online computation offloading problems in the
wireless powered MEC networks, and developed a deep rein-
forcement learning-based online offloading (DROO) frame-
work to learn the binary offloading decisions from experience.
Wang et al. [22] observed that many deep reinforcement learn-
ing (DRL) based methods have weak adaptability to new
environments since they need full retraining to learn updated
policies due to new environments. Hence, they proposed a
meta reinforcement learning method to adapt fast to new envi-
ronments with a relevant small number of gradient updates and
samples.

On the other hand, multiple metaheuristic optimization algo-
rithms have also received attention. Kuang et al. [23] estab-
lished a system model in the MEC environment with multiple
users, multiple end nodes, and structured tasks. Then they for-
malized an offloading decision problem as a cost-minimization
problem and designed an improved genetic algorithm (GA) to
solve that. Xu et al. [24] proposed a nondominated sorting
GA III (NSGA-III) to address the multiobjective optimization
problem of task offloading for cloudlet and cloud comput-
ing. Goudarzi et al. [25] investigated an application placement
technique for concurrent IoT applications in edge and fog com-
puting environments, and obtained a memetic algorithm (MA)
algorithm based on the GA and one local search method to
solve the offloading problems.

Computation offloading problems are often constrained
optimization problems and NP-hard [14], [20], [25]. However,
there are few studies that combine constrained multiobjective
optimization with computation offloading in collaborative
MCC and MEC. The motivation of this article is to

treat the computation offloading problem as a constrained
multiobjective optimization problem (CMOP) and then we
focus on the state-of-the-art constrained multiobjective evo-
lutionary algorithms (CMOEAs) for solving that. A key issue
in CMOEA is to deal with constraints. The penalty function
approach is often used to balance objectives and constraints,
which converts a CMOP into an unconstrained MOP by adding
the overall constraint violation multiplied by a predefined
penalty factor to each objective [26]. The constrained NSGA-
II [27] adopted the constraint dominance principle (CDP)
to distinguish feasible and infeasible solutions. MOEA/D-
IEpsilon [28] combined an improved epsilon constraint han-
dling mechanism with a decomposition-based multiobjective
evolutionary algorithm (MOEA/D) [29] to solve CMOPs.
C-TAEA [30] maintained convergence-oriented archives and
diversity-oriented archives simultaneously to retain the balance
between convergence and diversity of solutions. Push and pull
search (PPS) [31] divided the search process into two stages:
PPS, and embedded the MOEA/D algorithm [29] into the PPS
framework for tackling CMOPs. CCMO [32] used a coevo-
lutionary framework of two populations to share information
with each other for dealing with CMOPs. MOEA/D-DAE [33]
developed a detect-and-escape strategy to avoid being trapped
into local optima and struck in an unfeasible area.

Following the above ideas, we propose and compare three
CMOEAs to solve constrained multiobjective computation
offloading problems in the collaborative edge-cloud comput-
ing environment. The major contributions of this article are
summarized as follows.

1) Three CMOEAs, i.e., PPS-NSGA-II, PPS-SPEA2, and
PPS-SPEA2-SDE are developed by taking advantage of
PPS framework and NSGA-II, PSEA2, and SPEA2-SDE
with constraint handling principles.

2) Three challenging constrained benchmark suites are
selected to evaluate the performance of the three
proposed algorithms, which are compared with the
other seven state-of-the-art CMOEAs. The numerical
results verify the effectiveness and competitiveness of
the proposed algorithms.

3) We further compare the three proposed algorithms with
the other five representative CMOEAs as well as four
offloading schemes to solve different scale computation
offloading problems. In addition, impacts of differ-
ent parameters in edge-cloud networks and different
types of applications are analyzed with regard to the
performance of different offloading policies. The experi-
mental results demonstrate the superiority and efficiency
of the proposed algorithms.

The remainder of this article is organized as follows.
Section II describes the background of the constrained
multiobjective optimization and PPS framework. The system
model and problem formulation are provided in Section III.
The details of the three proposed algorithms are illustrated
in Section IV. The simulation studies on benchmark suites
are presented in Supplementary Materials I. The experimental
results on computation offloading problems are discussed in
Section V. Finally, Section VI draws the conclusion and future
work.
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II. BACKGROUND

In this section, we introduce some concepts of constrained
multiobjective optimization (CMOPs) and PPS framework for
solving CMOPs. PPS framework has been demonstrated to
be a very efficient technology for dealing with CMOPs [31].
We try to apply the PPS framework to NSGA-II, SPEA2,
and SPEA2-SDE for solving constrained multiobjective com-
putation offloading problems. For better understanding the
implementation process of the PPS framework, we present the
operational details of the push and pull stages as well as intro-
duce the condition when to switch from the push to the pull
search process. In addition, we illustrate the reason why the
PPS framework is a potential technique for solving CMOPs.

A. Constrained Multiobjective Optimization

Many real-world problems can be formulated as CMOPs,
which aim to optimize different conflicting objectives simul-
taneously with a set of inequality and/or equality constraints.
A CMOP can be defined as follows [31]:

min : F(x) = (f1(x), f2(x), . . . , fm(x))T (1)

s.t.: gi(x) ≥ 0,= 1, . . . , p (2)

hj(x) = 0, j = 1, . . . , q (3)

x = (x1, x2, . . . , xD) ∈ � (4)

where x is a solution consisting of D decision variables, � ⊆
R

D is the decision space, F(x) ⊆ R
m is an m-dimensional

objective vector, gi(x) ≥ 0 is an inequality constraint, hj(x) =
0 is an equality constraint, and the number of inequality and
equality constraints are p and q, respectively.

