
Satisfaction Optimization in Failure-Aware
Vehicular Edge Computing

Chaogang Tang∗, Huaming Wu†, Chunsheng Zhu‡
∗School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China

†Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
‡College of Big Data and Internet, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China

cgtang@cumt.edu.cn, whming@tju.edu.cn, chunsheng.tom.zhu@gmail.com

Abstract—Vehicular edge computing (VEC) has gained world-
wide attention in both academia and industry. Current works on
VEC mainly focus on task offloading and resource allocation to
improve the performance of VEC systems, but seldom consider
the satisfaction level of vehicles. Whereas, the satisfaction level
of vehicles has been playing an important role in stimulating
vehicles to pursue better quality of experience by task offloading
and service outsourcing operations. In the meanwhile, there is
an inescapable fact, i.e., the task execution in VEC may fail
due to various reasons, and thus it is important to incorporate
the failure-resisted task offloading into the failure-prone VEC
system. In this paper, we aim to maximize the satisfaction of all
the vehicles, while considering the potential failures in VEC.
Specifically, we model satisfaction optimization as a multiple
knapsack problem and further put forward a greedy heuristic
approach to solve this problem in polynomial time. Extensive
simulation is carried out to validate the efficiency of our approach
in terms of the optimal values and the running time. The
simulation results have shown that our approach can achieve
a better result compared to other benchmarks.

Index Terms—Vehicular edge computing, service provisioning,
task offloading, failure, satisfaction optimization

I. INTRODUCTION

The computing resources are extended from the cloud
center to the edge of networks, resulting in two representative
computing paradigms, i.e., edge computing [1] and fog com-
puting [2]. Both of them can provision computing resources
at the network edge with the aim to satisfy the strict latency
requirements of internet of things (IoT) tasks. Vehicular edge
computing (VEC) as the subsystem of edge computing has
also gained worldwide attention in both academia and industry.
The explosive growth in vehicular tasks with regards to (w.r.t.)
the number and variety has led to staggering demands for
computational resources, which has posed great pressure over
their own computing capabilities. To ease such pressure and
further shorten the response delay, IoT tasks can be outsourced
and offloaded to VEC for execution. In particular, VEC
can serve the nearby vehicles in a time-sensitive fashion by
deploying the edge server at RSUs [3].

Works on VEC mainly focus on task offloading and resource
allocation, aiming to improve the performance of VEC systems
w.r.t. response delay and energy consumption [4]–[7]. How-
ever, attention only paid to improve the performance of VEC
systems is far from adequate, since we also need to consider

the quality of experience (QoE) of vehicles with offloading
requests, apart from the quality of services (QoS) for the
computing resources provisioned at VEC systems. Similar
to cloud computing, the computing resources at RSU are
provisioned in a pay-as-you-go scheme. It seems reasonable
to assume that, other things being equal, vehicles with task
offloading requests would prefer to be served by those resource
providers which bring them better QoE. The QoE usually
refers to the impression of vehicles on the task execution
in VEC. In particular, we assume that the QoE of vehicles
in this paper only involves two aspects, i.e., the response
delay and the expenditure for task offloading, respectively.
The QoE of vehicles can indicate the satisfaction level of
vehicles. Generally, better QoE of vehicles brings about a
higher satisfaction level of vehicles. Therefore, in this paper,
we pay our attention to the satisfaction optimization for the
vehicles with offloading requests in VEC, and argue that it is
worthy of further investigation, since drivers have a remarkable
instinct of weighing advantages and disadvantages.

In the meanwhile, we notice that the existing works in VEC
seldom consider an inescapable fact, i.e., the task execution
in VEC may fail due to various reasons coming from either
the unstable network connections or the computing resource-
constrained edge nodes [8], [15]. It is necessary to consider
these failures when tasks are offloaded and executed in VEC,
since it usually takes time to resume task execution in VEC.
Note that we only consider the failures from the edge nodes
such as temporarily insufficient memory and software failures,
and further assume that these failures are recoverable in this
paper. The recovery time for each failure degrades not only the
QoS of computing services at the edge, but also the satisfaction
level of vehicles.

