
IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021 2163

EEDTO: An Energy-Efficient Dynamic Task
Offloading Algorithm for Blockchain-Enabled

IoT-Edge-Cloud Orchestrated Computing
Huaming Wu , Member, IEEE, Katinka Wolter , Associate Member, IEEE, Pengfei Jiao ,

Yingjun Deng , Member, IEEE, Yubin Zhao , Member, IEEE, and Minxian Xu , Member, IEEE

Abstract—With the proliferation of compute-intensive and
delay-sensitive mobile applications, large amounts of computa-
tional resources with stringent latency requirements are required
on Internet-of-Things (IoT) devices. One promising solution is
to offload complex computing tasks from IoT devices either
to mobile-edge computing (MEC) or mobile cloud computing
(MCC) servers. MEC servers are much closer to IoT devices and
thus have lower latency, while MCC servers can provide flexi-
ble and scalable computing capability to support complicated
applications. To address the tradeoff between limited comput-
ing capacity and high latency, and meanwhile, ensure the data
integrity during the offloading process, we consider a blockchain
scenario where edge computing and cloud computing can col-
laborate toward secure task offloading. We further propose a
blockchain-enabled IoT-Edge-Cloud computing architecture that
benefits both from MCC and MEC, where MEC servers offer
lower latency computing services, while MCC servers provide
stronger computation power. Moreover, we develop an energy-
efficient dynamic task offloading (EEDTO) algorithm by choosing
the optimal computing place in an online way, either on the IoT
device, the MEC server or the MCC server with the goal of
jointly minimizing the energy consumption and task response
time. The Lyapunov optimization technique is applied to con-
trol computation and communication costs incurred by different
types of applications and the dynamic changes of wireless envi-
ronments. During the optimization, the best computing location
for each task is chosen adaptively without requiring future system
information as prior knowledge. Compared with previous offload-
ing schemes with/without MEC and MCC cooperation, EEDTO
can achieve energy-efficient offloading decisions with relatively
lower computational complexity.

Index Terms—Blockchain, Lyapunov optimization, mobile
cloud computing (MCC), mobile-edge computing (MEC), task
offloading.

Manuscript received July 23, 2020; revised October 7, 2020; accepted
October 20, 2020. Date of publication October 26, 2020; date of current
version February 4, 2021. This work was supported in part by the National
Natural Science Foundation of China under Grant 61801325, Grant 62071327,
and Grant 71701143; in part by the Natural Science Foundation of Tianjin City
under Grant 18JCQNJC00600; and in part by CCF-Tencent Open Research
Fund. (Corresponding author: Huaming Wu.)

Huaming Wu and Yingjun Deng are with the Center for Applied
Mathematics, Tianjin University, Tianjin 300072, China (e-mail:
whming@tju.edu.cn; yingjun.deng@tju.edu.cn).

Katinka Wolter is with the Institut für Informatik, Freie Universität Berlin,
14195 Berlin, Germany (e-mail: katinka.wolter@fu-berlin.de).

Pengfei Jiao is with the Center of Biosafety Research and Strategy, Tianjin
University, Tianjin 300072, China (e-mail: pjiao@tju.edu.cn).

Yubin Zhao and Minxian Xu are with the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China (e-mail:
zhaoyb@siat.ac.cn; mx.xu@siat.ac.cn).

Digital Object Identifier 10.1109/JIOT.2020.3033521

I. INTRODUCTION

DUE TO recent advances in hardware and software tech-
nologies, the number of Internet-of-Things (IoT) devices

[e.g., smartphones, wearable devices, unmanned aerial vehi-
cles (UAVs), and smart vehicles] has increased significantly.
According to Cisco, more than 30 billion active IoT devices
generate approximately 2.5 EB of data per day [1], which need
to be further processed and stored. Besides, there is a substan-
tial increase in the number of real-time and latency-sensitive
applications, e.g., smart transportation, smart healthcare, aug-
mented reality, and smart buildings that require large amounts
of computing and network resources. However, IoT devices
are constrained by limited resources, such as CPU comput-
ing power, storage space, energy capacity, and environmental
awareness, complex computing tasks, e.g., UAV-based virtual
reality/augmented reality (VR/AR) gaming [2]–[4], are inef-
ficient when run locally. Furthermore, a variety of emerging
IoT applications, e.g., delay-sensitive and delay-tolerant appli-
cations, will incur a different amount of computation and
communication costs.

To overcome the above contradictions, one effective way
is to take advantage of mobile cloud computing (MCC) by
offloading complex computing tasks from IoT devices to a
remote cloud via a wide-area network (WAN). By exploiting
the benefits of the rich virtual resources and computing capac-
ity of the cloud server, we can release the computing burden
on IoT devices in handling tasks locally, and thus reduce task
response time; at the same time, when tasks are handled in
the cloud, the main modules of IoT devices are in an idle
state, thereby reducing the energy consumption of devices.
However, it is not always appropriate to offload computation
and data to the cloud, especially for data-intensive and delay-
sensitive tasks. The excessive pressure on cloud computing
services leads to high latency and significant network band-
width usage. IoT devices suffer from high latency and low
bandwidth when communicating with distant MCC servers. In
addition, the large amount of data arriving at MCC servers and
resource-hungry applications requires more computing and
storage, which may cause an overload of the MCC servers.
Hence, MCC servers not only fail to efficiently satisfy the
requirements of real-time and latency-sensitive applications
but also increase the energy consumption of IoT devices due
to low bandwidth.

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-8630-0869
https://orcid.org/0000-0003-1049-1002
https://orcid.org/0000-0001-8467-7526
https://orcid.org/0000-0002-7540-9092
https://orcid.org/0000-0002-0046-5153

2164 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

Rather than relying on this centralized service mode, we can
also seek the help of mobile-edge computing (MEC), in which
migrating computations and data to network edge servers can
enhance the processing capabilities of IoT devices and allevi-
ate their resource shortages. IoT devices connect to nearby
MEC servers rather than directly to distant MCC servers.
Due to their proximity to mobile users, the communication
cost during task offloading will drop significantly, which can
greatly reduce the network latency. With the development of
the Internet of Everything (IoE), it is gradually realized that a
single computing paradigm cannot solve all problems, while
most existing researches still focus on either MCC or MEC
to offload tasks with stringent delay requirements. In fact, we
can take the heterogeneity of MCC and MEC into account
by constructing a hybrid computing environment for offload-
ing destination selection. However, due to the heterogeneous
resources among MEC and MCC servers, how to make the
optimal offloading decision effectively and efficiently in an
edge-cloud computing environment remains a challenge.

