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Abstract— Internet of Health Things (IoHT) is a promis-
ing e-Health paradigm that involves offloading numerous
computational-intensive and delay-sensitive tasks from lo-
cally limited IoHT points to edge servers (ESs) with abun-
dant computational resources in close proximity. How-
ever, existing computation offloading techniques struggle
to meet the burgeoning health demands in ultra-reliable
and low-latency communication (URLLC), one of the 5G
application scenarios. This paper proposes a Multi-Agent
Soft-Actor-Critic-discrete based URLLC-constrained task
offloading and resource allocation (MASACDUA) scheme to
maximize throughput while minimizing power consumption
on the remote side, considering the long-term URLLC con-
straints. The URLLC constraint conditions are formulated
using extreme value theory, and Lyapunov optimization is
employed to divide the problem into task offloading and
computation resource allocation. MASAC-discrete and a
queue backlog-aware algorithm are utilized to approach
task offloading and computation resource allocation, re-
spectively. Extensive simulation results demonstrate that
MASACDUA outperforms traditional DRL algorithms under
different IoHT points and data arrival rate intervals and
achieves superior performance in delay, bound violation
probability, and other characteristics related to URLLC.

Index Terms— Internet of Health Things, URLLC, task
offloading, Multi-Agent Reinforcement Learning

I. INTRODUCTION

THE Internet of Health Things (IoHT), an extension of
Internet of Things (IoT) in the healthcare domain, is

gaining significant popularity in numerous ways [1]–[3]. It
is revolutionizing healthcare by enabling smart health solu-
tions [4]–[6], such as real-time monitoring of physiological
data, sensor patches with real-time respiration, human activity
recognition and the development of sustainable wearable de-
vices. Healthcare has become more prevalent due to the rapid
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adoption and large-scale deployment of IoT and substantial
advancements in data generation and exchange [7], [8]. IoHT
is reshaping traditional health systems in many unprece-
dented ways [9]–[11], enhancing data processing accuracy,
strengthening reliability, and enabling convenient connections.
However, from another perspective, there are still challenges
related to life-demanding or computation-intensive tasks that
require prompt processing of abundant data with strict quality
of service (QoS) requirements, posing a significant challenge
to the existing IoHT framework.

Nonetheless, due to the inherent limitations of computation
resources in IoHT devices, tasks originating from these devices
are often offloaded to remote cloud servers, resulting in unsat-
isfactory experiences, particularly when considering the strin-
gent QoS demands of IoHT applications. These cloud servers
are unable to meet the real-time processing and response
requirements of IoHT services [12]. To address this issue, edge
computing has emerged as a viable solution to process health-
related data closer to its source, thereby minimizing latency
and ensuring better QoS for IoHT applications.

One of the widely accepted application scenarios for
5G technology is ultra-reliable low-latency communication
(URLLC). URLLC plays a vital role in upholding applications
within the IoHT context [13] as certain tasks in IoHT are
life-demanding and delay-sensitive. Conventional techniques
fail to meet the specific requirements of IoHT in such cases.
Therefore, the adoption of URLLC is essential to ensure the
reliability and effectiveness of our model. The extreme value
theory (EVT) [14] offers an effective means to characterize
the features of URLLC by concentrating on the probability
and statistics of bound violation events.

Multi-agent deep reinforcement learning (MADRL) [15] is
an emerging technology that enables more than one agent
to make decisions through interacting with the environment,
without any prior knowledge. Considering the presence of
numerous IoHT points in real-world scenarios, the adoption
of MADRL becomes a natural choice. Heuristic approaches,
although capable of dealing with multiple IoHT points, can
only provide actions without a comprehensive policy, making
them vulnerable to system disturbances. Thus, MADRL is
considered as a more suitable approach in this context. There
are numerous options available when it comes to MADRL
algorithms. One of the top choices currently is the multi-agent
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Soft Actor-Critic (SAC) algorithm [16], which has been widely
employed in previous works. Unlike other DRL algorithms that
solely focus on maximizing the reward function in the long
run, SAC also maximizes the entropy of the action, ensuring
a more balanced exploration and exploitation trade-off during
the training process. Notably, the entropy parameter in SAC
is treated as a trainable parameter [17]. However, SAC is
not well-suited for discrete action space. Hence, we employ
a variant of SAC known as SAC-discrete [18] combined
with multi-agent to address this limitation. Our objective
is to ensure stability in terms of data queuing and energy
consumption, while also optimizing long-term throughput. We
employ Lyapunov optimization to decompose a multi-stage
optimization problem into many sub-problems in each time
slot, achieving stability and optimizing performance in our
IoHT system [19], [20].

In this paper, we bring up a Multi-Agent Soft Actor-
Critic-Discrete-based URLLC-constrained task offloading and
resource allocation (MASACDUA) scheme for various IoHT
points. The intention is to maximize the throughput of the sys-
tem by offloading computation-intensive and delay-sensitive
tasks, while ensuring long-term URLLC constraints. The main
contributions of this paper are summarized as follows:
• URLLC-constraint Task Offloading Model: We develop a

task offloading model that takes into account the URLLC
constraints. The proposed model is specifically designed
to integrate the dynamic computing capabilities of base
stations, which enhances its practicality for real-world
implementation. By incorporating this feature, the model
becomes well-suited for deployment in practical scenarios
and can effectively adapt to the dynamic computing
requirements of base stations.

• MASACDUA Mechanism with Lyapunov Optimization:
To tackle the formulated problem, we propose a multi-
agent SAC-discrete approach, which mitigates the inferior
learning performance that can arise from unstable data
arrivals and dynamic computing resources with varying
numbers of IoHT points and BSs. Furthermore, we utilize
Lyapunov optimization to achieve short-term optimiza-
tion while adhering to long-term URLLC constraints,
which may not be attainable within short time periods.

• CTDE Execution: To enhance the throughput from IoHT
points and reduce the energy consumption of BSs, we
further generalize the proposed centralized algorithm into
a decentralized control setting. Particularly, each IoHT
point acts as an independent agent with its own decen-
tralized policy, which explores offloading decisions based
on local observations. And when training the model, each
agent can get the whole state.

II. RELATED WORK

A. Task Offloading in IoHT

Task offloading is considered an essential direction for the
IoHT system and has attracted significant attention from both
academia and industry. For instance, Materwala et al. [21] pro-
posed an algorithm for energy-aware offloading that minimizes
the energy consumed by the patients’ requests, which are

computation-intensive but do not require real-time response.
Wang et al. [13] proposed an energy-efficient scheme called
UTO-EXP3 that employs multi-armed bandit (MAB) and EVT
for task offloading in locally resource-limited IoHT points.
Mukherjee et al. [22] aimed to minimize the average response
time of tasks with different priorities that are scheduled in
edge-assisted healthcare services with hard and soft deadlines
at end-users and edge medical servers. Ren et al. [23] tackled
the critical challenges of task offloading strategies by consid-
ering time, security, and reliability factors. They proposed a
hierarchical network framework based on wireless body area
networks that centralizes control but distributes computation,
with the goal of enabling smart healthcare IoT applications.

