
One time-step particle smoothing for radio
range-based indoor position tracking

Yuan Yang✉, Huaming Wu, Peng Dai and Bo Zhang
ELECT
In the context of sequential estimation of radio range-based indoor pos-
ition tracking, Bayesian smoothing framework is promising as involving
past, present and future observations. The performance and practicability
of a smoothing method greatly depend on how many and how future
observations are incorporated. Aiming at real-time locating systems,
the authors propose one time-step smoothing form on sequential
Monte Carlo methods, including four popular Bayesian smoothers and
a novel one time-step smoothed filtering (SF) algorithm. The smoothing
algorithms are evaluated through two-dimensional position tracking on a
real-world indoor test-bed. The authors present results that the proposed
SF improves tracking performance requiring very limited computation
and memory, which is applicable for real-time indoor position tracking.
Moreover, the one time-step smoothing form is validated to mitigate
ranging errors and smooth positioning trajectories.
Introduction: Real-time and continuous positioning of wireless systems
is the key issue of indoor location-aware service, emergency response
and robotics and so on. However, in radio range-based positioning,
either the ranging that sensors measure or the motion of a target is
usually difficult to model accurately. Bayesian smoothing methods are
promising to combat imprecise and scarce measurement problems, as
involving not only the past and present observations (z1:t) at the current
time (t) but also the future ones (zt:T , t , T ) a few time ahead [1, 2].

Research have proposed a class of smoothing algorithms in a recur-
sive Bayesian framework [3], i.e. the Gaussian Rauch-Tung-Striebel
smoother [4], the forward filtering backward smoothing (FFBSm) [5]
and the two-filter smoother (TFS) [6, 7]. However, they are either com-
putation costly or require to predefine samples. Alternative Monte Carlo
methods, sequential Monte Carlo (SMC, also known as particle filter)
methods, provide a particle-based state propagation [8].

This Letter focuses on a real-time state smoothing based on the obser-
vations up to one time-step after the present, defined as one time-step
smoothing (p(xt|z1:t+1)). In order to improve the forward particle propa-
gation, we propose a smoothed filtering (SF) algorithm in a SMC
method [generic particle filter (GPF)], namely SF. Instead of deriving
the posterior from the prediction density, SF recursively propagates the
posterior from the smoothing density. We also implement four popular
smoothing solutions in GPF: FFBSm, forward filtering backward simu-
lation (FFBSi), TFS and fast two-filter smoothing (TFSfast). The afore-
mentioned smoothing algorithms are evaluated over our indoor tracking
test-bed with time-of-flight (TOF) ranging. Experimental results validate
the improvements in accuracy and smoothness of the one-time step
smoothing framework on real-world position tracking.

One time-step smoothing: Indoor radio range-based positioning system
observes severe measurement noise or failures, due to system noise,
multi-path effect, non-line-of-sight (NLOS) propagations, unknown
wireless interference and so on. From a Bayesian perspective of sequen-
tial position estimation, filtering represents the posterior (p(xt|z1:t))
of the state given the observations up to the current time; smoothing
corresponds to the density (p(xt |z1:T )) based on the observations up to
some later time (T, t , T ). To recur the state recursion, it essentially
applies a hidden Markov model of order one.

The smoothing methods can obviously provide better approximations
of the state probability if the future observations are enough. However,
the smoothing recursion (p(xt |z1:T )) involves the observations many
time-steps ahead (t ≪ T ), it can be computation, storage and time con-
suming. To deal with the problem, it is preferable to form the smoothing
density from a few time-steps of observations. Aiming at real-time track-
ing, we propose the smoothing density of the one time-step SMC with

T = t + 1. (1)

The one time-step smoothing, that compute the sequence of conditional
density, is defined as

p(xt |z1:t+1). (2)

Current methods of particle smoothing: We apply four popular
Bayesian smoothing algorithms of one time-step recursion in GPF as
follows.
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Forward filtering backward smoothing: The smoothing density of
FFBSm is deduced from a forward–backward expression, with the
one time-step form as

p(xt |z1:t+1) = p(xt|z1:t)
∫

p(xt+1|z1:t+1)p(xt+1|xt)�
p(xt+1|xt)p(xt |z1:t) dxt

dxt+1. (3)

The filtering density (p(xt+1|z1:t+1)) in (3) can be computed by forward
filter, as we use the GPF method [9].

Forward filtering backward simulation: In order to remedy the high
computation of FFBSm in (3), FFBSi [10] defines the smoothing
density as

p(xt|xt+1, z1:t) = p(xt|z1:t+1)p(xt+1|xt)
p(xt+1|z1:t) . (4)

Instead re-weighting particles as FFBSm, FFBSi samples from the back-
ward smoothing density

x̃t � p(xt|zt+1). (5)

Two filter smoothing: TFS [11] is a well-established alternative to
FFBSm, which obtains the smoothing density from two independent
filters (the forward and the backward filters). The one time-step TFS
is formulated as

p(xt|z1:t+1)/ p(xt|z1:t)|fflfflfflfflffl{zfflfflfflfflffl}
Forward filter

ð
p(zt+1|xt+1)p(xt+1|xt) dxt+1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Backward filter

. (6)

Fast two-filter smoothing (TFS fast): Differing from the conventional
TFS, TFSfast [12] draws new particles from the empirical density and
approximates the smoothing density by

p(xt |z1:t+1)/ p(xt |z1:t)p(zt+1|xt)

/ p(xt |z1:t)
∫
p(x̃t+1|zt+1)p(x̃t+1|xt)

lt+1(x̃t+1)
dx̃t+1.