In addition, it is generally unsafe for mobile users to offload
application tasks to MEC/MCC servers in an untrusted and
nontransparent environment. Data loss or privacy leakage is
likely to occur during the task offloading process [5]. Due
to the unique security and decentralized features, blockchain
technology can be introduced into edge computing as a
potential solution for ensuring data integrity and prevent
illegal offloading behaviors. Therefore, we develop an IoT-
edge-cloud computing model that supports blockchain, where
MEC servers provide a low-latency computing service for
latency-intensive applications, while MCC servers offer pow-
erful computing capacity for resource-intensive applications
while maintaining the offloading security. We try to derive
an adaptive offloading decision algorithm based on Lyapunov
optimization, which globally determines when to offload,
through which network, and where to process each task (i.e.,
IoT device, MEC server, or MCC server) such that the total
energy consumption can be minimized by leveraging delay
tolerance. The main contributions of this article are threefold.

1) Considering the characteristics of the abundant comput-
ing resources in MCC and the low transmission delay in
MEC comprehensively, we design a blockchain-enabled
IoT-edge-cloud offloading architecture that benefits both
from MCC and MEC, where MEC servers can provide
lower latency computing services, and MCC servers can
provide stronger computation power while ensuring the
offloading security in IoT.

2) In order to extend the battery lifetime of IoT devices,
a mathematical model is established by minimizing
energy consumption under a given delay constraint.
Multicriteria are applied to decide whether each task
should run on the local device, the nearby MEC server,
or the remote MCC server.

3) We design a cost-driven scheduling strategy between
communication and computation according to the IoT-
edge-cloud hybrid task offloading model. We pro-
pose an online offloading algorithm based on the
Lyapunov optimization for decision making over the
cloud, edge, and IoT devices. Simulation results verify

that energy-efficient dynamic task offloading (EEDTO)
significantly reduces the energy consumption of IoT
devices with a lower delay penalty.

The remainder of this article is organized as follows.
Section II discusses relevant studies. Section III introduces
a collaborative edge-cloud computation offloading scenario.
The proposed EEDTO algorithm is described in Section IV.
Section V analyzes the simulation results from different
aspects. Finally, Section VI concludes this article.

II. RELATED WORK

To address important challenges over IoT systems and
emerging computing paradigms that consist of cloud and edge
computing (where MCC and MEC servers work collabora-
tively), effective offloading decision making has been studied
to maximize the performance gain from different perspectives.

A. Traditional Offloading Decisions

Several papers [18]–[22] have focused on solving the
multiobjective optimization problem of task offloading deci-
sions either in MEC or MCC systems.

A nondominated sorting genetic algorithm was proposed
in [6] to address the multiobjective computation offload-
ing problem in IoT-enabled cloud-edge computing environ-
ments. An end-edge-cloud computing offloading method was
proposed in [7] to tackle the optimization problem of offload-
ing decision making in heterogeneous IoT environments with
multiple MEC servers, which employed a modified strength
Pareto evolutionary algorithm. A computing offloading game
theory was proposed in [8], which employed C-SGA (a
fast Stackelberg game algorithm) and F-SGA (a complex
Stackelberg game algorithm) to solve the problem. A weighted
cost model was designed in [22] to minimize the execution
time and energy consumption of IoT applications in a comput-
ing environment with multiple IoT devices, multiple fog/edge
servers, and MCC servers. Then, a memetic algorithm-based
offloading technique was proposed to make batch application
offloading decision for finding suitable servers in time.

However, we still need to address these heterogeneity
challenges in the integrated MEC and MCC systems. To
enable mobile applications smoothly running on IoT devices
in heterogeneous edge and cloud computing environments,
the graph partition of application tasks between IoT devices
and MEC/MCC servers should be made adaptively [23] and
offloading decisions should be taken dynamically in a timely
manner.

B. Advanced Offloading Decisions

Apart from that, enabler technologies, such as
blockchain [16], [17], [24], deep reinforcement learning
(DRL) [13], [25], [26], and federated learning [27]–[29] are
also being incorporated in the MCC or MEC system for
offloading decision making.

Deep learning is playing an increasingly important role in
solving real-world IoT scenarios, e.g., to effectively enhance
the utilization of available resources for the maximization

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EEDTO: ENERGY-EFFICIENT DYNAMIC TASK OFFLOADING ALGORITHM 2165

TABLE I
RELATED WORK AND COMPARISON TO OUR PROPOSED EEDTO

of the system performance and minimization of energy con-
sumption [29]. Moreover, intelligence decision making shows
significant promise for dealing with task offloading with
the collaboration of MEC and MCC [30]. For example,
DDLO [13] and DDTO [14] are distributed deep learning-
based offloading schemes, both of which use multiple parallel
DNNs to generate near-optimal offloading decisions in real
time. Neurosurgeon [31], a fine-grained partitioning method
based on neural networks, can find the optimal dividing point
according to different factors, and take advantage of abundant
resources of cloud servers to minimize the execution time or
energy consumption. DRL has been claimed to solve prob-
lems in different areas, e.g., Internet of Vehicles (IoV) [25],
UAVs [4], and industrial IoTs [32]. The vehicular edge com-
puting problem has been solved by DRL-based algorithms
in [26], [33], and [34]. In these works, however, the het-
erogeneity of diverse servers is still neglected in making
offloading decisions.

Mobile users may mistakenly migrate their computing
tasks from IoT devices to nearby MEC servers or a remote
MCC system intruded by some network attackers, resulting
in data loss and privacy and security problems during task
offloading. As the core technology of bitcoin digital currency,
blockchain is an emerging paradigm for guaranteeing data
integrity [35]. BeCome [16] is a blockchain-enabled compu-
tation offloading method designed specifically for MEC. By
utilizing additive weighting and multicriteria decision mak-
ing, the optimal offloading strategy is identified to ensure data
integrity during task offloading. Nguyen et al. [24] presented
a novel reinforcement learning (RL)-based offloading scheme,
which enables IoT devices to make optimal decisions accord-
ing to blockchain transaction states and wireless channel
quality between IoT devices and MEC servers. Moreover,
a multihop collaborative and distributed offloading-decision
algorithm was designed in [32], which combined data pro-
cessing tasks with mining tasks and minimized the economic
cost of blockchain-empowered IoT devices. However, many
recent studies [36]–[38] fail to consider the joint optimization

of task offloading and blockchain mining, which has a signifi-
cant impact on effectively balancing the minimum computing
cost and improving user privacy level. Offloading schemes that
support blockchain can also be jointly optimized on the basis
of task execution time, energy consumption, load balance, and
data integrity.

C. Qualitative Comparison

Table I provides a comparison between the proposed
EEDTO with other related work. Edge and cloud hybrid
computing systems could be the future of next-generation
computing models. However, all of these studies are still
difficult to balance complexity, security, and optimality, ignor-
ing the cooperation between MEC and MCC. Therefore, a
lightweight offloading decision algorithm with a relatively low
computational complexity needs to be developed.

Many previous optimization-based offloading schemes [10],
[39], [40] apply stochastic optimization techniques, such as
Lyapunov optimization, which typically chooses the energy
queue as Lyapunov drift. However, the energy queue is nor-
mally time-dependent, which makes the allowable offloading
action sets not independent identically distributed, to cope with
this issue, we select the response time as the drift instead.
Besides, to eliminate the potential data loss or privacy leak-
age during the task offloading process, it is necessary to
develop a lightweight and secure task offloading framework
by integrating the blockchain technology.

