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Abstract—As one of the most important characteristics of
complex networks, community structure have been studied
extensively in real cases. However, in signed networks that
include both positive and negative edges, the development of
community discovery is still limited now. Because the sign
information on edges poses a challenge to modeling the signed
network. Most existing methods are based on heuristics, so
these methods tend to have high computational complexity
and ignore the generation of the networks. Here, we propose
a Double Non-negative Matrix Factorization (DouNMF) model
from the perspective of generative model to detect communities
in the signed network. This algorithm skillfully applies the Non-
negative matrix Factorization algorithm to the signed network.
In addition, the algorithm integrates indegree information into
the process of matrix factorization. Large amounts of exper-
iments on several artificial and real-world signed networks
validate that the effectiveness and accuracy of our proposed
approaches both in community discovery and link prediction.

Keywords-signed network; community discovery; link pre-
diction; non-negative matrix factorization.

I. INTRODUCTION

Most of complex systems in the real world can be

modelled with complex networks [1] [2]. Compared with

the unsigned network, signed networks can model more

information from real-world complex systems as they have

both positive and negative edges. In fact, many complex

relations in the real world can be denoted by positive and

negative edges of signed networks. For example, a positive

edge in online social network usually signifies ’support’,

’like’ or ’cooperation’, while a negative edge means ’oppo-

site’, ’dislike’ or ’hostility’. Therefore, the signed network

analysis has been paid more and more attention in various

fields [3].

Community discovery and link prediction are two basic

problems in the signed network analysis. The mission of

community discovery in signed networks is to discover

the community structures that expressed as dense positive

edges within the communities and dense negative edges

among the communities [4]. In addition, link prediction is

to predict the sign of unknown edge in signed network [5].

Although in recent years there have been some algorithms

proposed for community discovery and link prediction in

the signed network, but its development is still immature.

For example, some algorithms [6] [7] based on optimization

objective functions and heuristics have high computational

complexity. Some model-based algorithms [4] [8] [9] [10]

have low accuracy in performance or need probabilistic

statistical inference methods to select model, such as EM

algorithm, resulting in a large computational burden. Some

algorithms are base on network embedding [11] [12] with

high computational performance but poor interpretability.

And most of the above algorithms can only be used for

community discovery or link prediction. For the challenge,

we propose a new model, Double Non-negative Matrix

Factorization (DouNMF), for community discovery and link

prediction.

In this work, we divide a signed network into positive and

negative components and implement non-negative matrix

factorization (NMF) [18] on the two components respective-

ly. At the same time, we integrate the indegree information

of nodes into the non-negative matrix factorization process

to obtain the node probability matrix with higher accuracy.

Except for community discovery, the proposed DouNMF

can also be used for link prediction. We design experiments

on both artificial signed network and real-world signed net-

works. Large amounts of experimental results demonstrate

that our approach is more effective when compared with

several state-of-the-art approaches.

We organize the other contents of the work as follows:

the recent related work of community discovery in signed

networks are introduced in section II, the details about

our DouNMF approach are introduced in section III, ex-

periments and related discussion on the artificial networks
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and real-world networks are showed in Section IV, which

demonstrate the effective and accuracy of our proposed

method, and at last our contributions are summarized in

Section V.

II. RELATED WORK

Recently, large amounts of algorithms have emerged

for community discovery and link prediction in signed

work. These algorithms can be roughly divided into the

following four categories: balance theory-based, modularity

optimization-based, model-based, and network embedding-

based.

Balance theory-based methods. This type of method

usually is based on a heuristic approach with structural

balance theory of sociology [13]. Generally, one could find

the community structure in signed social networks by cutting

off negative edges. Unfortunately, the structures of signed

social networks in real case are normally unbalanced since

the existence of frustration that presents as the positive inter-

links and the negative intra-links. To address this challenge,

many algorithms for signed network analysis based on

structural balance theory are proposed. For example, Chiang

[14] extended the applicability of the balance theory from

the local features of signed networks to the global features.

Amelio et al. [15] developed a correlation clustering method

(CC) that maximizes positive edges within communities and

negative edges among communities or minimum frustration

to detect community in signed networks. Li et al. [5] present

a novel framework including two implicit features and two

latent features for predicting link, one of which is obtained

by balance theory.