When solving CMOPs with equality constraints, we often
relax the equality constraint with an extremely small positive
value δ and convert the equality constraints into inequality
constraints, which can be expressed as

hj(x)
′ ≡ δ − ∣

∣hj(x)
∣
∣ ≥ 0. (5)

In order to deal with CMOPs with different inequality and
quality constraints, the overall constraint violation of each
solution x can be calculated as

CV(x) =
p

∑

i=1

∣
∣min

{

gi(x), 0
}∣
∣+

q
∑

i=1

∣
∣min

{

hj(x)
′, 0

}∣
∣ (6)

where x is a feasible solution if CV(x) = 0, otherwise it is
infeasible. A feasible solution xa is said to Pareto dominate
another feasible solution xb, denoted by xa ≺ xb, if every
objective value of xa is not greater than that value of xb and
there exists at least one objective value of xa is less than xb.
If there are no other feasible solutions dominating solution
x∗, which is called a Pareto optimal solution. All the Pareto
optimal solutions constitute the Pareto optimal set (PS). And
the mapping of a Pareto optimal set into the objective space
is called Pareto front (PF).

B. PPS Framework

The PPS framework was proposed to solve CMOPs by
Fan et al. [31]. The search process of PPS is divided into two

different stages: PPS stages. In the first push stage, the work-
ing population is pushed to approach the unconstrained PF
without considering any constraints, which can help the solu-
tions to get across infeasible regions. Afterward, a constraint
handling mechanism is used to pull the working population to
approach the constrained PF in the pull stage.

The condition when to convert from the push stage to pull
stage is important, which can be suggested as [31],[34]

rk = max{rzk, rnk} ≤ ε (7)

where ε (suggested ε = 0.001) is a threshold. rk denotes
the maximum rate of change between the ideal and nadir
points during the last l generations. rzk and rnk represent the
rates of change of the ideal and nadir points during the last l
generations, defined as follows:

rzk = max
i=1,...,m

⎧

⎨

⎩

∣
∣
∣zk

i − zk−l
i

∣
∣
∣

max
{∣
∣
∣zk−l

i

∣
∣
∣,�

}

⎫

⎬

⎭
(8)

rnk = max
i=1,...,m

⎧

⎨

⎩

∣
∣
∣nk

i − nk−l
i

∣
∣
∣

max
{∣
∣
∣nk−l

i

∣
∣
∣,�

}

⎫

⎬

⎭
(9)

where zk = (zk
1, . . . , zk

m) and nk = (nk
1, . . . , nk

m) are the ideal
and nadir points in the kth generation, respectively. zk−l =
(zk−l

1 , . . . , zk−l
m ) and nk−l = (nk−l

1 , . . . , nk−l
m ) are the ideal and

nadir points in the k−lth generation. � (suggested � = 1e−6)
is a very small positive number, which is used to make sure
that the denominators in (8) and (9) are not equal to zero. rzk

and rnk are two points in the interval [0, 1].
rk is initialized 1 at the beginning of the search, and is

updated at each iteration according to (7). When rk is less
than or equal to ε, the push stage will be transformed into
pull stage.

To summarize, PPS has two potential advantages over
other constraint handling techniques [34]. During the first
push stage, a multiobjective evolutionary algorithm is adopted
to approximate the PF without considering any constraints,
which can help the working population to get across the
large infeasible regions and avoid the distance between the
unconstrained PF and true PF. After obtaining the uncon-
strained PF in the push stage, some valuable information can
be collected to guide the parameter setting for the constraint
handling approaches in the pull stage, which can enhance the
adaptability of the algorithm.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we consider a collaborative MEC and
MCC network with multiple MDs, multiple edge servers and
multiple cloud servers. The computation tasks in the MDs can
be executed locally or offloaded to the edge/cloud servers.

A. System Model

Fig. 1 presents the system model composed by L cloud
servers, K edge servers, and N MDs. Each MD can com-
municate with the edge server with a wireless link, whereas
the edge server and cloud server are connected through a
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TABLE I
IMPORTANT NOTATIONS USED IN THIS ARTICLE

Fig. 1. System model of local-edge-cloud computation offloading.

wired link. Without loss of generality, we assume that each
MD has M independent tasks. We denote the set of MDs as
N = {1, 2, . . . , N} and the set of tasks as M = {1, 2, . . . , M},
and the set of servers as K = {0, 1, 2, . . . , K, K+1, . . . , K+L},
where server 0 denotes MD itself and servers {1, 2, . . . , K}
denote the edge servers and servers {K+1, . . . , K+L} denote
the cloud servers. In each MD, different tasks can decide to be
processed by MD itself or remotely processed by edge/cloud
servers. We denote anm ∈ {0, 1, 2, . . . , K, K + 1, . . . , K + L}
as the offloading decision that MD n’s mth task is assigned
to MD or cloud/edge servers, where n ∈ N and M ∈ M.
Especially, anm = 0 means that MD n chooses to locally
execute its mth task, anm ∈ {1, 2, . . . , K} indicates that MD
n’s mth task is offloaded to the edge servers and anm ∈
{K + 1, K + 2, . . . , K + L} represents that MD n’s mth task is

offloaded to the cloud servers. Overall, every task must be pro-
cessed locally or by the edge/cloud servers, whose offloading
decision depends on

anm =
⎧

⎨

⎩

0, local computing
∈ {1, 2, . . . , K}, edge computing
∈ {K + 1, K + 2, . . . , K + L}, cloud computing