B. Task Offloading under URLLC scenarios
In URLLC scenarios, the need for immediate and accurate

communication often results in a flood of data requests, neces-
sitating the use of task offloading and demanding higher levels
of QoS. To address this challenge, Chen et al. [24] formulated
an optimization problem for a parallel task offloading scenario
aimed at reducing service delay. Their approach involves
jointly finding the best solution, taking into account the
computation resources of users and the sub-tasks assigned to
multiple edge points in the vicinity. To optimize the solution,
the authors consider normal tasks with minimal decomposition
granularity. Dang et al. [25] proposed a novel edge network ar-
chitecture that addresses the URLLC constraints. Specifically,
the proposed architecture integrates communication allocation
and computation offloading to reduce worst-case latency. This
is achieved through consideration of factors such as user as-
sociation, transmission power, and the processing rate of user
equipment. Overall, their approach offers a unified solution
that optimizes resource utilization and improves performance
in URLLC-constrained environments. Wang et al. [26] focused
on the down-link design in URLLC to identify transmission
protocols that are latency-constrained and achieved a low
output probability, while also translating the up-link procedure
into an up-link budget. Liao et al. [27] proposed an intent-
aware task offloading scheme for an air-ground combined
vehicular edge computing (VEC) scenario, where they model
the intent as maximizing long-term QoE while considering
long-term URLLC constraints to increase the probability of
task offloading success.

C. DRL method used for task offloading
Some researchers have investigated the MADRL-based task

offloading without URLLC-constraint [28]. Li et al. [29],
[30] expected long-term improvements for NOMA-enabled
cooperative computation offloading, where a scattered network
is adopted to enhance its stability whereas league learning is
exploited to explore the environment collaboratively. Seid et
al. [31] diminished the overall computation cost meanwhile
guaranteeing the QoS requirements of IoT devices or UEs in
the IoT network. Gao et al. [32] optimized multiple UAVs’
trajectories to reduce the global synchronized communication
overhead with ground users’ offloading delay, energy effi-
ciency as well as obstacle avoidance system. Jia et al. [33]
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proposed a multi-agent Ly-MAPPO to sustain each vehicle
to maximize the logarithmic average data processing rate
(LDPR) under long-term restrictions, which requires only local
observation to give offloading policies and queue stability.

Recently, a newly multi-agent maximum-entropy CTDE ar-
chitecture named MASAC [34] has arrested attention from the
IoT or edge computing academia. The utilization of entropy
regularization in the reward function can effectively potentiate
exploration, thus deterring the problem of over-fitting and pre-
convergence. Many researchers have to integrate MASAC with
edge computing scenarios. Wu et al. [35] constructed an edge-
terminal collaboration model, where energy minimization and
delay violation punishment are optimized through spectrum
sharing and vehicle power control for task offloading. Wu et
al. [36] proposed a method to minimize the average age of
information and front-haul traffic loads in IoT networks by
characterizing the average energy consumption during trans-
mission from IoT sensors. This is done under the assumption
of an effective wireless transmission condition. Yan et al. [37]
proposed a consensus communication mechanism founded
on counterfactual reasoning. Graph Attention Networks with
the fully decentralized MASAC are utilized to reinforce the
cooperation among agents.

D. A Qualitative Comparison
Tab. I presents a comprehensive comparison between our

approach and related works with regards to various essential
elements, e.g., URLLC, Offloading and Resource allocation
(O&R), DRL, Multi-Agent, IoHT scenarios, energy-efficiency,
data throughput, and Lyapunov-based and heuristic methods.
To the best of our knowledge, our proposed approach is the
first to integrate all the aforementioned factors into a unified
framework, thereby distinguishing itself from prior works.

TABLE I: The qualitative comparison of current literature,
where O&R refers to the use of both offloading, and �
indicates the utilization of Multi-MASAC

Paper URLLC O&R DRL Multi-
Agent IoHT Energy-

Efficiency
Data

Throughput Lyapunov Heuristic

[21] 5 5 5 − X X 5 5 X
[22] 5 5 5 − X 5 5 5 X
[23] 5 X 5 − X 5 5 5 X
[13] X 5 5 − X X 5 X X
[38] X X 5 − 5 X 5 X X
[24] X X 5 − 5 5 5 5 X
[25] X X 5 − 5 X 5 5 X
[26] X 5 5 − 5 5 5 5 5
[27] X 5 5 − 5 5 X X X
[30] X X X 5 5 X 5 5 X
[28] X X X 5 5 5 X 5 X
[29] 5 X X X 5 X 5 5 5
[31] 5 X X X 5 X 5 5 5
[32] 5 X X X 5 5 5 5 X
[33] 5 5 X X 5 X 5 X X
[35] 5 5 X � 5 X 5 5 5
[36] 5 5 X � 5 X X 5 5
[37] 5 5 X � 5 5 X 5 5
[39] 5 5 X X X 5 X X 5
[40] 5 5 5 − X X 5 5 X
[41] 5 5 5 − X 5 5 5 X
[42] 5 X 5 − X X 5 5 X
[43] 5 X X X X X 5 5 5
ours X X X X X X X X X

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Overall System Model
Fig. 1 illustrates the system architecture consisting of N

IoHT points and I + J BSs, where I BSs with larger com-
putation resources and J BSs are BSs with small ones. In

real scenarios, it is not reasonable to set only a single or just
one type of edge server for the whole system, considering
the distances and distributions between BSs and IoHT points.
IoHT points include patients and doctors, financial services
and medical institutions, and the devices of pharmaceutical
enterprises and online platforms. Each BS is co-located with
an ES that provides both radio access and computational
services, eliminating the need for assistance from a remote
cloud or other BSs. The devices are irregularly distributed
throughout the network and operate continuously.

Fig. 1: Application scenario of the proposed scheme for IoHT

The sets of IoHT points and servers are denoted as U =
{u1, . . . , ui, . . . , uM} and S = {s1, . . . , sj , . . . , sI+J}, re-
spectively. We consider a time-slotted model that is charac-
terized by a fixed duration of time slots denoted as τ , and
a series of successive slots, where the set of all slots is
defined as T = {1, . . . , t . . . , T}. We assume that the channel
information remains unchanged during each slot, while it may
fluctuate dynamically between different slots. Meanwhile, the
set of available BSs for each user, denoted as ui, remains fixed
across slots. In each slot, the user ui autonomously decides
whether to offload their tasks or not. The main notations in
our paper are summarized in Tab. II.

