
Software Aging in Mobile Devices:
Partial Computation Offloading as a Solution

Huaming Wu and Katinka Wolter
Department of Mathematics and Computer Science

Freie Universität Berlin, Berlin, Germany

Email: {huaming.wu and katinka.wolter}@fu-berlin.de

Abstract—Long running applications on resource-constrained
mobile devices can lead to software aging, which is a critical
impediment to the mobile users due to its pervasive nature.
Mobile offloading that migrates computation-intensive parts
of applications from mobile devices onto resource-rich cloud
servers, is an effective way for enhancing the availability of
mobile services as it can postpone or prevent the software aging
in mobile devices. Through partitioning the execution between
the device side and the cloud side, the mobile device can have
the most benefit from offloading in reducing utilisation of the
device and increasing its lifetime. In this paper, we propose a
path-based offloading partitioning (POP) algorithm to determine
which portions of the application tasks to run on mobile devices
and which portions on cloud servers with different cost models
in mobile environments. The evaluation results show that the
partial offloading scheme can significantly improve performance
and reduce energy consumption by optimally distributing tasks
between mobile devices and cloud servers, and can well adapt
to changes in the environment.

Index Terms—software aging; mobile device; offloading; ap-
plication partitioning

I. INTRODUCTION

Software aging is a phenomenon in computer systems,

caused by resource exhaustion and characterized by pro-

gressive software performance degradation when executing

software applications continuously for a long period of time

[1], [2]. Unlike a PC that is often turned off or rebooted on an

average of every seven days, a mobile device may continue

to be used without a reboot for much longer. Therefore,

software aging in resource-constrained mobile devices brings

in a considerable challenge to the ultimate user experience

[4]. Although much research has been devoted to mobile

application development rather less attention has been paid

to software aging as experienced by mobile users.

Mobile offloading is becoming a promising method to coun-

teract software aging by migrating heavy computation from

mobile devices to remote cloud servers and hence significantly

improves the performance and prolongs the battery life of

devices. However, not all applications are energy-efficient and

time-saving when they are migrated to the cloud. It depends

on whether the computational cost saved from offloading

outperforms the extra communication cost [5]. Therefore,

offloading all computation components of an application to

the cloud is not always necessary or effective.

To achieve a good performance, much attention has been

paid to application partitioning problems, i.e., to decide which

parts of an application should be offloaded to a powerful

cloud server and which parts should be executed locally

on the mobile device such that the total execution cost is

minimized. A graph can be constructed in which vertices

represent computational costs and edges reflect communica-

tion costs [6]. By partitioning the vertices of the graph, the

computation can be divided among processors of local mobile

devices and remote cloud servers. Partitioning algorithms,

whose main goal is to keep the whole cost as small as

possible, play a critical role in a high-performance offloading

system. However, traditional graph partitioning algorithms [7],

[8] cannot be applied directly to mobile offloading systems,

since they only consider the weights on the edges of the

graph, neglecting the weight of each node. Some application

partitioning solutions heavily depend upon programmers and

middleware to partition the applications, which limits their

uses [9].

The purpose of this paper is to study how mobile offloading

counteracts software aging, we explore the methods of how to

deploy an offloadable application in a more optimal way, by

dynamically and automatically determining which parts of the

application tasks should be processed on the cloud server and

which parts should be left on the mobile device to achieve

a particular performance target (low energy consumption,

low response time, etc.). We study how to disintegrate and

distribute modules of application between mobile devices and

cloud servers, and effectively utilize the cloud resources. The

problem of whether or not to offload certain parts of an

application to the cloud depends on the following factors:

CPU speed of the mobile device, wireless network bandwidth,

transmission data size, and speed of the cloud server [10].

When considering these factors, we construct a weighted

consumption graph (WCG) according to the estimated com-

putational and communication costs, and further derive a new

path-based offloading partitioning (POP) algorithm designed

especially for applications that can be sequentially executed.