Modularity optimization-based methods. Modularity

optimization [16] essentially optimizes the modularity ob-

jective function to maximize the modular level based on

the topological structure in the network. Li [6] defined

signed modularity by improving standard modularity in the

unsigned network, and made it capable of handling negative

edges. Signed modularity balances the trend of entities

with positive edges to forming community and the trend

of entities with negative edges to destroying community by

adding weights on positive and negative components. Then

some heuristics algorithms based on signed modularity op-

timization have been proposed. For example, Anchuri et al.

[7] generalized spectral partitioning (SpePart) approach with

iterative optimization to mine the community structures, and

this is an extension about standard modularity optimization

in the unsigned network.

Model-based methods. Model-based methods focus on

modeling the generated mechanism which tends to applica-

ble to the network. For instance, Yang et al. [4] developed

an agent-based random walk model framework (FEC) based

on the assumption that an agent should have a higher

probability of staying in the same community rather than

going to another community after lots of walks, to mine

the community structures. The algorithm is able to give

the nearly optimal solutions in linear time obeying the

size of networks, but its performance is poor. Chen et al.

[17] proposed a novel approaches, which is called SPM,

to discover overlapping community sturctures. Some of the

above methods are based on optimization objectives or

heuristic to mine community structures in the signed network

and do not care about the generation of the network. Jiang

et al. [8] proposed a generalized signed SBM (SSBM), to

explore the mesoscopic structures in signed networks from a

node perspective. Yang et al. [9] proposed SSBM Learning

(SSL) algorithm that can learn SSBM with exploratory

networks based on variational Bayesian techniques. We need

to use some probability inference methods to fit the network

observed in the model, such as expectation-maximization

(EM) algorithm, which increases the computational burden.

Zhao et al. [10] proposed a statistical inference approach in

signed networks (shorthand for SISN), which model signed

networks by a probabilistic model and find communities

by EM algorithm in signed networks, is a mathematically

principled method.

Network embedding-based methods. With the rise of

deep learning, some algorithms based on network embed-

ding to mine community structure and link prediction e-

merge. Wang et al. [12] proposed a framework named Signed

Heterogeneous Information Network Embedding (SHINE)

to predict the sign of unobserved edges. SHINE gets the im-

plicit low-dimension vectors of nodes in the network through

deep autoencoders, and then do the similarity analysis of

the nodes on this basis. In addition, Wang [11] developed

a new framework named Social Network Embedding with

Attributes (SNEA), to exploit the network structures and

user attributes simultaneously. Although the performance of

deep learning is better than some traditional algorithms, the

interpretation of these models is weak.

III. OUR WORK

A. Non-negative Matrix Factorization (NMF)

NMF [18] is one of the most common unsupervised

learning methods for community discovery in an unsigned

network can be formulated as follows:

min
W,H

∑
i,j

(
Ai,j −

(
WHT

)
i,j

)2

(1)

s.t W ∈ RN×C
+ , H ∈ RN×C

+

where A is the adjacency matrix of network G of n nodes,

W is the basis matrix, and H is the community membership

matrix where element hjc is the propensity of node j in

community c, and C is the community amount.

B. DouNMF model

Considering the existence of negative edges, we can not

directly use the NMF on the signed network. Here, we firstly
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decompose a signed network into positive and negative com-

ponents, then carry out NMF on the positive and negative

components respectively. And the traditional NMF algorithm

decomposes the initial matrix into two terms, the basis

matrix and the weight matrix. In order to further suppress

the randomness of matrix factorization, we introduce the

indegree information matrix in the factorization process.

For a signed network G, the elements of adjacency matrix

A include +1, -1 and 0, representing positive links, negative

links, and un-links respectively. A can be separated into two

matrices A+ and A−, which represent positive component

and negative component of signed network G, respectively,

and A = A+−A−. By using non-negative matrix factoriza-

tion into positive component A+ and negative component

A− of the signed network we can derive the hidden features

of the positive and negative components separately. Then

our proposed DouNMF adds weight λ to balance the effect

from the positive and negative components. Therefore, the

objective function can be constructed as follows:

L =
∥∥A+ −W+HT

∥∥2

F
+ λ

∥∥A− −W−HT
∥∥2

F
, (2)

where W+ ∈ RN×C
+ and W− ∈ RN×C

+ are the basis

matrix of the positive component and the negative com-

ponent respectively, and H ∈ RN×C
+ is the community

membership matrix. The degree of nodes is only the implicit

feature we can get to analyze the community structure in

a given network G. Although the adjacency matrix of a

signed network implicitly expressed node degrees in the

above process, it is not subject to the control in matrix

factorization. So we definitely apply indegree of nodes to

the process of matrix factorization, maximally control the

effect of degree information on node probability matrix H .