B. Traffic Model at IoHT Device Side
We presume that tasks arrive at user ui randomly in each

time slot and are subsequently offloaded to the selected BS
for computation. The number of tasks arriving at ui in the t-
th time slot is denoted as Ai(t) Mbits/s. To store data that has
not yet been offloaded from ui, we introduce the concept of
the local task buffer. Specifically, each task buffer associated
with ui can be modeled as a data queue, and its backlog (i.e.,
the length of the local task buffer) is denoted as Qi(t), where

Qi(t+ 1) = max
{
Qi(t)− Ui(t) + τAi(t), 0

}
, (1)

which satisfies the initial conditions: Qi(0) = 0,∀ui ∈ U at
t = 0. The transmission rate from ui to sj is given by:

Ri,j(t) = Wi,j(t) log2

(
1 +

Pgi,j(t)

N0

)
, (2)

where Wi,j denotes the subchannel bandwidth allocated to
each BS and shared among its connected UEs, P and N0 are
the transmission power, and noise power density, respectively,
and gi,j(t) is the wireless channel gain between i ∈ U and
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TABLE II: Notations and their definitions

Notations Definition

Ui(t) The attainable throughput for ui
Qi(t) Local task queues for ui
dLi Queuing bounds for ui
εLi Tolerable probabilities of bound violation for ui
P̄Li Extreme event occurrence probability for ui
SLi The excess value for ui
E(SLi ) Long-term conditional expectations for SLi
E(WL

i ) Long-term conditional expectations for the square of SLi
σLi The scale parameter of GPD distribution for ui
σL,thi Threshold for σLi
ξLi The shape parameter of GPD distribution for ui
ξL,thi Threshold for ξLi
P Transmission power
N0 Noise power
λj Computation density of task data
κ The computation power efficiency
Ai(t) Task data arrival rate for ui
γj The threshold for power queue in long term
Zi,j(t) Amount of task data offloaded ui to sj
Wi,j(t) Sub-channel bandwidth
gi,j(t) Channel gain
Ri,j(t) Transmission rate
dOi,j Queuing bounds for Hi,j(t)
εOi,j Tolerable probabilities of bound violation for ui
P̄Oi,j Extreme event occurrence probability for ui
SOi,j The excess value for Hi,j(t)
E(SOi,j) Long-term conditional expectations for SOi,j
E(WO

i,j) Long-term conditional expectations for the square of SOi,j
σOi,j The scale parameter of GPD distribution for Hi,j(t)
σO,thi,j Threshold for σOi,j
ξOi,j The shape parameter of GPD distribution for Hi,j(t)
ξO,thi,j Threshold for ξOi,j
fi,j(t) Computation resources allocated by sj for ui
pj(t) The amount of computation power in sj

BS j ∈ S, including path loss and channel fading. We assume
that all channels experience block fading.

Furthermore, we assume that the downlink transmission
delay can be ignored due to its negligible cost compared with
the offloaded tasks before computation. In the t-th time slot,
Di,j(t) denotes the quantity of task data offloaded from point
ui to BS sj and Ri,j(t) denotes the achievable throughput of
ui in the same time slot, which can be formulated as:

zi,j(t) = min {Qi(t) + τAi(t), τRi,j(t)} , (3)

Ui(t) =

I+J∑
j=1

xi,j(t)zi,j(t). (4)

C. Computation Model at the BS Side
A virtual task buffer is established at each BS to store the

offloaded but not yet executed tasks from ui. The execution
of these offloaded tasks is carried out using the CPU provided
by the respective BSs. The amount of task data produced by
ui and stored at BS sj is denoted by Hi,j(t). The allocation
of CPU-cycle frequency will be explained later. Even though
ui does not transmit data to sj , fi,j(t) can still be non-zero,
and therefore the amount of data processed at sj , denoted as
Yi,j(t), is defined as:

Yi,j(t) = min

{
Hi,j(t) + xi,j(t)zi,j(t),

τfi,j(t)

λi

}
, (5)

where λi denotes the computation density of the task data and
satisfies the constraint

∑N
i=1 fij(t) ≤ fj,max(t).

The task buffer dedicated to storing the tasks of user ui
at the BS can be modeled as a queue. However, the BS-side
information such as the queue backlog Hi,j(t) and allocated
CPU-cycle frequency fi,j(t) are unknown to ui. Nevertheless,
ui can establish a virtual remote queue Hi,j(t) locally for BS
sj . This virtual queue evolves as follows:

Hi,j(t+1) = max
{
Hi,j(t)−Yi,j(t)+xi,j(t)zi,j(t), 0

}
, (6)

which satisfies the initial conditions: Hi,j(0) = 0,∀sj ∈
S,∀ui ∈ U at t = 0

D. Power Consumption Model at the BS Side

The power consumption of sj for remote execution is:

pj(t) =

N∑
i=1

κ (fi,j(t))
3
, (7)

where κ is the switched capacitance of sj’s execution CPU,
determined by the hardware implementation. Similarly, pj(t)
should satisfy:

lim
T→∞

1

T

T∑
t=1

pj(t) ≤ γj ,∀sj ∈ S, (8)

where γj is the time-average power threshold.

E. URLLC Constraints

The end-to-end latency encountered by a device is influ-
enced by the choice of execution approach. In the scenario
where IoHT devices offload tasks to BSs, the experienced
end-to-end latency encompasses the following components:
i) queuing delay within the local task buffer; ii) uplink and
downlink delay; iii) queuing delay at the remote location;
iv) computational delay at the remote location. Neglecting
the downlink feedback delay of computational results is
deemed reasonable, as the data size of computational results
is typically smaller compared to that of offloaded tasks. This
assumption has also been adopted in prior works [13], [44].

URLLC from both IoHT points and ESs requires rigor-
ous restrictions on the queuing delay which holds a large
proportion of the end-to-end delay. As a result, URLLC
constraints must be enforced on both the local and remote
sides. According to Little’s Law, the average queuing delay
is proportional to the ratio of the average queue length to the
average data arrival rate [45]. Therefore, the average queuing
delays for the local task Di and the remote task Di,j can be
expressed as follows:

Di = lim
T→∞

1

T

T∑
t=1

Qi(t)

Ãi(t− 1)
< dLi , (9)

Di,j = lim
T→∞

1

T

T∑
t=1

Hi,j(t)

z̃i(t− 1)
< dOi,j , (10)

where the time-average data arrival rates of local and remote
task buffers denoted by Ãi(t − 1) = 1

t

∑t−1
m=0Ai(m) and
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Z̃i,j(t − 1) = 1
t

∑t−1
m=0 xi,j(m)zi,j(m), respectively. The

local and remote task buffers have corresponding queuing
delay bounds dLi and dOi,j , respectively. Focusing solely on
the average queuing delay may result in the occurrence of
extreme events where the queuing delay surpasses the upper
bound, which is undesirable for URLLC. Therefore, in order to
elaborate on the restrictions, we need to quantify these extreme
events. We define excess values as: SLi (t) = max{QLi (t) −
Ãi(t−1)di, 0} for Qi(t) and SOi,j(t) = max{SOi,j(t)− z̃i,j(t−
1)di,j , 0} for Hi,j(t). Then, we can define indicators for the
occurrence of these extreme events as Ii = I{SLi (t) > 0} for
Qi(t) and Ii,j = I{SOi,j(t) > 0}.