Such partial offloading scheme can be used to tackle the

problem of software aging in mobile environments. Instead

of making an individual decision for each task like the 0-1

ILP approach proposed in [11], our algorithm is much more

efficient in finding the optimal offloading partitioning plan for

the whole application with all tasks.

The remainder of this paper is organized as follows. Section

II briefly introduces the partitioning challenges. The POP

algorithm is proposed in Section III. Section IV gives some

valuable evaluation results. Finally, Section V concludes.

125978-1-5090-1944-1/15/$31.00 ©2015 IEEE

2

II. PARTITIONING PROBLEMS

In this section, we illustrate how to construct weighted

consumption graphs for mobile applications. We describe how

the optimization problem is defined and which assumptions

are made.

A. Construction of Weighted Consumption Graph

The construction of weighted consumption graphs (WCGs)

is critical for application partitioning. Some mobile applica-

tions (e.g., natural language processing, face recognition [12],

augmented reality [13] and online social applications [14]) can

be represented by a sequential list of fine-grained tasks and

each task is sequentially executed, with output data generated

by one task as the input of the next one [15].

Since not all the application tasks are suitable for remote

execution, we focus on offloadable tasks that can be executed

either on the mobile device or offloaded onto the cloud side

for execution. Compared with the scheme that offloads all the

offloadable tasks to the cloud, a partitioning scheme is able

to achieve a fine granularity for computation offloading. It’s

possible to partition the graph between local (mobile device)

and remote (cloud server) execution, since different partitions

can incur different costs. Besides, the total cost incurred due

to offloading depends on multiple factors, such as device

platforms, networks, clouds, and workloads. Therefore, the

application has different optimal partitions under different

environments and workloads.

There are two types of costs in mobile offloading systems:

one is computational cost of running the application tasks

locally or remotely (including memory cost, processing time

cost, and so on) and the other is communication cost for the

application tasks’ interaction (associated with movement of

data and requisite messages). Even the same task can have

different costs on the mobile device and the cloud in term

of execution time and energy consumption. As cloud servers

usually execute much faster than mobile devices having a

powerful configuration, it can save energy and improve per-

formance through offloading [16]. However, when vertices are

assigned to different sides, the interaction between them leads

to extra communication cost. Thus, we try to find the optimal

assignment of vertices for graph partitioning and computation

offloading by trading off the computational costs with the

communication costs.

Call graphs are widely used to describe data dependencies

within a computation, where each vertex represents a task

and each edge denotes the calling relationship from the caller

to the callee. Figure 1 shows a WCG. The computational

costs are represented by vertices, while the communication

costs are expressed by edges. We denote the dependency

of an application’s tasks and their corresponding costs as a

directed acyclic graph G = (V,E), where a set of vertices

V = (v1, v2, · · · , vN) represents N application tasks and

each vertex v ∈ V is annotated with a two-tuple w(v) =[
w

(l)
v , w

(c)
v

]
, where w

(l)
v and w

(c)
v denote the computational

cost of executing the task v locally on the mobile device and
remotely on the cloud, respectively. Besides, vertices S and

D are introduced for application start and end that are always

located on the mobile device. The edge set E ⊂ V × V
represents the communication cost amongst tasks. An edge

evivj ∈ E represents the frequency of invocation and data

access between nodes vi and vj , where vertices vi and

vj are neighbors. The weight of the edge w(evivj) is the

communication cost when the tasks vi and vj are executed

on different sides.

A candidate offloading decision is described by one or more

cuts in the WCG, which separate the vertices into two disjoint

sets, one representing tasks that are executed locally and the

other one implying tasks that are offloaded to the remote

server [17]. Hence, taking the optimal offloading decision is

equivalent to partitioning the WCG such that an objective

function is minimized [18]. We need to efficiently select

the most effective partitioning plan from many candidates

generated by the partitioning module.

The red dotted line in Fig. 1 is one possible plan, indicating

the partitioning of computational workload in the application

between the mobile device and the cloud, where Vl is the local
set in which tasks are executed locally and Vc is the cloud

set in which tasks are offloaded to the remote cloud. We have

Vl ∩ Vc = ∅ and Vl ∪ Vc = V . Further, Ecut is the edge set

where the graph is cut into two parts.

