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A B S T R A C T

Autonomic computing investigates how systems can achieve (user) specified ‘‘control’’ out-
comes on their own, without the intervention of a human operator. Autonomic computing
fundamentals have been substantially influenced by those of control theory for closed and
open-loop systems. In practice, complex systems may exhibit a number of concurrent and
inter-dependent control loops. Despite research into autonomic models for managing computer
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Edge computing
Serverless computing
Quantum computing
Machine learning

resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g.,
multiple resources within a data centre), research into integrating Artificial Intelligence (AI)
and Machine Learning (ML) to improve resource autonomy and performance at scale continues
to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and
self-management of systems can be achieved at different levels of granularity, from full to
human-in-the-loop automation. In this article, leading academics, researchers, practitioners,
engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing
join to discuss current research and potential future directions for these fields. Further, we
discuss challenges and opportunities for leveraging AI and ML in next generation computing for
emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing
environments.

1. Introduction

Autonomic Computing Initiative (ACI) from IBM was among the first industry-wide initiatives for the design of computer systems
hat require limited human interaction to achieve performance targets [1]. The Tivoli systems division at IBM focused initially
t performance tuning of the DB2 database system using autonomic computing principles. The initiative was heavily inspired by
bservations from the functioning and coordination of the human nervous system and human cognition—i.e., the autonomic nervous
ystem acts and reacts to stimuli independent of an individual’s conscious input; an autonomic computing environment functions
ith a high level of Artificial Intelligence (AI), while remaining invisible to users [2]. Additionally, a human nervous system achieves
ultiple outcomes concurrently and seamlessly (e.g., internal temperature changes, breathing rates fluctuate, and glands secrete
ormones as a response to stimulus) adhering to pre-defined/evolved ‘‘limits’’ and norms, and acting on impulses sensed or learned
rom the body itself or the environment. As for the human body, an autonomic computing environment is expected to work in
esponse to the data it collects, sensed or learned, without an individual directly controlling functions used to manage a system [3].

Autonomic computing – also referred to as self-adaptive systems – is a field of investigation that studies how systems can achieve
esirable behaviours on their own [4]. It is common for these systems to be referred to as ‘‘self-*’’ systems, where ‘‘*’’ stands for the
ehaviour type [5], such as: self-configuration, self-optimisation, self-protection and self-healing [6].

An autonomic system’s capacity to adapt to environmental changes is referred to as ‘‘self-configuring’’ [7]. The system
utomatically upgrades missing or obsolete components depending on error messages/alerts generated by a monitoring system [8].
self-optimising autonomic system is one that can enhance its own performance by successfully completing computational jobs

ubmitted to it, reducing resource overload and under-utilisation [9]. Self-protection is an autonomic system’s capacity to defend
tself against potential cyber-attacks and intrusions. The system should also be detecting and preventing harmful assaults on the
utonomic coordinator managing the overall system [10]. Self-healing is a system’s ability to discover, evaluate and recover from
rrors on its own, without the need for human intervention [2]. By decreasing or eliminating the effect of errors on execution, this
elf-* property improves performance through fault tolerance [11].

The ultimate vision is that neither self-managed systems nor self-healing systems need to be configured or updated manually [12].
n a broader sense, self-managed systems should be capable of controlling all of the aforementioned behaviours [13].

Different practical systems realise these outcomes to varying levels of granularity and success. Also, the level of human
ntervention and control can vary. As part of IBM’s Autonomic Computing paradigm, the Autonomic Manager (AM) is a smart
ntity that interacts with the environment via management interfaces (Sensors and Effectors) and performs actions based on the
nformation received from sensors and rules established in a low-level knowledge base. The AM is set up by an administrator using
igh-level warnings and acts. Fig. 1 illustrates IBM’s autonomic approach in operation [1]. Initial monitors acquire sensor data
or regular inspection of Quality of Service (QoS) metrics whilst engaging with external hardware and send this data to the next
omponent for further evaluation. In the Analyse and Plan modules, data collected from the monitoring module is analysed and
ppropriate action plans are drawn up in response to system warnings. Using the results of the data analysis, this autonomic system
akes appropriate actions in response to the generated warnings. After a thorough review, which includes verification and validation
o provide guarantees that the adaptation will indeed work, the plan is put into action by the Executor, whose primary goal is to
nsure that the QoS of an executing application is maintained. An Executor monitors changes in the knowledge base and acts based
n the results of the analysis.

.1. AI/ML for next generation computing: A vision

AI and ML can be used to support and develop autonomic behaviours based on data collected about systems operations. ML
echniques, for example, can be used to discover patterns in the workload, where these patterns can be used to optimise resource
anagement [14]. Additionally, to mitigate model uncertainty, ML-based dynamical system identification methods, such as recurrent
eural networks, could be adaptively invoked by the autonomic manager to achieve self-learning. Thus, black- and grey-box models
f the managed system can be generated during a concept drift and subsequently verified to check their sanity or even, detect
ission-critical alterations of the system’s operation [15]. Further, AI may be employed in the analysis and planning stages of

utonomic systems that are often arranged as monitor-analyse-plan and execute (MAPE) cycles [16], in addition to the use of
2
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Fig. 1. MAPE-K loop for autonomic computing.

techniques from control theory. It is the combination of feedback control with data-driven model construction using ML that offers
key benefits in support of autonomic self-management.

Among the notable types of autonomous computing solutions: feedback-based control is one common solution. The use of self-
organising systems, such as particle swarm optimisation, cellular automata and genetic algorithms, are others. In the first category
of solutions, systematic techniques for designing closed-loop systems capable of tracking system performance and altering control
parameters are provided by autonomic computing [17]. There is a vast corpus of control theory literature and design tools that are
used in these techniques. When it comes to the second type of solution, a variety of newly developing peer-to-peer approaches are
now being employed to create massively scaled self-managing networks [18].

1.2. Motivation and aim

Autonomic computing has been integrated in computing paradigms such as cloud, fog, edge, serverless and quantum computing
using AI/ML techniques [19]. The use of autonomic computing techniques is particularly significant when there is a large number of
potential configuration options for a system. The greater the potential parameter space over which configuration options can vary,
the greater the potential to optimise search over this space of possible options. Autonomic computing techniques are most useful
under the hood, i.e. as a programmatic interface that can be invoked directly [20] from an application.

There are many applications that can manage node failures, network setup/updates and a limited ability to carry out performance
optimisation on their own since most peer-to-peer networks are fundamentally autonomous. AI- and ML-based self-managing
capabilities are becoming increasingly common in web services and data centre management software, allowing these systems to
automatically adapt to shifting workloads [21]. However, autonomic features are not always included in schedulers and workflow
managers, as such systems frequently lack the ability to monitor system condition and provide real-time feedback, making it difficult
for these systems to be fully autonomous [22]. Integrating ‘‘tuning’’ capability that makes use of AI/ML techniques can extend the
capability of such systems. For instance, self-managed computing platforms, such as Hadoop/MapReduce, provide self-healing and
self-organising capabilities that enable the use of a large number of resources [23].

AI- and ML-based autonomic computing will become prevalent with increasing scale and interconnectivity of our systems, making
manual administration and adaptation of such systems challenging and expensive. We expect AI- and ML-based autonomic computing
will be the norm in the future—with human users still able to influence the behaviour of these systems through the use of judiciously
integrated interfaces. Crucially, with the advent of cyberphysical systems and digital twins, quality-assured and mission-critical
adaptations will become mandatory because the self-adaptive software will be responsible for physical assets, such as the unit
operations of a processing plant.

But how should self-adaptive systems and AI/ML be combined? According to IBM, an autonomic system must meet the following
eight criteria for computing systems using AI and ML techniques [2,8–10,24–27]:

• The resources that are available to the AI-powered system, as well as the capabilities and limits of the system, must be known
by the system.

• As the computing environment changes, e.g., because of a concept drift, the system must be able to adapt and reconfigure
autonomously.

• An efficient computer process requires a system that can maximise its performance via AI- and ML-based predictions.
• When an error occurs, the system should be able to fix itself or redirect processes away from the source of the issue.
• To ensure overall system security and integrity, the system must be able to detect, identify, and respond to numerous forms

of threats automatically.
• As the environment changes, the system must be able to interact with and develop communication protocols with other systems.

Despite the system’s transparency, it must be able to predict demand on its resources, which can be forecasted with AI/ML
techniques. Small, even inconspicuous computers will be able to communicate with each other across more linked networks, leading
3
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Table 1
Comparison of our survey with other survey articles. ×∶= method supports the property.

Works 1 2 3 4 5 6 7 8 9 10 11 Publication year

Varghese and Buyya [32] × 2018
Abdulkareem et al. [33] × × 2019
Gill et al. [19] × × 2019
Massimo et al. [34] × × 2020
Li et al. [36] × × 2020
Kumar el al. [35] × × 2021
Hassan et al. [37] × × 2021
Our Survey (This Paper) × × × × × × × × × × × 2022

Abbreviations: 1: Prospective Model, 2: AI, 3: Cloud Computing, 4: Fog Computing, 5: Edge Computing, 6: Serverless Computing, 7: Quantum Computing, 8:
Explainable AI (XAI), 9: Risks and Benefits of AI-integrated Next Generation Computing, 10: Hype Cycle, and 11: Intelligent Edge.

to the notion of ‘‘The Internet of Everything (IoE)’’, thanks in part to the emergence of ubiquitous computing and autonomic
computing [28]. Crucially, AI-powered self-adaptive systems promise to cost-effectively and sustainably meet changing requirements
in a changing environment and in the presence of uncertainty—vs., just adding more and more resources. Hence, in conjunction
with the latest AI and ML techniques, autonomic computing is being studied and applied by a number of industry giants.

1.3. Benefits of AI/ML-integrated next generation computing

AI-based Autonomic computing’s primary advantage is lower total cost of ownership [29]. As a result, maintenance expenditures
ill be significantly reduced. There will also be a reduction in the number of people needed to maintain the systems. AI-powered
utomated IT systems will save deployment and maintenance costs, time, and boost IT system stability. Companies will be able to
etter manage their business using IT systems that can adopt and implement directives based on business strategy and can make
lterations in response to changing surroundings, according to the higher-order advantages. Server consolidation is another benefit
f using AI-based autonomic computing, since it reduces the cost and human labour required to maintain huge server farms [30].
anagement of computer systems should be made easier using AI for autonomous computing. As a result, computing systems will

e significantly improved. Another example of an application is server load distribution, which may be accomplished by distributing
ork across several servers [31]. Further, cost-effective and sustainable power supply policies can be accomplished by continuously
onitoring the power supply.

As a consequence of AI, the following changes have occurred in autonomic computing:

• Cost-effective: Using computer systems instead of on-site data centres has its advantages. Despite the high initial costs,
organisations may easily acquire AI technology via a monthly charge in the cloud. Systems using AI may analyse data without
involving a human being.

• Autonomic: Enterprises may become more efficient, strategic, and insight-driven through the use of AI cloud computing. AI
has the potential to boost productivity by automating tedious and repetitive tasks, as well as doing data analysis without the
use of operator interaction.

• Data Organisation: Real-time personalisation, anomaly detection, and management scenario prediction may be achieved by
integrating AI technology with Google Cloud Stream analytics.

• Making Intelligent Decisions: Intelligence-based data security is critical as more cloud-based apps are deployed. Network traffic
tracing and analysis are made possible by AI-powered network security technologies. As soon as an abnormality is discovered,
AI-powered systems can raise a red signal. Such strategy safeguards crucial information.

1.4. Related surveys and our contributions

As the area of computing continues to expand, there is a need for a fresh visionary work to review, upgrade and consolidate the
urrent evidence and discuss potential trends and future perspectives in the field of computing. Varghese and Buyya [32] introduced
n innovative survey on next generation cloud computing, which does not consider AI/ML. Abdulkareem et al. [33] presented a
eview on AI for fog computing only. Massimo et al. [34] explored literature for AI-based edge computing. Gill et al. [19] presented
review on AI for cloud computing. The surveys from Kumar et al. [35] and Li et al. [36] highlighted the potential role of AI in

uantum computing. The suitability of AI for serverless computing is described in Hassan et al. [37].
By combining AI/ML with cloud, fog, edge, serverless, and quantum computing, we have created the first review of its kind.

dding to the previous surveys, this new research gives a new imaginative approach to assessing and identifying the most current
esearch challenges. Table 1 compares our review with existing surveys based on different criteria.