Naturally, the long-term URLLC constraint is self-evidently
characterized by constraints on the probability of extreme
event occurrence which can be formulated as follows:

P̄Li = lim
T→∞

1

T

T∑
Pr
(
SLi (t) > 0

)
≤ εLi , (11)

P̄Oi,j = lim
T→∞

1

T

T∑
t=1

Pr
(
SOi,j(t) > 0

)
≤ εOi,j , (12)

where εLi � 1 and εOi,j � 1 are the tolerable probabilities
of bound violation. Moreover, it is imperative to consider the
statistical properties of SLi (t) and SOi,j(t). To achieve this, we
employ the EVT and leverage the Pickands-Balkman-de Haan
Theorem [14] to characterize the tail distribution and statistical
features of Ii and Ii,j .

Specifically, the conditional excess distribution function
(CEDF) of SiL and Si, jO can be approximated using a
Generalized Pareto Distribution (GPD). In this regard, we
assume a GPD with parameters σ and ξ. The first and second
moments of the aforementioned GPD can be expressed as
Mf (σ, ξ) = σ

1−ξ and Ms(σ, ξ) = 2σ2

(1−ξ)(1−2ξ) , respectively.
The CEDF for ui can be denoted as follows:

F̄ (sLi ) =
P (SLi (t) > sLi )

P (SLi (t) > 0)
, (13)

where σLi ≤ σL,thi and ξLi ≤ ξL,thi , to ensure the reliability
and latency restrictions.

The statistical properties of GPD and the relationship
between its two parameter thresholds can be leveraged to
establish constraints on the long-term time-average conditional
expectations for both the first and second moment of the excess
value, as follows:

E(SLi ) = lim
T→+∞

1

T

T∑
t=1

E
[
SLi (t) | SLi (t) > 0

]
≤Mf (σL,thi , ξL,thi ), (14)

E(WL
i ) = lim

T→+∞

1

T

T∑
t=1

E
[
WL
i (t) | SLi (t) > 0

]
≤Ms(σ

L,th
i , ξL,thi ), (15)

where WL
i (t) =

[
SLi (t)

]2
.

The CEDF for Hi,j(t) can be written as:

F̄ (sOi,j) =
P (SOi,j(t) > sOi,j)

P (SOi,j(t) > 0)
, (16)

which follows the GPD G
(
sOi,j ;σ

O
i,j , ξ

O
i,j

)
. The thresholds

σOi,j ≤ σO,thi,j and ξOi,j ≤ ξO,thi,j . We enforce the constraints
on the time-average conditional first and second moment as:

E(SOi,j) = lim
T→+∞

1

T

T∑
t=1

E
[
SOi,j(t) | SOi,j(t) > 0

]
≤Mf (σO,thi,j , ξO,thi,j ), (17)

E(WO
i,j) = lim

T→+∞

1

T

T∑
t=1

E
[
WO
i,j(t) | SOi,j(t) > 0

]
≤Ms(σ

O,th
i,j , ξO,thi,j ), (18)

where WO
i,j(t) =

[
SOi,j(t)

]2
.

F. Problem Formulation
Maximizing throughput alone cannot guarantee satisfactory

performance, even if the queuing delay on the IoHT point
side is reduced. Focusing solely on average queuing delay is
insufficient for meeting the strict URLLC requirements, and
may result in frequent occurrences of extreme events.

As far as we know, IoHT applications rely heavily on the
availability of high throughput and low latency in time-varying
network conditions. Therefore, we seek task offloading and
resource allocation to formulate the problem for maximizing
the long-term throughput of all IoHT points while satisfying
long-term URLLC constraints, as follows:

P1 : max
{x,f}

lim
T→∞

1

T

T∑
t=1

N∑
i=1

I+J∑
j=1

xi,j(t)zi,j(t), (19)

s.t.
I+J∑
j=1

xij(t) = 1, ∀ui ∈ U ,∀t ∈ T , (19a)

N∑
i=1

fij(t) ≤ fj,max(t),∀sj ∈ S,∀t ∈ T , (19b)

xij(t) ∈ {0, 1}, fij(t) ≥ 0,∀ui ∈ U,∀sj ∈ S, (19c)
Constraints (8), (11)− (18), (19d)

where constraints in (19a), (19b), and (19c) ensure that each
IoHT point can only select one BS for remote execution in
each time slot and that the selected BS’s CPU-cycle frequency
is within the available frequency and power limits. Constraint
(19d) places bounds on the long-term violation probability,
as well as the conditional mean and second moment of the
excess values of local and remote task queues. Directly solving
problem P1 is challenging due to the long-term constraints.
Therefore, we employ Lyapunov optimization.

IV. PROBLEM TRANSFORMATION AND SOLUTIONS

A. Problem Transformation
Based on Lyapunov optimization, we decompose P1, which

has tight URLLC constraints, into several sub-problems. These
sub-problems can be optimized for sure in each time slot,
while satisfying long-term objectives. Virtual queues are em-
ployed to transform the long-term URLLC constraints into
stability restrictions. Specifically, we introduce three virtual
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queues as state variables that measure the behavior of local
systems with respect to (11), (14), and (15), respectively.

Q
L,(P )
i (t+ 1) = max

{
Q
L,(P )
i (t) + I

{
SLi (t) > 0

}
− εLi , 0

}
,

(20)

Q
L,(S)
i (t+ 1) = max

{
Q
L,(S)
i (t) + I

{
SOi (t) > 0

}
×,(

SLi (t+ 1)−Mf (σL,thi , ξL,thi )
)
, 0
}

(21)

Q
L,(W )
i (t+ 1) = max

{
Q
L,(W )
i (t) + I

{
SLi (t) > 0

}
×,(

WL
i (t+ 1)−Ms(σ

L,th
i , ξL,thi )

)
, 0
}

(22)

where QL,(P )
i (t), QL,(S)i (t), and Q

L,(W )
i (t) denote the devi-

ations from the tolerable probabilities of bound violation, the
long-term time-average conditional expectations for the first
and second moment of the excess value of the local task queue,
respectively.