Therefore, it is necessary to incorporate the failure-resisted
task offloading into the failure-prone VEC system, in the
pursuit of satisfaction maximization for the vehicles with
offloading requests. To that end, we put forward a satisfaction
maximization scheme in failure-aware VEC in this paper.
Specifically, the contributions of this paper are threefold, given
below:
• Unlike traditional service provisioning approaches in

VEC that concentrate primarily on the performance im-
provement for VEC systems, we turn our attention to the
satisfaction optimization for vehicles, in view of its vital978-1-6654-3540-6/22 © 2022 IEEE

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

5783

GL
O

BE
CO

M
 2

02
2

- 2
02

2
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
72

5

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:53:17 UTC from IEEE Xplore. Restrictions apply.

importance in stimulating vehicles to pursue better QoE
by task offloading and service outsourcing operations.

• In this paper, we aim to maximize the satisfaction values
for all the vehicles in VEC and model it as a multiple
knapsack problem (MKP) that is well-known as an NP-
hard problem. In the meanwhile, we generalize the tradi-
tional task offloading model by considering potential task
execution failures in VEC. Furthermore, we put forward
a greedy heuristic approach to solve this problem in
polynomial time.

• Extensive simulation is carried out to validate the effi-
ciency of our approach in terms of the optimal values
and the running time. The simulation results have shown
that our approach can achieve a better result in terms of
the optimal values.

The rest of the paper is arranged as follows. We review some
related works in Section II and introduce our system model
and problem formulation in Section III. The algorithm design
is presented in Section IV with the simulation evaluation in
Section V. The conclusion finally comes in Section VI.

II. RELATED WORKS

It becomes increasingly dominating that vehicular appli-
cations and tasks are offloaded and executed outside them-
selves, owing to the fact that these “computers on wheels”
lack sufficient computing resources to accomplish increasingly
complicated tasks. For instance, to accomplish the vehicular
tasks more efficiently, Ng et al. [6] adopted a double auction
mechanism to schedule the computing resources at the edge for
the nearby vehicles. Both the requirements for the vehicles and
the resource pricing are considered in this paper and the simu-
lations have proven their advantages. Considering the multiple
features of VEC networks, e.g., unstable wireless links, time-
varying topologies, and different move models of vehicles, it
is pretty difficult to handle online task offloading efficiently.
Although several promising technologies can be applied in-
cluding heuristic or machine learning-related approaches, these
approaches are limited by their own shortcomings, e.g., either
slow convergence rate or low searching efficiency. To tackle
these issues, Wang et al. [7] handle online task offloading
based on imitation learning and try to achieve near-optimal
performance from the initial stage. Particularly, they obtain the
optimal scheduling policy offline based on given samples, and
train agent policies online from the expert’s demonstration.

In the meanwhile, there are also several works in the device-
edge-cloud systems which focus on satisfaction-related issues
[9]–[11]. For instance, Wang et al. [10] tried to optimize
the satisfaction for Service-Level Agreement (SLA) in the
device-edge-cloud systems. They have jointly optimized the
offloading decision, task assignment and task ordering. By for-
mulating the optimization as a binary nonlinear programming,
they have adopted an integer particle swarm optimization to
solve it.

On another hand, IoT tasks from end users are usually fea-
tured by delay-sensitive requirements. To depict the impression
towards how these tasks are accomplished, Li et al. [11] strive

to maximize the accumulative satisfaction values for these
end devices. Specifically, they consider both the dynamic and
static offloading requests, and adopt heuristic algorithms to ef-
ficiently solve the formulated problem. Simulation evaluation
reveals that their algorithms are efficient to improve the user
satisfaction.

In contrast, we consider not only the satisfaction of vehicles
but also the potential failures in VEC. Such factors can easily
lengthen the response delay and degrade the satisfaction of
vehicles. To the best of our knowledge, we are the first to pay
attention to the satisfaction-related issue in failure-aware VEC
systems.

III. SYSTEM MODEL

The proposed system model mainly consists of smart ve-
hicles denoted by V = {v1, · · · , vm}, performance-enhanced
RSU denoted by R, and the edge nodes S = {s1, · · · , sn}. m
and n denote the number of vehicles and computing nodes, re-
spectively.R is empowered with powerful computing capabili-
ties such that RSU has not only the networking capabilities, but
also the computing capabilities. The edge nodes are deployed
in the vicinity of R and they are interconnected with high-
speed wired links (e.g., high-capacity optical fibers). Assume
that these edge nodes are heterogeneous in terms of the amount
of computing resources, the processing frequencies, and the
computing resource pricing. The task set T is indexed by
T = {t1, · · · , tm}, where ti is the task offloaded from vehicle
vi. ti can be expressed by a tuple (Ii, Ci, Di,Wi, Ei), where
Ii is the size of task-input data, Ci is the amount of computing
resources in terms of CPU cycles required for the task, Di is
the expected response delay, Wi is the dwelling time of vehicle
vi within the coverage of R that can be estimated easily [13],
and Ei denotes the biggest expense that vi can pay. It is well
known that the computing resources at RSU are provisioned
in a pay-as-you-go scheme. In VEC, vehicles need to pay
for the requested computing resources and thus expect that
the tasks can be accomplished satisfactorily. Generally, both
shorter response delays and fewer costs can make the vehicles
more satisfactory.