.4.1. Our focus
This paper leverages the expanding domain of Internet of Things (IoT), edge computing and the computing continuum as an

xemplar application for AI-powered adaptation. There is a tremendous growth on applications that leverage such technologies,
uch as smart agriculture, environmental monitoring, industrial digital twins, smart cities, management of renewable energy
4

eneration/storage, etc. Nevertheless, our discussion can be expanded to other fields as well.
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Fig. 2. The organisation of this survey.

1.5. Article organisation

The rest of this article is organised as illustrated in Fig. 2. Section 2 proposes a conceptual model. Section 3 is presents a vision
and discusses various emerging trends in AI for cloud, fog, edge, serverless and quantum computing. Section 4 discusses the new
research developments related to autonomic computing with embedded intelligence. Section 5 discusses the use of Explainable AI
(XAI) for next-generation computing. Section 6 presents the potential risks of autonomic computing approaches that make use of
AI/ML algorithms. Section 7 gives the hype cycle for autonomic computing and highlights the future directions. Section 8 concludes
and summarises the paper.

2. A prospective model for next generation computing systems

To show the relationship between AI/ML and autonomous computing systems, we propose a prospective software architecture
model as shown in Fig. 3. Our proposal integrates advanced technologies to offer effective computing services that fulfil the demand
for a variety of IoT applications.

2.1. IoT applications

Gateway devices can be used by IoT/edge devices and end users to communicate with computer systems, abstracting away the
interactions with sensors and actuators/effectors located on the edge [38]. The system can communicate with various and multiple
instances of IoT applications (such as healthcare, smart city, farming, and weather monitoring) or their digital twins to efficiently
provide AI and other autonomic services [39].
5
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Fig. 3. A prospective model for AI-integrated next generation computing.

2.2. Resource manager

Distributed systems, including IoT edge platforms, require adaptive and fault-tolerant management of resources and scheduling of
tasks. The proposed resource management module maintains the set of available and reserved resources (the number of CPUs utilised,
the amount of memory, the price of resources, the kind of resources, and how many resources there are) as well as the desired
resources, constraints (e.g., placement) and QoS per deployed task. Further, the module incorporates data supplied by the provider
on the accessible and scheduled resources, as well as the resource specification (resource identity, resource category, configuration,
data, use information, and pricing of resource).

When evaluating QoS, the QoS manager figures out how long it will take to complete a given workload. Priority queues
(workloads with an urgent deadline in execution state) are created for critical cloud workloads based on Service Level Agreement
(SLA) details, which includes details about the highest and lowest violation probability and penalty rate in the case of SLA violation.
The service manager is responsible for overseeing all aspects of the system’s operation. With the use of SLA and QoS information,
a mapper may assign workloads to adequate resources, taking into consideration both SLA and QoS. After allocating the workloads
to the available resources, the resource manager creates a workload schedule by predicting it using AI. In order to complete tasks
within a certain budget and timeframe, the resource scheduler makes efficient use of the system’s resources, which are predicted
via AI/ML techniques. Finally, wherever possible, the resource manager will be providing explainable guarantees under uncertainty
– potentially using explainable AI methods – that the proposed adaptation will indeed meet the desired QoS.

2.3. Autonomic model

This future model employs IBM’s autonomic computing model [1], which emphasises self-healing, self-configuring, self-
protecting, and self-optimising features.
6
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• Self-healing is aimed at making all required modifications to recover from defects in order to keep the system running without
interruption [27]. Software, network, and hardware errors must not impair the efficiency of the algorithm or workload
regardless of their severity [10]. Any unintended exception in high resource-intensive applications can cause a software,
hardware or network failure. AI-based systems can leverage a variety of data sources and sensor data to generate fault models
and enable predictive – instead of reactive – fault detection and maintenance.

• The primary goal of self-protection is to keep the system secure from hostile purposeful acts by keeping track of suspicious
activity and responding appropriately in order to keep the system running smoothly [9]. To prevent an attack, the system must
be able to tell the difference between what is lawful and what is not. AI-based prediction systems can be used to achieve this:
for instance, the system could be trained to detect vulnerabilities in the communications configurations/policies or identify
code smells in the user-submitted functions/lambdas.

• Installing missing or obsolete parts without requiring any human interaction is the primary goal of self-configuration.
Depending on the situation, a developer may need to reinstall specific components or perform software upgrades [2]. Self-
configuration takes care of the cost of resources and penalties for SLA violations, which can be predicted in advance through
AI/ML.

• Dynamic scheduling approaches are used to match jobs and workloads to the best available resources in the self-optimising
aspect [27]. The autonomic element’s input is used to constantly enhance the system’s performance through dynamic
scheduling. AI/ML based adaptive scheduling can be used for data-intensive applications because it is flexible and can be
adjusted to a changing environment with ease. Further, the impact of different QoS characteristics on system performance can
be measured automatically [8].

Models for complex distributed systems that can self-heal, self-configure, self-optimise and self-protect have been developed
sing this idea. Autonomic elements (AEs) are primarily in charge of managing resources on their own [1]. Fig. 1 shows a schematic
epresentation of the many components that make up an AE system. Interaction between all the AEs is necessary for the sharing
f messages on system performance. AEs complete a necessary sub-task to maintain the system’s performance based on interaction.
here are four stages to the IBM model of an autonomic system [1]: Monitor, analyse, plan, and execute are the four steps in
he process, which will be supported by AI/ML models to improve the monitoring, analysing, planning and execution. Further,
I-powered techniques could also improve the efficiency of the persistence (knowledge) component of the MAPE-K loop, especially

n effectively resolving state synchronisation in a highly-distributed and potentially unreliable environment.

.3.1. Sensors
Sensors gather data on the QoS metrics of the present state nodes’ performance [2,8–10]. Input from computation elements

s first sent to the manager, which subsequently sends this information to Monitors through the manager node. Faults (software,
etwork, and hardware), fresh updates on component status (outdated or missing), and security threats are all included in the recent
evelopments (intrusion detection rate).

.3.2. Monitor
Initially monitors data from the resource manager node to continually check performance variances by contrasting AI-based

redicted and real outcomes [2,8–10]. The threshold value of QoS metrics, which also contains the highest value of SLA violation,
s already recorded in the knowledge base. The faults (network, software, and hardware), fresh upgrades of resources (obsolete or
ost), security assaults, variation in QoS parameters, and SLA violations are noted, and this data is transmitted to the next module
or more investigation. Each node has a QoS agent deployed to monitor and predict the performance of the above-mentioned
oS parameters for self-optimisation. Self-protection is achieved by installing security agents on all processing nodes, which are

hen utilised to track down both undiscovered and recognised attacks. After analysing the system’s current database, additional
bnormalities can be predicted using AI/ML. System invasions and system abuse are detected and classified as either normal or
bnormal utilising its monitor and the system’s attributes are compared with metadata. Hardening agents for software, networks,
nd hardware will be reducing attack surfaces by identifying corresponding flaws to achieve self-healing and self-protection. When
new node is introduced to the cloud, the hardware hardening agent scans the drivers and validates the replica of the original

rivers. The new node is inserted when the device driver has verified it. This node will create a warning if it is still present in
he system. The performance of the software and hardware components is monitored by agents for self-configuration. The software
omponent agent retrieves the active component condition for all software components that are employed on separate processing
odes.

.3.3. Analyse and plan
When the monitoring module sends data, the Analyse and Plan unit evaluates it and identifies a strategy for reacting to the

larm [2,8–10]. After a QoS agent generates an alert, the analysis unit begins predicting Qos metrics associated with a specific
ode. ‘DOWN’ status is reported for that unit, and the unit is restarted, and the state of that node is measured. Alternatively, new
esources are added if the node state goes to ‘ACTIVE’. After an alarm is sent by a hardware or software agent, the analysis unit
egins examining the behaviour of the node’s hardware and software (self-healing). Node ‘N’ should be set to ‘‘DOWN’’ if an alert is
roduced during workload execution and restarted, to measure the state of that node. The execution of the node’s state switches to

ACTIVE’ if execution is continued, or alternatively another reliable node is chosen. Self-protection begins by examining attack logs
nce an alarm is produced by the security agent and a signature is created by the analysing component. After an alarm is issued by a
7
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hardware or software component, the analysis unit begins studying the behaviour of a node’s hardware and software components. It
is necessary to designate a hardware component as ‘‘DOWN’’, reset the failed component, and then start it again in order to predict
whether or not it is ‘‘CRITICAL’’ or ‘‘ERROR’’. Again when the data has been processed, this framework takes care of implementing
the alert-related actions on its own.

Further, before any adaptation does take place, the modules will first provide evidence that the proposed plan will indeed
omplete successful. This is achieved using a combination of formal guarantees, which can be derived from the use of control
heory. An AI-model can also be used to predict when the users might issue a goal update – based on external information or other
ypes of operational data – and prepare/assess an adaptation plan ahead of time.

.3.4. Executor
A plan is put into action by the executor [2,8–10], whose primary purpose in self-optimisation to enhance QoS and execute

asks within a pre-defined deadline. Using the data from the analyser, the executor may quickly, cheaply and efficiently add a new
ode to the pool of resources. If the resources are not already in the pool of available resources, then notify the user and negotiate
SLA before adding a new node from the backup pool of resources with the least amount of workload, price and power usage

equirements. These aspects can be predicted in advance using AI/ML. A node that is not reliable should be replaced with a node
hat is the most stable amongst those available. To relaunch the node, the current status of a node is stored (checkpointed). The
ode is then restarted. If the problem persists, an alert is subsequently generated.

For self-healing, whenever a new component is introduced, it should be linked to other components and restarted.

.3.5. Effector
New policies, regulations, and notifications are sent to other computing nodes via the effector [2,8–10], which serves as an

nterface between the various computing nodes. Through the effector, the computing nodes can work together to form a more
owerful system. It is worthwhile mentioning that a system-of-systems approach is likely to be leveraged for such applications;
ence, effectors of a top system might be triggering adaptation of a bottom system and so on.

.3.6. Knowledge base
The main aspects of information stored in the knowledge base are the following: (a) The current and previous states of the

ystem (including deployed applications, available computing resources, etc.), whose values are read via the system’s monitors. (b)
he desired state of the system, which is driven by specifications set by the user/admin/operator of the system; they include both
unctional requirements, such as the microservices network of deployed applications, as well as nonfunctional requirements, such
s QoS Service Level Objectives (SLOs) on desired response time, tail latency, target resource utilisation, etc. (c) Current, past and
redicted models – as well as meta models and surrogate models – of the system and its environment generated via AI/ML as well
s the efficacy of the various AI/ML methods used for their training. (d) Current and past execution plans that are devised by the
lanner module and implemented by the executor module. (e) The actual code of the various interfaces the system provides to
nable informed self-adaptation by autonomically incorporating improved methods for various operating aspects. For example, new
I/ML, scheduling and resource management algorithms, could be selected by the self-adaptation algorithm and added in, which
ould eliminate the need for the software engineering team to have to patch the system. (f) Further, the Knowledge Base will
aintain pre-stored policies with predefined configurations to support system management. It is the responsibility of the system

dministrator to periodically update the policies stored in the Knowledge Base to reflect changes in resource scheduling regulations.
system admin will be replaced by an AI-based autonomic agent to handle the execution automatically.
Crucially, the knowledge module needs to provide a centralised location for the various running tasks, which could be executed

s threads, processes and of course across multiple nodes of the distributed cluster, to safely store and exchange information.
his kind of architecture is required for highly distributed systems; otherwise, direct communication between the various units
ill result in dramatic slowdowns due to locking and contention, increase the attack surface or even worse, into system failure
ue to synchronisation issues, such as race conditions, that can invalidate information manipulated by multiple actors. Finally,
he knowledge base needs to be replicated, potentially across multiple reliability zones, to assure business continuity in cases of
ardware and communication failures or even a catastrophe that knocks down a whole datacenter. As such, distributed consensus
nd adaptive data recovery algorithms are required to maintain data validity.