Similarly, for constraints (12), (17), and (18), we respec-
tively introduce three virtual queues as follows:

H
O,(P )
i,j (t+ 1) = max

{
H
O,(P )
i,j (t) + I

{
SOi,j(t) > 0

}
− εLi , 0

}
,

(23)

H
O,(S)
i,j (t+ 1) = max

{
H
O,(S)
i,j (t) + I

{
SOi,j(t) > 0

}
×(

SOi,j(t+ 1)−Mf (σO,thi,j , ξO,thi,j )
)
, 0
}

(24)

H
O,(W )
i,j (t+ 1) = max

{
H
O,(W )
i,j (t) + I

{
SOi,j(t) > 0

}
×(

WO
i,j(t+ 1)−Ms(σ

O,th
i,j , ξO,thi,j )

)
, 0
}

(25)

where H
O,(P )
i,j , HO,(S)

i,j and H
O,(W )
i,j denote the deviations

from the tolerable probabilities of bound violation, the time-
average conditional expectations for the first and second mo-
ment of the excess value of the remote task queue, respectively.

According to [20], it is proven that if the virtual queues
satisfy mean rate stability, then their corresponding constraints
are also satisfied. For instance, for the virtual queue HO

i,j(t), its
mean rate stability requires that if limT→∞ E[HO

i,j(t)]/T = 0,
then the constraint (12) is satisfied.

For each BS, we build the power queue:

Pj(t+ 1) = max {Pj(t)− γj + pj(t)} ,∀sj ∈ S (26)

Thus, problem P1 can be transformed into problem P2:

P2 : max
{x,f}

lim
T→∞

1

T

T∑
t=1

N∑
i=1

I+J∑
j=1

xi,j(t)zi,j(t) (27)

s.t Constraints (19a)− (19c) (27a)
Constraints (1), (6), (20)− (26)

stay mean rate stable (27b)

Using the drift-plus-penalty algorithm of Lyapunov optimiza-
tion [20], P2 transformed into a sequence of deterministic
sub-problems in the short term that can be solved by each
device. We can further decouple P2 into two sub-problems

based on the involved variables:

SP1 : max
{xi,j(t)}

F (xi,j(t)) (28)

s.t. Constraints (19a), (19c) (28a)
SP2 : max

{fi,j(t)}
K (fi,j(t)) (29)

s.t. Constraint (19b) (29a)

where K (fi,j(t)) and F (xi,j(t)) are written as:

K (fi,j(t)) = αH

N∑
i=1

Yi,j(t) (xi,j(t)zi,j(t) +Hi,j(t))− αPPj(t)pj(t)γj ,

F (xi,j(t)) =
(
α+ αL,QτAi(t) + αL,QQi(t)

) I+J∑
j=1

xi,j(t)zi,j(t)− αL,P(
Q
L,(P )
i (t)− εLi

)
I
(
SLi (t) > 0

)
− αL,SQ

L,(S)
i (t) ·

(
SLi (t+ 1)

−Mf (σL,thi , ξL,thi )
)
I
(
SLi (t) > 0

)
− αL,WQ

L,(W )
i (t) · I

(
SLi (t) > 0

)
(
WL
i (t+ 1)−Ms(σ

L,th
i , ξL,thi )

)
− αO,H

I+J∑
j=1

Hi,j(t)xi,j(t)zi,j(t)

− αO,P
I+J∑
j=1

(
Q
O,(P )
i,j (t)− εOi,j

)
I
(
SOi,j(t) > 0

)
− αO,S

I+J∑
j=1

Q
O,(s)
i,j (t)

(
SOi,j(t+ 1)−Mf (σO,thi,j , ξO,thi,j )

)
· I
(
SOi,j(t) > 0

)
− αo,W

I+J∑
j=1

Q
o,(W )
i,j (t)

(
WO
i,j(t+ 1)−Mf (σO,thi,j , ξO,thi,j )

)
I
(
SOi,j(t) > 0

)
.

Our objectives are to maximize the throughput of all IoHT
points and minimize the overall energy consumption of BSs.
However, traditional approaches cannot be used to solve P2

due to its complexity. It involves both continuous variables
(f ) and discrete variables (x) and typically involves multiple
IoHT points. Apparently, it is naive to traverse all possible (x)
for terrible time complexity O(TN I+J)

B. MASACDUA Scheme
The proposed MASACDUA scheme is depicted in Fig. 2,

which is comprised of MASAC-based task offloading and CPU
resource allocation.

Fig. 2: Overall structure of the MASACDUA framework

1) Resource Allocation: We propose a heuristic algorithm
for resource allocation [28], as summarized in Alg. 1.

In Alg. 1, equal computational resources fprei,j (t) are first
allocated to all available IoHT points, whereas the remaining
resources frei,j are reassigned based on the remote queue
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backlog Hi.j(t) and power consumed by the BSs pj(t). At
first, we initialize the Uj(t), numj(t) and ∆fj,max(t). Then,
we allocate pij(t)fj,max(t) evenly to all IoHT points in Uj(t)
(line 2∼4), then select the IoHT point with the ui∗ on the
strength of maximum target value K(κi,j(t)) (line 9∼10),
where κi,j(t) is the largest computation resources wanted
by ui. And we get the fi∗,j(t) based on whether κi∗,j(t)
exceeds the κi∗,j(t). If κi∗,j(t) exceeds fprei∗,j(t), then we set
frei∗,j(t) = κi∗,j(t) − fprei∗,j(t) (line 9∼11). On the contrary,
we set frei∗,j(t) = 0 and fprei∗,j(t) = κi∗,j(t) (line 13∼15).
In the two situations, we regenerate ∆fj,max(t) and fprei∗,j(t)
(line 11∼14). Finally, ui∗ is removed from Uj(t) (line 18).
The iteration halts when Uj(t) = ∅ or fj,max(t) = 0.
Apparently, the allocation of computing resources is based on
fi,j(t), which means a larger queue backlog or lower power
consumption by the BSs receives computation resources more
probably. The worst-case scenario involves M ×N iterations.

Algorithm 1 Computation Resource Allocation

1: Initialize Uj(t) =
{
ui ∈ U|Hi,j(t) > 0

}
, numj(t) =

size(UJ (t)), and ∆fj,max(t) = (1− pj(t))fj,max
2: for IoHT point i ∈ U do
3: fprei,j (t) = pj(t)fj,max(t)/numj(t)
4: end for
5: for sj in Uj(t) do
6: while Uj(t) 6= 0 and ∆fj,max(t) > 0 do
7: κi,j(t) = min

{
∆fj,max(t), λiτ [Hi,j(t)]

}
8: ui∗ = arg maxu∈Uj(t)K

(
κi,j(t)

)
9: if κi∗,j(t) > f

pre
i∗,j(t) then

10: frei∗,j(t) = κi∗,j(t)− f
pre
i∗,j(t)

11: ∆fj,max(t) = ∆fj,max(t)− fprei∗,j(t)
12: else
13: fprei∗,j(t) = 0

14: ∆fj,max(t) = ∆fj,max(t) + fprei∗,j(t)− κi,j(t)
15: fprei∗,j(t) = κi,j(t)
16: end if
17: fi∗,j(t) = fprei∗,j(t) + frei∗,j(t)

18: Uj(t) = Uj(t) \ ui∗
19: end while
20: end for

2) MAMDP Model: The problem SP1 can be represented
as an observable MAMDP with the following components:
〈n,S,A1, . . . ,An,O1, . . . ,On,R1, . . . ,Rn, π1, . . . , πn, P 〉.
We assume that N agents interact with the environment
characterized by a set of states A = A1 ×A2 . . .×An.
In each time slot, each agent receives its own private
observation Oi and takes its own action πi : Oi → Ai,
and receives a reward Ri : S × Ai × S ′ → R′i. Then,
the environment transitions to a new state with probability
P : S ×A× S ′ → [0, 1].