In addition, the information of tasks T can be learned by R
from the beacon packet dissemination between vehicles and
RSU. After gathering this information, R is responsible for
distributing these tasks to different edge nodes for execution.
Define xi,j as a binary decision variable to represent the
offloading decision of task ti. Particularly, xi,j = 1, if task
ti is designated to sj for execution; and xi,j = 0, otherwise.

A. Response Delay Model

Assume that the task ti is performed by the edge node
sj . Then, the response delay of task ti, denoted by di,j ,
usually includes the following five parts. The first part is the
transmission delay dtrsi,j , i.e., the time taken to offload the task
from vehicle vi to R, and can be calculated as dtrsi,j = Ii/ri,
and ri is the transmission rate of the wireless channel between
vi and R,

ri = B log2(1 +
PiGi
σ2

) (1)

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

5784

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:53:17 UTC from IEEE Xplore. Restrictions apply.

where Pi denotes the transmission power of vehicle vi, Gi is
the channel gain between vehicle vi andR, B is the bandwidth
for the wireless channel and σ2 is the noise power. The
second part is the propagation delay dpi,j , i.e., the time taken
to propagate the task to edge node sj , and can be expressed as
dpi,j = Ii/Hj , where Hj denotes the propagation rate between
R and sj . It shall be noted that the propagation delay could be
much smaller than the transmission delay, owing to the high-
speed optical fiber links between RSU and the edge nodes.

The third part is the calculation delay dci,j , i.e., the time
taken to accomplish the task at edge node sj . When task
ti is allocated to sj , the edge node will create the virtual
resources for the task. However, the task execution may fail
due to some technical hitches and we further assume such
failures are recoverable. If there are no failures during the
task execution, the calculation delay is dc,noi,j = Ci/fj , where
fj is the processing frequency of the edge node sj . On
the other hand, if there are failures during task execution,
the calculation delay needs to be discussed as follows. We
assume that the failures of task ti at sj follow a Poisson
process [14], [15] and the failure rate is λi,j that can be
estimated based on historical experience. Let N (t) denote
the number of failures during the time (0, t]. Hence, the
probability that k failures occur within the time interval dc,noi,j

is P{N (dc,noi,j) = k} = ((λi,jd
c,no
i,j)k/k!)e−λi,jd

c,no
i,j , and

E[N (dc,noi,j)] = λi,jd
c,no
i,j . Generally, it will take some time

(i.e., recovery time) to resume the task execution, with the help
of some checkpointing and rollback/roll-forward technologies
[14].

In this context, let Rk(dc,noi,j) denote the recovery time of
the kth failure for task ti at sj , and assume it follows an ex-
ponential distribution with the recovery rate µi,j . Assume that
the total N (dc,noi,j) failures are independent of each other. So
the recovery times are independent and identically distributed
and the total recovery time R(dc,noi,j) =

∑N (dc,no
i,j)

k=1 Rk(dc,noi,j)
follows Gamma distribution with two parameters λi,jd

c,no
i,j

and µi,j . Thus, E[R(dc,noi,j)] = λi,jd
c,no
i,j /µi,j . Therefore, the

average calculation delay including the norm calculation delay
and the recovery time, is:

dci,j = dc,noi,j +
λi,jd

c,no
i,j

µi,j
=
Ci
fj

(1 +
λi,j
µi,j

). (2)

The fourth part is the result propagation delay, i.e., the time
taken to propagate the execution result from sj to R, and can
be expressed as drpi,j = Õi/Hj , where Õi denotes the result
size of task ti. The fifth part is the returning delay, i.e., the
time taken to transmit the execution result back to vi from
R, and can be expressed as dri,j = Õi/r̃i, where r̃i is the
transmission rate from R to vehicle vi. Therefore, the total
response delay can be expressed as:

di,j = dtrsi,j + dpi,j + dci,j + drpi,j + dri,j . (3)

It shall be noted that the latter two parts i.e., the result
propagation delay and the returning delay are often omitted,
due to the fact that the size of execution result is much

smaller than the size of task-input data. Usually, the response
delay can affect the QoE of vehicles to a great extent. For
instance, the QoE of one vehicle will decline as the response
delay increases. If the response delay exceeds the dwelling
time of the vehicle, the QoE may reduce to the minimum
since the vehicle cannot receive the result and considers the
task offloading to be unsuccessful. Therefore, we have the
following definition.