.4. Service management layer

There is a database manager in this position (which manages the data of IoT applications effectively). AI-based systems can be
sed by Security Manager to predict and guard against external threats on task execution [40]. Application data may be securely
ent during task execution with the help of a blockchain service. At runtime, the serverless manager controls the cloud resources that
oT applications are consuming. With the integration of Serverless data pipelines with quantum computers, efficient load balancing
nd dynamic provisioning may be achieved for the edge computing paradigm. It is the responsibility of the application manager to
ontrol the deployment of IoT applications and to provide data for the allocation of resources in advance, which can be achieved
sing AI/ML. The placement module serves as a bridge between the application manager and the application placement module.

Four categories of services are included at the bottom layer [40]: function (FaaS), software (SaaS), platform (PaaS), and
nfrastructure (IaaS). Function containers are used to provide a virtual environment for computer systems that can be dynamically
8

caled up and down. SaaS uses the notion of virtualization based on VMs to deliver cloud-based services. Platform as a service can
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Fig. 4. Emerging computing paradigms.

e provided via Microsoft Azure, Amazon Web Service (AWS), or OpenStack. By lowering latency and reaction time at the edge
evices, fog and edge computing may be used to deliver the infrastructure service. Orchestrating containers using orchestration is
n intermediary step between deploying containers as a service and deploying them as software as a service (SaaS). The placement
f IoT applications for dynamic provisioning and management is handled by application placement, which is a bridge between
aaS and PaaS. Machine learning and artificial intelligence-based approaches are used to schedule the cloud resources of PaaS and
aaS [41]. Using quantum technology, the system is able to perform nonce or Proof-of-work (PoW) computations in a fraction of
he time.

. AI for computing: Current status and open challenges

It is very important to identify the research opportunities for leveraging AI and ML in next generation computing for emerging
omputing paradigms, including cloud, fog, edge, serverless and quantum computing environments as shown in Fig. 4. This section
iscusses various new trends and open challenges in AI-integrated next generation computing.

.1. Cloud computing

It is becoming increasingly evident that the rise of cloud computing and the rise of AI are mutually reinforcing. As a result,
sing AI in the cloud can improve the cloud’s performance, efficiency, and digital transformation [42]. AI in the cloud computing
nvironment is a crucial key to enabling organisations to become more efficient, strategic and insight-driven, while at the same
ime providing greater flexibility, agility and cost savings [43]. As a result, we turned to industry insiders for their insights about
he expanding importance of AI in cloud computing.

AI and cloud computing may be combined in a variety of ways to enhance cloud computing. AI tools and software are synched
ith the power of cloud computing in order to provide an enhanced value to the existing cloud computing environments [44]. This

ombination makes enterprises efficient, strategic, and insightful. Data and applications hosted on the cloud allow businesses to be
ore responsive and adaptable, while also saving money for the company as a whole [44]. Existing capabilities gain intelligence,

nd customers receive an excellent experience, thanks to the addition of this additional layer of AI that aids in the generation of
nsights from data [44]. As a result, businesses may profit from a tremendously distinctive mix. Cloud is like a video game, which
mits an enormous quantity of operating data and telemetry, much like a Tesla electric vehicle [45]. As a result, AI-based cloud
omputing is basically AI Ops, which uses algorithms to make sense of all this data rather than relying on humans [46,47]. In the
ost-COVID future, cloud-computing investment increased by 37 percent to $29 billion in the first quarter of 2020 compared to the
irst quarter of 2019 [48]. Integrating AI and cloud computing can therefore help businesses get closer to their consumers while
lso increasing their operational efficiency [49].

Cloud computing environments and solutions are helping businesses to become more agile, adaptable, and cost-effective because
his significantly cuts infrastructure administration expenses for corporations [50]. As a way to handle enormous data repositories,
implify data, improve workflows, and create real-time insights for day-to-day operations, AI gives companies more freedom. The
perational weight may be shifted from processes and people to engineering and data [51]. That is why AI is boosting cloud
omputing in a variety of ways. The Software as a Service (SaaS) paradigm is currently being used to successfully employ cloud-based
I [52]. SaaS companies are incorporating AI into their solutions, which provides clients and end-users with enhanced capabilities.
9



Internet of Things 19 (2022) 100514S.S. Gill et al.

w
e
c
a

w
u
A
r
a
s
g
c
c
t

3

h
b
f
r
p
c
a
a
a

Another method businesses are adopting AI to enhance their present cloud infrastructure is through AI as a service [53]. The use
of AI makes applications more flexible and efficient, reducing mistakes and increasing production.

The cloud native paradigm derived from cloud computing has shifted the traditional monolithic cloud application into light-
eight, loose-coupled and fine-grained microservices [54]. This paradigm can support the applications to be updated in a much more
fficient manner. However, due to the increased number and time-sensitive features of microservices, their efficient management
an be challenging. AI/ML based solutions can address some of the challenges, for instance, neural network based approach can be
pplied to predict workloads of microservices, and ML based techniques can be utilised to analyse the dependency of microservices.

The following are various advantages to deploying AI in the cloud:

• Enhanced data management: Data is king in today’s data-driven world, which necessitates better ways to handle it. An
enterprise’s ability to keep track of that data is a major hurdle [55]. Cloud-based AI tools and apps that recognise, update,
catalogue, and provide real-time data insights to clients. AI techniques may also be used to detect fraudulent activity and
identify anomalous system trends [56]. Banks and other financial institutions rely heavily on this technology to remain
competitive and safe in today’s high-risk climate.

• Automation: Intelligent automation can now be implemented throughout a whole business thanks to the combination of AI
and the cloud, which removes the last remaining roadblocks [57]. Predictiveness is enhanced by AI since algorithmic models
draw on historical data and other patterns to deliver in-the-moment insights [58]. AI and cloud computing solutions can
help businesses go from semi-structured to unstructured documents cognitively automated while also pushing the frontiers of
effective infrastructure management, resulting in little downtime and impact [59]. As a result, the cost of doing business is
transformed, and the customer experience is transformed as well.

• Cost Savings: Cloud computing allows businesses to just pay for the resources they utilise. This saves a significant amount
of money compared to the typical infrastructure expenditures of building and maintaining massive data centres [60]. Saved
money may be utilised to build more strategic AI tools and accelerators, which can then be used to increase revenue and save
the company money at the core [61]. This will lead to better operational quality and cheaper expenses.

3.1.1. Open challenges
The following issues that may arise when these two technologies are combined:

• Integration: It is never easy to get started with a seamless integration of two different technologies. In order to accomplish
this integration, companies must first move all of their apps and technologies to the cloud [57]. This is no small feat for many
companies. Businesses may only begin to consider cloud-based AI after undergoing such a seismic shift. Thus, the technological
sync is excessively reliant on companies that are implementing tangible digital transformations of their systems.

• Inadequate data: Large datasets with high-quality data are ideal for AI technologies. Businesses must make sure that their data
is both accessible and clean in order for AI to be of any use [62]. Because data is often unorganised or missing, this is a big
difficulty. It is critical that the solution’s value be derived from high-quality data.

• Security and privacy issues: To prevent data breaches, businesses must be vigilant about protecting their sensitive and financial
information from adversaries, who are likely to target them [63].

This synchronisation of AI with the cloud necessitates tremendous knowledge, resources, and financial investment if it is to be
orthwhile for businesses. It is only when cloud computing and AI systems are properly integrated that companies will be able to
tilise a wide range of powerful machine learning capabilities, such as image recognition and natural language processing [64,65].
s a result, additional businesses will follow suit in the future. Businesses will require an AI cloud in order to keep up with the
apid advancements in cloud computing. After successful implementation of it, AI operations will eventually become the standard
pproach for cloud management [47]. The cloud is already a powerful technology, but they believe that AI will make it even more
o. With this combination, data analysis and management will undergo a radical shift. The marriage of AI with the cloud is a
ame-changer and will bring unparallelled value to end-users in a world flooded with vast volumes of data [62]. Now that cloud
omputing and AI are more widely available, they are producing upheaval in a wide range of industries throughout the globe. It is
lear that technology has moved from being merely operational to one of strategic importance. AI is expected to help the company
ackle new and more visible challenges, as well as open up a new universe for its potential clients.

.2. Fog computing

Fog computing was established to supplement cloud computing services because of the rising use of the IoT and the necessity to
andle and store massive amounts of produced data [66]. IoT applications with minimal reaction time requirements can be supported
y fog computing, which provides basic network services [67]. It is difficult to distribute IoT application activities efficiently inside
og nodes in order to fulfil QoS and quality of experience (QoE) restrictions due to fogs’ scattered, heterogeneous, and restricted
esource nature [68]. Vehicle-to-Everything (V2X), health monitoring and industrial automation employ fog computing because it
rovides computing capabilities near to the user to meet reaction time expectations for these applications [69]. As a result, these apps
reate enormous amounts of information from the widespread use of IoT devices. Because of delays in long-distance data transmission
nd network congestion, cloud computing is unable to meet latency requirements [66]. It provides a network of gateways, routers,
nd compute nodes between the source of data and cloud computing centres. Because of the low latency and energy efficiency,
10

s well as the reduction in bandwidth required for data transport, fog computing extends cloud computing [70]. Fog nodes can
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be used to process sensitive data instead of sending it to the cloud, which improves security [71]. Using the data generated from
various IoT devices, these applications aim to provide helpful information while also addressing latency concerns [67]. In recent
years, researchers have increasingly turned to AI to help them analyse large amounts of data for the aforementioned uses. AI’s
Machine Learning (ML) and Deep Learning (DL) subfields give useful data insights and decision help [72,73]. Following that, we
are discussing some of the AI-enabled fog computing technologies that make these applications possible.

For the IoT, 5G signifies more than just a new era of wireless innovation. More than trillions of sensors, gadgets, and machines are
owered by AI and run autonomously from the data centre to the edge of the network [72,73]. In terms of speeding up data analysis
nd decision making, fog computing and edge computing are the two best technologies. Many ‘‘fog devices’’ will be networked and
o-located as part of a distributed computing system known as fog computing [66]. Edge management, data collection, monitoring,
nalytics, and streaming all take place at the edge of the network in the fog computing nodes [74]. While fog computing is capable
f connecting a limited number of devices, this technology has a far greater capability to handle real-time requests and to aggregate
ata from a much larger number of sources. Input-response delay is therefore greatly reduced. We have been able to access resources
f all types, have scalable architectures with the press of a button, and utilise them from anywhere since Amazon’s cloud was
aunched in 2006 [75]. Cisco claimed in 2008 that IoT, is the one of the technologies that will benefit from the cloud, but its
oots date back to 1999 [76]. For example, we can save sensor data and act on it, automate processes using AI, and react in
eal time to circumstances that previously necessitated direct involvement. When IoT was first introduced, it promised to extend
o both professional and personal areas, and how sensorization and communication protocols had to change to meet these new
emands [77]. New paradigms have emerged as a result of the integration of sensor data and the application of AI to it. New terms
ike ‘‘Smart home’’ are being used to describe new technologies that make it easier and more convenient to manage our homes’
nergy use and other aspects of our daily lives [78]. On a broader scale, the term ‘‘Smart City’’ is used to describe cities, while
‘Smart Factory’’ is used to describe manufacturing and processing facilities. One thing they all have in common is the utilisation of
ata and automated decision-making in combination with automation, which can be easily achieved using AI and ML techniques.

An example of this is altering the configuration of a computer or railway, putting the brakes on an autonomous automobile, or
ending a warning for a preventative maintenance. It is evident from the examples that decision-making and action-taking cannot
e done on the cloud, but rather on devices that are closer to the sensors that collect the data. In contrast to cloud computing, fog
omputing offers a variety of advantages for IoT applications [79]. First and foremost, quicker and real-time processing are possible
ecause local processing is used rather than relying on the cloud. As a result of the large number of IoT devices already in use and
xpected in the future, less network traffic means better communication. Additionally, more apps may be developed and operated
verywhere there is an Internet connection. We need to think how AI could help in the automation?