Thus, we define the observation, action space, and reward
function for each IoHT point in the t-th time slot as follows:

• Observation Space Oi(t): The network state at the
beginning of each time slot is determined by the queue

information, which is represented by:

Oi(t) =
[
Qi(t), Q

L,(P )
i (t), Q

L,(S)
i (t), Q

L,(W )
i (t),

Hi,j(t), H
O,(P )
i,j (t), H

O,(S)
i,j (t), H

O,(W )
i,j (t)

]
, (30)

which consists of the queue information, along with the
virtual queue information. It should be noted that the
power queue is excluded from the queue information in
the MDP model, as we believe it is not relevant for the
offloading decision.

• Action Space Ai(t): It is defined as the set of servers
from which the IoHT point Ui can choose for task
offloading. Therefore, the action space is represented by
the vector [xi,1(t), . . . , xi,I+J(t)], where xi,j(t) = 1 if
server Sj is selected by device Ui for offloading in the
t-th time slot, and xi,j(t) = 0 otherwise.

• Reward Function Ri(t): The reward Γ (xi,j(t)) of de-
vice Ui selecting BS Sj in the t-th time slot is set to
maximize the optimization objective of P1.

Unlike the previous methods, this approach does not require
the mean and variance of a certain action. Additionally, the
architecture of the Q-network has been modified to output Q-
values for all possible actions with only states as input, instead
of the previous approach where one Q-value was calculated
for input including states and all actions.

3) MASAC-Discrete: Each IoHT point is controlled by a
dedicated agent, which is equipped with an actor network
represented by ai(t) = πi(oi(t)), two critic networks (Qij(st),
where j = 1, 2), and their corresponding target networks
(Qi−j (st+1), where j = 1, 2). Additionally, the agent is
equipped with an experience replay buffer Bi. Following the
CTDE structure, IoHT points can get the state for the training
of their critic network, after that, each point executes their
action based on the actor network with their local information.

The CTDE process is simply demonstrated as follows:
During the training process, each agent shares its private
observation oi(t) and action ai(t) with the environment, and
the resulting state st is returned to all agents. This enables
the simultaneous exchange of private information among all
agents. The critic network of each agent is trained with the
joint states and actions that include the observations of all
agents. During the action-choosing process, each agent uses
only its private observation oi(t) to execute its chosen action.

The pseudo-code of the proposed algorithm is listed in
Alg. 2. This algorithm encompasses two distinct phases,
namely, the initialization phase (line 1 ∼ 8) and the DRL
phase (line 6 ∼ 29), which can be further subdivided into the
step process (line 9 ∼ 19) and the training process (line 20 ∼
29).
• The initialization phase: All networks’ parameters are

set with the truncated uniform random numbers. The
experience replay buffer’s size is set to 10,000. At the
beginning of each episode, the state and each observation
oi(t) are initialized as all zero.

• The step process: Based on the first phase, each IoHT
point attains its action and observations next time.
Founded on each IoHT point’s action and observation,
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we obtain each reward at time t. At last, we concatenate
the ai(t) and oi(t + 1) to get the a(t) and s(t + 1)
correspondingly.

• The training process: If it is time to train the network, like
collecting enough data in the replay buffer, then a random
mini-batch of transitions consisting of the current state,
action taken by the agent, resulting reward, and next state{
sk, aki , r

k
i , s

k+1
}
, k = 1, 2, . . . , B is sampled from the

experience replay buffer Bi, where B denotes the batch
size. These transitions are fed to the neural network for
calculating the gradient.
The parameters of each critic network are updated in line
23, by minimizing the loss function LQi,j of critic i from
the transition.

LQi,j =
1

B

B∑
k=1

[
yki −Qi,j

(
sk | δQi,j

) ]2
, j = 1, 2, (31)

where yki is the value function target of the agent and can
be defined as:

yki = sk + γ ×
[
πθπi (aki ) min

j=1,2

(
Qi−,j(s

k+1 | δQi−,j)
)

− α log
(
πθπi

(
ak+1
i | sk+1

)) ]
, (32)

where Qi−,j(· | δQi−,j) represents the j-th target critic
function of agent i, and γ is the discount factor.
The parameters of each actor network are updated in line
24, by minimizing the loss function Lπi of actor i from
the transition.

E
[
πθπi

(
aki
) [
α log πθπi

(
aki | oki

)
−Qi,j

(
sk | θQi,j

)]]
,

(33)
where a suitable α has a prodigious impact on our
scheme’s performance, which can be adjusted by the
algorithm itself rather than by hand.
The parameters of each α coefficient are updated in
line 25, according to [16], [17], by minimizing the loss
function Lαi:

Lαi = πθπi (aki )[−α(log πθπi
(
aki | oki

)
+ H̄)]. (34)

Finally, following three successive updates, we have
reached a point where we can effectively implement
soft updates on the parameters of the target networks,
specifically in line 26. By employing the soft update
method, we are able to achieve a relatively smoother
estimation of Qi−,j(sk+1 | δQi−,j), thereby contributing
to the stabilization of our scheme.

Based on the analysis presented, the time complexity of
Alg. 2 can be expressed as O(ETM), as it involves carrying
out three types of loops and multiplying their respective
lengths. Additionally, the space complexity can be expressed
as O(M(I + J)), since there are M IoHT points and I + J
ESs.

V. PERFORMANCE EVALUATION

A. Parameter Setting
We maintain a fixed number of 2 BS with larger compu-

tation resources and 4 BS with smaller ones in our system.

