
Deep Reinforcement Learning-Guided Task Reverse
Offloading in Vehicular Edge Computing

Anqi Gu⇤, Huaming Wu⇤, Huijun Tang⇤ and Chaogang Tang†
⇤Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

†School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
Emails: 3095896998@qq.com, {whming, tanghuijune}@tju.edu.cn, cgtang@cumt.edu.cn

Abstract—The rapid development of Vehicular Edge Com-
puting (VEC) provides great support for Collaborative Ve-
hicle Infrastructure System (CVIS) and promotes the safety
of autonomous driving. In CVIS, crowd-sensing data will be
uploaded to the VEC server to fuse the data and generate
tasks. However, when there are too many vehicles, it brings
huge challenges for VEC to make proper decisions according
to the information from vehicles and roadside infrastructure. In
this paper, a reverse offloading framework is constructed, which
comprehensively considers the relationship balance between task
completion delay and the energy consumption of User Vehicle
(UV). Furthermore, in order to minimize the overall system
consumption, we establish an adaptive optimal reverse offloading
strategy based on Deep Q-Network (DQN). Simulation results
demonstrate that the proposed algorithm can effectively reduce
the energy consumption and task delay, when compared with the
full local and fixed offloading schemes.

Index Terms—Internet of Vehicle, Vehicular Edge Computing,
Reverse Offloading, Deep Reinforcement Learning

I. INTRODUCTION

In recent years, autonomous driving has emerged as a
promising vehicle technology. With the vigorous development
of Vehicular Edge Computing (VEC), its application in au-
tonomous driving has attracted widespread attention. Internet
of Vehicles (IoV) can improve traffic efficiency, ensure vehicle
safety and reduce energy consumption [1]. Unfortunately, the
safety of autonomous driving remains a concern, which is
severely affected by many factors, e.g., complex road condi-
tions, communication delays, and limitations of computational
capacity [2]. The ES8 self-driving accident in 2021 showed
that keeping the vehicle itself safe is still worthy of in-depth
investigation, due to the fact that the area the vehicle can
perceive is limited, not to mention the scarcity of on-board
computing resources.

Collaborative Vehicle Infrastructure System (CVIS) has the
ability to capture the real-time status of vehicles and road
conditions and deliver corresponding message [3]. CVIS has
been applied to receiving real-time messages and fusing them
together for making decisions in a short period of time. Unlike
existing works that offload tasks at the edge of Internet of
Things (IoT), these tasks are created by the VEC rather than
the vehicles. This poses a new challenge, due to the location
of the server, and RSU can only receive the wireless signal
within the valid area, a single RSU fails to meet the strict

constraints of task latency, while using many servers would be
prohibitively expensive. It is also impractical to draw support
from the cloud, as it may bring about long delays and informa-
tion security issues. Considering the close proximity between
the vehicle and the VEC, and the remaining computational
capacity of the vehicle terminal itself can be used to reduce the
latency. It is necessary to reversely offload tasks from the VEC
server to the vehicle terminal for execution. Making accurate
offloading decisions in real-time and allocating computing
resources reasonably have great significance to improve the
service performance of VEC and improve the Quality of
Service (QoS).

There are many studies focused on developing novel
offloading-decision strategies in vehicular networks. Wang et
al. [4] formulated the application offloading process as a
Markov Decision Process (MDP) problem and proposed a Site-
by-Site and Task-by-Task (SSTT) heuristic approach, where
mobile devices can offload multiple tasks to adjacent vehicle-
based Cloudlets for the reduction of energy consumption. Feng
et al. [5], [6] proposed a greedy-based reverse offloading
framework for IoV. The vehicle uploads sensor data to Road
Side Units (RSUs) for information fusion, and then the tasks
generated by the VEC can either be executed on the RSU or be
offloaded in reverse to vehicles, where appropriate decisions
are made based on the vehicle information fusion, thereby
improving the safety of the vehicle. However, these heuristic
offloading schemes still struggle to balance complexity and
optimality, which are prone to fall into local extrema when
the scale of the optimization problem is large [7]. In addition,
only the system latency is considered, while the energy con-
sumption at the VEC is ignored [6], which is equally important
for User Vehicles (UVs).