B. Cost Models

Mobile application partitioning aims at finding the optimal

partitioning solution that leads to the minimum execution

cost, in order to make the best tradeoff between time/energy

savings and transmission costs/delay. The optimal partitioning

decision depends on user requirements/expectations, device

information, network bandwidth, and the application itself.

Device information includes the execution speed of the device

and the workloads on it when the application is launched. If

the device computes very slowly and the aim is to reduce

execution time, it is better to offload more computation to the

cloud [19]. Network bandwidth affects data transmission for

remote execution. If the bandwidth is very high, the cost in

terms of data transmission will be low. In this case, it is better

to offload more computation to the cloud.

The partitioning decision is made based on the cost esti-

mation (computational and communication costs) before the

program execution. According to Fig. 1, we can formulate the

partitioning problem as:

Ctotal =
∑
v∈V

Iv · w(l)
v +

∑
v∈V

(1− Iv) · w(c)
v +

∑
evivj∈E

Ie · w(evivj), (1)

where the total cost is the sum of computational costs (local

and remote) and communication costs of cut affected edges.

The local and remote nodes must belong to different parti-

tions. One possible solution is in the following way:

Iv =

{
1, if v ∈ Vl
0, if v ∈ Vc and Ie =

{
1, if e ∈ Ecut

0, if e /∈ Ecut
. (2)

126

3

S 1Mobile
device

Cloud

l+1

l

N D4

2

Vc
3

k-1

k

wv2
(l) ,wv2

(c)⎡
⎣

⎤
⎦

wv1
(l) ,wv1

(c)⎡
⎣

⎤
⎦

wv3
(l) ,wv3

(c)⎡
⎣

⎤
⎦

wvN
(l) ,wvN

(c)⎡
⎣

⎤
⎦

wvl+1
(l) ,wvl+1

(c)⎡
⎣

⎤
⎦

wvl
(l) ,wvl

(c)⎡
⎣

⎤
⎦wvk

(l) ,wvk
(c)⎡

⎣
⎤
⎦

wv4
(l) ,wv4

(c)⎡
⎣

⎤
⎦ wvk−1

(l) ,wvk−1
(c)⎡

⎣
⎤
⎦

w(ev1v2)

w(ev3v4)

w(evk−1vk)

w(evlvl+1)

Ecut

Vl
Fig. 1. Construction of weighted consumption graph

We seek to find an optimal cut in the WCG such that some

tasks of the application are executed on the client side and the

remaining ones on the server side. The optimal cut minimizes

an objective function and satisfies a mobile device’s resource

constraints. The objective function expresses the general goal

of a partition as follows:

1) Minimum Response Time: the communication cost de-

pends on the size of transferred data and the network band-

width, while the computational cost is impacted by the

computation time. The total time spent due to offloading can

be calculated as:

Ttotal(I) =
∑
v∈V

Iv ·T (l)
v +

∑
v∈V

(1−Iv)·T (c)
v +

∑
e∈E

Ie·T (tr)
e , (3)

where T
(l)
v = F · T (c)

v : the computing time of task v on the

mobile device when it is executed locally; F : the speedup fac-
tor, the ratio of the cloud server’s execution speed compared

to that of the mobile device, since the computation capacity

of cloud infrastructure is stronger than that of the mobile

device, we have F > 1; T
(c)
v : the computing time of task v

on the cloud server once it is offloaded, T
(tr)
e = D

(tr)
e /B: the

communication time between the mobile device and the cloud;

D
(tr)
e : the amount of data that is transmitted and received; B:

the current wireless bandwidth.

The saved response time in the partitioning scheme com-

pared to the scheme without offloading is calculated as:

Tsave(I) =
Tlocal − Ttotal(I)

Tlocal
· 100%, (4)

where Tlocal =
∑
v∈V T

(l)
v is the local time cost when all the

application tasks are executed locally on the mobile device.