(7)

with lt+1(xt+1) being the artificial prior.

Proposed smoothed filtering: The aforementioned smoothing methods
formulate the smoothing density (p(xt|z1:t+1)) from the current
(p(xt |z1:t)) and future (p(xt+1|z1:t+1)) posterior. The shortcoming is
that the smoothing density influences only the backward density
rather than the forward probability propagation.

Since FFBSm and TFS have not incorporated the smoothing density
into the state recursion, we propose to propagate the posterior from the
smoothing density, namely, SF as

p(xt+1|z1:t+1) =
∫
p(xt |z1:t+1)p(xt+1|xt , z1:t+1) dxt. (8)

Form a Markov process of order one, one gets that

p(xt+1|xt , z1:t+1)Markov
=

p(xt+1|xt , zt+1)

= p(xt+1, zt+1|xt)
p(zt+1|xt)

= p(zt+1|xt+1xt)p(xt+1|xt)
p(zt+1|xt)

= p(zt+1|xt+1)p(xt+1|xt)
p(zt+1|xt)

= p(zt+1|xt+1)p(xt+1|xt)�
p(zt+1|xt+1)p(xt+1|xt) dxt+1

.

(9)

The factor p(xt+1|xt , z1:t+1) can be derived by (9). In the condition of
the low velocity of our robot (averagely 0.5 m/s), we take the approxi-
mation p(zt+1|xt+1) ≈ p(zt+1|xt) leading to

p(xt+1|xt , z1:t+1) ≈ p(xt+1|xt). (10)

Similar to the TFS, the smoothing density of SF is

p(xt|z1:t+1)/ p(xt|z1:t)p(zt+1|xt). (11)

Results and analysis: The aforementioned smoothing algorithms are
implemented in an indoor tracking test-bed as introduced in the work
[13], which consists of a robot (TurtleBot) and a network of Nanotron
NanoPAN sensors with TOF ranging. The experiment is carried out in
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typical indoor scenarios, the halls and classrooms with a mobile trajec-
tory over 50 m.

Quantitative results: The competing algorithms are performed on the
one-step smoothing frame, taking the same initialisation, particle size
of GPF (Np = 49), Gaussian measurement model, Gaussian random
motion model and residual resampling strategy. The quantitative results
of 6000 positioning executions in the experiment are listed in Table 1.

Table 1: Comparison of GPF, four SMC smoothers and the pro-
posed SF with theone time-step form, in one real-wrold
indoor tracking experiment
Algorithms
Authoriz
MEANp, m
ed licensed 
RMSEp, m
use limited t
MAXp, m
EL

o: TIANJIN 
Runtime, s
GPF
 1.62
 1.89
 6.17
 26
FFBSm
 1.58
 1.84
 5.69
 365
FFBSi
 1.62
 1.89
 6.22
 29
TFS
 1.52
 1.75
 5.87
 751
TFSfast
 1.61
 1.86
 5.95
 114
SF
 1.47
 1.67
 4.70
 30
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Fig. 1 Positioning behaviour of the smoothing methods on the building floor
plan with classrooms and halls: the connected dots denote the ground truth
of the mobile trajectory; the scatter plot ‘+’ is the estimations; ‘△’ for the
anchors

a GPF
b FFBSm (one time-step)
c FFBSi (one time-step)
d TFS (one time-step)
e TFSfast (one time-step)
f SF (one time-step)

Table 1 illustrates that FFBSi and TFSfast almost make no improve-
ments to GPF. We consider that the empirical sampling of FFBSi and
TFSfast might introduce extra variance that cancels out the smoothing
effect. The FFBSm and TFS obtain small improvements. It is explained
that FFBSm and TFS only influences the backward density rather than
the posterior, therefore, the sample divergence of the forward probability
recursion remains unsolved. The proposed SF observes the lowest values
of theMEANp, RMSEp andMAXp, by reason that the probability propa-
gation is derived from the smoothing density instead of the prediction
density. Furthermore, the complexity of the above smoothing algorithms
is O(Np)

2, while the runtime indicates the efficiency of SF. Therefore, the
one time-step smoothing form can be effective if the smoothing density
can be used to refine the forward state propagation.

Positioning behaviour: Fig. 1 depicts the real-world tracking perform-
ance. It demonstrates that GPF is able to track the trajectory (see Fig.
1a). As can be seen in Figs. 1b–e, FFBSm, FFBSi, TFS and TFSfast
almost makes no improvements to GPF. They have large divergence
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to the true trajectory at some test sites, which is likely due to the
NLOS ranging crossing rooms and corridors. Fig. 1f shows that the
SF estimation spreads more concentratively and obtains much smaller
divergence to the true trajectory. The overall results indicate that SF
in the one-step smoothing form is able to mitigate the NLOS effect.

Conclusion: To deal with non-linearity and non-Gaussianity of indoor
range-based position tracking, five smoothing algorithms are applied
to the SMC implementation. Aware of the real-time constraint, we
focus on the smoothing frame in one time-step form. By validation in
the real-world indoor tracking experiment, it states that the one time-step
smoothing is of high relevance for both reducing the state uncertainty
and smoothing the representation in real-time tracking. The FFBSm,
TFS and their variations are not effective in one time-step recursion,
by reason that the smoothing density is not propagated into the
forward state propagation. The SF achieves notable improvements, as
deriving the posterior from the smoothing density. Since SF requires
no other assumptions, offline training or high complexity, it is practical
for indoor range-based tracking.
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