In view of the serious limitations of current centralized IoT
systems, e.g., a single point of failure, data privacy, security
and robustness, blockchain-assisted edge computing and cloud
computing can provide attractive solutions. Thus, it is nec-
essary to study blockchain-enabled task offloading methods
in MCC and MEC heterogeneous environments. By integrat-
ing the blockchain and edge computing, it can improve the
query delay and offloading security. We design a task offload-
ing framework based on blockchain to ensure data integrity in
the process of task offloading, while optimizing application
response time, energy consumption and maintaining load

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

2166 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

balance. To improve the performance of the combined MEC
and MCC systems, a joint scheme of task offloading and
blockchain mining has been proposed. For instance, smart con-
tracts can be used to support transparent resource transactions
to reduce the computing burden, and reputation mechanisms
can also be used to accelerate the mining process. On this
basis, aiming at the Quality-of-Service (QoS) service demand
of mobile users and severe energy consumption constraints,
a Lyapunov optimization-based framework is proposed to
maximize the revenue of edge services and the reward of
blockchain mining, while minimizing the energy consumption
of service computing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system architecture
design and then formulate the dynamic decision problem for
edge-cloud hybrid task offloading.

A. System Overview

According to different computing capabilities, energy costs,
and latency, diverse types of computing resources, e.g., local
clouds, micro clouds, remote clouds, or nearby MEC servers
can be effectively integrated and utilized. Even if a computing
resource (e.g., an MCC server) cannot meet the task offload-
ing requirement, the mobile user can still use the offloading
service of other computing resources (e.g., a MEC server),
and the usability is greatly enhanced. In fact, MCC and
MEC are complementary to each other, MCC has abundant
computing resources and applications, while MEC has the
characteristics of short delays, strong stability, and adaptabil-
ity to diverse network environments, providing strong support
for delay-sensitive services [41].

We intend to leverage the advantages of MCC and MEC,
and offload tasks to locations that have different computing
and communication capabilities when satisfying the condition
of delay constraints. Thus, we try to integrate heterogeneous
computing resources and build a collaborative IoT-edge-
cloud computing environment. A blockchain-based mining
task offloading environment is depicted in Fig. 1. It consists of
a three-tier hierarchy, i.e., an IoT device layer, a MEC server
layer, and an MCC server layer, which is deployed and man-
aged by the blockchain network. The main features of each
layer are as follows.

1) IoT Device Layer: This layer includes a network of
IoT devices connected together on the blockchain. Each
device owns a blockchain account to join the network
and connect to MEC and MCC servers through wireless
access points (APs). In each offload cycle, the IoT user
needs to make dynamic task offloading decisions based
on QoS requirements and current network conditions
(task size, available edge resources, transmission band-
width resources, etc.) [42] to decide where to execute
mining tasks, either executing the mining task on the
local IoT device (decision: 0), offloading it to a nearby
MEC server (decision: −1) or offloading it to a remote
MCC server (decision: 1), to achieve the best computing
benefit (i.e., the minimum offloading cost).

Fig. 1. Blockchain-based task offloading framework in the IoT-edge-cloud
computing environment.

2) MEC Server Layer: This layer includes lightweight
MEC servers for real-time task processing, which can
provide low-latency computing services at the network
edge. However, for complex computational tasks, MEC
servers need to forward them to the resource-rich MCC
servers through wired lines to avoid task overload. In
addition, MEC servers also act as blockchain entities,
establishing reliable communication with the IoT device
layer and the MCC server layer, to ensure the security
of offloading activities [43].

3) MCC Server Layer: This layer includes multiple virtual
machines with powerful computing and storage capa-
bilities for solving complex computing tasks of local
IoT devices. All cloud nodes operate in a decentral-
ized and secure manner, and are securely linked to MEC
servers and IoT devices through the blockchain network.
Data offloaded from IoT devices can be safely stored in
distributed cloud storage on the blockchain.

In this three-tier model, each layer has distinct processing
capabilities. The blockchain application is first partitioned into
multiple tasks and then offloaded to the MEC/MCC server.
On one hand, running mining tasks locally may cause a
huge amount of energy consumption of IoT devices; on the
other hand, offloading tasks to MEC servers or MCC servers
will significantly reduce the energy cost, but will introduce
data transmission delay and server queuing delay. To bal-
ance the tradeoffs between latency and energy consumption,
which greatly affect the application performance, we dynam-
ically make offloading decisions of whether to offload (IoT
devices/servers), and where to offload (MEC/MCC servers).
We perform task offloading according to the task complexity
and the realistic IoT environment, i.e., compute-intensive tasks
are offloaded to the MCC server and data-intensive tasks are
offloaded to the MEC server, thereby alleviating load bottle-
necks, delays, and fault tolerance. Furthermore, optimization
issues are developed to effectively address the challenge of
heterogeneous IoT resources. We make full use of the comple-
mentary advantages of different types of wireless networks [e.g.,
wireless local-area networks (LANs) and cellular networks] to
perform task offloading. The blockchain guarantees the security
and data integrity of the MEC server and the MCC server.

B. Offloading Decision Model

The IoT-edge-cloud computing model can be described as a
weighted call graph G = (V,E), where V = {v1, v2, . . . , vN}

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EEDTO: ENERGY-EFFICIENT DYNAMIC TASK OFFLOADING ALGORITHM 2167

TABLE II
SYMBOLS AND DEFINITIONS

is the set of nodes that represent there are multiple comput-
ing tasks to be allocated to the IoT devices, MEC servers, or
MCC servers, which provide different computation capabili-
ties. We assume that there are N computing tasks, once there
is an application execution request, a controller in the IoT
device will determine which tasks should be handled locally
on the IoT device, which ones to be processed on the MEC
server, and which ones to be executed on the MCC server.
The weight of each node wvi represents the computational cost
when the task is executed in one of these places. Generally,
the computing power of IoT devices, MEC servers, and MCC
servers are satisfying: fIoT < fedge < fcloud, implying that
the MCC server has the strongest computing power, followed
by the MEC server and then the IoT devices [6]. Moreover,
E = {evi,vj |vi, vj ∈ V} is the edge set, where evi,vj is a one-hop
link between nodes vi and vj. Each link provides the commu-
nication cost for data transmission. Furthermore, Dvi,vj along
the edge evi,vj represents the size of data that migrates from
node vi to node vj. Table II summarizes key notations and their
respective definitions.

Constructing the weighted call graph G is critical for
offloading decision making among the IoT devices, MEC
servers, and MCC servers, which closely depends on profiling
techniques. To achieve this, we can use a program profiler,
a network profiler, and an energy profiler to collect detailed
information about the application tasks, IoT devices, and
network characteristics [23]. We try to find the optimal offload-
ing decision that allocates N tasks to the IoT device, MEC
server and MCC server such that the IoT device consumes the
least energy when satisfying the following constraints [44].