2) Minimum Energy Consumption: if the minimum energy

consumption is chosen as the objective function, we can

calculate the total energy consumed by the mobile device due

to offloading as:

Etotal(I) =
∑
v∈V

Iv ·E(l)
v +

∑
v∈V

(1− Iv) ·E(i)
v +

∑
e∈E

Ie ·E(tr)
e ,

(5)

where E
(l)
v = Pm ·T (l)

v : the energy consumed of task v on the

mobile device when it is executed locally, E
(i)
v = Pi · T (c)

v :

the energy consumed of task v on the mobile device when

it is offloaded to the cloud, E
(tr)
e = Ptr · T (tr)

e : the energy

spent on the communication between the mobile device and

the cloud. Pm, Pi and Ptr are the powers of the mobile device

for computing, while being idle and for sending or receiving

data, respectively.
The saved energy when compared to the scheme without

offloading is:

Esave(I) =
Elocal − Etotal(I)

Elocal

· 100%, (6)

where Elocal =
∑
v∈V E

(l)
v is the local energy cost when all

the application tasks are executed on the mobile device.
3) Minimum of the Weighted Sum of Time and Energy: if

we combine both the response time and energy consumption,

we can design the cost model for partitioning as follows:

Wtotal(I) = ω · Ttotal(I)
Tlocal

+ (1− ω) · Etotal(I)

Elocal

, (7)

where 0 ≤ ω ≤ 1 is a weighting parameter used to indicate

relative importance between the response time and energy

consumption. Large ω favors response time while small ω
favors energy consumption. In some special cases perfor-

mance can be traded for power consumption and vice versa

[20], therefore we can use the ω parameter to express such

special cases preferences for different applications. Ttotal(I)
and Etotal(I) are the response time and energy consumption

with the partitioning solution I , respectively. To eliminate the
impact of different scales of time and energy, they are divided

by the local costs. If Ttotal(I)/Tlocal is less than 1, the par-

titioning will increase the application’s power consumption.

Similarly, if Etotal(I)/Elocal is less than 1, it will reduce the

application’s performance.
The saved weighted sum of time and energy in the parti-

tioning scheme compared to the scheme without offloading is

calculated as:

Wsave(I) =

[
ω · Tlocal − Ttotal(I)

Tlocal
+

(1− ω) · Elocal − Etotal(I)

Elocal

]
· 100%. (8)

III. PARTITIONING ALGORITHM FOR OFFLOADING

In this section, we introduce the POP algorithm on the basis

of the constructed WCGs. Through application partitioning,

the mobile device can have the most benefit from offloading in

reducing utilisation of the device and increasing its lifetime,

which slows down software aging as a result.

127

4

A. Algorithmic Process
The POP algorithm takes a WCG as input which represents

an application’s operations/calculations as the nodes and the

communication between them as the edges. Each node has

two costs: the first one is the cost of performing the operation

locally (e.g., on the mobile phone) and the second one is the

cost of performing it elsewhere (e.g., on the cloud server).

The weight of the edges is the communication cost to the

offloaded computation. It is assumed that the communication

cost between operations in the same location is negligible.
All possible paths for task execution flow are illustrated in

Fig. 2 [21]. A link between the adjacent nodes represents data

dependence between the tasks. In this case, data dependence

requires that task k can only be started after the completion

of task k − 1, since the output data of task k − 1 is the

input data of task k. When an offloadable task k is offloaded
to the cloud side for execution, we name this task with k∗

(to classify with the situation when the task k is for local

execution). In wireless environments like cellular networks,

the downlink and uplink bandwidths are usually different from

each other, therefore, we denote si,i+1 as the cost for sending

data from the mobile device to the cloud, and denote ri,i+1 as

the cost for receiving data from the cloud. Further, nodes 0 and
N+1 are introduced for application initiation and termination,
respectively.

Each node is denoted as v
(p)
j , and labeled with its weighting

cost w
(p)
j , where 1 ≤ j ≤ N and p ∈ {c, l}. Therefore,

each node can either be executed locally on the mobile device

with computational cost w
(l)
j or offloaded to the cloud server

with computational cost w
(c)
j . Since nodes v0 and vN+1 are

introduced for application initiation and termination that are

labeled with v
(l)
0 and v

(l)
N+1, respectively.