Definition 1: Delay Satisfaction Index (DSI). The delay
satisfaction index, denoted by Ui,j , indicates the impression
of the vehicle vi on the edge node sj that performs its task
ti. In particular, the DSI value is defined as a measurable
satisfaction level of vi towards sj in terms of the response
delay, given as:

Ui,j =


1 if di,j ≤ Di,
Wi−δ(di,j−Di)

Wi
if Di < di,j ≤ Di +Wi/δ,

0 if di,j > Di +Wi/δ.

(4)

Based on the above definition, we can see that the DSI value
will reach the maximum (i.e., 1) if the task is accomplished
within the expectation Di. Otherwise, the value will decay
linearly with a slope of δ(> 0) until it is equal to 0, as the
response latency increases. Therefore, the impression of vi on
sj declines as the DSI value decreases. In other words, the
larger the DSI value, the higher the satisfaction level in terms
of response delay.

B. Cost Model

The computing resources in both cloud computing and VEC
are provisioned in a pay-as-you-go way. As a result, the expen-
diture of task offloading also has a great influence on the QoE
of vehicles. Generally, the less the costs on task offloading,
the better the QoE of one vehicle. On the other hand, if
the expenditure of task offloading exceeds the budget of the
vehicle, the QoE may reduce to the minimum, and the vehicle
may consider the task offloading to be unsuccessful. Let ci,j
denote the expenditure of vehicle vi if the corresponding task
ti is executed at the edge node sj , and ci,j can be defined
as ci,j = ξjCi, where ξj represents the price per computing
resource. Then, we have the following definition.

Definition 2: Cost Satisfaction Index (CSI). The cost
satisfaction index, denoted by Qi,j , indicates the impression
of vi on the edge node sj towards the expenditure of task of-
floading. In particular, the CSI value is defined as a measurable
satisfaction level of vi towards sj in terms of the expenditure,
given as:

Qi,j =

{
Ei−ci,j
Ei

if ci,j ≤ Ei,
0 if ci,j > Ei.

(5)

According to the above definition, the CSI value varies from
0 to 1. Generally, the larger the CSI value, the higher the
satisfaction level towards the expenditure of task offloading.
Given the two definitions 1 and 2, we have the following
definition:

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

5785

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:53:17 UTC from IEEE Xplore. Restrictions apply.

Definition 3: Overall Satisfaction Index (OSI). The overall
satisfaction index, denoted by Oi,j , indicates the overall im-
pression of vi on the edge node sj towards both the response
delay and the expenditure of task offloading. In particular, the
OSI value is defined as a measurable satisfaction level of vi
towards sj , given as:

Oi,j = wdUi,j + wcQi,j , (6)

where wd, wc ∈ (0, 1) and wd + wc = 1. The overall
satisfaction index is the weighted sum of the delay satisfaction
index and cost satisfaction index. The preference towards OSI
can be tuned by adjusting the weights. For example, if vehicle
vi cares about the response delay more than the expenditure,
it can achieve this goal by increasing wd.

C. Problem Formulation

The goal of this work is to maximize the OSI values
of all the vehicles in the failure-aware VEC system. Define
O(x) =

∑m
i=1

∑n
j=1 xi,jOi,j as the sum of OSI values for

all the vehicles, where x is the m × n matrix of which the
element xi,j is the task offloading decision for the task ti at
the edge node sj . Therefore, the optimization problem in this
paper is formulated as below:

(P1) max
x
O(x)

s.t. :
n∑
j=1

xi,j = 1, 1 ≤ i ≤ m (7)

m∑
i=1

xij ≤ hj , 1 ≤ j ≤ n (8)

xi,j ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n (9)

where the constraint (7) guarantees that the task ti from
vi can be offloaded to only one edge node for execution.
Due to the limited computing resources in VEC compared
to cloud computing, we assume that none of the edge nodes
can perform the tasks from all the vehicles in the optimization
period. Such a constraint can be satisfied by the inequation (8),
and hj denotes the maximal number of tasks sj can perform
in the optimization period.