Hence we introduce indegree information matrix K into the

model (3) for better numerical results:

L =
∥∥A+ −W+HTK+

∥∥2

F
+ λ

∥∥A− −W−HTK−∥∥2

F
,
(3)

where K+ ∈ RN×N
+ and K+ ∈ RN×N

+ are the indegree

information matrices of the positive component and the neg-

ative component respectively, which are diagonal matrices

where elements kii represent the possibility of the link from

other nodes to node i. So the expectation of links between

node i and node j:

âij = wikhjkkjj (4)

Furthermore, in order to make the node try its best to belong

to only one community, we use ‖H‖21 to control the sparsity

of the node probability matrix. The final objective function

of the propoesd DouNMF model is as follows:

L =
∥∥A+ −W+HTK+

∥∥2

F
+ λ

∥∥A− −W−HTK+
∥∥2

F
+

γ ‖H‖21
= Tr(A+ −W+HTK+)(A+T −K+THW+T )+

λTr(A− −W−HTK−)(A−T −K−THW−T )+

γTr(H1HT ),
(5)

where 1 is a matrix of size k × k whose elements are 1.

We develop multiplicative update rules based on gradient

descent to optimize objective function (5), which is shown

in Algorithm 1. Accordingly, We can easily deduce that the

most time-consuming part of Algorithm 1 is the updating of

H , of which the time complexity is O(niter(N
2C+NC2)),

where niter is the number of iterations. It’s worth noting that

the structures of the real-world signed networks are usually

so sparse that N2 can be approximately equal to the average

number of links M . In addition, C can almost be ignored as

it always be much less than N and M . Therefore, the time

complexity of the optimization algorithm for the proposed

DouNMF can degrade to O(niter(M +N)).

Algorithm 1 DouNMF Algorithm

Input:
Adjacency matrix A of signed network G ;

the node indegree matrix K ;

the number of communities C ;

the balance parameter λ and γ ;

Output:
Community membership matrix H ;

Initialize: H,W+,W−;

1: for t = 1 : iter do
2: W+ ←W+ � A+K+TH

W+HTK+K+H

3: W− ←W− � A−K−TH
W−HTK−K−H

4: H ← H� K+A+TW++λK−A−TW−
K+K+THW+TW++λK−K−THW−TW−+γHN

5: end for
6: return H;

IV. EXPERIMENTS

In this section, we designed large amounts of experiments

on real-world signed networks and artificial signed networks

to validate our proposed model including the convergence of

the optimization algorithm.

A. Experiments on artificial signed networks

Here, we compared DouNMF with several state-of-the-

art methods in artificial data to validate the accuracy and

effectiveness of DouNMF for community discovery and link

prediction.

1) Validation of community discovery:
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Artificial signed networks. : We generate four kinds of

signed networks by signed stochastic block model (SSBM)

[9], which is X = (K,Π,Θ,Ω), where K denotes the

number of community, Π(π1, π−1, π0) indicates the prior

probability of the intra-link, Θ(θ1, θ−1, θ0) indicates the

prior probability of the inter-link and Ω indicates the prior

probability that a node belongs to a community in the signed

network. Here, we set K = 4, Ω = ( 14 ,
1
4 ,

1
4 ,

1
4 ) and n = 128.

By setting the parameters Π and Θ, we can get four kinds

of signed networks:
Type I Weakly balanced signed network (BN)

XBN = (K, (π1, 0, π0), (0, θ−1, θ0), (
1

4
,
1

4
,
1

4
,
1

4
))

In this kind of signed network, we set π−1 = 0 and θ1 =
0, which controls the generated networks have no negative

intra-links and positive inter-links. Here, we generate much

more BN networks by setting the parameters π1 and θ−1

range [0.1,1] with 0.1 steplength respectively.
Type II Unbalanced sigend network #1 (UN-I)

XUN−I = (K, (π1, π−1, 0.2), (θ1, θ−1, 0.8), (
1

4
,
1

4
,
1

4
,
1

4
))

In this kind of sigend network, we set π0 = 0.2 and θ0 =
0.8 and make sure that the intra-links are dense and the

inter-links are sparse. Here, we generate UN-I networks by

setting the parameters π1 ∈ [0, 0.8] with 0.08 steplength and

θ−1 ∈ [0, 0.2] with 0.02 steplength, respectively.
Type III Unbalanced sigend network #2 (UN-II)

XUN−II = (K, (π1, π−1, 0.8), (θ1, θ−1, 0.2), (
1

4
,
1

4
,
1

4
,
1

4
))