1) Minimizing energy consumption on IoT devices.
2) Satisfying the given deadline for executing each IoT

application.
3) Partitioning the application tasks into different categories

(e.g., execute on IoT devices, MEC servers, or MCC
servers) dynamically.

At the tth execution, the indicator Ivi(t) represents diverse
offloading strategies for task vi as follows:

Ivi(t) =
⎧
⎨

⎩

0, if task vi is executed on IoT device
1, if task vi is offloaded to MCC server
−1, if task vi is offloaded to MEC server

(1)

where Ivi(t) = 0 denotes task vi is executed locally, Ivi(t) = 1
denotes task vi is offloaded to the remote MCC server, and
Ivi(t) = −1 denotes task vi is offloaded to the nearby MEC
server.

Here, we define an offloading-decision matrix as follows:

I(t) = {
Iv1(t), Iv2(t), . . . , Ivi(t), . . . , IvN (t)

}
(2)

where each Ivi(t) can be selected from {0, 1,−1}. For each
execution, the search for the optimal solution (i.e., determining
whether Ivi(t) should be 0, 1 or −1) grows exponentially with
the number of tasks [45], denoted by |�| = 3N , where � is
the set of all possible offloading decision combinations. Hence,
obtaining the optimal decision combination directly in a timely
manner is intractable.

1) IoT Computing Model: Due to resource constraints, such
as battery capacity, IoT devices can only perform basic tasks.
As for latency-intolerant applications, they should make real-
time decisions with limited capabilities.

The execution time spent when processing the computing
task vi locally on the IoT device, is expressed as

T IoT
vi

= wvi

fIoT
, ∀vi ∈ V (3)

where wvi is the computation workload of the computing task
vi and fIoT denotes the computing frequency of the IoT device.

Similarly, the amount of energy spent on the IoT device for
executing task v is formulated as

EIoT
vi

= pex · T IoT
vi

, ∀vi ∈ V (4)

where pex is the power for task execution on the IoT device.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

2168 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

2) Cloud Computing Model: Compared to IoT devices
and MEC servers, MCC servers can provide more powerful
computing capacities.

The time spent when offloading the computing task vi to
the MCC server for execution is expressed as

Tcloud
vi

= wvi

fcloud
+ Twan, ∀vi ∈ V (5)

where fcloud denotes the computing frequency of the MCC
server and Twan represents the latency of WAN.

The communication time between tasks vi and vj can be
calculated by

Tcloud
vi,vj

= Dvi,vj

Bwan
, ∀(

vi, vj
) ∈ E (6)

where Dvi,vj is the transferred data between tasks vi and vj and
Bwan represents the bandwidth of WAN. The communication
time closely depends on the amount of data to be transmit-
ted and the network bandwidth between the IoT device and
the MCC server, which is relatively low and sometimes even
unstable.

Furthermore, the energy consumption spent on the IoT
device when task vi is offloaded to the MCC server for
execution is given by

Ecloud
vi

= pidle · Tcloud
vi

, ∀vi ∈ V (7)

where pidle is the power when the IoT device is in the idle
state, i.e., the task is being executed outside the IoT device.

3) Edge Computing Model: MEC servers in the edge layer
located in the proximity of IoT devices and communicate with
them through different wireless communication technologies,
e.g., Bluetooth and WiFi. By using a LAN together with
IoT devices [46], MEC servers can provide a low-latency
computing service.

The execution time spent when offloading task vi to the
MEC server for execution is expressed as

Tedge
vi

= wvi

fedge
+ Tlan, ∀vi ∈ V (8)

where fedge denotes the computing frequency of the MEC
server and Tlan represents the latency of LAN.

The transmission time between tasks vi and vj can be
calculated by

Tedge
vi,vj

= Dvi,vj

Blan
, ∀(

vi, vj
) ∈ E (9)

where Blan represents the bandwidth of LAN. Mostly, we have
Bwan ≤ Blan.

Furthermore, the energy consumption spent on the IoT
device when offloading task vi to the MEC server for execution
is given by

Eedge
vi

= pidle · Tedge
vi

, ∀vi ∈ V. (10)

C. Problem Formulation

1) Response Time Model: The total response time includes
the execution time of tasks running on the IoT device, the
MEC server, and the MCC server, respectively, as well as

extra communication time for data transferring when locating
in different places, which is formulated as

T(I(t))

=
∑

vi∈V

(
1 − ∣

∣Ivi(t)
∣
∣
) · Tex(Ivi(t)

)

︸ ︷︷ ︸
IoT device

+
∑

vi∈V

∣
∣Ivi(t)

∣
∣ · Tex(Ivi(t))

︸ ︷︷ ︸
MEC/MCC server

+
∑

(vi,vj)∈E

[
2 − ∣

∣Ivi(t) − Ivj(t)
∣
∣
] · T tr(Ivi(t), Ivj(t)

)

︸ ︷︷ ︸
communication

(11)

where Ivi(t) and Ivj(t) are elements from (2). The execution
time is

Tex(Ivi(t)) =
⎧
⎨

⎩

T IoT
vi

, if Ivi(t) = 0
Tcloud

vi
, if Ivi(t) = 1

Tedge
vi , if Ivi(t) = −1.

(12)

The communication time between tasks vi and vj can be
calculated by

T tr(Ivi(t), Ivj(t)
)=

⎧
⎪⎨

⎪⎩

Tcloud
vi,vj

, if
(
Ivi(t)+1

) � (
Ivj(t)+1

)=0

Tedge
vi,vj , if

(
Ivi(t)+1

) � (
Ivj(t)+1

)=2
0, otherwise

(13)

where � is NOR computation for binary variable.
2) Energy Consumption Model: The total energy consump-

tion is composed of the energy consumed by the tasks running
locally, the energy consumed in the idle state when perform-
ing certain tasks on the server, and the energy spent for
communication, which is formulated as

E(I(t))

=
∑

vi∈V

(
1 − |Ivi(t)|

) · Eex(Ivi(t)
)

︸ ︷︷ ︸
IoT device

+
∑

vi∈V
|Iv(t)| · Eex(Ivi(t)

)

︸ ︷︷ ︸
MEC/MCC server

+
∑

(vi,vj)∈E

[
2 − ∣

∣Ivi(t) − Ivj(t)
∣
∣
] · Etr(Ivi(t), Ivj(t)

)

︸ ︷︷ ︸
communication

(14)

where the energy consumed for task execution on the IoT
device can be expressed by

Eex(Ivi(t)) =
⎧
⎨

⎩

EIoT
vi

, if Ivi(t) = 0
Ecloud

vi
, if Ivi(t) = 1

Eedge
vi , if Ivi(t) = −1

(15)

and if we assume that the transmission power of the IoT device
is fixed, the energy consumption for sending and receiving data
between tasks vi and vj can be calculated by

Etr(Ivi(t), Ivj(t)
) = ptr · T tr(Ivi(t), Ivj(t)

)
(16)

where ptr is the power for data transferring.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EEDTO: ENERGY-EFFICIENT DYNAMIC TASK OFFLOADING ALGORITHM 2169

3) Optimization Problem: To satisfy the requirements
of resource-intensive and delay-sensitive applications, IoT
devices can either offload part of their computational work-
load to a nearby MEC server, or to a remote MCC server
under varying wireless environmental conditions. For a given
offloading decision combination vector I(t), we define the
execution indicator variable as

σ(I(t)) =
{

0, if T(I(t)) ≤ Td

1, otherwise
(17)

where σ(I(t)) = 0 if the total response time satisfies the dead-
line Td, otherwise σ(I(t)) = 1 if it fails to meet the delay
constraint.

