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Abstract—Mobile applications in the present have created
tremendous pressure on the computational capabilities of user
equipments. Against this background, mobile edge computing
(MEC) has been proposed to tackle this issue, e.g., by shifting
the computational workload to the edge server. We in this
paper consider a caching enabled task offloading in MEC, for
the sake of joint optimization of task offloading and caching.
We consider both energy consumption and response latency
in the optimization problem and solve the problem by an
alternate optimization algorithm. Extensive experiments have
been conducted to evaluate the algorithm and the simulation
results have shown its advantages such as rapid response latency
and powerful convergence capability.

Index Terms—Mobile edge computing, task offloading, task
caching, jointly, alternate optimization

I. INTRODUCTION

With the increasing number of smart user equipments (UEs)
such as intelligent mobile devices and wearable devices,
various mobile applications have created tremendous pressure
on the computational capabilities of these UEs. To tackle this
issue, mobile edge computing (MEC) has been proposed to
ease the pressure of these mobile devices by shifting the
computational workload to the edge server deployed at the
edge of radio access networks [1] [2]. By doing so, multiple
goals has been achieved. For example, on one hand, the high
computational resources demand can be mitigated at UEs; on
the other hand, for time sensitive applications from UEs, in
comparison to task offloading to the remote cloud center, task
executed at the mobile edge server can greatly reduce the
response time.

In addition, the explosive increment in the number of mobile
applications increases the likelihood of multiple offloading for
the same tasks. In such cases, frequently duplicated offloading
the same tasks to S incurs both large energy consumptions and
long response latency. However, such cases can be avoided
by caching those most frequently requested tasks [3] [4].
For example, UEs communicate with the edge server by
exchanging the beacon information. The edge server can thus

retrieve the global information about the requests of all the
UEs. They can decide which tasks should be cached according
to the popularity and characteristics of these tasks. Once the
task a UE wants to offload is cached at the server, the response
time can be greatly reduced. Currently, most of works have
paid attention to the caching enabled task offloading in MEC
such as [5] [6] [7] [8] [9]. For example, authors in [5] proposed
to jointly optimize the service offloading and task caching
in the long run. To that end, time is slotted and the energy
constraint is posed on the optimization objective across over
the different time slots. Lyapunov optimization framework is
applied to solve the long-term constraint issue. In a caching
enabled MEC system, task caching can avoid the offloading
of duplicate data. Authors in [10] strive to jointly optimize
communication, computation, and caching in MEC systems.
They model this problem as a mixed integer non-convex
optimization issue. To solve it efficiently, the original problem
is decomposed into two subproblems, with each being solved
with low-complexity algorithms.

Similar to the aforementioned works, we in this paper also
consider caching enabled task offloading in MEC systems.
However, the difference lies in that we take into consideration
both the energy consumptions at local side and the response
latency at the edge server as the optimization objective. In
the meanwhile, for part of task offloading in MEC, if the
corresponding task is cached at the edge server, the execution
result at the local side is also needed to construct an entire
computational result together with the part of task execution
at the server. In such a case, both the time overheads and
energy consumptions also increase, which however has not
been considered in most of existing literature.

To be specific, our contributions in this paper can be summa-
rized as follows. First, we propose a generic model to jointly
optimize the task offloading and caching in MEC. Second, an
alternate optimization technology is applied to this problem
by solving the decomposed subproblems respectively. Third,
a series of experiments have been conducted to the evaluate
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the efficiency and effectiveness of the proposed approach.

The rest of paper is organized as follows. In Section II,
a mathematical model is formulated to optimize the task
offloading and task caching in MEC such that the overall
energy consumption and response latency can be minimized.
In Section III, an alternate optimization is applied to solving
the two subproblems decomposed from the original problem.
Extensive experiments have been reported in Section IV,
followed by the conclusion in Section V.

II. SYSTEM MODEL

We in this paper consider a system model consisting of one
mobile edge server S and n UEs. Assume that each UE has a
task for execution. Each UE can choose to offload part of its
own task to .S with a purpose of mitigating the high demands
of computational resources. Each task ¢; can be described as a
triple ¢; = (d;, si, dl;) where d; denotes the input data size of
t; which needs to be offloaded over the wireless channels, s;
the number of CPU cycles needed to accomplish ¢; and dl; the
deadline for the task accomplishment. As introduced earlier,
tasks can be cached at S for future reference, for the reason
that most of UEs with same periods and locations usually have
similar behaviors to a certain extent. The caching size of S is
assumed to be C.