In this kind of sigend network, we set π0 = 0.8 and θ0 =
0.2 and make sure that the intra-links are sparse and the

inter-links are dense. Here, we generate UN-II networks by

setting the parameters π1 ∈ [0, 0.2] with 0.02 steplength and

θ−1 ∈ [0, 0.8] with 0.08 steplength, respectively.
Type IV Unbalanced sigend network #3 (UN-III)

XUN−III = (K, (π1, π−1, 0.2), (θ1, θ−1, 0.2), (
1

4
,
1

4
,
1

4
,
1

4
))

In this kind of sigend network, we set set π0 = 0.2 and

θ0 = 0.2 and make sure that the intra-links and the inter-

links are both dense. Here, we generate UN-III networks by

setting the parameters π1 ∈ [0.0.8] and θ−1 ∈ [0.0.8] with

0.08 steplength respectively.
Validation metrics: We choose normalized mutual in-

formation (NMI) [19], which is usually used to measure the

similarity of two clusterings, to test the performance of the

approaches for community discovery with ground-truth. In

detail, NMI is computed as follows:

NMI(L,L′) =
∑C

i=1

∑C
j=1 nij log

nijn

n
(1)
i n

(2)
j√∑C

i=1 n
(1)
i log

n
(1)
i

n

∑C
j=1 n

(2)
j log

n
(2)
j

n

(6)

Where L and L′ denote ground-truth and detected com-

munity partition by algorithm respectively, C denotes the

number of communities, n denotes the number of nodes,

nij denotes the number of nodes of ground community i that

are divided in community j in detected community partition,

n
(1)
i denotes the number of nodes in knowed community i,

and n
(2)
j denotes the number of nodes in detected community

j.
Comparison methods: To test the performance of

DouNMF, we design comparisons experiments with other

three state-of-the-art approaches for community discovery.

The three state-of-the-art methods are FEC [4], SISN [10]

and SSL [9].
In addition to the above three methods, we also did an

ablation study to verify the effectiveness of adding indegree

matrix to the non-negative matrix factorization for the con-

straint community indicator vector. In the DouNMF (without

K) method, we simply decompose the adjacency matrix into

basis matrix and weight matrix by NMF, without adding

indegree information matrix, and set the optimal values of

parameters λ and γ to be 1.5 and 6.4, respectively.
Comparison experiments were designed on four signed

network models, each with 121 signed networks. First we

generate signed networks on each network model, and then

calculate the NMI value of each algorithm on each network

to form a three-dimensional (3D) graph. Each point of 3D

surfaces represents a NMI value acquired in a fixed network

with a given value of Π and Θ. In the BN model, the x-axis

and y-axis of the 3D graph represent the prior possibility

of positive intra-link and negative inter-link respectively. In

the other three UN models, the x-axis and y-axis of the 3D

graph represent the prior possibility of positive inter-link and

negative intra-link. These two kinds of links represent the

frustration of the signed network.
The results of the comparison experiment of community

discovery method on the artificial signed networks are shown

in table I. In the BN, which have no positive inter-link

and negative intra-link, our DubleNMF algorithm, DouNMF

(without K) without indegree information matrix K and

SISN performance in detecting community are weak in the

initial state of most connectionless networks. As the number

of links increases, community discovery performance is al-

ways the best. SSL algorithm performance fluctuates several

times in networks with multiple connections, but is generally

excellent. In the UN-I, which is intra-link dense and inter-

link sparse, our algorithm performs better than others. In the

UN-II, which is intra-link sparse and inter-link dense, SISN

algorithm performance is the best, our DouNMF algorithm

appears a slide in networks with proportion of negative intra-

link tend to the middle which is the community structure in

the singed network that tends to the chaotic state but there

is a big improvement over the original DouNMF (without

K) method by adding indegree information matrix. And

the SSL algorithm performance decreases greatly when the
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Table I
COMPARISON EXPERIMENT RESULTS OF FOUR ALGORITHMS IN COMMUNITY DISCOVERY IN DIFFERENT ARTIFICIAL DATASET.

methods
networks

BN UN-I UN-II UN-III

DouNMF
(without K)

DouNMF

FEC

SISN

SSL

frustration in the network increases. In the UN-III, intra-

links and inter-links are both dense, the performance of all

algorithms is not good in the networks with the highest

frustration, because the dense noise connection in these

networks has a much greater impact on network balance

than the previous UN network models. But the performance

of these algorithms is superior in networks that are not the

noisiest in this kind of network model.