Proposition 1: The satisfaction maximization for all the
vehicles in VEC (i.e., the problem P1) is NP-Hard.
Proof: The above satisfaction optimization problem P1 is
actually an instance of the MKP that is well-known as an
NP-hard problem [16]. Considering two sets of knapsacks K
and items I, respectively, each knapsack k ∈ K can pack finite
items based on its knapsack capacity ak and each item i ∈ I
has a size si and profit pi. MKP tries to maximize the total
profits of the items when they are packed into the knapsacks,
i.e.,

(P2) max
∑
k∈K

∑
i∈I

xk,ipi (10)

s.t. :
∑
i∈I

xk,isi ≤ ak, ∀k ∈ K (11)

xk,i ∈ {0, 1}, ∀k ∈ K,∀i ∈ I (12)

Actually, problem P1 is equivalent to P2, which can be
proven as follows. The set of edge nodes S and the set of
vehicles V in the system model can be considered to be K
and I in P2, respectively. The constraint (8) in our problem
P1 corresponds to the constraint (11) in the sense that each
task has a size 1 which is corresponding to the item size. Each
edge node has a constraint hj that is corresponding to the
backpack capacity ak. The number of tasks offloaded to each
edge node should not exceed the maximal number of tasks
the node can support. This constraint actually corresponds to
the knapsack constraint shown in Eq. (11). The OSI value for
each task executed at the edge can be regarded as the profit
of each item in problem P2. Therefore, P1 is equivalent to
P2 in the sense that m items are packed to n knapsacks for
OSI value maximization. Hence, the satisfaction optimization
problem P1 is NP-Hard. �

IV. ALGORITHM DESIGN

It usually takes exponential time to find the optimal solution
to our satisfaction optimization problem, which is prohibitively
costly and thus the exhaustive search does not perfectly suit
our application scenario in which the offloading decision is
supposed to be made in almost real time. As a result, we
propose a greedy heuristic approach to seek the approximate
solution to the problem P1, and hope to find the solution
in polynomial time to better cater to the rigorous latency
requirement of the decision making on task offloading in VEC.

Since RSU is interconnected with the edge nodes using
the ultra-fast optical fiber networks, we assume that RSU can
learn the status of the edge nodes in real time, e.g., by beacon
packets dissemination. RSU can construct two m×n matrixes
U and Q. U is the DSI matrix with each element Ui,j denoting
the DSI value of vehicle vi towards the edge node sj . Q is
the CSI matrix with each element Qi,j denoting the CSI value
of vehicle vi towards the edge node sj . Then the OSI matrix
O can be formed, i.e., O = wdU + wcQ. The optimization
problem P1 can be transformed to maximize the sum of m
elements in O in the condition that m elements come from m
different rows in O and the constraint (8) is satisfied.

The proposed greedy heuristic-based algorithm is shown in
Alg. 1. At the beginning, the algorithm does some initialization
such as constructing matrixes λ, µ, x, U , Q, and O. Then,
a list lj for each column j in Q (i.e., each edge node sj) is
maintained for recording the tasks which sj is responsible for
performing. Then we begin to traverse each row i in Q that
is actually corresponding to each task ti. The heuristic rule
adopted here is to select the maximal element in each row.
However, the corresponding element may be invalid, due to
the fact that the number of tasks each edge node can support
is limited. Therefore, we need to check whether the task can be
performed by the edge node, i.e., whether the maximal element
can be added into the list (lines 7-10). The element is added to
the list and we update the offloading decision (e.g., xi,idx j) if
the element passes the validation. Then, we calculate the sum
of OSI values for all the vehicles, and return it as well as the
offloading decision matrix x.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

5786

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:53:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Greedy heuristic-based algorithm for satis-
faction maximimzation
Input: V , S, T , λ, µ, δ, wd, wc, h, P , G, σ2

Output: Optimal objective value, and x
1 Estimate the failure rate matrix λ, recovery rate matrix µ;
2 Initialize the matrix of offloading decision x;
3 Construct two matrixes U and Q;
4 Construct matrix O by O = wdU + wcQ;
5 Initialize a list lj for each column j in O;
6 for each row i in O do
7 Find the index of the largest element in row i, let

idx j = argmax
j
{Oi,j |Oi,j ∈ O[i]};