(10)

where n ∈ N and M ∈ M. Since both response time and
energy consumption play a significant role in the performance
of computation offloading for MDs, we consider these two
objectives as QoS metrics. The detailed operations of the
communication and computation process are illustrated in
Sections III-B and III-C, respectively. The important notations
used in this article are listed in Table I.

B. Communication Model

Considering the communication cost between the MDs and
edge/cloud servers, we first analyze the transmission time and
energy consumption in the communication model. We set a
tuple (αnm, γnm) to represent MD n’s mth task, where αnm is
the data size and γnm is the required number of CPU cycles to
finish the task. When one of the MD n’s task m is offloaded
to the edge server k ∈ {1, 2, . . . , K}, the whole processing of
task m includes transmitting and edge computing phase. Let
BUE

nk denote the allocated upload bandwidth between the MD n
and the edge server k. We neglect the influence of the process
when the edge server returns the results back to MDs since
the data size of feedback information is small in general [15].
The upload transmission time for offloading MD n’s mth task
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to the edge server k can be calculated as

TUE
nm =

αnm

BUE
nk

. (11)

The energy consumption for uploading MD n’s mth task to
the edge server k can be quantified as

EUE
nm = PTX

n TUE
nm (12)

where PTX
n is the transmission energy consumption power of

the MD n.
When one of the MD n’s task is offloaded to the cloud

server k ∈ {K + 1, K + 2, . . . , K + L}, one of the edge servers
is selected as a relay node between the MD and the cloud
server. We assume that the task is first transmitted to the edge
server k̃ through a wireless link, then the edge server k̃ will
forward the task to the central cloud server k via a wired link.
The upload transmission time for offloading MD n’s mth task
to the cloud server k can be calculated as

TUC
nm =

αnm

BUE
ñk

+ τ (13)

where τ denotes the propagation delay between edge servers
and cloud servers. We focus on the energy consumption of
MDs, thus the energy consumption for uploading MD n’s mth
task to the cloud server k can be quantified as

EUC
nm = PTX

n ×
(

TUC
nm − τ

)

. (14)

When the task is executed locally, there is no communica-
tion latency. Hence, the total communication delay of MD n
for completing all M tasks can be expressed as

TComm
n = TCommE

n + TCommC
n (15)

where
{

TCommE
n = ∑M

m=1 TUE
nm , anm ∈ {1, 2, . . . , K}

TCommC
n =∑M

m=1 TUC
nm , anm ∈ {K + 1, . . . , K + L}. (16)

Then the overall communication energy consumption of MD
n for completing all M tasks can be calculated as

EComm
n = ECommE

n + ECommC
n (17)

where
{

ECommE
n = ∑M

m=1 EUE
nm , anm ∈ {1, 2, . . . , K}

ECommC
n =∑M

m=1 EUC
nm , anm ∈ {K + 1, . . . , K + L}. (18)

C. Computation Model

We denote fl, fe, fc as the number of CPU cycles for the
MDs, the edge servers and the cloud servers, respectively. In
general, the computation capability of the cloud servers is
more powerful than the edge servers, and the edge servers have
better computation capability than the MDs, as fl � fe � fc.

When each task is determined to be offloaded to edge or
cloud servers, the edge or cloud servers start to process it
after all the input data has been received by the edge or cloud
servers. The computation latency of MD n’s mth task in MDs,
the edge servers and cloud servers are calculated as

TComp
nm =

⎧

⎪⎨

⎪⎩

γnm
fl

, anm = 0
γnm
fe

, anm ∈ {1, 2, . . . , K}
γnm
fc

, anm ∈ {K + 1, . . . , K + L}.
(19)

Thus, the total computation latency of MD n for completing
all M tasks can be expressed as

⎧

⎪⎪⎨

⎪⎪⎩

TCompL
n = ∑M

m=1
γnm
fl

, anm = 0

TCompE
n = ∑M

m=1
γnm
fe

, anm ∈ {1, 2, . . . , K}
TCompC

n =∑M
m=1

γnm
fc

, anm ∈ {K + 1, . . . , K + L}.
(20)

In this article, we only consider the energy consumption at
MDs. Specially, we use PL

n to denote the local energy con-
sumption power of MD n. Then MD n’s energy consumption
for executing its task m locally is given by

EComp
nm = PL

n ×
γnm

fl
. (21)

Hence, the total computation energy consumption of MD n
can be expressed as

EComp
n = PL

n × TCompL
n . (22)

D. Problem Formulation

The processing latency consists of communication and com-
putation latency, and the total delay of executing all M tasks
of MD n can be given by

Tn = max
{

TCompL
n , TCompE

n + TCommE
n , TCompC

n + TCommC
n

}

.