Algorithm 2 MASAC-discrete
1: for IoHT point i in U do
2: Initialize actor network πi(·), critic network Qi(·) with pa-

rameters θπi and θQi ;
3: Initialize target network Qi−(·) with parameters θQi−;
4: Initialize experience replay buffer Bi;
5: end for
6: for episode from 1 to E do
7: Initialize state s(t)
8: Initialize observation oi(t) for IoHT point in U
9: for t from 1 to T do

10: for IoHT point i in U do
11: Get action ai(t) according to ai(t) = πi(oi(t))
12: Get reward rki (t) according to Eq. (30)
13: Get observation oi(t+ 1)
14: end for
15: Get joint action a(t) by concatenate ai(t) together
16: Get state s(t+ 1) by concatenate oi(t+ 1) together
17: for IoHT point i in U do
18: Store transition

{
s(t), ai(t), s

k(t), s(t+ 1)
}

into
19: experience replay buffer Bi
20: if training process begins then
21: Sample a mini-batch of M transitions from Bi
22: Update critic network according to: θQi,j ← θQi,j −

lrc∇
θ
Q
i,j

LQi,j (θ
Q
i,j), j = 1, 2

23: Update actor network according to: θπi ← θπi −
lra∇θπi Lπi(θ

π
i )

24: Update temperature according to: θαi ← θαi −
lrα∇αiLαi (αi)

25: Update target networks according to: θQi,j− ← rθQi−+

(1− r)θQi,j−, j = 1, 2.
26: end if
27: end for
28: end for
29: end for

The available computational resources of ESs in the BS for
IoHT points fluctuate irregularly within a limited range during
200 time slots with 0.1s intervals. Specifically, we set the
number of IoHT points to 6, and the data arrival rate ai(t)
varies within the interval [7.5, 8.5] Mbits/s. We configure the
transmission power to 20 dBm, sub-channel bandwidth to 1
MHz, and channel gain to 3.4× 10−12. The data is randomly
generated based on the formulations outlined in Section III.
Our simulations are conducted on both laptops equipped with
NVIDIA 4G GeForce RTX 3050 and a workstation equipped
with 11G GeForce RTX 2080 Ti. The parameter values men-
tioned above, along with others, are summarized in Tab. III.
To evaluate the performance of our algorithms, we adjust the
number of IoHT points (Scene I), computation density (Scene
λ), the length of data arrival rates interval (Scene A) and the
sub-bandwidth interval (Scene W).

B. Baselines

In this study, we compare our proposed MASAC-discrete
with three other algorithms, namely, Random, MAA2C, and
MAPPO, the latter two are both fine-tuned Actor-Critic-
based DRL algorithms. When considering the computation
resources, they all use the Alg. 1.
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Fig. 3: Comparison of Hi,j(t), HO,(P )
i,j (t) and HO,(S)

i,j (t) and power consumption of BS(w) over time slots
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Fig. 4: TV, BVP, RAEV and TQD over time slots
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Fig. 5: TV, BVP, RAEV and TQD over time slots with different data arrival rates interval

• Random: Each IoHT point randomly chooses its offload-
ing decisions without knowing the state and decisions of
other IoHT points.

• MAPPO [46]: It is similar to our proposed algorithm,
MASAC-discrete, as it employs the CTDE structure and
interacting PPO algorithms between IoHT points.

• MAA2C: It combines the CTDE structure with widely-
used Advantage Actor-Critic (A2C).

C. Temporal Characteristics of the System
We compare MASAC-discrete with three other algorithms

from the long-term perspective of remote queues and system
performance. The corresponding results can be seen in Figs. 3
and 4, and a detailed numerical analysis is provided in Tab. IV.

TABLE III: Simulation Parameters

Parameter Value Parameter Value

N 6 τ 0.1s
I 4 J 2
T 200 N0 -118dBm
gi,j(t) 3.5× 10−12 Ai(t) [7.5, 8.5] Mbits/s
dLi 0.01 εLi 0.1
σL,thi 2.5 Mbits ξL,thi 0.2
P 20 dBm W [0.8, 1.2] MHz
dOi,j 0.1 εOi,j 0.01
σO,thi,j 3 Mbits ξO,thi,j 0.2
λj 1000 cycles/bit κ 10−27W · s3/cycle3
f1,max(t) [11.8, 13.8] GHz f2,max(t) [10.6, 12.6] GHz
f3,max(t) [8.8, 9.8] GHz f4,max(t) [8.6, 9.6] GHz
f5,max(t) [8.5,9.5] GHz f6,max(t) [9.2, 8.2] GHz

TABLE IV: The average reduction of MASAC-discrete over
other three algorithms over time slot

Indexes Sub-indexes Random MAA2C MAPPO

Remote
Queues

Hi,j(t) 28.61% 68.78% 41.07%
H
O,(P )
i,j (t) 21.08% 20.65% 21.64%

H
O,(S)
i,j (t) 98.70% 99.85% 98.62%

RAEV 28.58% 69.25% 47.31%

System
Performance

TQD 23.24% 58.52% 28.98%
P -2.27% 0.23% 0.07%
TV 99.74% 99.54% 87.66%
BVP 24.31% 24.31% 25.00%

TABLE V: The average reduction of MASAC-discrete over
other three algorithms under different scenarios

Index Scene Random MAA2C MAPPO

BVP A 22.37% 19.48% 22.12%
M 24.31% 15.47% 16.30%
λ 15.47% 19.82% 16.57%
W 19.04% 17.79% 18.99%

TQD A 19.00% 29.84% 24.76%
M 12.06% 13.18% 10.06%
λ 12.46% 24.53% 17.25%
W 25.29% 29.81% 22.40%

RAEV A 23.19% 60.94% 37.21%
M 15.75% 34.81% 18.79%
λ 16.02% 48.88% 32.60%
W 36.68% 51.47% 33.79%

TV A 99.40% 98.26% 79.13%
M 89.63% 54.36% 31.80%
λ 94.04% 77.84% 46.55%
W 95.44% 98.54% 53.47%
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Fig. 6: TV, BVP, RAEV and TQD over time slots with different bandwidth changing intervals
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Fig. 7: TV, BVP, RAEV and TQD over time slots with different IoHT points
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Fig. 8: TV, BVP, RAEV and TQD over time slots with different computation density

TABLE VI: Comparison of Alg. 1 with Eq. (35) and Eq. (36)
RAA RAEV BVP TQD TV PV P Hi,j(t) H

O,(P )
i,j (t) H

O,(S)
i,j (t)

Eq. (35) 1.951 0.402 17.778 0.185 516.507 336.179 1.981 253.981 0.000
Eq. (36) 1.653 0.427 15.774 0.166 510.482 353.292 1.687 243.515 0.000

ours 1.057 0.165 11.101 0.211 269.030 388.062 1.068 96.444 0.115

For remote queues, the MASAC-discrete is effective in
reducing Hi,j(t), with a minimum reduction of 28.61% and
a maximum reduction of 68.78%. This indicates a signif-
icant reduction in congestion during the transmission pro-
cess. Our MASAC-discrete algorithm demonstrates superior
performance in reducing H

O,(P )
i,j (t), achieving reductions of

21.08%, 20.65% and 21.64% for Random, MAA2C and
MAPPO, respectively. As for H

O,(S)
i,j (t), MASAC-discrete

outperforms the other three algorithms by 90%. This indicates
that MASAC-discrete effectively reduces the extent of bound
violation as well as transmission congestion and probability
of bound violation.