Recently, Deep Reinforcement Learning (DRL) has been
widely applied in IoV for object detection and scene per-
ception [8]. Owing to the combination of the powerful per-
ception ability of deep learning and the exploratory ability
of reinforcement learning, DRL can learn proper dynamic
decisions by interacting with the environment and obtain
feedback and rewards without knowing the prior knowledge
of the environment. Huang et al. [9] proposed a DRL-based
approach to address the joint task offloading and resource
allocation problem. DREAM [10] is a queuing delay-aware
task offloading algorithm based on DRL for maximization of
the throughput of User Vehicle (UV) in a collaborative vehicle978-1-6654-3540-6/22$31.00 © 2022 IEEE

2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data

978-1-6654-3540-6/22/$31.00 ©2022 IEEE

2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data

2200

GL
O

BE
CO

M
 2

02
2

- 2
02

2
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
47

4

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:54:41 UTC from IEEE Xplore. Restrictions apply.

network under the long-term queueing delay constraint. Nev-
ertheless, current DRL-based offloading schemes have seldom
exploited the reverse offloading decision in IoV to overcome
the uncertainties in VEC environments.

Inspired by the above research, in this paper, we adopt DRL
in the task reverse offloading framework in the vehicle network
scenario, considering both vehicular energy consumption and
task delay. The main contributions of this paper can be
summarized as follows:

• Aiming at the scenario of a single VEC server with mul-
tiple vehicles in the VEC environment, an optimization
problem of reverse unloading decision is established. In
each time slot, the VEC decides whether to reversely
offload the task information of ith vehicle back to the ve-
hicle, and the system consumption minimization problem
is formulated as a mixed integer nonlinear programming
problem.

• We design an adaptive optimal reverse offloading strategy
based on Deep Q-Network (DQN) to minimize the system
consumption of UVs. To the best of our knowledge, this
is the first work that introduces DRL into task reverse
offloading while simultaneously considering both latency
and energy consumption.

• We conduct extensive experiments to evaluate the per-
formance of the proposed algorithm. Simulation results
demonstrate that our scheme can always achieve the low-
est system consumption compared to other schemes. The
reverse offloading decision can be effectively optimized,
so as to minimize the average consumption of the IoV
system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Since both data transmission and task execution consume
the energy of the vehicle, while the battery capacity of the
vehicle is limited, this paper attempts to choose appropriate
tasks which are generated at the edge server, and offload
them from the RSU to the vehicle for execution by making
optimal offloading decisions with the goal of minimizing
energy consumption and delay.

As depicted in Fig. 1, the VEC environment is composed
of M vehicles and one RSU that can connect to the VEC
and compute tasks through the edge server within it. M
vehicles can be represented by a set M = {1, 2, · · · ,M}.
It is assumed that all vehicles have access to the VEC, and
that both the vehicle and the VEC can compute, receive, and
transmit signals.

We assume that all vehicles have perceptual data i 2 M .
The ith vehicle data is represented by Di = { lpi , loi , ci} , where
lpi and loi represent the size of input data and the size of
output data, respectively, and ci is the computational workload.
Regarding the collection of information, the sensory data of all
vehicles is uploaded to the VEC for data fusion. The reverse
offloading is defined as the process of returning the sensory
information data and tasks from the VEC to the original

Fig. 1. System Model

vehicle for calculation. RSU performs data fusion and then
generates a large number of computational tasks. With the
powerful capabilities of edge servers, these tasks can either be
performed on the VEC server or be reversely offloaded to the
original vehicle.

The decision variable xi can be 0 or 1, when xi = 1, the task
of the ith vehicle taski is processed on the VEC itself rather
than reversely offloaded back to the vehicle, otherwise the task
should be processed by the vehicle. The main notations used
in this paper are summarized in Table I.

TABLE I
NOTATIONS AND THEIR MEANINGS

Notation Definition
M The number of UVs
gui The uplink channel gain
gdi The downlink channel gain
rui The upload rate
rdi The download rate
� The path loss exponent
Bi The bandwidth of the ith vehicle
�2 The background noise power
pi The transmit power of the ith vehicle
pRSU The transmit power of RSU
fi The CPU frequency of the vehicle
fo
i The CPU frequency of VEC server allocated to the ith task

µ The capacitance coeffificient
pmax
i The maximum transmit power of the ith vehicle

Etran
i The transmission energy

Eloc
i The local computation energy

Tu
i The uploading latency

T ro
i The reverse offloading latency

T l
i The local computation latency

T o
i The VEC computation latency

T d
i The result download latency

xi The reverse offloading decision
di The distance between the RSU and the ith vehicle
� The loss function
� The discount factor
! The network parameter
 0 The learning rate for network updating

2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data

2201

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:54:41 UTC from IEEE Xplore. Restrictions apply.