(23)

The total completion time of executing all tasks of all MDs
can be expressed

T = max

{
N

∑

n=1

TCompL
n ,

N
∑

n=1

(

TCompE
n + TCommE

n

)

×
N

∑

n=1

(

TCompC
n + TCommC

n

)
}

. (24)

The energy consumption of executing all M tasks of MD n
can be given by

En = EComp
n + EComm

n . (25)

The total energy consumption of executing all tasks of all
MDs can be expressed as

E =
N

∑

n=1

(

EComp
n + EComm

n

)

. (26)

Hence, the computation offloading problem can be formal-
ized as follows:

min : [T, E], (27)

s.t.: an m ∈ {0, 1, 2, . . . , K, K + 1, . . . , K + L} (28)

|an m| = 1 (29)

T ≤ TCons (30)

E ≤ ECons (31)

where the first and second constraints indicate that each
task is assigned to one server, the third constraint denotes
that MDs have constraints of response time deadline, and
the last constraint represents the energy consumption limits.
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TABLE II
APPLICATION COMPLEXITY

To summarize, we establish a local-edge-cloud constrained
multiobjective computation offloading model.

In the following scenarios, we assume the CPU frequency
of each MD, each edge server, and each cloud server to be
0.6 GHz, 10 GHz and 1 THz, respectively, [12]. The transmit
power PTX

n of all MDs is set to 0.2 W. The power consump-
tion of all MDs is set to 0.7 W. The round-trip propagation
delay between edge servers and cloud servers is assumed to
be τ = 15 ms. To reflect the variability seen in real systems,
the bandwidth between MDs and edge servers is randomly
selected from the interval [8, 15] Mb/s. The same argument
holds for the size of data of the tasks, which is uniformly dis-
tributed on the interval [10, 30] MB. The total number of CPU
cycles needed to complete a task are assumed to be propor-
tional to the input data size [3], i.e., γnm = ραnm. Here, the
parameter ρ denotes the computation to data ratio for different
types of applications. Table II lists some values of ρ for var-
ious applications [35], [36]. For example, label A represents
the gzip application and ρ = 330 cycles/byte. By default, a
type A application is taken as an example of the computation
offloading problems.

IV. PROPOSED ALGORITHMS

This section presents the details of three proposed algo-
rithms PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE.

A. General Framework

In our proposed three algorithms, we use the constraints
formalized in (28)–(31). The first two constraints denote that
each task must be assigned to one server, which can be solved
by the integer encoding method. The latter two constraints
denote the limited time and energy consumption.

The general frameworks of the three proposed algorithms
are presented in Algorithms 1 and 2, respectively. The
flowchart of PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-
SDE is shown in Fig. 2. Please note that PPS-SPEA2
and PPS-SPEA2-SDE share the same framework but have
different fitness calculating methods. In the framework of
PPS-NSGA-II, the nondominated front numbers and crowding
distances of solutions are calculated by the fast nondom-
inated sorting approach [27] with and without considering
constraints, respectively. The whole search process consists
of two stages: PPS. When PushStage = true, the push stage is
utilized, the parents are selected via binary tournament selec-
tion as the mating pool without considering constraints and
then offspring solutions O are generated from the mating pool.
When PushStage = false, the pull stage is applied, a constraint
handling mechanism is embedded into NSGA-II to pull the

Algorithm 1 Framework of PPS-NSGA-II

Input: The population size Ñ
Output: The final population P

1: P← Initialization
(

Ñ
)

;
2: [F1, F2, · · ·]← NDSorting(P.objs);
3: CrowdDis← CrowdingDistance(F1, F2, · · ·);
4:

[

F1
′, F2

′, · · ·]← NDSorting(P.objs, P.cons);
5: CrowdDis′ ← CrowdingDistance

(

F1
′, F2

′, · · ·);
6: Set rk = 1.0, PushStage = true;
7: while termination criterion not fulfilled do
8: Calculate rk according to Eq. (7);
9: if rk ≤ ε and PushStage = true then

10: PushStage = false;
11: end if
12: if PushStage = true then
13: P′ ← Select Ñ parents via binary tournament selec-

tion according to [F1, F2, · · ·] and CrowdDis in
P;

14: O← OffspringGeneration
(

P, P′
)

;

15:
(P, [F1, F2, · · ·], CrowdDis)←
EnvironmentalSelection(P ∪ O);

16: else
17: P′ ← Select Ñ parents via binary tournament selec-

tion according to
[

F1
′, F2

′, · · ·] and CrowdDis′ in
P;

18: O← OffspringGeneration
(

P, P′
)

;

19:

(

P,
[

F1
′, F2

′, · · ·], CrowdDis′
)←

EnvironmentalSelection′(P ∪ O);
20: end if
21: end while

working population to the constrained PF. The parameter rk

for switching from push to pull stage is updated iteratively.
In the framework of PPS-SPEA2 and PPS-SPEA2-SDE,

different fitness calculation methods are adopted instead of
calculating the nondominated front numbers and crowding
distances in PPS-NSGA-II. The fitness calculating methods
can reflect both the performance of convergence and diversity
of each solution in the population. Without loss of gen-
erality, the smaller fitness value means better performance.
The whole search processes of PPS-SPEA2 and PPS-SPEA2-
SDE also include PPS stages. In the push stage, we use
SPEA2 and SPEA2-SDE without considering any constraints
to search the unconstrained PF. In the pull stage, the con-
straint handing approaches are applied to search the con-
strained PF. More details about the main operations in PPS-
NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE are presented in
Sections IV-B–IV-D, respectively.