A stochastic optimization problem is then formulated for
offloading decision making for IoT-edge-cloud orchestrated
computing. Formally, we have

min
I(t)

lim sup
t→∞

1

t

t−1∑

τ=0

E{E(I(τ))} (18)

s.t. lim sup
t→∞

1

t

t−1∑

τ=0

E{σ(I(τ))} ≤ ρ (19)

where ρ is the violation ratio, that is, the ratio of the number
of executions that violate the deadline to the total number of
executions. The intuitive idea of offloading all computing tasks
to the MEC/MCC server does not work well, because it may
cause too many tasks competing for the constrained resources
and destabilizing the system. In order to minimize the average
queue backlog and maintain system stability, we seek to bound
the average queue backlog, as described in (19), which ensures
that the system is stable, i.e., with finite upper bounds.

The considered optimization problem formulated in (18)
and (19) is mixed-integer linear programming (MILP) [47] and
nonconvex [48], typically known as NP-hard problem. Finding
the optimal offloading solution is generally prohibitively due to
the computation complexity, which will significantly increase
owing to the binary variables.

IV. ENERGY-EFFICIENT DYNAMIC TASK OFFLOADING

ALGORITHM

A. Problem Transformation

To effectively solve problem (18), we derive an adap-
tive offloading-decision algorithm by utilizing the Lyapunov
optimization problem, which determines where to perform
each task (i.e., IoT device, MEC server, or MCC server)
such that the energy consumption is minimized by leverag-
ing delay tolerance. The optimal offloading-decision is made
under which circumstances offloading is beneficial. Taking the
average energy consumption as a penalty function, we dynam-
ically determine when to offload tasks, while accepting small
delays.

The system queue model is defined as

Q(t + 1) = max[Q(t) − ρ, 0] + σ(I(t)) (20)

where Q(t) is the system state at the tth execution.

According to the Lyapunov optimization theory [49], the
Lyapunov function is defined as

L(Q(t)) = 1

2
Q2(t). (21)

Moreover, the Lyapunov drift is defined as the change in
the Lyapunov function from one execution to the next, which
is expressed as

L(Q(t + 1)) − L(Q(t)) = 1

2

[
Q2(t + 1) − Q2(t)

]

= 1

2

{
[max[Q(t) − ρ, 0]

+ σ(I(t))]2 − Q2(t)
}

≤ ρ2 + σ 2(I(t))

2
+ Q(t) · [σ(I(t)) − ρ].

(22)

Given the current state Q(t), we define conditional
Lyapunov drift �(Q(t)) as the expected change in the con-
tinuous execution of the Lyapunov function

�(Q(t)) � E{L(Q(t + 1)) − L(Q(t))|Q(t) }
≤ C − ρQ(t) + E{Q(t)σ (I(t))|Q(t) } (23)

where C � E{([ρ2 + σ 2(I(t))]/2)|Q(t)}=(ρ2/2) +
E{([σ 2(I(t))]/2)|Q(t)}.

In order to balance the average energy consumption and
response time, we perform control actions at each execution to
greedily minimize bounds of the weighted energy-plus-latency
expression [49] as follows:

�(Q(t)) + VE{E(I(t))|Q(t) } (24)

where V is a weight control parameter, indicating the relative
importance of minimizing energy consumption compared to
the violation rate of the deadline.

After substituting (23) into (24), yields

�(Q(t)) + VE{E(I(t))|Q(t)}
≤ C − ρQ(t) + VE{E(I(t))|Q(t)} + E{Q(t)σ (I(t))|Q(t)}
= C − ρQ(t) + E{[VE(I(t)) + Q(t)σ (I(t))]|Q(t)}. (25)

We try to search for a feasible decision combination vector
I(t) that greedily minimizes the decision criterion at the right-
hand side of the Lyapunov function, which is described as
follows:

arg min
I(t)

[VE(I(t)) + Q(t)σ (I(t))]. (26)

Furthermore, the offloading decision function is defined as

D(Q(t), I(t)) = VE(I(t)) + σ(I(t))Q(t) (27)

where a decision combination vector I
∗(t) is selected such

that D(Q(t), I∗(t)) is minimized. Therefore, I
∗(t) is the

optimal offloading solution among all feasible decision vec-
tors. Based on the Lyapunov optimization, the long-term
stochastic optimization problem can be transformed into a
deterministic optimization in each time slot. To solve the NP-
hard problem (18), we then decouple it into subproblems by

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

2170 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

Algorithm 1: EEDTO Algorithm
Input : Ivi(t): the offloading strategy for task vi at

the tth execution.
Parameter: ρ: the violation ratio

Td: the deadline;
maxIter: the maximum number of
iterations.

Output : I
∗(t): the optimal offloading solution among

all feasible decision vectors.
1 begin
2 for t = 0 to maxIter do
3 Calculate T

(
I(t)

)
and E

(
I(t)

)
according to (11)

and (14);
4 if T

(
I(t)

) ≤ Td then
5 σ

(
I(t)

) = 0
6 else
7 σ

(
I(t)

) = 1
8 end
9 Update the system queue:

Q(t + 1) = max [Q(t) − ρ, 0] + σ
(
I(t)

)
;

/* buffering algorithm */
10 end
11 Search for a decision combination vector I∗(t) that

minimizes: D
(
Q(t), I(t)

)
; /* scheduling

algorithm */
12 end
13 return (I∗(t))

transforming it into (27), which is much simpler than the
original problem.

The EEDTO algorithm is designed to make offloading
decisions greedily so that the upper bound will also be min-
imized at each time slot t. The EEDTO algorithmic process
is described in detail, as shown in Algorithm 1. First, we cal-
culate T(I(t)) and E(I(t)) according to (11) and (14). Then,
we obtain the decision combination vector σ(I(t)) by judg-
ing whether the deadline Td is violated or not. After that, the
system queue in (20) is updated at each time slot. Obviously,
when the waiting tasks in the buffer are minimized, the
total energy consumption will be simultaneously minimized.
Finally, the optimal offloading solution among all feasible
decision vectors will be found.