.2.1. Open challenges
Research on application deployment has already been done in several domains, such as industry and manufacturing, but there

re still a number of issues that need to be addressed.

• Execution Time: For both service providers and customers, time is the most pressing issue. One of the key motivations for
putting software in the fog is to speed up user reaction time. The time parameter was one of the performance indicators
investigated in the literature [80,81]. When there are more demands, the QoS suffers. This difficulty has been partially
alleviated by the presented techniques, but it remains a concern [82]. In the application placement problem, applied techniques
for optimising time performance metrics in the category of deep learning algorithms [83–85]. We may be able to achieve better
outcomes if we use different machine learning algorithms and evolutionary algorithms or novel combinatorial techniques.

• Mobility-awareness: Fog computing’s lack of mobility support may be noticed when dealing with a large number of mobile
users with varying application needs [86]. Consequently, migration methods and architectures that can handle a wide range of
mobility activities are required. Migrating VMs or containers is something that has been discussed in a few publications [87].
Moving to a new location may be expensive, as well. Reinforcement learning (RL) approaches like Q-learning and State–
Action–Reward–State–Action (SARSA) have been used to study this topic [88], but it remains a challenge in practical contexts
where there are many requests [89,90].

• Resource Scheduling: Another problem the authors encounter is managing resources in a dynamic environment like fog, which
has a limited amount of resources and a short reaction time for the user. The Fog environment is less flexible than the cloud
when it comes to resource sharing [91]. Therefore, the issue of efficient resource utilisation must still be addressed. Resource
allocation was based on a survey of existing research and the use of neural networks, support vector machines, and k-nearest
neighbours (KNNs) [92].

• Energy-efficiency: The amount of energy used if supplied policies and algorithms are improved, idle fog nodes may be turned-
off and energy consumption can be avoided in combination with QoS and QoE since the application modules are situated in
the dispersed fog nodes [80,81]. Energy consumption and cost are influenced by memory, CPU, and bandwidth use which
can be predicted using machine learning methods including K-means, KNNs, logistic regressions, branch and bounds and Deep
Q-Network (DQN) and SARSA [93].

• Security and privacy: Fog infrastructure is critical to determining the security of the applications because of security concerns
such as information degradation, identity disclosure, replay, and denial of service assaults [94]. Authentication, encryption,
and data integration all need to be implemented in dynamic computing settings due to the lack of control that users have over
11

their information [94].
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• Fault-tolerance and availability: One of the primary reasons for the development of fog computing was to improve dependabil-
ity. When it comes to fog computing, difficulties like sensor failure, a lack of access network coverage in a particular region or
the entire network, service platform failure, and a broken user interface system connection are all part of the equation [72].
Another challenge in the fog environment is to increase the availability of apps. A heuristic approach to improving service
availability and QoS is to map applications to fog communities and then transitively put their services on the fog devices’
community, according to the service placement problem [66].

Images, video, natural language processing (NLP), and robotics are some of the more recent fog computing applications that
re only starting to emerge [64,65]. Fog computing’s picture placement and processing is one of the most widely utilised sectors
f AI in research and industry, with the goal of differentiating objects or people from one another and the capacity to classify and
iscriminate photos based on image processing algorithms [95]. The use of fog computing for image processing-based applications
ecreases response time and improves QoS. Placement in fog settings with effective scheduling algorithms might be beneficial in
ircumstances linked to medical applications that demand precision in image processing and fast processing of medical data [33].
ccording to a literature, deep learning algorithms, such as Convolution Neural Networks (CNN) and Generative Adversarial Network

GAN), can be used in the image processing area in fog [96].
Another area of interest in the sector is NLP [96]. For sound processing and recognition, cloud and fog environments are needed

o store data. For security reasons, deep learning approaches with sound imitation might be useful. For example, scenarios for
mart homes and processing and identifying the homeowner’s speech from outsiders should be done with care and speed, wherein
ffective scheduling methods for placement of NLP applications in fog will be proposed. Techniques from the field of deep learning
ay be beneficial here. Industry, trade, agriculture, and health all benefit greatly from robotics, making it an essential issue for
iscussion [33]. In circumstances when quick judgements must be made, the usage of fog environments that employ machine
earning to process and make decisions, may be acceptable. In order for robots to communicate data, they require an environment
ike fog that responds quickly to their commands [97]. IoT defines each robot as an item capable of interacting with other IoT
hings and other robots [98]. Literature reported [97–99] that deep learning approaches for placement robot tasks in fog, however
urther research is needed. In the future, methods and scheduling algorithms for fog computing’s application placement problem
ill need to be established depending on the types and categories of request applications, according to research and evaluations of

iterature [100]. An application placement issue in fog for robotics or simple image, video, audio processing is an example of this
ype of difficulty [101]. As a result, the QoS and QoE will be enhanced using AI.

.3. Edge computing

Distributed computing has evolved from content delivery networks to become a generally accepted and commonly used edge
omputing paradigm that brings processing and data storage closer to the end user’s location [102,103]. Instant data that is created
y the user, and only for the user, requires compute and storage on the edge, but big data always requires cloud-based storage [104].
s customers spend more time on mobile devices, businesses have recognised they need to move key computation to the device in
rder to service more customers. The edge computing market has a chance to develop as a result of this. By the year 2023, it is
xpected to reach $1.12 trillion [105]. 74 percent of all data will need to be handled on the edge by 2022, according to Gartner,
ompared to 91 percent of all data currently being processed in centralised systems [105].

Customers are more concerned about their privacy and want to know how and where their data is acquired and maintained.
fter completing the app’s authentication procedure, a slew of businesses serve their clients by offering applications with AI-enabled

ailored features [106]. These aid users in protecting their personal information. Customers often utilise speakers, phones, tablets,
nd robots to access AI-enabled gadgets [107]. Multiple levels of encryption and a dynamic encryption process are required due to
he sensitive and personal nature of the data. Edge nodes facilitate the construction of a highly distributed architecture and help
stablish the appropriate security strategy for each device [108]. There are worries about latency when data is sent across networks
nd devices since services are dispersed at both the network and device levels. Due to this delay, the work must be done on the fly.
aving several endpoints of load balancing is a need when an application has to be end-to-end resilient and have a widely spread
rchitecture. Resiliency at the device level is increased by the fact that data computing services are closer to the mobile device or
n the edge (referred to as a ‘‘cloudlet’’) [109]. We have to think, how these challenges can be overcame using AI?

Edge computing is a major enabler for AI, giving high-quality performance at a low cost. This is the best way to understand
he link between AI and edge computing. We can benefit from the marriage of AI with cutting-edge computers [110]. Edge
omputing helps AI-enabled applications overcome the technical problems of AI-enabled applications because of the data- and
ompute-intensive nature of AI. AI and machine learning systems absorb vast volumes of data to spot patterns and deliver reliable
uggestions [111]. Cloud-based streaming of high-definition video data results in latency issues and increased costs, since huge
andwidth is utilised, in AI use cases requiring video analysis [84]. When ML triggers, decisions and actions must be made in real
ime, the latency and dependence on central processing in the cloud are detrimental. Processing and decision making may be done
t the source of data, which means that actions can be taken at the edge and backhaul expenses can be avoided, making the edge an
deal location for data processing [112]. Rather of storing sensitive data on the cloud, the edge stores client location data. Streaming
ata to the cloud only includes the most important information and datasets, leaving the rest of the data behind [113].

Due to their scattered and complicated nature, edge computing networks have brought several issues when it comes to
nfrastructure management. There are a number of activities that must be completed in order to effectively manage resources. These
12

nclude workload estimation and task scheduling as well as VM consolidation, resource optimisation, and energy conservation [114].
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In dynamic, fast changing settings and in real-time scenarios, traditional pre-defined rules, largely based on operation research
approaches, have been used for resource management in the past. AI-based technologies are increasingly being employed to address
these concerns, particularly when decisions must be made. Approaches including AI, ML, and DL have become widespread in recent
years. On the other hand, deciding where to carry out a work on the edge is a difficult choice that takes into account aspects such
as the amount of traffic on edge servers and the mobility of users [115]. In order to further on the element of user mobility, the
cache must be able to forecast where the user will go. For the sake of reducing expenses and energy consumption, it is located at an
appropriate edge server. Reinforcement learning, neural network models, and genetic algorithms are some of the approaches that
are employed [116].

In the commercial and industrial sectors, the advantages of Edge have quickly spread. Specifically, the reduction of IT equipment’s
rowing expenditures on cloud and network bandwidth. All of the company’s activities take place in different parts of the world.
nly an estimated 1% of the monitoring data is relevant for business insights like anomaly identification or future event prediction,
espite the fact that the cloud and big data centres are overflowing with data [117]. Edge delivers high-quality business services
hrough local processing, analytics, and local devices. This is the operational efficiency and significance of the edge, since it prevents
he transfer of terabytes of unnecessary data to the cloud/data centres and only communicates pertinent actionable data to the
nd user [118]. Every day, new and creative applications for edge’s capabilities emerge. Edge computing still has a problem in
oving to the last-mile of dispersed networks, but new use cases in industrial applications show a strong convergence with AI in
articular, offering substantial value to businesses [119]. In the automotive, construction, process, and manufacturing industries,
ugmented reality, virtual reality, and mixed reality are becoming increasingly popular [118]. This necessitates a scalable, highly
daptable, and quick-to-respond computing infrastructure that is always available. Provides a low-latency experience and application
nstances that are near to the end user AI and machine learning have a plethora of uses in Edge Computing. NLP and CNN are two
eveloping technologies that are used in a wide range of everyday applications [96]. Smart retail, contact centres, security, and
egal assistantship all benefit from NLP’s ability to parse human voice, recognise handwriting and classify text. Use cases such as
uality control, facial identification, healthcare, and industrial safety can benefit from CNN capabilities in visualisation algorithms,
hich enable to detect faces and other visual data [96].

.3.1. Open challenges
As compared to cloud, fog, or serverless computing, the problems of edge computing environments are markedly different. As a

esult, the edge environment is plagued by issues related to scalability and performance, especially when dealing with mission-critical
ata and applications [111]. It is tough to keep track of the health and state of each IT component, especially when there are so
any remote edge locations to keep track of, much alone visualise and analyse their influence on other linked equipment, when

onsidering the scale issue [120]. Highly dispersed and diverse networks define edge settings. Because of the disparate nature of
he infrastructure’s components and the high costs associated with acquiring the various skills and resources required, this creates
‘edge silos’’, which only serves to complicate matters further [84]. To handle the extremely dispersed and heterogeneous edge
nvironment, AI-based intelligent software is crucial. It helps to collect and unify data from many sources and provides a highly
bstracted ‘‘low touch’’ monitoring and administration, which eliminates human involvement. It is also possible to have entire client
ecurity without the client’s involvement thanks to automated security and responses. You may pick from a variety of suppliers,
voiding vendor ‘‘lock-in’’, and switch out equipment with no negative impact on your business or cutting-edge efficiency [112].

Additionally, real-time performance management between end points, such as consumers and cloud/data centres, is a critical
ssue [113]. End-to-end views and data repositories at all sites are supported by technology tools that continually monitor
erformance metrics and data flow. For situations when edge equipment fails or is unavailable, edge infrastructure has built-in
edundancy to isolate, repair and sustain acceptable levels of functioning [114]. If you run an edge data centre where multiple teams
re in charge of different portions of the infrastructure, you will run into certain inefficiencies. Advanced correlation and analytics,
ased on AI, are quite helpful in this situation for examining, consolidating, and unifying data from many sources, transforming
ata into information, and communicating that information with the concerned roles in the team. Information that can be used to
elp automated processes is supplied [115].