B. Edge Computing

Once a task is uploaded to the RSU, the wireless device
passes its related information to the RSU through the wire-
less channel. In general, considering the small amount of
feedback information and the VEC server can supply power
continuously without being limited by energy consumption, we
ignore the energy consumption when the edge server sends the
calculation results back to the wireless device [11].

The total delay for the ith task calculated by VEC can be
written as:

TR
i = Tu

i + T o
i + T d

i , (1)

where Tu
i = lpi /r

u
i , T o

i = cil
p
i /f

o
i and T d

i = loi /r
d
i are the

uploading latency, the VEC computation latency in the RSU
and the result download latency, respectively. fo

i is the CPU
frequency of the VEC server allocated to the task of the ith

vehicle taski. rdi and rui are the download rate and the upload
rate, respectively, which can be calculated by [6]:

rdi = Bilog2

⇣
1 +

pRSUgdi di
��

�2

⌘
, (2)

rui = Bilog2

⇣
1 +

pigui di
��

�2

⌘
, (3)

where pRSU and pi are the transmit power of the RSU and
the ith vehicle, respectively, gui and gdi denote the uplink and
downlink channel gains between the RSU and the ith vehicle,
respectively, di represents the distance between the ith vehicle
and the RSU, and � represents the pass loss exponent.

In the meantime, the energy consumption of vehicles only
includes the energy spent during the transmission, i.e.

Etran
i = pi · Tu

i . (4)

C. Local Computing with RSU Reverse offloading

When it is decided that the task should be reversely of-
floaded, the output data loi of the RSU will be transmitted back
to the ith vehicle to deal with, where x = 0 indicates that the
RSU reversely offloads the task of the ith vehicle taski to the
ith vehicle, and then the vehicle executes its task.

The delay of the reverse offloading task can be represented
as follows:

TR�off
i = Tu

i + T ro
i + T l

i , (5)

where T ro
i and T l

i are the reverse offloading latency and
the local computation latency, respectively, which can be
formulated as:

T ro
i =

�il
p
i

rdi
, (6)

T l
i =

ci�il
p
i

fi
. (7)

The local execution energy is calculated by [6]:

Eloc
i = ci�il

p
i µf

2
i . (8)

where µ is the capacitance coefficient, fi is the CPU frequency
of the vehicle. �i means the overhead ratio of the reverse

offloading of the ith vehicle, and its value should be more
than one [5].

The total delay of the task for each vehicle i can be
represented as:

total lati = (1� xi) · T o�off
i + xi · T o

i . (9)

Similarly, the total energy consumption per vehicle i can be
expressed as:

total poweri = Etran
i + (1� xi) · Eloc

i . (10)

D. Problem Formulation
Our purpose is to minimize the total delay and correspond-

ing energy consumption of all tasks in the whole procedure, we
first introduce a system consumption function L(x), which is
defined as the product of energy consumption and task latency
gth power. The specific form is as follows:

L(x) =
MX

i=1

(total lati
g ⇥ total poweri), (11)

where x = {xi|i 2 M} is the offloading-decision vectors and
g indicates the importance of the task latency to the energy
consumption.

Then, we establish an optimization problem (P1) to min-
imize L(x) in the whole process by optimizing the reverse
offloading decision, which is formulated as follows [6]:

(P1) : min
x

L(x)

s.t. : 0  fi  fmax
i , (12)

0  pi  pmax
i , (13)

0  fR
i  Fmax

R

M
, (14)

xi 2 {0, 1} . (15)

where Fmax
R is the maximum CPU cycle frequency of the VEC

server, the first and third constraints represent the limitation
of the computational resources, indicating that the CPU fre-
quencies of all vehicles and the CPU frequencies of the VEC
server assigned to the ith vehicle cannot exceed the maximum
frequency. The second constraint represents the restriction on
the transmit power of the vehicles. The fourth constraint is the
vehicle decision, which indicates that the binary variable x in
the objective function and the constraint condition can only
be 0 or 1.

It is found that P1 is a non-convex problem, which is
difficult to solve in polynomial time. With the increase in the
number of vehicle terminals and the scale of computing tasks,
the computational complexity of this problem also increases
rapidly. Due to the curse of high-dimensional data, traditional
heuristic optimization methods are inefficient and generally
difficult to solve such complex problems [12].