B. PPS-NSGA-II

In the original NSGA-II, Deb et al. [27] embedded feasibil-
ity into Pareto dominance and developed a CDP to deal with
constraints. If a solution xi is said to constrained-dominate a
solution xj, one of the following three conditions holds:

1) xi is a feasible solution and xj is an infeasible solution;
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Fig. 2. Flowchart of PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE.

Algorithm 2 Frameworks of PPS-SPEA2 and PPS-SPEA2-
SDE
Input: The population size Ñ
Output: The final population P

1: P← Initialization
(

Ñ
)

;
2: Fitness← CalFitness(P.objs);
3: Fitness′ ← CalFitness(P.objs, P.cons);
4: Set rk = 1.0, PushStage = true;
5: while termination criterion not fulfilled do
6: Calculate rk according to Eq. (7);
7: if rk ≤ ε and PushStage = true then
8: PushStage = false;
9: end if

10: if PushStage = true then
11: P′ ← Select Ñ parents via binary tournament selec-

tion according to Fitness in P;
12: O← OffspringGeneration

(

P, P′
)

;

13:
(P, Fitness)←
EnvironmentalSelection(P ∪ O);

14: else
15: P′ ← Select Ñ parents via binary tournament selec-

tion according to Fitness′ in P;
16: O← OffspringGeneration

(

P, P′
)

;

17:

(

P, Fitness′
)←

EnvironmentalSelection′(P ∪ O);
18: end if
19: end while

2) solutions xi and xj are both feasible solutions, and
solution xi Pareto dominates solution xj in terms of
objectives;

3) solutions xi and xj are both infeasible solutions, and solu-
tion xi has a lower overall constraint violation than that
of solution xj.

PPS-NSGA-II is an instantiation of the PPS framework of
a specific type of NSGA-II algorithm [27]. In the push search
stage, we use an unconstrained NSGA-II to search for both
feasible and infeasible solutions to minimize the objectives
of solutions without considering any constraints, which aims
to approach the unconstrained PF. The nondominated front
numbers and crowding distances of solutions are calculated
by the fast nondominated sorting approach. The crowding
distance is defined as the average distance between its two
closest points on each objective. Then Ñ parents are selected
as mating pool via binary tournament selection based on the
nondominated front numbers and crowding distances. The two
parents are randomly selected from the mating pool to gen-
erate two offspring solutions, and a genetic operator [27] or
differential evolution operator [37] can be applied as offspring
generating operator. Thus, the environmental selection opera-
tion is adopted to update the nondominated front numbers and
crowding distances as well as the new population.

The ideal and nadir points are updated at each iteration.
And the maximum rate of change between the ideal and nadir
points (rk) during the last l generations is calculated. When
rk satisfies the condition of switching from the push to pull
stages, the pull search stage is starting. In the pull search stage,
the CDP is applied to calculate the nondominated front num-
bers and crowding distances. Then the new mating pool and
offspring solutions are generated based on the new nondomi-
nated front numbers and crowding distances with respect to the
constraints. Finally, a set of feasible solutions will be updated
and obtained in the environmental selection operation.

C. PPS-SPEA2

PPS-SPEA2 is an instantiation of the PPS framework
of a specific type of SPEA2 algorithm [38]. In PPS-
NSGA-II, the nondominated front number represents the
performance of convergence and the crowding distance reflects
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the performance of diversity. However, the fitness metric value
is used to measure both convergence and diversity in PPS-
SPEA2. The fitness evaluation strategy shares the same idea
as the one in the original SPEA2. First of all, let the solution
set Rx store all the solutions dominated by x and the solution
set Sx store all the solutions dominating x, the raw fitness R(x)
of a solution x is calculated as

R(x) =
∑

y∈Sx

∣
∣Ry

∣
∣ (32)

where |Ry| denotes the number of solutions in the set. R(x) = 0
means solution x is a nondominated solution. What is more,
additional density information is needed to distinguish the
quality of different nondominated solutions. The kth near-
est neighbor method [39] is applied to measure the density

information of solutions. Then �
√

2Ñ�th nearest neighbor x′
of solution x is detected, the density D(x) of corresponding to
x is calculated as

D(x) = 1

dist(x, x′)+ 2
(33)

where dist(x, x′) denotes the Euclidean distance between solu-
tions x and x′.

Hence, the fitness of the solution x can be expressed as
follows:

fit(x) = R(x)+ D(x) (34)

where x is the nondominated solution when fit(x) < 1.
Obviously, smaller fitness means better quality of the solution.

PPS-SPEA2 also has two search stages: 1) push and 2) pull
stages. In the push stage, no constraints will be considered
into the fitness evaluation method, PPS-SPEA2 can search for
unconstrained solutions. In the pull stage, the CDP is embed-
ded into the fitness evaluation method, PPS-SPEA2 can pull
the unconstrained solutions to the feasible regions. It is nec-
essary to point out that the solution which has the minimum
distance to another solution is chosen to be deleted in the envi-
ronmental selection operation. If there are several solutions
having the same minimum distance, we consider the second
smallest distances and so forth.