A. Local Execution Model

Owing to the limited computational capabilities of UEs,
each UE can reserve part of ¢; for local execution. Assume
that the ratio of ¢; reserved locally is p;, so the local execution
time of ¢; can be expressed as:

PiSi

tloc,i = fz (1)

where f; is the processing frequency of UE . Due to the
task offloading, the remaining workload for calculation is p;s;.
The corresponding energy consumption for UE ¢ thus can be
calculated as [11]:

Cloci = KipiSif? (2)

where k; is the effective capacitance coefficient of the UT’s
CPU chip [12].

B. Task Offloading Model

When task ¢; is partially offloaded to S for execution. The
offloading time and corresponding energy consumption can
be calculated in what follows. The transmission rate based on
Shannon theorem can be given as:

P;
3
o2 +1 ) )
where P; is the transmission power of UE ¢, B; is the
bandwidth of wireless channel, o2 is the noise power and
I is the interference caused by other UEs utilizing the same
channel as i. Accordingly, the offloading time can be expressed

as: (1 )d
toff,i = 751 : )

Then corresponding energy consumption for task offloading
is:

€offi = tors,i-Fi (5)

As a result, the total energy consumption at local side can be
expressed as

E€sum,i = €loc,i + €off,i (6)

The total energy consumption for ¢; at local side should be
lower than given threshold, since UEs can be utilized for
other purposes. Furthermore, the constraint condition can be
expressed as:

€sum,i < 91 (7)

where 6; represents the given threshold for UE . Generally
speaking, the workload for ¢; should be executed locally if the
total energy consumption exceeds the threshold, otherwise, the
workload can be offloaded to S for the sake of energy savings.

C. Task Caching and Execution Model at S

We consider a caching enabled task offloading in mobile
edge computing in this paper. Each task can be cached at .S
for future reference. However, due to the limited caching size
of S, it is impractical to cache all the tasks at .S. Let variable
¢; to denote whether task ¢; is cached at S. If ¢ is cached,
¢; = 1 and ¢; = 0, otherwise. It is worthwhile mentioning
that speaking of task caching we mean that the corresponding
execution result are cached. To be specific, if task ¢; is cached
at S, the computational result of local part at UE 4 should be
offloaded to S where it combines with the offloading part to
further construct the complete execution result. The execution
time of the offloaded part at S is given as:

t. = (1—pi)si
’ s

where f; is the processing frequency of edger server S.

Task Cached. If task ¢; is cached, then the result caching
is accomplished until the local result has been retrieved from
UE i. Due to the negligible size of execution result compared
to the input data size, we omit the time taken to retrieve the
local result back from UE i. However, the true accomplishment
time for ¢; at S should include three parts, i.e., the offloading
time for transmitting ¢;, the execution time for the offloaded
part and the time for local execution result retrieval. Although
the third part has been omitted, a partial order rendered by it
should be followed. In other words, the true accomplishment
time at S should not precede that at local UE. To be specific,

®)

2(:(:,11 = max{toff,i + ts,i7 tloc,i} (9)
An implicit assumption above is that the two operations are
parallel, i.e., one is the local execution and the other is the of-
floading action. In addition, there are sufficient computational
resources at S, so we assume that each arrived task can be
immediately performed by a virtual machine without queuing
up.

Task Uncached. If task ¢; is not cached, then the result
caching is accomplished independent of the local result, which
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means that S does not need to retrieve the local execute result
from UE 4. As a result, the true accomplishment time for
t; at S only includes two parts, i.e., the offloading time for
transmitting ¢;, the execution time for the offloaded part. Thus,
there is no partial order attached on the accomplishment time.
The accomplishment time at S can be expressed as:

t’ﬂ

acc,t T

toffi+ tsi (10)

To sum up, considering whether the task is cached, the
accomplishment time ¢,..; can be integratedly expressed as:

¢l accz+(1_¢l) acc,i (]1)

D. Problem Formulation

(ZCC i

Before going further, a few assumptions have been made
as follows. First, task caching in this paper only involves
execution result caching. Actually, many task executions can
benefit from the result caching in reality. Second, to evaluate
the performance of task caching strategies in mobile edge
computing usually needs a long-term process and integrates
various factors that influence response latency and energy
consumption. Task caching in most of works means to cache
the service itself by maintenance of virtual machines (VMs),
which however incurs more energy consumption at the edge
server. In contrast, we in this paper focus on one type of
services of which the computational results are reusable. In
the meanwhile, we integrate task caching into task offloading.
Third, MEC can shift the computational workload from local
side to the edge server, so as to mitigate the energy consump-
tion at UEs. However, in addition to the energy consumption
serving as metric to evaluate the performance of caching
enabled task offloading in MEC, the response latency for the
offloaded tasks is also crucial in MEC, for the reason that the
primary reason to apply MEC is to reduce the response latency
by pushing the computational resources from the remote cloud
center to the edge of networks. Accordingly, we have taken
into consideration both the energy consumption at UEs and
the response latency for task execution at the edge server.