Finally, We can find that FEC algorithm performance is

not good in all these signed network model due to the

random selection of initial node and the uncertain length

of the local random walk in the first step of FEC. We find

that our DouNMF algorithm is better than others in signed

networks that are more real-world like UN-I. In addition,

through the comparison with the DouNMF (without K)

method, we prove that adding the indegree information

matrix into the non-negative matrix factorization improves

the accuracy of community discovery.
2) Validation of link prediction :

Validation metrics: We use GAUC (Generalized AUC

over +1, 0 and 1) [20] to measure the overall ranking

performance, formulated as:

1
|P |+|N |

(
1

|U |+|N |
∑

ai∈P

∑
aj∈U∪N

I (L (ai) > L (aj))+

1
|U |+|P |

∑
ai∈N

∑
aj∈U∪P

I (L (ai) < L (aj)))

(7)
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where |P |, |N | and, |U | represent the number of positive

edges, negative edges and un-edges in signed networks,

respectively. L (·) is the link score function and I (·) is

the 0/1 indicator function that if the condition in (·) comes

true, we get 0 loss, otherwise 1 loss. As the extension of

AUC, GAUC defines a ranking score considering the three

kinds of link status.

Comparison methods : The performance of DouNMF

was validated with respect to the link prediction in signed

networks. We choose six well-known index methods for

computing node similarity as Comparison methods: AA,

ACT, CN, CRA, Jaccard and Salton [21].

We use the standard 5-fold cross validation for the exper-

iments of link prediction. Fig. 1 shows the performance of

our DouNMF with the other six link prediction algorithms

on the four network models respectively. Fig. 1(a) represents

the BN model, where the x-aixs represents the balance level

of the signed network, which is the proportion of positive

intra-links and negative inter-links. We find that the network

balance level is positively related to the performance of most

tested link prediction algorithms. Fig. 1(b) - (d) represent the

UN models, where the x-aixs represents the frustration in the

signed network, which is the proportion of positive inter-

links and negative intra-links. It can be found that when the

frustration in these three kinds of the singed network tends

to be intermediate, that is, when the proportion of positive

and negative intra-links and inter-links tend to be the same,

the performance of most link prediction algorithms that be

tested are the lowest. This is because the structure of the

signed network, in this case, is characterized by a chaotic

state, where links of nodes in these signed networks tend to

random at this time. In other states, our algorithm is superior

to other comparison methods.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Balance

0

0.2

0.4

0.6

0.8

1

G
A

U
C

DouNMF
AA
ACT
CN
CRA
Jaccard
Salton

(a) BN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frustration

0

0.2

0.4

0.6

0.8

1

G
A

U
C

DouNMF
AA
ACT
CN
CRA
Jaccard
Salton

(b) UN-I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frustration

0

0.2

0.4

0.6

0.8

1

G
A

U
C

DouNMF
AA
ACT
CN
CRA
Jaccard
Salton

(c) UN-II

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frustration

0

0.2

0.4

0.6

0.8
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G
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U
C

DouNMF
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CN
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Salton

(d) UN-III

Figure 1. GAUC of link prediction in different artificial datasets.

B. Experiments on real-world signed networks

We compared DouNMF with other six approaches in

real-world signed networks to validate the accuracy and

effectiveness in community discovery and link prediction.

1) Validation of community discovery:
Slovene parliamentary party network [22]: This is a

relational network about ten parties in Slovene parliament

in 1994, which has 2 communities. In the community

discovery, we only retain the sign of link in the network

and ignore the weight of links. Fig. 2(a) shows the con-

nection state between nodes in Slovene parliamentary party

network. In the figure, the solid links represent the positive

relationships, and the dash-dot links represent the negative

relationship. Fig. 2(b) shows the community partition made

by our DouNMF algorithm, and the result is the same as

the real situation, which is divided into two communities:

(SKD, ZDSS, ZS, SLS, SPS) and (ZLSD, LDS, ZW-ESS,

DS, SNS).

SKD

ZDSS

ZS

SLS
SPS

ZLSD

LDS

ZW-ESS

DS

SNS

(a)

SKD

ZDSS

ZS

SLS

SPS

ZLSD

LDS
ZW-ESS

DS

SNS

(b)

Figure 2. Slovene parliamentary party network. (a) The connection state
between nodes; (b) The community partition made by DouNMF.