III. DRL-AIDED REVERSE OFFLOADING APPROACH

To conquer the above disadvantages, in this paper, we
propose a DRL-based approximation algorithm to efficiently
solve P1.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data

2202

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:54:41 UTC from IEEE Xplore. Restrictions apply.

We take the optimization of the vehicles on the road in a
time slot T into consideration, and then divide T into many
small slots for the reverse offloading decision. Therefore, the
problem can be translated into the optimization problem of
the long-term reward of the vehicle on the road, which can be
further modeled as a Markov Decision Process (MDP). This
paper proposes a DQN-based task offloading algorithm for
VEC networks to obtain the reverse offloading policy x. The
state, action, the new state and the reward are stored in the
memory and then sample memories in each training epoch
of deep Q-learning algorithm to train the Q network. DQN
is repeatedly trained through multiple iterative processes until
the optimal offloading policy is achieved.

In our VEC environment, there are M vehicle terminals,
and each of the terminal information can be transferred to a
remote server or reversely offloaded to local computing. When
the task information is updated to the server nearby or reverse
offloaded to the local, the speed may change correspondingly,
and the vehicle transmission power pi and the vehicle CPU
calculation frequency are also changing. Therefore, all the
vehicles can be regarded as an agent. The elements of MDP,
namely, state space, action space and reward function can be
defined as follows.

A. State Space
Considering the influence of the distance between the vehi-

cle and the server, task size, upload rate and download rate,
we treat the vehicles transmit power, computational capacity,
upload rate and download rate as states, which are severely
affected by the status of the vehicle, and the distance between
the vehicle and the RSU.

For the minimization of the overall energy consumption
and latency, we use a DQN to find the optimal offloading
decision xi of the ith server and program pi, fi, rui and
rdi of the user task into the system state st as an input
to the DQN. Specifically, the state space st consists of the
allocated CPU frequency of the VEC to the ith vehicle, vehicle
CPU frequency, upload and download rate, which can be
represented as follows:

st =
n
p1(t), p2(t), · · · , pM (t), f1(t), f2(t), · · · , fM (t),

ru1 (t), r
u
2 (t), · · · , ruM (t), rd1(t), · · · , rdM (t)

o
. (16)

B. Action Space
The output of the DQN is the Q-value (in Eq. 11) of

the corresponding action. When the agent selects the proper
operation with the Q-value, the execution result of the action
is to adjust the offloading decision accordingly.

We choose the decision-making variable x as the action,
which can be represented as follows:

at = {x1(t), x2(t), x3(t), · · · , xM (t)} . (17)

C. Reward Function
We redefine the reward function in DQN, by taking the

system consumption function as the goal of optimization. The

reward reduces the computational complexity in the iterative
process of the algorithm, accelerates the convergence of the
algorithm, and ensures the lowest energy consumption of the
system.

Since we want to minimize L(x), the reward function of
agents is defined as:

Rt = �L(x)/M, (18)

which represents the average system consumption of the M
vehicles.

Based on the analysis above, the details of the algorithmic
process are illustrated in Algorithm 1.

Algorithm 1: DQN-based Task Reverse Offloading in
Vehicular Edge Computing
Input: Network State st
Output: Reverse offloading decision xm

1 Initialize the empirical pool storage space capacity and
the parameters of the initial evaluation target Q network

2 foreach episode = 1, · · · , G do
3 Reset the environment, Initialize the environment

state, rewards and losses
4 foreach time slot = 1, · · · , T do
5 a(t) is selected randomly with the probability of

", otherwise select the action that maximizes the
Q value, i.e., a(t) = argmaxa(t)

Q(st, a(t) |✓)
6 Execute a(t), and offload the task to the selected

server.
7 Calculated rt according to its definition and then

transfer to the next state st+1

8 Store (st, at, rt, st+1) in the experience pool
9 Memories were sampled uniformly randomly

from the empirical pool
10 Compute the loss function by

� = rt + �maxat+1Q(st+1, at+1)�Q(st, at))
11 Update the parameters of the evaluation network

using a back propagation algorithm
! = ! + 0r!�2

12 The parameters of the evaluated network were
replicated to the target network at every n = 10
steps.

13 If st+1 is a termination state, the current iteration
process is terminated

14 end
15 end
16 return Reverse offloading decision xm;

IV. PERFORMANCE EVALUATION

A. Parameter Settings
We assume that there are 10 vehicle terminals and an RSU

with a VEC. The relevant parameter values are set according
to [6], [10]. We set the path loss index �=3 and the background
noise power of 70 dBm, pRi = 0.5 W and pi = 0.1 W,
capacitance coefficient is µ = 10�28, the available bandwidth