Thus, the optimization problem can be mathematically as
follows.

n

(P) IngI‘I)l ;{waom + watace,i } (12)

st esumi <6 i€{1,2,..n} (13)

p = (p1,p2, -, Pn) (14)

pie(0,1)  Vie{l,2 .n} (15)

¢ €{0,1}  Vie{l,2,..n} (16)

wy +we =1 wi,ws € (0,1) 17
max{tioc,i, tace,is tace,i) < dli Vi € {1,2,...,n}  (18)

where the constraint (13) guarantees that the energy consump-
tion on task execution and offloading should be lower than the
specified threshold for each task. w; and wsy are two numeric
values to balance the energy saving at UEs and the response

time for tasks execution at the edge server. The two values
denote the preferences against the energy consumption and
response latency when the problem is optimized. Constraint
(18) guarantees that each task should be accomplished before
the specified deadline.

Challenges. The major difficulty for solving problem P is
that it is a mixed discrete-continuous optimization problem
with the continuous variable p to decide the proportion of
one single task that is executed locally and discrete variable
¢ to decide which task should be cached at S. To obtain the
best solution may take exponential time which is impractical
and infeasible in reality.

III. JOINT OPTIMIZATION OF TASK OFFLOADING AND
TASK CACHING

To tackle this issue, we decompose P into two subproblems
P1 and P2. To be specific, P1 endeavors to optimize task
offloading decision p with an assumption that the caching
policy ¢ is given, and P2 endeavors to optimize the task
caching profile ¢ under the hypothesis of given task offload-
ing decision p. These two optimization problems are solved
alternately in each iteration until convergence condition is
achieved. Let G = > {wi€joc,i + Walqee,i} and we can
obtain:

g(¢7 p) = Z{wleloc,i + w2tacc,i}

i=1

n
= Z wl/k;ipisifi2 + w2{¢itgcc,i + (1 - ¢i)tgcc,i}
=1
Z"L
= Z wikipisifE + wa{pi max{tossi +tsistioei}
i=1

n
+ (1= 0i)(topsi +tsi)} = Zwmipisiff
im1
—toffi —tsit +toffi+t

+ w2{¢l maX{Oytloc,i s,i} (]9)

- ;wlmpisiff + wa; maX{O,pz(f + i + fs)
_%_%}+ 2{%+% i(%“‘%)}
=3l w(ci )

+ wad; max{(),p,;(f di )— (* f)}
+w2(* %)

The initial task caching profile is assumed to be (;S(O) and
q,’)(o) can be established randomly. The problem P1 can be
formulated as follows:

(P1)  minG(¢’, p)
st. (13)(14)(15)(17)(18)

(20)
2y
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Given task caching decision profile (1)(0), problem P1
becomes very easy to solve in terms of p. For each task %,
as the offloading profile p varies, two cases may take place
with regards to K = max{0, p;(s;/fi + di/ri + si/fs) —
di/ri — si/fs}. To be specific, if tioe; > toffi + tsis
K = pi(si/fi +difri + si/fs) — di/ri — si/fs; and K =0,
otherwise. Give the task caching profile ¢>(O), all the con-
straints become the linear constraints. Thus, we can further
confine p; by solving constraints (13) and (18), respectively.
The corresponding result for solving constraint (13) is given
as:

97; — dzPZ/Tl
; vy 22
= Risi fE— Pidi /g @2
and the result for solving constraint (18) is given as:
dl; f;
ps < 2 3)
8i
di/ri + si/ fi — dl;

di/ri + si/ fi

In addition, let ¢;oc; > toff,i+1s,i, 1.€., the execution time of
the partitioned task at the local side is larger than the response
time of the other part offloaded to the edge server, and we can
get:

di/m + Sz/fS

si/ fi +di/ri + si/ fs
Based on the above descriptions, the algorithm called TOD-

M for obtaining the optimal p can be developed as shown in
Alg. 1

pi = (25)

Algorithm 1: Task Offloading Decision Making (TODM)

Input: ¢*, P, t, 0, 02, I, f, fs, w1, wa, K
Output: p and G

1 g=0;
2 for each t; in task set do
1 0i—diPi/ri |
3 pi = KiSi f2—Pidi/T;°
dlifi .
4 /712 = T.f,
3 _ dijritsi/fi—dl;.
5 Pi = di/ri+si/fi
6 4 _ di/rit+si/fs .
Py = si/fit+di/ri+si/fs’
7 | p?=0and pf =1;
8 Select p} from p = {p}, ..., p%} by solving
p;k = arg min{wleloc,i + w2tacc,i};
9 g=9+ min{wleloc,i + w2tacc,i};

10 end

1 Construct p = (p}, p3, ..., p5);
12 return p, g;

TODM can make an offloading decision with regards to p in
real time since its time complexity is of O(n). It is worthwhile
mentioning that the global objective value g is constructed
based on each task.