D. PPS-SPEA2-SDE

PPS-SPEA2-SDE is an instantiation of the PPS framework
of a specific type of SPEA2-SDE algorithm [40]. Compared
PPS-SPEA2 with PPS-SPEA2-SDE, the fitness calculating
method is different. In PPS-SPEA2-SDE, the shift-based den-
sity estimation (SDE) strategy is used to measure the density
of the solutions. The shifted-based density estimation-based
distance between solution x and solution y (y ∈ P\{x}) can be
calculated as

SDE(x, y) =
√
√
√
√

m
∑

i=1

(max{0, fi(y)− fi(x)})
2

. (35)

Similar to PPS-SPEA2, the fitness of the solution x can be
expressed as follows:

fit(x) = R(x)+ 1

SDE(x, x′)+ 2
(36)

where R(x) is the same to that of PPS-SPEA2. SDE(x, x′)
is the SDE crowding degree of the solution x with regard to

its �
√

2Ñ�th nearest neighbor x′. Afterward, PPS-SPEA2-SDE
shares the same search process with PPS-SPEA2. It is noted
that the solution which has the minimum SDE-based distance
to another solution is chosen to be deleted in the environmental
selection operation. If there are several solutions having the
same minimum SDE-based distance, we consider the second
smallest distances and so forth.

E. Computational Complexity

For the proposed algorithms PPS-NSGA-II, PPS-SPEA2,
and PPS-SPEA2-SDE, the major costs are the iteration pro-
cess in Algorithms 1 and 2. In PPS-NSGA-II, the worst-case
time complexities of the maximum rate of change between
the ideal and nadir points are O(M̃Ñ), where M̃ is the number
of objectives and Ñ is the population size. The mating selec-
tion operator needs O(Ñ) operations for the binary tournament
selection. The offspring reproduction needs O(ÑD) operations
to generate offspring solutions, where D is the number of
decision variables. The nondominated sorting operator and
environmental selection operator need O(M̃Ñ2) operations.
Thus, the overall computational complexity of PPS-NSGA-II
within one generation is O(M̃Ñ2).

In PPS-SPEA2, the time complexity of the fitness cal-
culating procedure is O(Ñ2 log Ñ). The binary tournament
selection needs O(Ñ) operations and the offspring generation
needs O(ÑD) operations. The worst run-time complexity of
the environmental selection operator is O(Ñ3), on average the
complexity will be lower O(Ñ2 log Ñ) [38]. Thus, the worst
overall computational complexity of PPS-SPEA2 within one
generation is O(Ñ3). In PPS-SPEA2-SDE, the time complexity
of the fitness calculating procedure is O(M̃Ñ2). And the worst
run-time complexity of the environmental selection operator
is O(Ñ3). Since Ñ is often larger than M̃. Hence, the worst
overall computational complexity of PPS-SPEA2-SDE within
one generation is O(Ñ3).

V. PERFORMANCE EVALUATION

Before using the proposed algorithms to deal with offload-
ing problems, we adopt three challenging benchmark suites
to test the performance and the simulation results are illus-
trated in Supplementary Materials I. In this section, we
further study the performance of PPS-NSGA-II, PPS-SPEA2,
PPS-SPEA2-SDE for solving constrained multiobjective com-
putation offloading optimization problems.

A. Experimental Setup

We set up the multiserver multiuser multitask computation
offloading scenario in the local-edge-cloud environment. The
number of MDs is selected between 10 and 100. The number
of independent tasks of each MD is M = 5. We set the number
of edge servers K = 5 and the number of cloud serves L = 2.

To verify the performance of the proposed algorithms, we
compare PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE
with other five algorithms TiGE-2 [41], constrained NSGA-
II [27], PPS-MOEA/D [31], ToP [42], and CMOEA-MS [43]
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TABLE III
HV VALUES OBTAINED BY TIGE-2, NSGA-II, PPS-MOEA/D, TOP, CMOEA-MS, PPS-NSGA-II, PPS-SPEA2, AND PPS-SPEA2-SDE ON FIVE

OFFLOADING PROBLEMS. THE BEST RESULT IN EACH ROW IS HIGHLIGHTED. “N/A” INDICATES THAT NO FEASIBLE SOLUTION IS FOUND

(a) (b) (c)

Fig. 3. Nondominated solution sets with the medium HV value obtained by TiGE-2, NSGA-II, PPS-MOEA/D, ToP, CMOEA-MS, PPS-NSGA-II, PPS-SPEA2,
and PPS-SPEA2-SDE on different offloading problems. (a) N = 10. (b) N = 50. (c) N = 100.

to solve five offloading problems, which consider that the num-
ber of MDs N = [10, 30, 50, 70, 100]. For a fair comparison,
the population size of all algorithms is set to 100, and the num-
ber of iterations is 1000. The solution encoding style adopts
the real-encoding method, which means that each task is
assigned to a specific server including edge and cloud servers.
We apply the hypervolume (HV) [44] as the performance
metric to evaluate the performance of these compared algo-
rithms. Each algorithm is executed 30 times independently on
each test problem, and the average and standard deviation of
performance metric values are recorded. The Wilcoxon rank-
sum test at a 5% significance level is used to compare the
experimental results, where the symbol “+,” “−,” and “≈”
denotes that the result of another algorithm is significantly
better, significantly worse and similar to that obtained by the
proposed algorithm.