Gahuku-Gama subtribes network [23]: This network

represents the culture relationship amongs subtribes of New

Guinea Highland. It includes 16 subtribes from three com-

munities. Fig. 3(a) shows the connection state between

nodes in the Gahuku-Gama subtribes network, where sol-

id edges represent the political alliance relationship and

dash-dot edges represent the enmities relationship respec-

tively. Fig. 3(b) shows the community partition made by

our DouNMF algorithm, and the result is the same as

the real situation, which is divided into three communi-

ties: (UKUNZ, GEHAM, MASIL, OVE, ASARO, ALIKA),

(SEUVE, UHETO, NAGAM, NOTOH, KOHIK), and (KO-

TUN, GAMA, NAGAM, GAVEV).

Table II
LARGE SCALE SIGNED NETWORK DATASET STATISTICS .

Datasets nodes pos-links neg-links un-links

Epinions 131,828 717,667 123,705 1.73× 1010

Slashdot 77,357 396,378 120,197 5.98× 109

Wiki 138,592 1,294,214 172,396 1.92× 1010

Bitcoinotc 5,881 31,714 3,547 3.46× 107

Epinions@50 6,109 379,830 42,494 3.69× 107

Slashdot@50 4,303 130,680 40,539 1.83× 107

Wiki@50 11,047 573,423 69,012 1.21× 108

Bitcoinotc@50 263 6,476 454 6,339
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Table III
COMPARISON EXPERIMENT RESULTS OF FOUR ALGORITHMS IN LINK PREDICTION .

Real network
Method

AA ACT CN CRA Jaccard Salton DouNMF (without K) DouNMF

Epinions@50 0.8424 0.6629 0.8166 0.7987 0.4328 0.7654 0.8312 0.8427

Slashdot@50 0.4966 0.5954 0.6712 0.5454 0.3563 0.5888 0.7594 0.7714

Wiki@50 0.7096 0.6364 0.6714 0.6276 0.4648 0.6369 0.7022 0.7156

Bitcoins@50 0.7089 0.7041 0.6652 0.6265 0.4176 0.6565 0.7084 0.7212
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Figure 3. Gahuku-Gama subtribes network. (a) The connection state
between nodes; (b) The community partition made by DouNMF.

2) Validation of link prediction: As shown in Table II, we

used four large scale real network datasets in experiments of

link prediction, i,e., Epinions [24], Bitcoinotc [25], Slashdot

[24] and Wiki [26]. In the real world, a person has an average

of 40 friends offline and 338 friends online. Therefore, it is

more realistic to check users with high degree [5]. In the

experiment of link prediction in large-scale real network,

we select nodes with high degree. The threshold of degree

we set is 50, and the network statistics after setting are also

shown in Table II where we use name@degree to represent

a specific dataset e.g., Epinions@50 is the dataset about

Epinions with d ≥ 50. Table III shows the comparison

results of DouNMF with other methods. We can see that

the performance of our algorithm is improved to different

degrees compared with other methods. And the results of

comparison with DouNMF (without K) method also prove

that the introduction of indegree information matrix in the

process of NMF improves the performance of our algorithm

in link prediction.

C. Algorithm Convergence and Parameters Sensitivity

To test the convergence of the algorithm, we perform

experiments on four kinds of artificial datasets and deriving

networks from each kind of network model. As shown in

Fig. 4, when the number of iterations is bigger than 50, our

objective function tends to converge.

In addition, we evaluate our DouNMF algorithm in terms

of its sensitivity to the weight parameter λ and regularization

parameter γ. Fig. 5 shows the sensitivity of our model, in

which our DouNMF algorithm tends to be stable when λ >
0.9 and γ in 8–15. We choose λ = 3 and γ = 10 in our
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Figure 4. Convergence of our update rules

Figure 5. Sensitivity of our model to parameters

subsequent series of experiments.

V. CONCLUSIONS

Community discovery and link prediction are two of basic

tasks in signed network analysis. Some of the previous

algorithms rely on predefined optimization objective func-

tions or heuristics, while others are not very explanatory. In

the face of these challenges, we propose DouNMF method

that converges in a reasonable number of times and has

good interpretability. We decompose the signed network

into positive and negative components. In order to constrain

the influence of negative connection, weight parameters are

added in the negative component, and the node indegree

information is explicitly incorporated into the matrix factor-

ization process so that a more accurate community matrix

of the node can be obtained. Then in order to constrain

the situation of overlapping communities, we add sparse

constraints to our model. And we conduct a series of the

experiment for community discovery and link prediction in

artificial data and real-world signed network to validate the

effectiveness and accuracy of our DouNMF algorithm.
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