Algorithm 1 A Partitioning Algorithm for Offloading

//This function performs an offloading partitioning algorithm

1: //Start from the node v0 that always locates locally

2: C
(l)
0 = 0, C

(c)
0 =∞

3: for i = 1 : N do
4: //recursively compute the labels of all the nodes

5: C
(c)
j = min

{
C

(c)
j−1 + w

(c)
j , C

(l)
j−1 + sj−1,j + w

(c)
j

}

6: C
(l)
j = min

{
C

(l)
j−1 + w

(l)
j , C

(c)
j−1 + rj−1,j + w

(l)
j

}

7: end for
8: C

(c)
N+1 =∞

9: C
(l)
N+1 = min

{
C

(l)
n , C

(c)
N + rN,N+1

}

10: return finding a path from node v
(l)
0 to node v

(l)
N+1

The algorithmic process is illustrated in Algorithm 1. Since

the input data of the application is from the mobile device,

let C
(l)
0 = 0 and C

(c)
0 = ∞. For each node, take v

(l)
j as

an example, there are two possible edges from its precedent

nodes to it, i.e., v
(c)
j−1 and v

(l)
j−1. The edge that leads to less

value of C
(l)
j according to equation: C

(l)
j = min

{
C

(l)
j−1 +

w
(l)
j , C

(c)
j−1 + rj−1,j + w

(l)
j

}
is added into the graph. The

partitioning result is actually an execution path from node

v
(l)
0 to node v

(l)
N+1. It contains information about the costs and

reports which tasks should be performed locally and which

should be offloaded.

B. Example

An example by applying the optimal partitioning algorithm

for linear topology is given in Fig. 3. We use the minimum

response time as the partitioning cost model. The speedup

factor is set as F = 3, sincew(vj) =
[
w

(l)
j , w

(c)
j

]
, we have all

the computational costs: {w(1),w(2),w(3),w(4),w(5)} =
{[3, 1], [6, 2], [9, 3], [6, 2], [3, 1]}. The costs for transmitting

data from the device to the cloud: {s01, s12, s23, s34, s45} =
{10, 4, 3, 3, 2}, and the costs for receiving data from the cloud:

{r12, r23, r34, r45, r56} = {3, 2, 3, 2, 5}. Results obtained by

using the POP algorithm are as shown in Fig. 3, the optimal

partitioning plan is 0→ 1→ 2∗ → 3∗ → 4∗ → 5→ 6, where
nodes 2, 3 and 4 are offloaded to the cloud, while nodes 1

and 5 are processed locally.

IV. EVALUATION

To evaluate the partitioning algorithm, we need to know

three different kinds of values as follows:

• Fixed Values: they are set by the mobile application

developer, determined based on a large number of exper-

iments. For example, the power consumption values of

Pm, Pi, and Ptr are parameters specific to the mobile

system. We use an HP iPAQ PDA with a 400-MHz

Intel XScale processor that has the following values:

Pm ≈ 0.9 W, Pi ≈ 0.3 W, and Ptr ≈ 1.3 W [5].

• Current Values: such parameters represent some state

of mobile devices, e.g., the size of transferred data, the

value of current wireless bandwidth B and the speedup

factor F that depends on the speed of current cloud

server and the mobile device.

• Calculated Values: cannot be determined by application

developers. For a given application, the computational

cost is affected by input parameters and device charac-

teristics, can be measured using a program profiler. The

communication cost is related to transmitting codes/data

via wireless interfaces such as WiFi or 3G, it can be

tracked by a network profiler.

Performance evaluation results encompass comparisons

with other existing schemes, in contrast to the energy con-

servation efficiency and execution time. We compare the

partitioning results with two other intuitive strategies without

partitioning and, for ease of reference, they are listed as

follows:

• No Offloading (Local Execution): all application tasks

are running locally on the mobile device and there is no

communication cost incurred. This may be costly since

as compared to the powerful computing capability at the

cloud side, the mobile device is limited in processing

speed and battery life.