2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data

2203

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:54:41 UTC from IEEE Xplore. Restrictions apply.

between the ith vehicle and the RSU is B = 180 kHz,
weight coefficient g = 0.5 means more emphasis on energy
saving, the distance between the ith vehicle and the RSU di(t)
is decreases evenly over time. The channel gain of uplink
and downlink between the vehicle and the VEC server was
set as 127 + 30 ⇥ log di(t). The input data size, computing
requirements, and reverse offloading overhead ratios follow
lsi 2 [0.5, 1]⇥ 105 bits, ci 2 [500, 1000] cycle/bits, � 2 [1, 2].
The output task data size was set to loi = 0.1lsi bits, and the
maximum CPU cycle frequency per vehicle and VEC server
were Fmax = 1.5 ⇥ 108 cycles/bits and Fmax

R = 8 ⇥ 108

cycle/bits, respectively. The channel model is based on the
Rayleigh fading model, assuming all vehicles have uniform
straight motion and the path loss model is di

�� [1].

B. Convergence Performance

The performance of system loss at different learning rates is
shown in Fig. 2, which are 0.00001 and 0.0001, respectively.

(a) Learning rate=0.00001 (b) Learning rate=0.0001

Fig. 2. Convergence performance at different learning rates.

It can be seen that when the learning rate is 0.00001, the
convergence process is fast, and it gradually converges after
the 1, 000th training step. When the learning rate is 0.0001,
it still converges quickly, but the intermediate brief converges
with drastic fluctuations and eventually converges before 1,000
times training steps. Thus, as the learning rate increases, it
is more likely to find a locally optimal solution rather than
a globally optimal solution. Therefore, we need to select an
appropriate learning rate according to the specific situation.

The convergence performance for different numbers of
DNN layers is as shown in Fig. 3. It can be seen that as
the number of DNN layers increases, the model first converges
faster and then tends to be stable. When the number of layers is
2, it converges after the 1, 000th training step; when the number
of layers is 4, its fluctuation is slightly larger than that of three
layers; when the number of layers is 5, the convergence rate
increases. Thus, we can conclude that the more DNN layers
are, the faster the convergence is, however, the convergence
rate increases slowly after exceeding three layers. Therefore,
in this paper, we choose the three-layer DNN structure as an
approximation of the Q value.

C. Baseline Comparison

To evaluate the performance of the proposed DQN-based
task reverse offloading algorithm, we adopt the following two
schemes as baselines:

(a) No. of layers=2 (b) No. of layers=3

(c) No. of layers=4 (d) No. of layers=5

Fig. 3. Convergence performance for different numbers of DNN layers.

• Fixed Decision (FD): In this scheme, we set a random
half of the tasks for reverse offloading, and the other half
to be used for VEC computation.

• Full Local (FL) or Full Reverse Offloading: In this
scheme, each task is reversely offloaded to the original
vehicle for calculation.

In our experiment, each simulation result was obtained over
100 replicates, but each initial environment was randomly
generated. For convenience, we put all the constraints of the
state variable into the constraint of random generation.

Fig. 4 studies the performance of various types of schemes
with different g-parameters. It can be seen that the system
consumption of each scheme increases as the g-value in-
creases, and the proposed DQN-based task reverse offloading
algorithm achieves the best performance. In addition, with the
increase in the delay proportion, the gap between the proposed
algorithm and other algorithms gradually increases, indicating
that our algorithm has a significant effect on reducing the
system consumption compared with other algorithms.

Fig. 4. System consumption at different g-values.

Furthermore, we compare the performance of different of-
floading schemes when the number of vehicle terminals varies.
As can be seen from Fig. 5, the system consumption increases
as the number of vehicle terminals increases. However, no
matter the increase or decrease in the number of vehicles, the
system consumption of our algorithm is always the lowest

2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data

2204

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:54:41 UTC from IEEE Xplore. Restrictions apply.

compared with the other two algorithms. In addition, the pro-
posed algorithm can learn according to the actual information
transmission situation, and make appropriate task offloading
decisions, effectively taking the latency and the reduction of
energy consumption into account.

Fig. 5. System consumption at different transmit power of the RSU.