8 while len(lidx j) ≥ hidx j do
9 Find the index of the largest element from the

remaining elements in row i, denoted by idx j;
10 end
11 xi,idx j = 1;
12 Store Oi,idx j to lidx j ;
13 end
14 S = 0;
15 for each list lj do
16 S+ = sum(lj);
17 end
18 return S, x;

TABLE I
PARAMETER SETTINGS

Parameter Value Parameter Value
m [20, 70] n 10
Ii [1, 50] Ci [40, 70]
hj [5,8] fj [10000,12000]
wd 0.6 wc 0.4
Ei [50,90] ξj (0,1)
λi,j [10,15] µi,j [1,10]
δ 2 Size 50
cp 0.2 mp [300, 1000]

The complexity of the above algorithm can be analyzed
as follows. First, it takes time of O(mn) to construct the
matrixes including λ, µ, x, U , Q, and O. For the worst
case, the algorithm always finds the suitable edge node for
performing the task at the end when traversing each row
in O. In the meanwhile, it will take time of n log n to
find the largest element in each row. Hence, the total time
taken to find the appropriate edge node for each task is
O(mn2 log n) + O(

∑n
j=1 hj) = O(mn2 log n). As a result,

the approximately optimal solution can be found in polynomial
time.

V. PERFORMANCE EVALUATION

A. Parameter Settings

In this section, we validate the efficiency of our approach by
conducting extensive simulations. In particular, the parameters
involved in the simulation are all generated in a random way.

The main parameters involved in the simulation are shown in
Table I. For instance, the failure rate and the recovery rate in
the simulation vary from 5 to 10 and from 1 to 10, respectively.

In the meanwhile, we compare our approach with three
benchmarks which are detailed in what follows. RND: As the
simplest approach, the random approach allocates the tasks
to the edge nodes randomly, as long as the constraints are
satisfied. We denote this approach by RND. EN-optimal: From
the perspective of the edge node, each node tends to select
the task with the maximal OSI value each time, and they
repeat the procedure until the constraint is violated. GA: The
genetic algorithm (GA) tries to find the optimal task offloading
decision iteratively. The running time of GA mainly depends
upon the number of iterations in the simulation. Specifically,
the parameter settings of GA are also shown in Table I. For
instance, the population size is 50 and the number of iterations
is 100. The crossover probability and mutation probability are
set to 0.2 and 0.02, respectively.

B. Simulation Results and Analysis

We first validate the efficiency of our approach compared
to the other three benchmarks and the simulation results are
shown in Fig. 1.

Fig. 1. The performance comparison with different failure rates

First of all, our approach can achieve the best results no
matter how the number of tasks varies. Second, as the number
of tasks increases, the objective values (i.e., OSI values) also
increase for all the approaches. Third, GA can achieve the
second best results among the four approaches, and there are
no determinate relationships between the random approach and
EN-optimal approach. For instance, when the number of tasks
is 40, the former is better than the latter. However, when the
number of tasks is 55, the latter is better than the former.
The main reason is that the random approach fluctuates more
frequently than other approaches. Sometimes it may achieve
better results and sometimes may not. Generally, our approach
is the best among the four approaches in terms of the optimal
values.

The algorithm is actually run by RSU, when RSU receives
the beacon information from nearby vehicles and learns the

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

5787

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:53:17 UTC from IEEE Xplore. Restrictions apply.

status of the edge nodes. As a result, the time taken to make
the offloading decision by RSU is supposed to be almost real
time. Such a strict latency requirement helps improve both the
QoE of the vehicles and the QoS of the edge nodes. Thus, it is
necessary to evaluate the running times of these approaches.
The simulation results are shown in Fig. 2. Obviously, apart
from GA, the other three approaches can achieve real-time
response, i.e., they can make decisions on task offloading
in real time. GA usually takes seconds to make the task
offloading decisions, and thus GA is not suitable for our
application scenario. Comparatively speaking, our approach
is the best among the four approaches in terms of both the
optimal values and running time.

Fig. 2. The performance comparison with different failure rates

VI. CONCLUSION

In view of the importance of satisfaction of vehicles in
stimulating them to pursue better QoE through task offloading
and service outsourcing operations, we strive to optimize
the satisfaction values for all the vehicles in VEC. Further
to this, we have generalized the traditional task offloading
model by considering potential failures in VEC. A satisfaction
maximization scheme is put forward in the failure-aware VEC
system. Due to the difficulty in solving this formulated MKP
problem, we adopt a greedy heuristic approach to speed up
the searching process, so as to find the near-optimal solution
in polynomial time. The simulation results have shown that
our approach can outperform other benchmarks.