• Full Offloading: all computation tasks of mobile ap-

plications (except the unoffloadable tasks) are moved

from the local mobile device to the remote cloud for

128

5

0 1Mobile
device

Cloud

N-1

N*

N N+12

1*

s01 s12 s23

r23r12 rN , N+1rN−1, N
rN−2, N−1

sN−2, N−1
sN−1, N

C1
(l)C0

(l) C2
(l) CN−1

(l) CN
(l) CN+1

(l)

CN
(c)CN−1

(c)
C1

(c) C2
(c)

2* N −1*

Fig. 2. All possible paths for task execution flow.

0 1

2*

3Mobile
device

Cloud 3*

4

4* 5*

5 6

1*

2

0

10

11

3

4

9 12

9 18 21

3 2

14 15

19 19

r12 ,r23,r34 ,r45,r56{ } = 3,2,3,2,5{ }s01,s12 ,s23,s34 ,s45{ } = 10,4,3,3,2{ }
Fig. 3. An example by applying the POP algorithm

execution. This may significantly reduce the implementa-

tion complexity, which makes the mobile devices lighter

and smaller. However, full offloading is not always the

optimal choice since different application tasks may have

different characteristics that make them more or less

suitable for offloading [22].

• Partial Offloading (With Partitioning): with the help of

the POP algorithm, all offloadable tasks are partitioned

into two sets, one for local execution on the mobile

device and the other for remote execution on the cloud

server. Before a task is executed, it may require certain

amount of data from other tasks. Therefore, data migra-

tion via wireless networks is needed between tasks that

are executed at different locations.

We define the saved cost in the partial offloading scheme

compared to that in the no offloading scheme as Offloading
Gain, which can be formulated as:

Offloading Gain = 1− Partial Offloading Cost
No Offloading Cost

· 100%. (9)

The offloading gains in terms of time, energy and the weighted

sum of time and energy are described in Eq. (4), Eq. (6) and

Eq. (8), respectively.

We also use the example discussed above and try to find

how the partitioning result changes as the wireless bandwidth

B or the speedup factor F varies.

As depicted in Fig. 4, the speedup factor is set as F = 3.
Since the low bandwidth results in much higher costs for data

transmission, the full offloading scheme cannot benefit from

offloading. Given a relatively large bandwidth, the response

time or energy consumption obtained by the full offloading

scheme slowly approaches to the partial offloading scheme

because the optimal partition includes more and more tasks

running on the cloud side until all offloadable tasks are

offloaded to the cloud. With the higher bandwidth, they begin

to coincide with each other and only decrease because all

possible nodes are offloaded and the transmissions become

faster. Both response time and energy consumption have the

same trend as the wireless bandwidth increases. Therefore,

bandwidth is a critical condition for offloading since the

mobile system could benefit a lot from offloading in high

bandwidth environments, while with low bandwidths, the no

offloading scheme is preferred.

As shown in Fig. 5, the bandwidth is fixed as B = 3 MB/s.

It can be seen that offloading benefits from higher speedup

factors. When F is very small, the full offloading scheme can

reduce energy consumption of the mobile device, however

it takes much more response time than the no offloading

scheme. The partial offloading scheme that adopts the POP

algorithm can effectively reduce execution time and energy

consumption, while adapting to environmental changes.

From Figs. 4-5 we can tell that the full offloading scheme

performs much better than the no offloading scheme under

certain adequate wireless network conditions, because the

execution cost of running methods on the cloud server is

significantly lower than that on the mobile device when the

speedup factor F is large. The partial offloading scheme

outperforms the no offloading and full offloading schemes

and significantly improves the application performance, since

it effectively avoids offloading tasks in the case of large

transition costs between consecutive tasks compared to the full

offloading scheme, and offloads more appropriate tasks to the

cloud server. In a word, neither running all application tasks

locally on the mobile terminal nor always offloading their

execution to a remote server, can offer an efficient solution,

but rather our partial offloading scheme can do. Therefore,

129

6

Wireless Bandwidth B (MB/s)
0 1 2 3 4 5 6

R
es

po
ns

e
Ti

m
e

(s
)