Fig. 6 shows the relationship between the system con-
sumption and the VEC computational capacity under different
scenarios. We can see that the system consumption of the
proposed algorithm is significantly better than the other two
algorithms, and the FL scheme is independent of the VEC
CPU frequency, so its relationship with Fmax

R remains un-
changed. Besides, regardless of the computational capacity of
the VEC server, the proposed algorithm can also produce less
system consumption than the FL, because the task is assigned
to the VEC or offloaded to the vehicle terminal for processing,
thus reducing the load of a single server. Moreover, when
the computational resources of the VEC server are sufficient,
the system consumption of these three algorithms gradually
decreases to approximately 0, so in this case, the bottleneck
of the system performance is the radio resources.

Fig. 6. System consumption under different transmit power of vehicle when
the no. of vehicle terminals is 10.

V. CONCLUSION

In CVIS, crowdsensing data from vehicles and roadside
facilities are is to the VEC, and then proper decisions are
made. When there are too many vehicles, VEC can offload
some computing tasks back to the vehicles for the efficient
accomplishment of the tasks. In order to minimize the total
computation and communication energy consumption, as well
as the transmission delay between vehicle terminals and VEC
and the computational delay of VEC, taking full advantage of

local computational resources, we use DRL to help find the
optimal reverse offloading decision.

This paper investigates the problem of task reverse offload-
ing in a collaborative vehicle network. Firstly, the system
consumption function is introduced to evaluate the energy
consumption and delay of the system. Then, according to
the actual constraints, the constraints related to the unloading
decisions are improved. By optimizing the reverse offloading
decision, a reverse task offloading algorithm based on DQN
is proposed to optimize the task offloading decision and
minimize the system consumption of the multi-vehicle edge
network, including total energy consumption and delay in
completing the task. The simulation results verify the accuracy
of the algorithm and effectively reduce system consumption
compared with the existing full local, fixed strategy algorithms.
It can make accurate decisions in real-time with different states
of the vehicle by choosing states appropriately.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant Number 62071327. The
corresponding author is Huaming Wu.

REFERENCES

[1] Z. Xia, J. Wu, L. Wu, Y. Chen, J. Yang, and P. S. Yu, “A comprehensive
survey of the key technologies and challenges surrounding vehicular ad
hoc networks,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 12, no. 4, pp. 1–30, 2021.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[3] S. Li, N. Zhang, S. Lin, L. Kong, A. Katangur, M. K. Khan, M. Ni,
and G. Zhu, “Joint admission control and resource allocation in edge
computing for internet of things,” IEEE Network, vol. 32, no. 1, pp.
72–79, 2018.

[4] Z. Wang, D. Zhao, M. Ni, L. Li, and C. Li, “Collaborative mobile
computation offloading to vehicle-based cloudlets,” IEEE Transactions
on Vehicular Technology, vol. 70, no. 1, pp. 768–781, jan 2021.

[5] W. Feng, N. Zhang, S. Li, S. Lin, R. Ning, S. Yang, and Y. Gao, “Latency
minimization of reverse offloading in vehicular edge computing,” IEEE
Transactions on Vehicular Technology, pp. 1–1, 2022.

[6] W. Feng, S. Yang, Y. Gao, N. Zhang, R. Ning, and S. Lin, “Reverse
offloading for latency minimization in vehicular edge computing,” in
ICC 2021 - IEEE International Conference on Communications. IEEE,
jun 2021.

[7] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city internet of
things,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8099–8110,
2020.

[8] A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, “Deep learning
for object detection and scene perception in self-driving cars: Survey,
challenges, and open issues,” Array, vol. 10, p. 100057, 2021.

[9] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,” Digital Communications and Networks,
vol. 5, no. 1, pp. 10–17, feb 2019.

[10] Z. Jia, Z. Zhou, X. Wang, and S. Mumtaz, “Learning-based queuing
delay-aware task offloading in collaborative vehicular networks,” in ICC
2021 - IEEE International Conference on Communications, 2021, pp.
1–6.

[11] S. Pan, Z. Zhang, Z. Zhang, and D. Zeng, “Dependency-aware compu-
tation offloading in mobile edge computing: A reinforcement learning
approach,” IEEE Access, vol. 7, pp. 134 742–134 753, 2019.

[12] G. Qu, H. Wu, R. Li, and P. Jiao, “Dmro: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Transactions on Network and Service Management, vol. 18, no. 3,
pp. 3448–3459, 2021.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data2022 IEEE Global Communications Conference: Selected Areas in Communications: Big Data

2205

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 12,2023 at 13:54:41 UTC from IEEE Xplore. Restrictions apply.