B. Performance Bounds Analysis

For any V > 0, average energy consumption and average
queue backlog can be achieved when satisfying the following
constraints [49]:

Ē = lim sup
T→∞

1

T

T−1∑

τ=0

E{E(I(τ))} ≤ C

V
+ E∗ (28)

Q̄ = lim sup
T→∞

1

T

T−1∑

τ=0

E{Q(τ)} ≤ C + V
(
E∗ − Ē

)

ε
(29)

where Ē is average energy consumption that can be arbitrarily
close to the minimum energy consumption E∗ with a dimin-
ishing gap (1/V), while maintaining queue stability. However,
this reduction is achieved at the expense of a larger delay since
the average queue length Q̄, i.e., an effective measure of aver-
age response time or latency, increases linearly with the rise
of V .

Proof: The energy consumption can be reduced if we
minimize the right-hand side of (25) while ensuring the sta-
bility of the queue in (20). Given the observed Q(τ), we
have

�(Q(τ)) + VE{E(I(τ))|Q(τ)}
≤ C − ρQ(τ) + VE

{
E
(
I
∗(τ)

)|Q(τ)
}

+ E
{
Q(τ)σ

(
I
∗(τ)

)|Q(τ)
}

≤ C − ρQ(τ) + VE∗ + Q(τ)(ρ − ε)

= C + VE∗ − εQ(τ)

where there exists an arbitrarily small ε > 0 that satis-
fies E{σ(I∗(τ))} ≤ ρ − ε because the average violation rate
E{σ(I∗(τ))} ≤ ρ.

Taking expectations of the above inequality and using the
law of iterated expectations yields

E{L(Q(τ + 1))} − E{L(Q(τ))} + VE{E(I(τ))}
≤ C + VE∗ − εE{Q(τ)}.

We sum up the above inequality over τ ∈ {0, 1, . . . , T − 1}
for some positive integer T and obtain as follows:

E{L(Q(t))} − E{L(Q(0))} + V
T−1∑

τ=0

E{E(I(τ))}

≤ Ct + VE∗T − ε

T−1∑

τ=0

E{Q(τ)}.

Since E{L(Q(t))} and E{Q(τ)} are nonnegative, after elim-
inating one or both terms from the above inequality, we can
get

1

T

T−1∑

τ=0

E{E(I(τ))} ≤ E∗ + C

V
+ E{L(Q(0))}

Vt
,

1

t

T−1∑

τ=0

E{Q(τ)} ≤
C + V

[
E∗ − 1

T

∑T−1
τ=0 E{E(I(τ))}

]

ε

+ E{L(Q(0))}
ε

.

Finally, we take limits as t → ∞, and then (28) and (29)
are obtained.

Remark: From (28) and (29), it can be found that there exists
an [O(1/V), O(V)]-tradeoff between average energy consump-
tion and average response time (since the queue length is
closely related to response time). The performance of the
EEDTO algorithm depends on the control parameter V , which
can be adjusted flexibly to reduce energy consumption by
increasing the response time, or the other way around.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EEDTO: ENERGY-EFFICIENT DYNAMIC TASK OFFLOADING ALGORITHM 2171

TABLE III
EVALUATION PARAMETERS

C. Computational Complexity Analysis

According to Algorithm 1, for the loop (lines 2–10),
EEDTO traverses all the application tasks once. Thus, each
loop terminates in O(N · maxIter) operations, where maxIter
is the maximum number of iterations. For line 11, we apply
1-opt LS algorithm to reduce the exponential computational
complexity, which is a local search algorithm that seeks an
optimal solution around the initial estimate, whose vectors
of candidates consist of all possible solutions with unitary
Hamming distance [50]. Its computational complexity is in
terms of run time O(|D|3), which is polynomial.

Thus, the EEDTO algorithm for task offloading in the hybrid
MEC and MCC environments can make offloading decisions
with polynomial time complexity, which is relatively lower
than exponential.

V. PERFORMANCE EVALUATION

In this section, we will evaluate the performance of
the proposed EEDTO algorithm in comparison with other
offloading-decision schemes under various parameter changes.

A. Parameter Settings

In our simulation, a mobile blockchain network is consid-
ered with one IoT device (miner) and mining tasks, one MEC
server and one MCC server. The computation capabilities of
the IoT device, the MEC server and the MCC server are set
to fIoT = 500 MHz, fedge = 3 GHz, and fcloud = 5 GHz,
respectively, which satisfy: fIoT < fedge < fcloud [6]. As an
example, we consider the application on the IoT device con-
sists of N = 5 tasks. We assume that ptr > pex > pidle
according to the measurements in [51], the transmission power
of the IoT device, its power in processing and idle states are
set as 1.3 W, 0.9 W and 0.3 W, respectively. In addition, we
add one dummy node v0 as task 0, and the workload for this
node is 0. The data communication for each mining task is
D = {10, 20, 4, 100, 200} KB. The workload for each task
is ω = {300, 100, 20, 1000, 200} G cycles. Our evaluation
parameters and corresponding values are listed in Table III.
To improve the reliability of the experiments, we run 10 000
times for each setting and then the results are averaged.

B. Experimental Comparison

To reveal the effectiveness of the proposed EEDTO algo-
rithm, the following offloading-decision approaches are imple-
mented under the same MEC and MCC heterogeneous envi-
ronments for comparison.

1) IoT-Only Scheme: This can be treated as a zero offload-
ing scheme. All computing tasks are executed locally on
the IoT device.

2) Edge-Only Scheme: This is a full offloading scheme. All
computing tasks are fully offloaded to the MEC servers
for further processing.

3) Cloud-Only Scheme: This is a full offloading scheme.
All computing tasks are fully offloaded to the MCC
server for further processing.

4) Lagrangian Relaxation-Based Aggregated Cost
(LARAC) Scheme [40], [52]: This is a partial offloading
scheme with LARAC [53]. It is an energy-efficient
offloading algorithm, aiming to find the optimal
offloading solution that can minimize the mean energy
consumption while satisfying the deadline constraint.

5) EEDTO Scheme: This is a partial offloading scheme
based on the proposed EEDTO algorithm. In this
method, we use the proposed Lyapunov optimization-
based dynamic offloading-decision algorithm. This
energy-efficient algorithm is designed to (asymptoti-
cally) minimize the energy consumption of a distributed
computing system, while maintaining queue stability
across the system.

Actually, it is not always energy efficient when offload-
ing computing tasks from IoT devices to MEC/MCC servers.
Offloading decisions regarding where to perform computation
closely depend on whether the computational cost saved from
task offloading covers the extra communication cost.

C. Effect of Tradeoff Parameter

From Fig. 2(a), we can see that as the control parameter V
rises, the average energy consumption drops dramatically at
the beginning and then tends to the minimum value. However,
the average queue length initially grows linearly and then
converges gradually as V increases. By adjusting V , the
EEDTO scheme can balance the average energy consumption
and queue length, which confirms that an [O(1/V), O(V)]-
tradeoff establishes between the average energy consumption
and the average response time. This relationship is because V
adjusts the weight of computation and communication costs
in Lyapunov optimization. In Fig. 2(b), the average violation
rate E{σ(I(t))} increases gradually and approaches to a fixed
ratio ρ = 0.2, denoted by the dotted red line. This finding sat-
isfies the stable condition defined in (19), demonstrating that
the queue length would be bounded. Thus, setting a larger
deadline can reduce average energy consumption, but it will
increase average response time.