0

20

40

60

80

100

120

140

160

No Offloading
Full Offloading
Partial Offloading

(a) Response Time

Wireless Bandwidth B (MB/s)
0 1 2 3 4 5 6

En
er

gy
 C

on
su

m
pt

io
n

(J
)

0

20

40

60

80

100

120

140

160

180

200

No Offloading
Full Offloading
Partial Offloading

(b) Energy Consumption

Fig. 4. Comparisons of different schemes under different wireless bandwidths when the speedup factor F = 3

Speedup Factor F
1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
Ti

m
e

(s
)

5

10

15

20

25

30

35

No Offloading
Full Offloading
Partial Offloading

(a) Response Time

Speedup Factor F
1 2 3 4 5 6 7 8 9 10

En
er

gy
 C

on
su

m
pt

io
n

(J
)

6

8

10

12

14

16

18

20

22

24

26

No Offloading
Full Offloading
Partial Offloading

(b) Energy Consumption

Fig. 5. Comparisons of different schemes under different speedup factors when the bandwidth B = 3 MB/s

Wireless Bandwidth B (MB/s)
0 1 2 3 4 5 6 7 8

O
ffl

oa
di

ng
 G

ai
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Min Response Time
Min Energy Consumption
Min Weighted Time and Energy

(a) When speed factor F = 3

Speedup Factor F
1 2 3 4 5 6 7 8 9 10

O
ffl

oa
di

ng
 G

ai
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Min Response Time
Min Energy Consumption
Min Weighted Time and Energy

(b) When bandwidth B = 3 MB/s

Fig. 6. Offloading gain under different cost models

the partial offloading scheme can greatly release the mobile

devices from intensive processing and then avoids resource

exhaustion, which could lead to software aging.

We then compare the cost savings under three different

cost models. Both the weights of response time and energy

consumption are set as 0.5.

130

7

In Fig. 6(a), when the bandwidth B is low, the offloading

gains for all three cost models are very small and almost

coincide. That’s because more time/energy will be spent in

transferring the same data due to the low network bandwidth,

resulting in execution time increases. As B increases, the

offloading gains firstly arise drastically and then the increases

become slower. It can be concluded that the optimal partition

includes more and more tasks running on the cloud side until

all the tasks are offloaded to the cloud when the bandwidth

increases. Among the three cost models, the minimum energy

consumption model has the largest offloading gain, followed

by the minimum weighted sum of time and energy, while the

response time benefits the least from the offloading. Similarly,

Figure 6(b) demonstrates how the partitioning result varies as

the speedup factor F changes. When F is small, the offloading

gains are very low since a small value means very little

computational cost reduction from remote execution. As F
increases, the offloading gains firstly arise drastically and then

approach to the same value. That’s because the benefits from

offloading cannot neglect the extra communication cost.

V. CONCLUSION

To counteract software aging in mobile devices, we propose

a new application partitioning algorithm for offloading, which

aims to split a given application into local and remote parts

while keeping the total cost as small as possible. In general,

offloading is beneficial if remote execution has a better per-

formance than local execution, or, equivalently, if the penalty

for transmitting the data to the cloud server is less than gain

in time or energy obtained from using a remote resource

more capable than the local one. Here we only consider two

objectives (i.e., minimizing the total response time or energy

consumption), actually this partitioning algorithm can be used

for multi-objective optimization. For example, the weighting

parameter can be set by the user to express preferences of

different objectives.
The partial offloading scheme is able to effectively reduce

the application’s execution time as well as energy consump-

tion. Further, it can adapt to environment changes to some

extent and avoids a sharp decline in application performance

once the bandwidth falls dramatically. Therefore, when run-

ning some complex applications for a long period of time, the

system performance will not degrade sharply and the device

stability is guaranteed by avoiding software aging.