The followings are the key open issues of adopting AI in edge computing:

• With tremendous advantages, edge computing has a number of challenges to overcome. Edge computing adoption is being
stifled by some of the causes listed above. Edge computing has no legal, societal, or ethical framework for the use of AI. We
need to do more study on the present benchmark tools and techniques. Newer technologies have a hard time being integrated
into existing legacy industrial systems since they are not modular. Information security issues and a lack of integration testing
with new entrants further limit technology use [116].

• Small and inexpensive, most edge devices do not require third-party API authentication, leaving them open to exploita-
tion [104]. They are designed with simplicity of use and low cost in mind, not security in mind. Edge devices that gather
personal information, such as email addresses, phone numbers, health information, and credit card data, are on the rise as a
result of specialised apps [121]. The necessity for an AI based security framework before beginning large-scale and sensitive
edge initiatives naturally causes IT and network administrators to be apprehensive [117].

• For AI-integrated edge workflows, new software frameworks and toolkits are needed [111]. Working with heterogeneous
13

hardware and platforms, as well as the resources available in a workflow, will be supported by these software frameworks [96].
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• When it comes to the administration of edge devices, there are no set standards and regulations that apply universally. The
complexity of the IoT network architecture increases as more IoT devices are added to the edge [118]. There is still much to
learn about the local consequences of IoT standards for different companies across different geographies, despite the fact that
the US and UK governments have produced them. Organisations require a framework of regulations and criteria before they
can make the decision to shift their data and application assets to AI-integrated edge computing environments, according to
their perspective [115].

• Only by fully integrating edge computing into existing cloud architecture can its full potential be realised using AI, making
edge computing the crucial missing connection between data sources (the devices) and cloud computing (core network) [107]
because edge nodes have a limited storage and computing capacity [110].

• The main strength of this system is its tight interaction with the cloud. As more businesses move to a multi-cloud environment,
it becomes more difficult for the cloud to set up a redundant AI-integrated edge network to accommodate incoming data traffic
from numerous nodes [108]. High bandwidth needs and redundant data reporting and routing requirements for IT managers
have increased the search for cloud suppliers capable of meeting these demands [111].

• Additionally, establishing an AI-integrated edge computing environment requires an initial investment in edge-enabled
software frameworks and hardware [109]. The fact that this investment typically has to compete with other company objectives
makes it a bottleneck. In developing countries, this problem is exacerbated.

• Many small and medium-sized businesses (SMEs), IT managers, and government decision-makers are unaware of the possibil-
ities and applications of AI-integrated edge computing [84]. It may take some time for nations in Asia-Pacific that are still
learning about cloud computing to adopt its capabilities for edge computing. Micro data centres, rather than edge workloads,
are preferred by most service providers in emerging economies, as they are more cost-effective [112].

• With the arrival of 5G, billions of devices will be able to communicate with each other, and the network will see a rise in
the rate at which connected devices are added and removed [105]. IT managers’ judgement in implementing edge computing
will always be questioned and adoption will never achieve its full potential without a standard, proven, and recognised edge
monitoring technology [113].

• Faster R&D interventions and innovations in security, governance and standards/frameworks are the road to alleviate the
difficulties for the adoption of AI-integrated edge computing [114].

Satellites in low-Earth orbit (LEO) are being built by private firms including SpaceX and Amazon to give worldwide broadband
nternet access [122]. It will be vital to determine if and how edge computing principles could be implemented in LEO satellite
etworks as the group of subscribers to such a access network increases.

.4. Serverless computing

When it comes to designing cloud-native apps, serverless computing is becoming increasingly popular. Serverless is a cloud
omputing paradigm that abstracts away the management of operational aspects [123]. Because developers no longer have to worry
bout maintaining infrastructure, serverless computing is likely to expand considerably quicker [124]. Because of this, cloud service
roviders may more easily manage infrastructure and automated provisioning with serverless computing. The time and resources
equired for infrastructure management are also reduced as a result of [125]. It is the purpose of serverless computing to guarantee
hat the finest serverless technologies are used so that the investment is minimised and the return is highest [126]. Serverless
omputing and infrastructure are characterised by the following terms:

• Functions: Using event-driven models, serverless functions are implemented in serverless computing. Because the code is
automatically executed as events occur, they are able to speed up the development process [127]. As a result, numerous services
can be linked to the present application. Using these features, you may effectively create the pay-per-execution model [128].
It is billed for the time and resources used on executing code under this paradigm.

• Kubernetes: Developers have the option of bringing their own containers to Kubernetes through Serverless Kubernetes [129].
In Kubernetes-managed clusters, these containers may be automatically scaled up or scaled down. In order to deal with
exceptional traffic situations and fluctuating workloads, this automatic scaling function is activated.

• Workflows: A low-code or no-code approach is used with serverless workflows [130]. It is an aim of this method to reduce
the planning overheads associated with several activities at once. With these processes, developers may connect various cloud
and on-premises services. Serverless computing has the capability to learn new APIs or standards, so interactions do not need
to be coded [131].

• Application environments: Both the back-end and front-end of a serverless application environment are hosted on a dedicated
server service. Fully-managed services via dedicated servers assume responsibility for the application’s scalability, security, and
compliance monitoring [132]. As a result, running an AI-based application on a serverless computing platform is significantly
simpler, as serverless computing meets the dynamic scalability and security requirements of applications while still conforming
to industry standards [133].

• API Gateway: An API gateway that is both centrally controlled and entirely managed is achievable with a serverless API
gateway [37]. This application makes it feasible to administer, secure, and analyse APIs on a global scale. The management
of authorisation and other services (such as content and user services) is therefore made simpler for a serverless API gateway.
Serverless computing infrastructure enables automated API support using AI and database connectivity for every service that
14

requires it, as stated previously [134].
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Platforms across the board are embracing AI because it is the future of technology. We have been able to make better, faster
udgements because of these AI-powered platforms. They have changed the way businesses do business, the way customers interact
ith them, and the way we gather and analyse business data. Complicated machine learning systems have a significant impact
n the productivity and efficiency of developers [124]. A serverless design, on the other hand, addresses most of the issues that
evelopers experience. Using a serverless architecture, the machine learning models are properly handled and the resources are
ffectively managed [135]. As a result of this design, developers may spend more time and resources working on AI model training
ather than server infrastructure management.

Complex challenges typically need the development of machine learning systems. They analyse and preprocess data, train models,
nd fine-tune AI models, among other things. As a result, APIs should be able to run smoothly [136]. Serverless computing and AI
hould be used to ensure that data storage and message delivery are uninterrupted. Machine learning models may benefit greatly
rom serverless architecture, which offers a wide range of options and advantages [137]. Virtually little administration is required
o run any form of application or back-end service. As incoming requests of any traffic volume come in, the infrastructure provider
llocates its own computing execution power accurately.

AI/ML integrated serverless architecture will have following merits:

• Fair pricing: Serverless design makes execution-based pricing possible, so you only pay for services that are really being
used [138]. As a result, the pricing model is more flexible and the cost is significantly reduced.

• Independent work: Serverless computing enables the development teams to operate autonomously with little intervention and
delays. Models are viewed as distinct functions because of this. Invoking this function has no impact on the rest of the system
and can be done at any time [37].

• Autoscaling: This feature frees up the developer to work on other projects while the system adjusts itself to the changing
scope [139]. Storage prediction is no longer necessary when using autoscaling because developers may make changes on the
fly.

• Pay-as-per-usage: Using a new model called ‘‘pay-per-use’’, customers only pay for resources when they really use them. You
do not pay for the amount of servers with serverless computing, but rather for the use of services [140]. Combined with the
scale-to-zero feature of serverless, one just has to pay for the number of executions and the length of time resources are utilised
for.

• Hassle-free server management: Serverless computing provides backend services that may be accessed only when they are
needed, freeing users from the burden of managing servers [141]. A serverless service eliminates the need for the user to be
concerned with the infrastructure that underpins the service. With serverless backends, service providers do not have to modify
their setups if they want to raise or reduce the amount of bandwidth they are reserving or paying for [139]. It was difficult
and expensive for web developers to own the hardware necessary to run a server before the introduction of the Internet.

• High availability: Serverless programmes have become more popular due to their built-in availability and fault tolerance. No
need to construct services that will deliver these features to your application, therefore you do not have to. Your company
does not need to invest in new capabilities because they are constantly available [142].

By reinventing automation and enhancing the corporate environment, AI has taken over today’s life and made it easier. Machine
earning algorithms on serverless architecture may be used in a variety of ways to make jobs easier and data more accurate [139]:

• Applications that employ GPS gather user data, such as their location and their purchasing habits, to provide suggestions about
their preferences or the next thing they should buy. AI assesses the frequency of alerts and suggests a number of options that
the app users may be able to bear and enjoy before turning off the notifications. Using this method ensures that clients find
the material useful and enriches the user experience [140].

• Using AI models, it is possible to examine a customer’s financial viability before recommending an increase in purchasing
power. Prior to requesting any further information, the system will run a credit check to determine their creditworthiness. As
soon as all of the prior invoices have been paid, the system decides if the transaction should go through or be put on hold.

• As part of logistics, it is important to keep an eye on the routes and determine how traffic overloads influence customers. In
order to help businesses make better decisions and enhance customer service, AI analyses the routes and proposes alternate
routes [136].

.4.1. Open challenges
The following is a quick description of the open issues and challenges that serverless computing presents for AI applications:

• Vendor locking: If a company has committed to a cloud-based provider that provides technological implementation, switching
suppliers will be difficult. The lack of industry-wide standards is responsible for around half of the challenges to cloud
computing adoption [143]. To understand the consequences of vendor lock-in, no amount of investigation or study can be
relied upon. Those who fail to keep an eye out for traps end up falling prey to them. In addition, a serverless interface must
be carefully monitored because of the multiple risks it presents [144].

• Switching vendors: Lock-in circumstances can be seen in two different ways, depending on who is looking at the event. In their
opinion, the problem with serverless computing today is not the programme itself. Another contributing cause is serverless
computing, a new and fragmented technology that now has a younger audience that is overly reliant on it [145]. Businesses
should only agree to a platform after conducting comprehensive research and receiving multiple offers from rival service
15

providers. A single cloud may be all you need instead of hurrying to implement a slew of different ones.
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• Less transparency: As the backend infrastructure is handled by an outside company, there is less transparency about how
things actually function. The programme’s inner workings may be obscured, especially if it interacts with other applications.
Here are a few examples of how this may be put to good use: The security measures associated with an external PaaS service
connected to your application, for example, are generally not well known [146].

• Others are in-charge of infrastructure management: Because our infrastructure is in the hands of a third party, it is more
difficult to have a comprehensive understanding of the entire system. Using end-user-targeted devices under this paradigm,
infrastructure is under the control of another firm, malware can nonetheless infiltrate your environment [147].

• Sustainability: An increasing amount of data generated on the edge is being submitted to the cloud for ML training/inference;
the overall transmission energy is around 30% of the total energy requirements of datacenters globally and rising fast.
Research is required to ensure the upcoming serverless paradigm is sustainable with a focus on power-off techniques, increased
computational density via smart workload consolidation, submitting the kilobytes-long function to the data vs., submitting
terabytes of data to the function, and effectively combining serverless edge resources for multitenant clients—e.g., by sharing
artificial neural network layers with an acceptable tradeoff in accuracy [148].

AI has revolutionised market research and customer behaviour. Customers’ preferences are recorded and analysed by an AI model,
hich then shows their customised content. Serverless computing simplifies the AI development process by removing the need for
dedicated server. As a result, serverless architecture entails handling over the management and monitoring of the infrastructure

o a third party. That is why it is a good idea to work with a reputable cloud service provider. To guarantee that the infrastructure
orks smoothly, the cloud provider must have handled multiple comparable projects and have expertise in hosting and handling
I/machine learning and serverless architectures.

.5. Quantum computing

Quantum computing promise is to be the one technology that has the potential to fundamentally alter AI. This section introduces
he capabilities of quantum computing and its potential influences on AI and the economy [149]. The consequences of this approach
o computation could affect a considerable range of aspect of intellectual and economic activities on our societies. With the enormous
nfluence is AI having, all across the world, the combination with Quantum computing may have a multiplier effect to trigger a
evolutionary effect on AI.