As a result, by increasing V to a sufficiently large value,
the proposed EEDTO scheme can approach to the optimal
energy consumption and stabilize the queuing system state.
This is because a larger V means prioritizing the optimization
of energy consumption, and then the Lyapunov scheme would

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

2172 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

(a) (b)

Fig. 2. Impact of V on average energy consumption, queue length, and violation rate. (a) Average energy consumption and queue length. (b) Average
violation rate.

(a) (b)

Fig. 3. Comparison of different offloading schemes. (a) Average response time. (b) Average energy consumption.

dynamically adjust offloading decisions to reduce average
energy consumption. We can select a suitable V , where an
increase in V will cause a small decrease in Q̄. For example,
we can choose V = 20 and beyond this value, increasing V
brings marginal energy-saving, but will result in continuous
growth of average response time.

Fig. 3 demonstrates the performance comparison for dif-
ferent offloading-decision schemes. We can observe that the
edge-only scheme costs less response time but consumes more
energy than the IoT-only scheme. On the contrary, when
compared with the IoT-only scheme, the proposed EEDTO
scheme (V = 20) with heterogeneous edge-cloud servers can
save around 60% energy consumption of IoT devices. This
is because, unlike the cloud-only scheme and the edge-only
scheme that ignore the relative relationship between commu-
nication and computational costs, the EEDTO scheme dynami-
cally makes offloading decisions in a heterogeneous computing
environment according to conditions, such as task workloads,
communication data and network bandwidths. Furthermore,
when compared with the LARAC scheme, the EEDTO scheme
also reduces more energy while only sacrificing a small por-
tion of response time. Moreover, the computational complexity
of the LARAC scheme is much higher than the EEDTO
scheme [40]. Therefore, the proposed scheme is proved to be
effective for the hybrid offloading decision-making problem

with large-scale computing tasks, since it is much more energy
efficient with relatively lower computational complexity.

D. Effect of Computation-Intensive Tasks

In this case study, we will investigate the behavior of
offloading techniques for tasks with various amounts of work-
load, which are divided into three groups, namely, light (ω/2),
medium (ω), and heavy (10ω), respectively.

It can be observed from Fig. 4 that with the increase of
the task workload, the average response time and energy con-
sumption also arise. The reason is that when the computing
capacities of the IoT device, the MEC server, and the MCC
server remain unchanged, the increase in the amount of task
workload will inevitably lead to longer execution time and
larger energy consumption. More specifically, the cost for
the IoT-only scheme arises dramatically as the task work-
load increases, owing to the fact the computing resources
in IoT devices are very limited. For the heavy case with
computation-intensive tasks, the cloud-only scheme achieves
smaller response time costs as shown in Fig. 4(a) since it has
the strongest computing capacity. However, it can be observed
from Fig. 4(b) that the cloud-only scheme spends more energy
for transmitting data compared with the edge-only scheme that
has higher bandwidth.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

WU et al.: EEDTO: ENERGY-EFFICIENT DYNAMIC TASK OFFLOADING ALGORITHM 2173

(a) (b)

Fig. 4. Comparison of different offloading schemes with computation-intensive tasks. (a) Average response time. (b) Average energy consumption.

(a) (b)

Fig. 5. Comparison of different offloading schemes with communication-heavy tasks. (a) Average response time. (b) Average energy consumption.

In spite of different amounts of task workload, the cost
obtained by the EEDTO scheme is always significantly less
than those of the local-only scheme, the cloud-only scheme,
and the edge-only scheme. The reason is that the EEDTO
scheme can dynamically adjust the offloading decisions by
migrating more computation-intensive tasks to the MEC/MCC
server. Furthermore, Fig. 4 demonstrates that the EEDTO
scheme is robust enough to handle not only computation-heavy
tasks that are suitable for computation offloading but also tasks
with smaller workloads.

E. Effect of Communication-Heavy Tasks

In this case study, we investigate the behavior of offloading
techniques for tasks with various amounts of communication
data, which are divided into three groups, namely, light (D/5),
medium (D) and heavy (5D), respectively.

Fig. 5 demonstrates that as the communication data increase,
the average response time and energy consumption are
unchanged for the IoT-only scheme. This is because, in the IoT-
only scheme, all tasks in the IoT service are performed locally,
there is no data upload / download process. However, for the
edge-only scheme, the cloud-only scheme, and the EEDTO
scheme, the larger the amount of communication data of the
task, the greater the average cost. This is because the amount
of communication data of the task has a great influence on
the transmission delay and energy consumption in the process

of task execution. Under the same offload strategy, larger data
transfers take longer. Similarly, a larger data transmission vol-
ume will bring more transmission energy consumption to the
IoT device.

As depicted in Fig. 5(a), the EEDTO scheme achieves the
lowest response time among all the four offloading schemes
regardless of different amounts of communication data. As
shown in Fig. 5(b), offloading to the MEC/MCC server can
also save energy for the light and medium cases. However,
we cannot benefit from task offloading especially when D is
very large because it will result in high transmission time. In
this case, we would rather perform the computation locally on
the IoT device than offload it to the MEC/MCC server, e.g.,
the heavy case with large communication data. This finding
aligns well with the fact that applications suitable for computa-
tion offloading should not have heavy communication between
tasks.

F. Effect of Network Bandwidths

In this case study, we will investigate the behavior of differ-
ent offloading techniques for various bandwidth values. Both
the LAN and WAN bandwidths are divided into three groups,
namely, low (Blan/4 and Bwan/4), medium (Blan and Bwan), and
high (4Blan and 4Bwan), respectively.

IoT users are vulnerable to dynamically changing network
conditions due to their mobility, making it difficult to take

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

2174 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

(a) (b)

Fig. 6. Comparison of different offloading schemes with various bandwidths. (a) Average response time. (b) Average energy consumption.

high-quality offloading decisions in mobile environments [40].
Especially when the network bandwidth is very low, it may not
be beneficial to offload tasks from IoT devices to MEC/MCC
servers. Thus, the offloadable tasks are preferably transmit-
ted via energy-efficient wireless channels so as to reduce
transmission delay and save energy consumption.

Fig. 6 demonstrates that network bandwidths affect the
performance of offloading systems. With the increase of band-
width, the average response time and energy consumption
decrease, which means better task offloading gain in com-
parison to the IoT-only scheme. Moreover, in most cases, the
edge-only scheme outperforms the cloud-only scheme since
MEC servers are distributed at the proximity of IoT devices,
they can be accessed with higher bandwidth and less latency.
However, it fails to obtain the best possible outcome since
the computing resources of MEC servers are still constrained
when compared with MCC servers.

From Fig. 6, the proposed EEDTO scheme is superior to
all other methods since it makes full use of the resources of
MEC and MCC servers simultaneously, including the mobile
network environments and the computing capacities, and hence
it converges to the optimal solution quickly. In addition, the
EEDTO scheme can save more energy and achieve lower com-
putational complexity than the LARAC scheme, but with a
small delay penalty.