For future work, we plan to consider more factors when
evaluating the satisfaction value of vehicles and design more
efficient schemes and strategies to optimize the satisfaction of
vehicles in VEC.

ACKNOWLEDGEMENT

This work is partially supported by the National Natural
Science Foundation of China under Grant Number 62071327.
Huaming Wu is the corresponding author.

REFERENCES

[1] Q. Luo, S. Hu, C. Li, G. Li and W. Shi, “Resource Scheduling in Edge
Computing: A Survey,” in IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2131–2165, Fourthquarter 2021.

[2] I. Martinez, A. S. Hafid and A. Jarray, “Design, Resource Management,
and Evaluation of Fog Computing Systems: A Survey,” in IEEE Internet
of Things Journal, vol. 8, no. 4, pp. 2494–2516, 15 Feb.15, 2021.

[3] C. Tang, C. Zhu, X. Wei, H. Wu, Q. Li and J. J. P. C. Rodrigues, “Intel-
ligent Resource Allocation for Utility Optimization in RSU-Empowered
Vehicular Network,” in IEEE Access, vol. 8, pp. 94453–94462, 2020.

[4] S. Wang, J. Li, G. Wu, H. Chen and S. Sun, “Joint Optimization of
Task Offloading and Resource Allocation Based on Differential Privacy
in Vehicular Edge Computing,” in IEEE Transactions on Computational
Social Systems, vol. 9, no. 1, pp. 109–119, Feb. 2022.

[5] C. Tang, H. Wu, “Joint optimization of task caching and computation
offloading in vehicular edge computing,” in Peer-to-Peer Netw. Appl.,
vol. 15, no. 2, pp. 854–869, 2022.

[6] J. S. Ng, W. Y. B. Lim, Z. Xiong, D. Niyato, C. Leung and C. Miao, ”A
Double Auction Mechanism for Resource Allocation in Coded Vehicular
Edge Computing,” in IEEE Transactions on Vehicular Technology, vol.
71, no. 2, pp. 1832-1845, Feb. 2022.

[7] X. Wang, Z. Ning, S. Guo and L. Wang, “Imitation Learning Enabled
Task Scheduling for Online Vehicular Edge Computing,” in IEEE
Transactions on Mobile Computing, vol. 21, no. 2, pp. 598-611, 1 Feb.
2022.

[8] B. Yang, F. Tan, and Y.-S. Dai, “Performance evaluation of cloud service
considering fault recovery,” The Journal of Supercomputing, vol. 65, no.
1, pp. 426–444, Jul. 2013.

[9] Y. Sang, J. Cheng, B. Wang, M. Chen, “A three-stage heuristic task
scheduling for optimizing the service level agreement satisfaction in
device-edge-cloud cooperative computing,” PeerJ Comput. Sci., 8: e851,
2022.

[10] B. Wang, J. Cheng, J. Cao, C. Wang, W. Huang, “Integer particle swarm
optimization based task scheduling for device-edge-cloud cooperative
computing to improve SLA satisfaction,” PeerJ Comput. Sci., 8: e893,
2022.

[11] J. Li et al., “Maximizing User Service Satisfaction for Delay-Sensitive
IoT Applications in Edge Computing,” in IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 5, pp. 1199-1212, 1 May 2022.

[12] C. Tang, X. Wei, C. Zhu, Y. Wang, and W. Jia, “Mobile vehicles as fog
nodes for latency optimization in smart cities,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 9, pp. 9364–9375, 2020.

[13] C. Tang, S. Xia, Q. Li, W. Chen, and W. Fang, “Resource pooling in
vehicular fog computing, ” Journal of Cloud Computing, 10, 19, 2021.

[14] B. Yang, F. Tan, and Y.-S. Dai, “Performance evaluation of cloud service
considering fault recovery,” The Journal of Supercomputing, vol. 65, no.
1, pp. 426–444, Jul. 2013.

[15] J. Yao and N. Ansari, “Fog Resource Provisioning in Reliability-Aware
IoT Networks,” in IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8262–8269, Oct. 2019.

[16] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, 1st ed. Springer, 2000.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

5788

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:53:17 UTC from IEEE Xplore. Restrictions apply.