Quantum computing utilises a novel approach to data and information processing: Information, encoded in the quantum states of
uantum systems, is processed accordingly to the law of quantum mechanics opening up some opportunities that are not available
o the classical way of processing information. For example, quantum superposition and quantum entanglement [150]. Quantum
ntangled is the property of quantum systems of limiting the amount of information an observer may obtain on parts of a global
uantum state, making it impossible to provide a complete description from the knowledge of only the component states. The term

‘superposition’’ refers to the possibility of combining quantum state in order to produce another valid quantum state.
Previous features of quantum systems trigger, from one side, the power of quantum computing (if sufficiently shielded from

nteractions with environment), but represent also the main limitations that do not allow an efficient simulation of quantum systems
y present computer systems, even AI-powered supercomputers. In fact, the scaling of the phase space within which composite
uantum systems evolve growths exponentially with the number of component systems.

The unit of information used by Quantum computers is the qubit, which replaces the bit used in classical computers. The state
f a qubit |𝜓⟩, which could be an atom, a photon, a circuit, etc., can be represented, mathematically, as a vector in the complex
ilbert space [150], with two mutually orthogonal basis states {|0⟩, |1⟩}, as follows

|𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩, (1)

here |𝑎|2 + |𝑏|2 = 1, and 𝑎, 𝑏 ∈ C are Complex numbers. The exploitation of quantum superposition (See Eq. (1)), and quantum
ntanglement is what makes quantum computing considerably more powerful for certain tasks than classical counterpart [150].

The simulation of quantum systems has been the original scope motivating the endeavour to build a quantum computer [151],
ut it has only been after the discovery of quantum algorithms able to achieve practical goals that the interest in building this
evices started to attract increasing attention. After the seminal works to formalise the concept of quantum computer [152],
everal algorithms followed that allowed to achieve tasks that were considered hard for classical computers. The discovery of the
hor’s algorithm [153] provided an efficient solution for factoring large numbers, that had critical implications for crypto-analysis,
oosting studies in both quantum computation and quantum cryptography. Running effectively the Shor algorithm on a working
uantum hardware, however, it would require a level of accuracy in implementing register initialisation, quantum operations on
ultiple qubits, and storage of quantum states that are not yet achieved by current state-of-the-art devices [154]. It is also worth to
ention that quantum computers have their own limitations. For example, it is not expected that they can efficiently solve NP-hard

ptimisation problems [155] and, coming to searching, the speed-up offered by quantum computers scales quadratically with respect
o the time needed by a classical computer (Grover’s algorithm [156]).

Building a quantum computer is, in fact, not an easy task: as experimentalists know pretty well, the advantages of quantum
omputing, offered by features like quantum superposition and entanglement, tend to vanish exponentially faster with the size and
omplexity (i.e., the number of quantum systems involved) of the hardware. Nevertheless, in recent years, we have seen a spectacular
ncrease in the interest of major high-tech players (IBM, Microsoft, Google, Amazon, Intel, Honeywell), and a flourishing of many
oung companies aiming at proposing solutions for quantum computing, with various core technologies employed, ranging form
16
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superconducting devises [154], to trapped ions [157], to integrated light circuits [158]. These are just some of the many companies
that are today financing quantum initiatives and are interested in developing this technology. Despite the difficult challenges ahead,
Google AI group has made significant progress during the recent years [154], achieving what is known as quantum advantage
building a programmable quantum computer, named Sycamore. Similarly, IBM has recently announced the first quantum computer
to pack more than 100 qubits in their hardware, Eagle chip [159], representing only a first step of busy research and engineering
programme during which the tech-giant is planning to push figures to more than 1000 qubits by 2023. However, as said, the
challenges to preserve the delicate features of composite quantum states rely on the ability to shield these devices from the external
environment to allow coherent quantum evolution to take place under the presence of even very small amount of noise. For this
reason these devices need ultra-low temperature of fractions of Kelvin, which pose challenges also for designing the appropriate
materials able to perform well at such low temperatures.

3.5.1. Open challenges
While universal quantum computers remain the long term challenge of quantum computing, Noisy intermediate-Scale Quantum

(NISQ) devices are a foreseeable target to achieve in the forthcoming years. With such devices physicist may start to effectively
simulate complex composite quantum systems, and should be able to study exotic quantum states that have not been accessible in
physics laboratory yet.

For the next step, once NISQ devices will be reliable and well developed, we will need to overcome the limitations imposed by
the presence of noise during computation, by supporting the main computing unit with effective quantum error correction (QEC)
circuitry. That may open road towards fault-tolerant quantum computation that will need to involve thousands and more qubits. In
fact, QEC requires a considerable cost in terms of the number of qubits and logic gates to be implemented. The road towards the
implementation of complex operations like those needed by the Shor factoring algorithm is still long but while the research is focused
on improving the performance of quantum devices and the optimisation of quantum operations, numerous entrepreneurs are also
interested in producing quantum software solutions. Consequently, many investors are expected to invest in start-up companies that
are revolving around quantum computing technologies, and in perspective the interest in quantum computing is likely to increase.

Pharmaceutical investors’ interest in quantum computing has sparked. Many sectors can benefit from quantum computers and
commercial solutions. The financial industry, healthcare, genetics, pharmacology, transportation, sustainability, and cybersecurity
are all direct beneficiaries of quantum computing [160]. Quantum computing’s potential has been picked up by the banking industry.
Financial analysts frequently make use of quantum computational models that incorporate probabilities and assumptions about how
markets and portfolios operate. To do this, quantum computers might help by processing data faster, running better foresight models,
and balancing conflicting options more accurately. They might also assist in the resolution of complex optimisation problems, such
as portfolio risk optimisation and fraud detection [161].

Quantum algorithms in IBM’s Cloud Computing platforms outperform classical Monte Carlo simulations, according to a research
the company just presented. There is a lot of potential for the healthcare business to profit from quantum solutions. Quantum
computing might lead to improved approaches to personalised medicine by allowing quicker genomic analysis to create personalised
treatment strategies specific to each patient [162]. Genealogy research generates a lot of data. As a result, analysing DNA information
requires a significant amount of processing power [163]. Currently, companies are reducing the costs and resources needed to
sequence the human genome; but, a powerful quantum computer might sift through this data considerably faster, making genome
sequencing more efficient and scalable [164].

Another area where drug development might benefit from quantum computing is in the field of protein folding [165]. This might
help speed up drug discovery efforts by making it easier to predict the effects of pharmacological compounds [166].

A crucial aspect where quantum computers, and the promise to build one, have had considerable impact is in the field of security
and cryptography. Public-key cryptosystems are the foundation of today’s era of communication. Rivest–Shamir–Adleman (RSA)
encryption is in fact the most common cryptosystems for securing transmission of data over networks, and its working mechanism
and security requires factoring large prime numbers, beyond the capabilities of current classical computing limits. However, as
mentioned above, quantum computing capabilities, exploiting Shor’s factoring algorithm may renders such encryption models
obsolete. This has led to increasing research, and investment, over the last decades to build safe cryptosystems in a quantum
computing era, and the projections for the next years show this interest to grow, e.g., Toshiba’s quantum cryptography revenue target
is $3 billion by 2030 [167]. In the meantime, while the efforts to design and implement effective quantum-key distribution (QKD)
protocols expand, the National Institute of Standards and Technology (NIST) has also issued recommendations for post-quantum
cryptography standards [168]. It has begun a process to request, assess, and standardise one or more public-key cryptography
algorithms that are resistant to eavesdropping performed by quantum hardware.

Quantum computers have also been proposed for environmental applications, in the hope that quantum computing may open
up new avenues for dealing with climate crises, identifying and optimising process that may help cope with global warming and
other climate change effects [169].

3.5.2. Quantum Artificial Intelligence (QAI)
Quantum computing is more effective than classical computing in managing large amounts of data. A quantum algorithm is a

mathematical algorithm that executes on a realistic model of quantum computation; the quantum circuitry of computation is the
most often used model. The state of a quantum computing system can be seen as the information encoded in the physical quantum
state supporting the specific implementation. Quantum information theory is based on these fundamental object, quantum bits (the
17

unit of information), quantum gates (the devices that operates on quantum bits), and quantum channels that connect gates and
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Fig. 5. Overview of Quantum Artificial Intelligence.

circuitry to preserve quantum superposition and entanglement. Quantum computers can handle and process exponentially larger
amount of data than conventional computers can, because they intrinsically incorporate and manage the tensor product structure of
composite quantum systems, which the number of parameters needed to obtain a complete description scale as 2𝑁 , where 𝑁 is the
umber of qubits. So, for instance, if 𝑁 = 100 the vector space in which the quantum system evolves would have a dimension that
s 2100. That means that while we may need a 100 qubits on a quantum computer (assuming that we do not need error correction) to
escribe the evolution of composite system, the same described on a classical machine, would require 2100 parameters. It is then clear
hat quantum computers are intrinsically prepared in managing the evolution of systems described by a large number of parameters.

Quantum devices, coherently controlling quantum superposition and entanglement, can exploit quantum parallelism, i.e., they
an simultaneously explore multiple evolution. For example, in classical decision the problem is often represented as a decision
ree, where the evolution of the decision path is determined by a binary choice and the state of initialisation of the register. This
ethod becomes less effective when the creation of branches form each decision split-point slows down because the time needed to

btain an outcome to decide the split is too long. Quantum devices, exploiting quantum superposition to initialise the input register,
nd quantum evolution (that coherently preserves superposition) may explore, simultaneously, the various possible branches of a
ecision, speeding up considerably the application of these kind of decision-tree approaches. It is still difficult to provide a certain
oreseeable future for the development and to know precisely how and when we will have a complete and deep application of
uantum advantage, however it is reasonable to say that the exponential speedup of quantum computing will involve all sort of
roblems with large amounts of data to manage, like pattern recognition, or training in machine learning models.

Training of machine learning models, like in reinforcement learning base much of their effectiveness on the speed at which the
gents learn, interacting with the environment: They interact, obtain some feedback, and adapt (learning) their behaviour on the
ase of the feedback received. This approach has been confirmed, e.g., in a recent experiment [170] where not only the training
f agents has been improved and accelerated by using a quantum channel, but it has been also integrated to implement a hybrid
uantum/classical scenario, using a very promising integrated nano-photonic processor, where classical communication are used
or tuning and to achieve the optimal control of the learning progress.

Clearly, if the computational speedup is exponential, as it is for quantum computing vs classical, when dealing with large amounts
f data, such a speedup may have application on many different aspects of the development of AI. Fig. 5 provides a clear view of
uantum computing with AI for modern applications.

Biometric recognition and autonomous driving are two critical examples that can utilise QAI for processing workloads. The
act that quantum computers can process more data in a shorter time than traditional computers has revealed the concept of
AI [171]. An example scheme for QAI is given in Fig. 5. QAI involves combination of Quantum Computing and AI to achieve

uperior performance results compared to classical AI [172]. Reinforcement Learning (RL) is a well-established branch of ML that
ims to maximise the reward by trial and error by means of the agent [139]. It is certain that combining RL with Quantum Computing
ill lead to great advances in computing systems. With quantum computers accelerating machine learning, the potential for impact

s certain to be enormous [173]. Applications of quantum AI for quantum search, quantum game theory, quantum Algorithms for
ecision problems, algorithms for learning are shown in Fig. 5.

The ability of quantum computing to execute a task quickly, may be helpful for AI systems employed, e.g., in problems related to
18

utonomous driving natural, natural language processing (NLP) algorithms [174] and, in general, in tasks where classical approaches
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are extremely time-consuming and expensive. Characters and words are the basis for the current algorithms. The idea of becoming
‘‘meaning aware’’ is a goal of quantum algorithms [175]. To build real-time speech patterns, these algorithms may use phrases and
paragraphs. It is important to note that predictive analytics are a key AI application and commercial use case. Massive amounts of
data can be used to train AI systems that are adept at machine learning and deep learning. However, complex and ambiguous issues
such as stock market projections and climate change control systems require unique data created by quantum principles employing
entanglement and superpositions [169]. New discoveries in Artificial Intelligence algorithms intended for quantum computers, or
Quantum Artificial Intelligence (QAI), are expected to deliver the critical breakthroughs required to advance the science of climate
change. Improvements in weather and climate forecasting as a consequence of this research are predicted to have a cascading effect
on a wide range of socioeconomic advantages. For example, NASA has established the Quantum Artificial Intelligence Laboratory
(QuAIL), which is dedicated to investigating the possibilities of using quantum computers and algorithms to machine learning
problems in NASA’s missions.