REFERENCES

[1] J. Zhao, Y. Jin, K. S. Trivedi, and R. Matias Jr, “Injecting memory leaks
to accelerate software failures,” in Software Reliability Engineering
(ISSRE), 2011 IEEE 22nd International Symposium on, pp. 260–269,
IEEE, 2011.

[2] J. Alonso, J. Torres, J. L. Berral, and R. Gavalda, “Adaptive on-line
software aging prediction based on machine learning,” in Dependable
Systems and Networks (DSN), 2010 IEEE/IFIP International Confer-
ence on, pp. 507–516, IEEE, 2010.

[3] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software reju-
venation: Analysis, module and applications,” in Fault-Tolerant Com-
puting, 1995. FTCS-25. Digest of Papers., Twenty-Fifth International
Symposium on, pp. 381–390, IEEE, 1995.

[4] S. Tenkanen, “User experienced software aging: test environment,
testing and improvement suggestions,” Master’s thesis, University of
Tampere, 2014.

[5] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?,” Computer, vol. 43, no. 4, pp. 51–
56, 2010.

[6] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel
computing,” Parallel computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[7] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal of the
ACM (JACM), vol. 44, no. 4, pp. 585–591, 1997.

[8] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in mobile
cloud computing,” ACM SIGMETRICS Performance Evaluation Review,
vol. 40, no. 4, pp. 23–32, 2013.

[9] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a compu-
tation offloading framework for smartphones,” in Mobile Computing,
Applications, and Services, pp. 59–79, Springer, 2012.

[10] Y. Liu and M. J. Lee, “An effective dynamic programming offloading
algorithm in mobile cloud computing system,” in Wireless Communica-
tions and Networking Conference (WCNC), 2014 IEEE, pp. 1868–1873,
IEEE, 2014.

[11] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services, pp. 49–62, ACM, 2010.

[12] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload: an
efficient code partition algorithm for mobile cloud computing,” in Cloud
Networking (CLOUDNET), 2012 IEEE 1st International Conference on,
pp. 80–86, IEEE, 2012.

[13] L. Yang, J. Cao, and H. Cheng, “Resource constrained multi-user com-
putation partitioning for interactive mobile cloud applications,” tech.
rep., Technical report, Dept. of Computing, Hong Kong Polytechnic
Univ, 2012.

[14] A.-C. OLTEANU and N. ŢĂPUŞ, “Tools for empirical and operational
analysis of mobile offloading in loop-based applications,” Informatica
Economica, vol. 17, no. 4, pp. 5–17, 2013.

[15] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks
for computation-intensive applications in mobile cloud computing,” in
Computer Communications Workshops (INFOCOM WKSHPS), 2014
IEEE Conference on, pp. 352–357, IEEE, 2014.

[16] R. Niu, W. Song, and Y. Liu, “An energy-efficient multisite offloading
algorithm for mobile devices,” International Journal of Distributed
Sensor Networks, 2013.

[17] B. Y.-H. Kao and B. Krishnamachari, “Optimizing mobile computa-
tional offloading with delay constraints,” in Proc. of Global Communi-
cation Conference (Globecom 14), pp. 8–12, 2014.

[18] C. Wang and Z. Li, “Parametric analysis for adaptive computation
offloading,” in ACM SIGPLAN Notices, vol. 39, pp. 119–130, ACM,
2004.

[19] L. Yang and J. Cao, “Computation partitioning in mobile cloud com-
puting: A survey,” ZTE Communications, vol. 4, pp. 08–17, 2013.

[20] Y.-W. Kwon and E. Tilevich, “Energy-efficient and fault-tolerant dis-
tributed mobile execution,” in Distributed Computing Systems (ICDCS),
2012 IEEE 32nd International Conference on, pp. 586–595, IEEE,
2012.

[21] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy
for collaborative execution in mobile cloud computing,” in INFOCOM,
2013 Proceedings IEEE, pp. 190–194, IEEE, 2013.

[22] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng, “Challenges on
wireless heterogeneous networks for mobile cloud computing,” Wireless
Communications, IEEE, vol. 20, no. 3, pp. 34–44, 2013.

131

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