In terms of system performance, it is evident that MASAC
achieves reductions of 23.24%, 58.52% and 28.98% in the
total queuing delay (TQD), which is defined as the combined
value of the local queuing delay and the remote queuing
delay, when compared to the Random, MAA2C, and MAPPO
approaches, respectively. MASAC also exhibits a remarkable
reduction in training variance (TV), exceeding 85% compared
to the other three algorithms. Furthermore, MASAC-discrete
achieves substantial improvements in remote average excess
value (RAEV) compared to Random, MAA2C, and MAPPO,
with lifts of 28.58%, 69.25%, and 47.31% respectively. It

is noteworthy that MASAC-discrete outperforms all three
algorithms by more than 20% in terms of bound violation
probability (BVP), highlighting its ability to effectively reduce
the occurrence of extreme events and their impact.

It is noticeable that the widely-used MAPPO algorithm
struggles to effectively search within the large action spaces
in our system. Additionally, the performance of MAA2C falls
short of expectations when compared to Random. However,
our algorithm outperforms Random with superior stability and
efficiency. This success can be attributed to our algorithm’s
ability to explore a diverse range of action policy choices
compared to Random. by optimizing both entropy and rewards
over a long period.

D. Impact of Data Arrival Rates

We narrow the data arrival rates interval gradually, while
their mean remains constant. As depicted in Fig. 5, the wider
the data arrival rates interval, roughly the worse the perfor-
mance for all four algorithms. MASAC exhibits significant
reductions compared to the other four algorithms in these four
indexes. This indicates that MASAC-discrete can perform still
well even when the data arrival rates change. The outstanding
impact is observed in BVP, TQD, RAEV, and especially TV,
where all reductions exceed 19%, and the top is more than
60%, suggesting that MASAC can reduce the probability
and extent of bound violation occurrence however the data
arrival rates change. Similarly, our algorithm is the most stable
compared to the other three algorithms.
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E. Impact of Sub-Channel Bandwidth
We gradually narrow the sub-channel bandwidth interval

from [0.8, 1.2] to [0.9, 1.1] Mbits, ultimately settling on a
channel bandwidth of 1 Mbit. As depicted in Fig. 6, the
wider the sub-channel bandwidth interval, the higher the
training variance. Our algorithm remains the stablest. our
scheme exhibits significant improvements compared to other
four algorithms across all three performance indexes. The
outstanding impact is observed in BVP by 19.04%, 17.79%,
and 18.99% compared to Random, MAA2C, and MAPPO,
respectively. In TQD, the reduction compared to Random,
MAA2C and MAPPO is 25.29%, 29.81% and 22.40%, re-
spectively. In RAEV, the reduction exceeds 33%. All these
three comparisons confirm that MASAC can effectively reduce
the probability and extent of bound violation occurrence,
regardless of changes in data arrival rates.

F. Impact of IoHT Points
As illustrated in Fig. 7 and Tab. V, with the increase in

the number of IoHT points, all these algorithms demonstrate
a decline in performance within the system due to the dimin-
ished availability of resources for each IoHT point. However,
it is remarkable that MASAC-discrete continues to exhibit
strong performance. For instance, when compared to the other
three algorithms, MASAC-discrete achieves a reduction of
over 10% in TQD, and over 15% in both BVP and RAEV. In
terms of TV, MASAC-discrete only experiences a decrease of
54.36% and 31.80% when compared to MAA2C and MAPPO,
respectively. We attribute this success to the fact that as the
number of IoHT points increases, the state spaces and action
complexity expand significantly, thereby making the search
process more challenging.

G. Impact of Computation Density
As depicted in Fig. 8 and Tab. V, we observe that as

the computation density increases, the remote congestion
(Hi,j(t)) decreases. This is because the BSs process less
data transmitted from IoHT points, resulting in a decrease
in the model’s performance. Specifically, when compared to
the Random, MAA2C, and MAPPO approaches, our proposed
model exhibits a reduction of 15.47%, 19.82%, and 16.57%,
respectively, in terms of BVP. For TQD, the reduction is
12.46%, 24.53%, and 17.25%, respectively. In terms of RAEV,
the reduction is 16.02%, 48.88%, and 32.60%, respectively.
These results highlight the superior performance of our pro-
posed model in mitigating congestion and improving various
performance metrics compared to the alternative approaches
under consideration.

H. Impact of Resource Allocation Algorithm (RAA)
We conduct a comparative study between Alg. 1, and two

alternative algorithms for CPU cycle frequency allocation. The
selection of these alternative algorithms will be based on the
ratio of non-zero elements present in the matrix Hi.j(t), which
can be determined as follows:

fi,j(t) =

[
I {Hi,j(t) > 0}∑N
i=1 I {Hi,j(t) > 0}

]
fj,max, (35)

or allocate the resources proportionally by Hi.j(t) as follows:

fi,j(t) =

[
Hi,j(t)∑N
i=1Hi,j(t)

]
fj,max. (36)

As depicted in Tab. VI, when employing the easily un-
derstood RAA, both the BVP and H

O,(P )
i,j increase by ap-

proximately 2.5 times. This suggests a significant increase
in the occurrence of bound violation events. Additionally,
the excess value at the queue (RAEV) increases by 84.58%
and 56.38% according to Eq. (35) and Eq. (36), respectively.
Moreover, Alg. 2 demonstrates a remarkable improvement
in TQD, reducing it by 60.01% and 42.09% compared to
Eq. (35) and Eq. (36), respectively, Furthermore, Hi,j(t) is
reduced by 85.49% and 57.96% compared to Eq. (35) and
Eq. (36), respectively. Although Alg. 2 can incur a little
instability for the entire system, and power consumption has
raised by 15.43% and 9.84%, our Power Variance (PV) has
significantly decreased by 52.09% and 52.67% compared to
Eq. (35) and Eq. (36), respectively. This indicates that Alg. 2
can significantly improve the system performances.

VI. CONCLUSION

In this paper, we propose a novel MASACDUA scheme
specifically designed for IoHT scenarios, which leverages
the MASAC-discrete algorithms to effectively tackle task
offloading problems while considering the constraints im-
posed by URLLC requirements. Extensive simulation results
demonstrate that MASACDUA yields substantial reductions
in remote congestion Hi,j(t), RAEV, TQD, and BVP, while
maintaining the same level of data throughput and power con-
sumption in BSs. These findings serve as compelling evidence
for the efficiency of the MASACDUA scheme in enhancing
system performance within IoHT scenarios. Furthermore, a
comparative evaluation of our scheme across four fluctuated
scenarios highlights the superior performance and robustness
of MASACDUA in handling varying conditions and further
validates its effectiveness as compared to alternative methods.
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