Nanotechnology and nanoscience may also be integrated into AI for very small, microscopic devices at molecular, atomic, and
ubatomic levels, thanks to quantum computing. Quantum physics finds use in nanotechnology. These are only a few examples of
uantum computing’s impact on AI and machine learning [176]. Machine learning applications for quantum devices are already
eing developed, in the hope to employ quantum computing to speed up the training of machine learning models and produce
ore efficient algorithms for learning [172]. Machine learning and artificial intelligence are likely to benefit from improvements in

uantum computing technology even before a comprehensive quantum computing solution is ready. Hence, the field of Quantum
achine Learning (QML) is expected to pick up, followed by its autonomic expansion, Adaptive Quantum Machine Learning, which
ill be able to leverage quantum computing to adaptively achieve self-learning.

Open-source quantum machine learning library TensorFlow Quantum (TFQ) is available from Google [177]. Cirq is integrated
ith TensorFlow and provides high-level abstractions for the design and implementation of both discriminative and generative
uantum–classical models by providing quantum computing primitives that are compatible with existing TensorFlow APIs, along
ith high-performance quantum circuit simulators. Quantum computing has, indeed, the potential to transform AI in a number of
ays. Constraint resolution, uncertainty handling, and constraint fulfilment will all be improved by quantum computing, as will
daptive machine learning and spatial and temporal reasoning [178]. Even if quantum computing is still in its infancy now, from a
ommercial and economic standpoint, it is an excellent moment for startups to join this path. The future of our economy will not
e decided by cryptocurrencies, but rather by quantum computing solutions [179].

. Modern autonomic computing with embedded intelligence

This section discusses the new research developments related to autonomic computing with embedded intelligence. New advances
n intelligent edge, intelligent things and sensors as actuators are detailed here.

.1. Intelligent edge

IoT is bringing billions of new gadgets online, creating an unprecedented amount of data that will be challenging to manage.
ver 75 billion IoT devices are expected to be in use by the year 2025, according to research [180]. Businesses are developing
nd installing more and more things meant to improve the end-user experience and also generate massive amounts of data, such
s linked automobiles, smart metres, and in-store sensors. This new data, meanwhile, requires real-time collection, management,
nd processing [181]. Exactly how will this happen? One approach to go forward may be through the use of edge and fog
omputing [182].

Edge computing is expected to get a huge amount of attention than fog computing in the next years, but what exactly is it?
s opposed to typical cloud computing, in which data is stored and handled in a central location, edge computing processes data
n-the-fly [183]. The cloud and edge are not mutually exclusive in fog computing, which means that some computation can be done
n the cloud, while other parts are handled by edge devices.

As a result, the data sent between linked devices might take too long, and edge computing utilises significantly less network
apacity than traditional computing. Time can be saved by processing it locally on the device or inside a local network [66]. Edge
omputing, on the other hand, might provide cloud computing with much-needed assistance in dealing with the massive amounts
f data generated by the IoT and other connected devices [169].

In both fog and edge, emerging IoT devices generate and transfer data, and the processing capacity of those devices is used to
ccomplish operations which might normally be carried out in the cloud. Both fog and edge allude to these new IoT device locations
n the network. As a result, they help organisations lessen their dependence on the cloud by sending data to analytics platforms,
here it can be analysed and turned into useful information. Corporations may cut down on network latency by using edge and fog

echnologies to reduce their reliance on cloud platforms for data analysis. As a result, you will be able to make data-driven decisions
aster. In addition, because edge devices lack storage capacity, they must send data to the cloud when real-time processing is finished
o that analytics may be conducted on it.

With today’s cloud computing, bandwidth, and processing power, business communication network focuses primarily on
upporting all of your distant applications, as well as offering infinite storage space. That will eventually change. In order to get
he most out of data, it must be processed in real time, at the edge [66]. Looking for future, network infrastructures must be more
daptive and willing to manage a far greater number of smart devices than they currently are now. Having the decision-making
19

rocess near to where the data is created is essential for real-time intelligence. For example, self-driving cars or self-maintaining
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smart manufacturing equipment can make fast judgements on the go [184]. Real-time engine performance data generated by sensors
installed in aeroplanes can be used to take preventative action before the aircraft returns from the sky. The savings might be
substantial. A company’s ability to deliver processing power and an intelligent environment will increase as it expands its network
of corporate endpoints.

We will need quicker and more reliable data processing as our demand for data grows and billions of devices are linked to
he network. Despite the benefits of cloud computing, the development of IoT and mobile devices has necessitated ever higher
andwidth requirements [185]. Cloud computing is not required by every smart device, and avoiding transferring data back and
orth over the cloud is a good idea in some circumstances. The edge may help enterprises become more nimble, decrease expenses,
inimise latency, and better regulate network capacity [186].

How to provide enough computing power for intelligent applications at the edge has become a serious challenge. Intelligent
dge is a promising way that pushes intelligence to the Edges of Internet, which has played the role of intelligent decision-making
n many aspects of edge computing, including task offloading, edge caching, and resource scheduling. Among them, edge offloading
s a distributed computing paradigm that provides computing services for edge caching, edge training, and edge inference. By
ntegrating methods such as Distributed Machine Learning (DML), Deep Reinforcement Learning (DRL) and Collaborative Machine
earning (CML) into the edge computing, it is beneficial to cope with the explosive growth of communication and computing of
merging IoT applications [187], and achieve the energy-efficient and real-time processing [188].

Instead, single pass AI techniques that can operate on resource-restricted environments have been proposed. For instance, an
lternative to traditional machine learning is data-stream mining. This ML paradigm treats its datasets as individual datapoints
oming in one at a time, while performing adapting learning with a finite memory budget. From an autonomics perspective, data-
tream mining also leverages the notion of adaptive concept drifts, i.e., to save resources on the edge, the data-stream model is
etrained only when its performance crosses below a threshold [189].

.2. Intelligent things

Intelligence integrated in a technology relates to the capacity of a product to analyse and consider its own performance. In
ddition, it must be able to deal with the workload and its own working conditions [190]. As a result of this, the overall experience
f the end user is enhanced. When building a new products/services, it is important to keep in mind the notion of self-evaluation of
he product based on data from embedded sensors [191]. A business intelligence system must be at the heart of an integral model
o product or service introduction. Employing an embedded intelligent system and a machine learning algorithm model is a major
enefit [192]. This may be assessed by looking at how well it performs in areas like launching smart product systems and setting up
mart business services, to name just two. With the help of this cutting-edge infrastructure, it is possible to better understand and
nticipate how the business landscape will shift in the future [193]. Because of this, it is an area where human analysts typically
all short. As a result, machine intelligence capabilities based on sensors integrated in current gadgets and goods have become a
eed in today’s corporate environment [194].

The convergence of emerging applications and machine intelligence capabilities has led to an evolution in this process [190–194].
mbedded intelligence is increasingly being used to design the future IoT:

• AI: Human–machine intelligence synthesis is what this term denotes. In a specific gadget or service, the ability to make choices
like the intellectual is possible.

• Data Integrity: Device history may be tracked using blockchain, a business intelligence application or innovation. Blockchain
is made up of strings of interconnected block headers and blocks bodies [195]. The block body consists of all transactions in
the block. The block header, on the other hand, is generated using the hash value, timestamp of the previous block, and a
Merkle root of the transactions it contains. Therefore, each block is created using the hash value of the previous block and
linked to each other. Interfering with any block will change the hash value of that block and thus all blocks will be affected.
This promises the availability of Blockchain technology in protecting the integrity of data [196]. Blockchain technology, apart
from cryptocurrency (e.g., Bitcoin), has been used to further enhance and optimise existing solutions such as cloud storage
(e.g., [197]), authentication (e.g., [198]), health-care (e.g., [199]), and more. Integrating blockchain allows to have a clear
audit trail of the data and models used to verify the machine decision process, which will lead to increasing the device’s
trustworthiness [200]. The latter is of extreme importance in machine-to-machine communication. Furthermore, running AI
code over Decentralized Autonomous Organization (DAO) with smart contracts attached to it limits catastrophic risk scenarios
by limiting the action space.

• Smart Healthcare: Utilising IoT in the healthcare business may pay out. As a result, healthcare would be even more widely
available, and progress could proceed at a rapid pace.

• Predictive Maintenance: Predictive maintenance is a notion that has emerged as a result of the growth of the Internet of Things.
This means the practise of adding sensors to household appliances so that they may send out notifications when they need to
be serviced.

From natural language processing, face recognition, bio-medicine to autonomous driving, more and more intelligent applications
re being deployed on IoT devices [201]. Due to the slow hardware development in small-sized equipment, the contradiction
etween the limited computing capacity of IoT devices and running complicated AI applications cannot be efficiently solved in
short time [202]. In addition, there remains significant challenges in developing system-level, algorithm-level, architectural-level
r infrastructure-level technologies for embedded intelligence, e.g., real-time decision making, energy-efficient Deep Neural Network
DNN) training and DNN inference, and security deployments.
20
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4.3. Things as sensor-actuator network

Cyber–Physical Systems (CPS) are the next generation of embedded Information and Communications Technology (ICT) systems
hat employ sensor-actuator networks to offer users with a wide range of smart applications and services by being aware of their
hysical surroundings [203]. With the help of autonomous control loops, many IoT sensors are conceivable because of the inclusion
f improved processing and analysis of data collected by sensors, as well as planning and executing plans utilising actuators [204].
ethods are needed to aid in the design and development of these systems because of their complexity [205]. In the context of CPS,

he systems that are embedded or software integrated into physical things, networked, and offering residents and companies with
wide range of smart applications and services are referred to as ICT systems [206].

Transport systems, buildings, electricity grids, and water infrastructure are all examples of CPS [207]. This type of CPS is
eant to detect and react to the physical environment, allowing for quick, reliable autonomic control loops combining sensing

nd actuation, perhaps with linguistic and cognitive capabilities, as well [208]. Using wireless sensor/actor networks, CPS can
onitor and respond to the physical environment. Sensors and other alternative sources collect historical and real-time data, which

s used to perform advanced analysis and processing in the type of autonomic control loops [209]. These loops then plan and execute
ctions in accordance with a set of goals or rules. Real-time or historical data is used to support this implementation [210]. There
re several elements that make CPS systems difficult to manage, including the use of a wide range of sensors and actuators, the
ecessity for real-time processing of enormous amounts of data, and the implementation of plans for issue solving [211]. As a result
f the system’s complexity, engineers need tools and techniques to aid them in the designing process; adaptive digital twins are
oised to play a significant role in de-risking such complex engineering and cyber–physical projects.

. Explainable AI (XAI) for next generation computing

Intelligent decisions are critical to the success of computing initiatives. Is a computing system stable and robust enough to execute
orkloads? Are the trained models black boxes or causally explainable? These are just a few examples of challenges that are faced
efore a computing system can be implemented [212]. Inaccurate decision-making is expensive in terms of both cost and resource
sage when it comes to these complex and advanced technologies [213]. There have been a number of AI/ML applications in
omputing systems to enhance decision-making for allocation of resources and energy efficiency. Nevertheless, these AI/ML models’
redictions for computing systems are still not practical, explainable, or executable [214]. AI/ML models are frequently hampered
y these constraints. Even if QoS continues to be a primary concern, some recent research have turned their attention to explaining
ow QoS is achieved [215]. Is there anything that researchers can do to further the advancement of the computing community?
s a result, a thorough understanding of Explainable AI (XAI) and hands-on expertise with XAI tools and approaches [216] is
eeded in order to make informed resource management decisions (an example application of AI for Computing). These issues
ay be addressed by using Explainable AI approaches, such as formulating predictions about resource and energy usage and SLA
eviations and then implementing timely, intelligent action to solve them. In order to make computing more feasible, explainable,
nd executable, XAI prediction models must be properly implemented.