TODM runs with ¢° as the parameter, and thus we can
obtain the task offloading decision p°. Now it comes to the
second subproblem P2 which strives to optimize the caching

o b i
1.98 ==

TODM
GA

Objective Values

= = = =
o -3 o N
=) ~ - =)
! L f

=

3

&
L

I
1
1
1
|
1
1
1
1
B R e
1
1
I
1
1
1
1
1
1
1
1
1
1
|

1.86

0 10 20 30 40 50 60
Number of Iterations

Fig. 1. The convergence comparison between TODM and GA

decision profile ¢ given p°. Specifically, the subproblem P2
can be formulated as:

(P2)  minG(¢,p°)

(13)(17)(18)

The subproblem P2 is actually a knapsack problem with
the decision variable ¢. Exhaustive searching is impractical
in reality due to the NP hardness of this problem. Therefore,
in this paper, we propose to solve P2 by GA. As one of swarm
intelligence algorithms, GA is featured by simple deployment,
fast convergence and so on.

The two subproblems P1 and P2 can be alternately solved
in each iteration until convergence condition is achieved. To

be specific, the procedure of solving problem P can be shown
in Alg. 2.

(26)

s.t. 27

Algorithm 2: Joint Optimization of Task Offloading and
Task Caching (TOTC)

1 Construct qbo;
2 k=0;
3 while Ag > e do

// Solve subproblem Pl
a | pF.g=TODM($");
5 Obtain p**1, g, by GA;

// Solve subproblem P2
6 | Ag=lg—a
7 k=k+1;
8 end
9 return p, ¢, g;

s

IV. EXPERIMENTAL EVALUATION
A. Experimental Settings

In this section, a series of experiments have been carried
out to evaluate the joint optimization of task offloading and
task caching in MEC proposed in this paper. Before going
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Fig. 2. The response time comparison with the increasing number of iterations

further, the experimental setting ups are introduced in what
follows. Each UE decides to offload a task S for execution
and each task is randomly generated with d; varying from
10 to 30, s; from 10 to 60, di; from O to 1. The number of
UEs is 20. For the GA involved parameters, the crossover and
mutation probability are set to 0.2 and 0.02, respectively. The
population size and the number of iterations are 100 and 300,
respectively. The chromosome length is the number of UEs.
In additions, wy and wo are set to 0.7 and 0.3 respectively.

B. Simulation Results and Analysis

At the beginning, we investigate the convergence capacity
of TOTC. TOTC alternately applies TODM and GA for min-
imizing the problem P. The experimental result is shown in
Fig. 1 where the x coordinate denotes the number of iterations
and the y coordinate denotes the objective values with regards
to problem P. During each iteration, TODM and GA record
the currently best p, ¢ and the best objective value. As the
number of iteration increases, TODM and GA tend to converge
to the optimal value as shown in this figure. For example,
when the number of iterations is 60, both TODM and GA
are convergent to one point. It is worth noticing that the task
offloading decision p has little influence on GA when it strives
to obtain the task caching profile since the best objective value
obtained by GA seems unchanged as the number of iterations
increases. On the other hand, from the figure, TODM has
shown relatively powerful convergence capability.

Second, the response time of TODM and GA is recorded
in Fig. 2 where the x coordinate represents the number of
iterations and the y coordinate represents the response time.
From the figure, we can obviously observe that TODM can
make a realtime response no matter how the number of
iterations increases. However, the response time of GA rapidly
increases with the increasing number of iterations. To sum
up, GA can obtain a better objective value at the beginning
compared to TODM at the expense of relatively long response
time.

V. CONCLUSION

Extensive works have focused on task offloading and task
caching in MEC systems, in hope to reduce the energy con-
sumption at the local UEs on one hand and reduce the response
latency on the other hand. We in this paper have proposed
a optimization model to jointly optimize task offloading and
task caching in MEC with regards to energy consumption and
response latency. To solve this problem including both the
continuous variable (i.e., task offloading decision) and discrete
variable (i.e., task caching decision), an alternate optimization
algorithm has been put forward to solve the problem.
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