B. Convergence Properties Analysis

As listed in Table III, the proposed PPS-NSGA-II has
achieved the best performance on four offloading problems,
while only CMOEA-MS gets one best result among other
algorithms. It is necessary to point out that CMOEA-MS,
PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE share simi-
lar overall performance based on the Wilcoxon rank-sum test,

which outperform other four compared algorithms (TiGE-2,
NSGA-II, PPS-MOEA/D, and ToP). We can also observe that
PPS-MOEA/D may obtain good performance for solving the
benchmark suites, while encountering difficulties in solving
discrete computation offloading problems.

We can observe that ToP cannot find any feasible solutions
on N = 50 and 100 offloading problems as shown in Fig. 3(b)
and (c). TiGE-2, NSGA-II, and PPS-MOEA/D can obtain a
few feasible and nondominated solutions. NSGA-II, CMOEA-
MS, PPS-SPEA2, and PPS-SPEA2-SDE may get good results
about the small-scale offloading problems (e.g., N = 10), while
their performance deteriorates with the growth of the number
of MDs, especially for the algorithm NSGA-II. PPS-NSGA-II
can always obtain a set of well-distributed and well-converged
feasible solutions for different offloading problems.

C. Performance of Different Offloading Schemes

It has been demonstrated that PPS-NSGA-II has a good
and stable performance in terms of both convergence and
diversity on different offloading problems. To further evalu-
ate the performance of PPS-NSGA-II for reducing response
time and energy consumption, we compare PPS-NSGA-II with
other four offloading schemes, which are local offloading
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(a) (b) (c)

Fig. 4. Offloading gain of different offloading schemes for w = 0.2. (a) N = 10. (b) N = 50. (c) N = 100.

(a) (b) (c)

Fig. 5. Offloading gain of different offloading schemes for w = 0.5. (a) N = 10. (b) N = 50. (c) N = 100.

(a) (b) (c)

Fig. 6. Offloading gain of different offloading schemes for w = 0.8. (a) N = 10. (b) N = 50. (c) N = 100.

scheme (LOS), edge offloading scheme (EOS), cloud offload-
ing scheme (COS), and random offloading scheme (ROS).
LOS, EOS, and COS represent that all tasks are executed
locally, offloaded to edge servers and central cloud servers.
ROS denotes that offloading decisions of all tasks are gener-
ated randomly. In order to better compare the effectiveness of
different algorithms, we can design system cost and offloading
gain of a weighted sum of time and energy as follows:

SystemCost = w× Toffloading + (1− w)× Eoffloading

(37)

OffloadingGain =
[

w× TLOS − Toffloading

TLOS
+ (1− w)

×ELOS − Eoffloading

ELOS

]

× 100% (38)

where Toffloading and Eoffloading denote overall time and energy
consumption of one specific offloading scheme, respectively.
TLOS and ELOS denote the time and energy consumption of
LOS, respectively. w is the weight tradeoff parameter between

time and energy, which can be set by the decision maker. The
larger w is, the more sensitive the response time is.

Figs. 4–6 present the offloading gain of different offload-
ing schemes under different weights. Compared with LOS,
all the other offloading schemes benefit a lot with regard
to time consumption and energy consumption. PPS-NSGA-II
can obtain the best offloading gain compared with other
offloading schemes among all the different offloading prob-
lems with different weights. COS achieves a better offloading
gain performance than EOS since the cloud servers take obvi-
ous advantages of powerful cloud resources over edge servers.
It is noted that EOS gains better results compared with ROS
when w = 0.2 and 0.5, while ROS may outperform EOS in the
case w = 0.8 (focus on time consumption) because the cloud
server’s powerful computing capability achieves high response
time efficiency performance.

D. Impacts of Different Parameters

In this section, we analyze the impacts of different param-
eters in collaborative edge-cloud computing networks, and w
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Fig. 7. System cost and offloading gain on different offloading schemes under different number of tasks.

Fig. 8. System cost and offloading gain on different offloading schemes under different wireless bandwidth.

is set to 0.5 as well as N is equal to 10. Fig. 7 illustrates
the performance of system cost and offloading gain on differ-
ent offloading schemes under the different number of tasks of
each MD. PPS-NSGA-II gains the best performance compared
with other offloading schemes. With the increasing number of
tasks, the system cost of LOS grows much faster than EOS,
COS, ROS, and PPS-NSGA-II. The offloading gain of the dif-
ferent offloading schemes stays stable since the system cost
of EOS, COS, ROS, and PPS-NSGA-II belongs to a small
relevant proportion of LOS.

Fig. 8 shows the performance of system cost and offload-
ing gain on different offloading schemes under the different
wireless bandwidth between MDs and edge servers. LOS does
not change with the increment of wireless bandwidth. Both
the performance of the system cost as well as offloading
gain of the other four offloading schemes (EOS, COS, ROS,
and PPS-NSGA-II) improve due to larger wireless bandwidth.
In addition, with the increment of wireless bandwidth, the
performance improves very fast at the beginning and then
becomes small. It is worth noting that the offloading gain of
EOS and COS may be negative when the wireless bandwidth
is small, which means that a computing task should not be
offloaded to edge or cloud servers due to large communication
cost in the case wireless bandwidth is small enough.