. Potential risks of AI-integrated computing

AI can save money, but it requires a highly-trained workforce, that can be expensive at the start. AI’s other drawbacks in
omputing systems would also include the following ones:

• Internet Connectivity Issues: ML/AI techniques based on autonomous computing are frequently hindered by slow internet
connections. There seems to be a latency between transferring information to the cloud/fog/edge and receiving replies. ML
methods for servers are prone to this issue since forecasting speed is among the most important considerations.

• Privacy of Data: AI systems need an enormous quantity of data, which include information on customers and providers.
Understanding who owns the data is far more beneficial than having private information that cannot be attributed to a specific
individual. Challenges about data security and compliance with regulations arise frequently when businesses utilise confidential
material. Autonomic computing with AI necessitates consideration of privacy regulations and data security.

• Possibility of Errors: Although AI may seem exciting, like with any innovative technology, it is not always effective in
accomplishing its goals. During its search for solutions, an AI system may generate many problematic statements on sensitive
topics. With AI, there is a high risk of grave mistakes because of the many options and their implications. Before further usage
of this innovation, trust and control must be established.

• Over-reliance on AI Models: As it stands, AI/ML algorithms are only a small part of complex software-intensive systems.
Software engineers leverage them for completing highly specialized tasks, while designing a large apparatus of more traditional
algorithms around them, including sensor-data sanitization and filtering. Further, an AI model is only as good as the data
it was trained on. Hence, strong data engineering processes are required to select appropriate/representative datasets and
conduct various data engineering steps as well as thorough review processes need to be followed when transfer learning
models are selected. From an autonomics perspective, all these steps need to be carefully handled by the MAPE-K loop, which
will essentially need to act both as a software and a data engineer when conducting adaptations to the ML models.
21
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Fig. 6. Hype cycle for AI-integrated next generation computing.

. Emerging trends and future directions

On the basis of current research, we have selected a number of computing study fields for three distinct maturity levels (5 years,
to 10 years, and more than ten years). We have identified a number of emerging technologies over the next decade, all of which

ave the potential to make efficient use of AI/ML-integrated next-generation computing [122,217–219]. Fig. 6 depicts the hype
ycle for next-generation computing. There has been a lot of study done on cloud computing and IoT, but serverless computing is
urrently at its peak. Under the umbrella of computing, research fields including fog computing, edge computing, AI Orchestration,
nd mobile edge computing are only getting started. It might take up to ten years for the application of computing in these fields to
each maturity. However, the hype cycle for Explainable AI (XAI), AI engineering, hyperscale edge computing, distributed enterprise,
ustainability, quantum Internet and quantum ML is projected to last more than ten years. The hype around smart robots, digital
wins, cyber security, edge AI, human-centric AI, edge intelligence, dew computing and privacy enhancing computation is at an all-
ime high. It is anticipated that they will be fully developed in less than five years under the umbrella of autonomous computing.
xpected to significantly evolve in the next five to ten years, MLOps, AIOps, AI-integrated electric vehicles (EV), decision intelligence
nd exascale computing have likewise hit their height of overblown expectations. Generative AI, hyperautomation, neuromorphic
omputing, hybrid quantum computing, digital finance, 6G and quantum computing all have a long way to go before they reach
he heights of the hype cycle. Grid computing and virtualization have received a lot of attention in the past several years, and they
ight continue to do so over the next five years.

In the following, we have highlighted a number of unsolved problems and research paths that require further investigation.

.1. Cloud computing

• New ensemble machine learning approaches for container management systems, such as Docker Swarm and Kubernetes, are
needed to govern user-based QoS-based container clusters.

• Cloud service dependability and QoS must be maintained through the use of advanced machine or deep learning techniques.
22
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• Network virtualization must be provided at a reasonable cost in an SDN-based cloud computing environment that uses AI/ML
models to minimise energy consumption and boost dependability.

• Using AI/ML, cloud-based Big Data analysis tools may find trends in client behaviour, make better decisions, and better
understand their customers. It is a difficult challenge that has to be solved in order to ensure that scaling choices are executed
or processed in a timely manner utilising AI/ML.

• Thermal-aware task and resource scheduling can be improved by using new AI/ML-inspired methodologies.
• AI/ML-based autonomic computing is becoming increasingly important as the IoT and scientific applications grow.

7.2. Fog computing

• It is imperative that the newest AI and ML approaches be used in order to forecast security vulnerabilities in the fog layer and
IoT devices because of their intrinsic decentralisation.

• AI-based deep learning approaches are needed to estimate resource requirements in advance for different geographic resources
for fog and cloud computing, which need new policies for provisioning and scheduling resources.

• On diverse fog environments, state-of-the-art AI/ML approaches may be employed to schedule tasks.

7.3. Edge computing

• Modern computing systems, which incorporate edge devices as component of datacenters, demand specific IoT-based apps to
be created in order to provide for more encrypted transmission and to protect the privacy of data.

• Due to the resource limitations of IoT edge devices, which cannot run the robust security software and firewalls built
for desktop PCs, Blockchain technology must be used to enhance security using AI/ML. Moreover, innovative software
architectures such as that facilitate IoT devices patching and maintenance could be further enhanced by leveraging AI and
ML.

• AI/ML-based automated decision-making, rather than human-encoded heuristics, presents a lucrative path for optimising edge
systems with massive volumes of data through engineering speed and efficiency.

• AI-based big data analytics methods are needed to handle edge device data in IoT applications at runtime.

7.4. Serverless computing

• AI may be used to enhance the delay and reaction time of tasks in Serverless computing for IoT applications.
• Automatic heart disease detection in IoT and Serverless computing contexts requires an ensemble deep learning-based

intelligent healthcare system.
• How can deep learning on IoT devices increase real-world performance in AI-based intelligent systems by leveraging Serverless

Computing?
• Serverless systems can benefit from threat mitigation strategies based on AI/ML, such as clustering model-based security

analysis.

7.5. Quantum computing

• To increase the size of current quantum chips, keeping under control the amount of noise present during the evolution of the
quantum states.

• To enter, in full, within the era of Noisy Intermediate-Scale Quantum (NISQ) devices, which should allow us to simulate the
dynamics of complex quantum systems.

• To integrate quantum chip with quantum error correction (QEC) that will allow to progress towards Fault-Tolerant Quantum
Computation (FTQC). That will allow to simulate the design and behaviour of novel materials on general purpose quantum
computers, opening up new possibilities in virtually all area of knowledge, from physics matter to the design of novel AI
applications.

• Develop cloud quantum computing infrastructures that, very likely, will be the way in which we will use quantum computer
and simulators: as a booster supporting our local, classical devices.

• To handle the massive amounts of data created by IoT devices, powerful AI and reinforcement learning may be used.
• The most recent AI and ML-based methods may be utilised to dynamically discover and rectify faults to provide a valued and

dependable service. Recent AI and ML approaches can enhance dependability, but they can also raise system complexity by
increasing data processing, which results in higher training costs for AI and ML techniques as a side effect.

.6. Miscellaneous

The advancements in cloud, fog, and edge in the context of IoT have led to concepts such as Cloud-to-Things. The following are
nteresting research directions to explore:
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• The ability to form Decentralized Autonomous Organizations (DAOs) is a concept fundamental to the Cloud-to-Things
computing continuum.

• Rules and agreements can take the form of Blockchain-enabled smart contracts, thus providing for trust among the actors and
organising computing across the continuum [220].

AI/ML can also open up new research directions when used in conjunction with blockchain technology:

• Smart Oracles can be used to establish decentralised monitoring of vertically and horizontally distributed heterogeneous
infrastructures.

• AI/ML and knowledge management methods can be incorporated both within functions of Blockchain-enabled smart contracts
and Smart Oracles.

8. Conclusions and summary

Computing systems have advanced computer science in the past couple of decades and are now the heart of the corporate world,
roviding services based on Cloud, Fog, Edge, Serverless, and Quantum Computing. Many real-world problems that require low
atency and response time have been solved due to modern computing systems. This has helped young talents around the globe to
aunch start-ups allowing large computing capacity for solving challenging problems to speed up scientific progress.

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) have become increasingly popular in recent years
ecause of the advances in accuracy pioneered by them in areas such as computer vision, natural language processing and other
llied applications. For training these models, massive amounts of data has been collected in the previous few years in addition to
he development in state-of-the-art computing hardware such as the Graphics Processing Unit (GPU), Google’s Tensor Processing
nit (TPU) and AI Tesla’s Dojo Processing Unit (DPU). Computational researchers and practitioners should be aware of AI/ML/DL
lgorithms and models. With AI/ML/DL, modern computing may profit from more efficient resource management, while computing
s a vital platform for hosting AI/ML/DL services because of its huge computational capacity. This means that both sides gain from the
ther. Large-scale computing power and external data sources are needed for many AI/ML/DL techniques, which may be more easily
btained via computing systems. This is especially important now that methods for training sophisticated AI, ML, and DL models
an be implemented in parallel and in large quantities. To that end, it is foreseen that continued interest in AI/ML/DL applications
ill spur new research into well-established data centre resource management issues including VM provisioning, consolidation, and

oad balancing, while also making it easier to cope with scale-out challenges. Innovative research on Explainable AI (XAI) might
ave the way for more widespread use of AI in modern computer systems.

AI and ML are bringing important necessary demands for computing systems in the upcoming years, from large-scale het-
rogeneous IoT and sensor networks generating extremely huge data streams to store, maintain, and investigate to QoS-aware
latency, energy, cost, response time) customised computing service adapting for an array of hardware devices while maximising
or multicriteria including software-level QoS constraints and financial restraints. As a result of these needs, new methodologies and
esearch strategies are needed to harness the AI and ML models in order to overcome the challenges such as latency and scalability as
ell as resource and security management. As a cost-effective technique to increase computing application performance, scaling and

lexibility are functional abilities that are yet to completely utilise AI and ML models. AI and ML may be strategically used in resource
anagement and scheduling techniques to maximise QoS to improve modern computing. At this time, there are no comprehensive
odels of service resilience, autonomous methods for managing availability and reliability, and provisioning algorithms that are

ognisant of failures in the current research. Next-generation or futuristic computing could be established with the help of AI/ML
echniques, which can handle these problems quickly and effectively. The implementation of AI/ML-based resource management
olicies can help data to automatically adjust their own energy usage and deliver QoS without affecting the system’s reliability. AI
nd ML techniques may also be used to predict the demand for energy usage in advance by combining renewable and non-renewable
nergy sources. Further, AI/ML modes can be used to analyse Big Data for security breaching. Fig. 7 shows the summary of new
rends and future directions for AI-integrated next generation computing.

In this article, we have given our vision and explored numerous new trends in AI and ML for cloud, fog, edge, serverless and
uantum computing, as well as for other computing platforms and technologies. This is a holistic futuristic research article that
as drawn together breakthroughs and highlighted the obstacles remaining to be solved in implementing the use of AI/ML for
odern computing. We have also developed a conceptual framework for integrating cutting-edge technology in the future to provide

ffective computing services. New research developments related to autonomic computing with embedded intelligence have been
iscussed. In addition, various potential risks of AI-integrated next generation computing have been presented. This work recognised
ecent significant challenges in AI/ML-embedded next generation computing and has summarised research findings with limitations.
dditionally, this futuristic work has examined how current computing issues would be affected by new trends. In this visionary
ork, potential research directions for AI/ML-based next-generation or modern computing are highlighted. It is clear that AI and
L can be used to solve complicated issues in the future, and this forward-thinking strategy inspires other scholars and researchers

o follow suit in a similar fashion. We expect that this visionary research will be useful to practitioners, scientists, engineers
nd researchers who are interested in conducting research in any area of AI/ML-integrated next generation computing in the
24

uture.



Internet of Things 19 (2022) 100514S.S. Gill et al.
Fig. 7. Summary of emerging trends and future directions for AI-integrated next generation computing.
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