Fig. 9 presents the performance of system cost and offload-
ing gain on different offloading schemes under different edge

server CPU frequency. The performance of LOS and COS do
not change no matter what the CPU frequency of the edge
server. With the increment of edge server CPU frequency, the
performance of system cost and offloading gain of EOS grows
faster than ROS and PPS-NSGA-II. However, PPS-NSGA-II
still achieves the best results among all the offloading schemes.

E. Impacts of Different Types of Applications

Fig. 10 illustrates the performance of system cost and
offloading gain on different offloading schemes under different
types of applications. With the increment of parameter ρ of
different types of applications, the computing delay increases
directly. The system cost of LOS increases very fast due
to the poor computing capability of MDs, while COS and
PPS-NSGA-II grow slowly due to the powerful computing
resources at the cloud servers. PPS-NSGA-II will make more
offloading decisions to offload the tasks to cloud servers. On
the other hand, the system cost of EOS and ROS grow grad-
ually and the increasing speed of EOS is slower than ROS.
Furthermore, the performance of offloading gain of EOS, COS
and PPS-NSGA-II is much better than ROS, and the COS and
PPS-NSGA-II achieve the best and similar results due to the
increment of parameter ρ of different types of applications.
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Fig. 9. System cost and offloading gain on different offloading schemes under different edge server CPU frequency.

Fig. 10. System cost and offloading gain on different offloading schemes under different types of applications.

Fig. 11. System cost and offloading gain obtained by DDLO, DROO, BB, and PPS-NSGA-II.

F. Comparison With Deep Learning Methods

Some deep-learning-based methods are used to address the
offloading problems, which often have two research direc-
tions. First, a labeled data set of sample offloading decisions
can be generated and then the labeled data set will be
used to train the deep neural networks [19], [20]. In addi-
tion, DRL-based methods are used to generate near-optimal
offloading decisions [21], [22]. Compared with the proposed
PPS-NSGA-II, deep learning methods can obtain one solu-
tion in a single run based on system cost or offloading gain
with a specific weight parameter w, while PPS-NSGA-II can

achieve a set of nondominated solutions. Furthermore, PPS-
NSGA-II does not need the labeled database of offloading
decisions. Single-objective optimization methods (such as GA
and MA) also get single solutions at a time. Other traditional
methods such as branch and bound (BB) [45] and integer
programming spend more time obtaining a single suboptimal
solution.

We compare PPS-NSGA-II with two deep-learning-based
methods DDLO [19] and DDRO [21] as well as BB [45] to
solve computation offloading problems, where w is set to 0.5
and N is equal to 10. Fig. 11 shows the system cost and

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 25,2021 at 00:00:50 UTC from IEEE Xplore.  Restrictions apply. 



PENG et al.: CONSTRAINED MULTIOBJECTIVE OPTIMIZATION FOR IoT-ENABLED COMPUTATION OFFLOADING 13735

offloading gain obtained by DDLO, DROO, BB and PPS-
NSGA-II. We can observe that deep-learning-based methods
can get better results than the traditional BB method. However,
PPS-NSGA-II still obtained the best offloading decision.

VI. CONCLUSION AND FUTURE WORK

In this article, three CMOEAs are developed to solve IoT-
enabled computation offloading problems in collaborative edge
and cloud computing networks. We established a constrained
multiobjective computation offloading model for minimiz-
ing time and energy consumption of IoT devices. NSGA-II,
SPEA2 and SPEA2-SDE are embedded into PPS framework
for solving CMOPs, and then PPS-NSGA-II, PPS-SPEA2,
and PPS-SPEA2-SDE are realized. In the push search stage,
PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE algorithms
search for the unconstrained solutions without considering any
constraints. In the pull search stage, the constraint handling
principle (CDP) is integrated into these algorithms to pull the
unconstrained solutions to approximate the constrained PFs.
Three challenging constrained benchmark suites (LIR-CMOP,
DAS-CMOP, and DOC) are used to test the performance of
the proposed algorithms by comparing them to the other state-
of-the-art CMOEAs. These algorithms are also adopted to
solve the constrained multiobjective computation offloading
problems, and compared the performance with other differ-
ent offloading schemes. The experimental results show the
proposed algorithms can achieve better performance than other
compared representative algorithms, and outperform other
different offloading policies.

The different tasks in IoT devices are assumed to be inde-
pendent in this work. In the future, the dependencies between
the tasks in one application will be considered. In addi-
tion, other objectives in the computation offloading problems
(e.g., monetary cost and security) in mobile-edge-cloud com-
puting networks will be investigated. Furthermore, the three
approaches can be scaled to mobility scenarios. The IoT
devices move between different base stations during the
offloading period that may influence the performance of the
task offloading. Considering the mobility in the offloading pro-
cess, there exists task migration and information handover
between different base stations. Thus, we can set up a sub
mobility delay model embedded in the offloading decision
model. The response time constraint may change, and the three
proposed algorithms can be used to solve the combined model
to obtain solutions to satisfy the requirements.
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