VI. CONCLUSION

In this article, we identified and addressed key challenges
of task offloading in blockchain-enabled heterogeneous IoT-
edge-cloud computing environments, where MCC and MEC
can work collaboratively to minimize the energy consump-
tion of the IoT device with delay constraints. For deciding
how to split and orchestrate the IoT applications across the
edge and the cloud, we have formulated the offloading deci-
sion problem as an optimization problem and further derived
an online and polynomial-time-complexity algorithm by tak-
ing advantage of the Lyapunov optimization technique, which
determines whether and where to offload such that the energy
consumption of the IoT device can be minimized when only
sacrificing a little delay. The EEDTO scheme can dynamically
offload application tasks to different places and balance the

delay and energy consumption with an adjustable parameter
V , allowing us to specify a combined optimization target by
offering energy-efficient computing services. Through experi-
ments, we further showed that MCC can serve as a long-term
data processor for computation-intensive tasks while MEC can
be treated as a short-time data processor for delay-sensitive
applications.

Although rigorous theoretical analysis and extensive numer-
ical simulations have verified the efficiency of the proposed
solution, validation based on real-world blockchain networks
with intelligent offloading scenarios will be considered in the
future.

REFERENCES

[1] D. Evans, “The Internet of Things: How the next evolution of the Internet
is changing everything,” CISCO, San Jose, CA, USA, White Paper,
2011.

[2] L. Hu, Y. Tian, J. Yang, T. Taleb, L. Xiang, and Y. Hao, “Ready player
one: UAV-clustering-based multi-task offloading for vehicular VR/AR
gaming,” IEEE Netw., vol. 33, no. 3, pp. 42–48, May 2019.

[3] N. H. Motlagh, M. Bagaa, and T. Taleb, “Energy and delay aware task
assignment mechanism for UAV-based IoT platform,” IEEE Internet
Things J., vol. 6, no. 4, pp. 6523–6536, Aug. 2019.

[4] A. Asheralieva and D. Niyato, “Hierarchical game-theoretic and
reinforcement learning framework for computational offloading in
UAV-enabled mobile edge computing networks with multiple service
providers,” IEEE Internet Things J., vol. 6, no. 5, pp. 8753–8769,
Jun. 2019.

[5] K. Zhang, Y. Zhu, S. Maharjan, and Y. Zhang, “Edge intelligence and
blockchain empowered 5G beyond for the industrial Internet of Things,”
IEEE Netw., vol. 33, no. 5, pp. 12–19, Sep./Oct. 2019.

[6] X. Xu et al., “A computation offloading method over big data for IoT-
enabled cloud-edge computing,” Future Gener. Comput. Syst., vol. 95,
pp. 522–533, Jun. 2019.

[7] K. Peng, H. Huang, S. Wan, and V. C. M. Leung, “End-edge-cloud
collaborative computation offloading for multiple mobile users in het-
erogeneous edge-server environment,” Wireless Netw., to be published.

[8] M. Li, Q. Wu, J. Zhu, R. Zheng, and M. Zhang, “A computing offloading
game for mobile devices and edge cloud servers,” Wireless Commun.
Mobile Comput., vol. 2018, Dec. 2018, Art. no. 2179316.

[9] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[10] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen, “Energy
efficient dynamic offloading in mobile edge computing for Internet
of Things,” IEEE Trans. Cloud Comput., early access, Feb. 11, 2019,
doi: 10.1109/TCC.2019.2898657.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCC.2019.2898657

WU et al.: EEDTO: ENERGY-EFFICIENT DYNAMIC TASK OFFLOADING ALGORITHM 2175

[11] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop coop-
erative computation offloading for industrial IoT–edge–cloud computing
environments,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 12,
pp. 2759–2774, Jun. 2019.

[12] T. Meng, K. Wolter, H. Wu, and Q. Wang, “A secure and cost-efficient
offloading policy for mobile cloud computing against timing attacks,”
Pervasive Mobile Comput., vol. 45, pp. 4–18, Apr. 2018.

[13] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581–2593, Nov. 2020.

[14] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city Internet
of Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110,
May 2020.

[15] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for IoT devices with energy harvesting,”
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941, Jan. 2019.

[16] X. Xu, X. Zhang, H. Gao, Y. Xue, L. Qi, and W. Dou, “BeCome:
Blockchain-enabled computation offloading for IoT in mobile edge com-
puting,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 4187–4195,
Mar. 2020.

[17] C. Qiu, X. Wang, H. Yao, J. Du, F. R. Yu, and S. Guo, “Networking
integrated cloud-edge-end in IoT: A blockchain-assisted collective Q-
learning approach,” IEEE Internet Things J., early access, Jul. 7, 2020,
doi: 10.1109/JIOT.2020.3007650.

[18] H. Ko and S. Pack, “Distributed device-to-device offloading system:
Design and performance optimization,” IEEE Trans. Mobile Comput.,
early access, May 11, 2020, doi: 10.1109/TMC.2020.2994138.

[19] Y. Han, D. Guo, W. Cai, X. Wang, and V. Leung, “Virtual machine
placement optimization in mobile cloud gaming through QoE-oriented
resource competition,” IEEE Trans. Cloud Comput., early access,
Jun. 12, 2020, doi: 10.1109/TCC.2020.3002023.

[20] X. Li, X. Wang, P.-J. Wan, Z. Han, and V. C. M. Leung, “Hierarchical
edge caching in device-to-device aided mobile networks: Modeling,
optimization, and design,” IEEE J. Sel. Areas Commun., vol. 36, no. 8,
pp. 1768–1785, Aug. 2018.

[21] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading
in heterogeneous networks,” IEEE Trans. Mobile Comput., vol. 17, no. 2,
pp. 461–474, Jun. 2018.

[22] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya, “An application
placement technique for concurrent IoT applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., early access,
Jan. 15, 2020, doi: 10.1109/TMC.2020.2967041.

[23] H. Wu, W. Knottenbelt, and K. Wolter, “An efficient application parti-
tioning algorithm in mobile environments,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 7, pp. 1464–1480, Jan. 2019.

[24] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Privacy-
preserved task offloading in mobile blockchain with deep reinforce-
ment learning,” IEEE Trans. Netw. Service Manag., early access,
doi: 10.1109/TNSM.2020.3010967.

[25] Z. Ning et al., “Deep reinforcement learning for intelligent Internet of
Vehicles: An energy-efficient computational offloading scheme,” IEEE
Trans. Cogn. Commun. Netw., vol. 5, no. 4, pp. 1060–1072, Dec. 2019.

[26] S. Shen, Y. Han, X. Wang, and Y. Wang, “Computation offloading
with multiple agents in edge-computing—Supported IoT,” ACM Trans.
Sensor Netw., vol. 16, pp. 1–27, Feb. 2020.

[27] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, “Federated
deep reinforcement learning for Internet of Things with decentralized
cooperative edge caching,” IEEE Internet Things J., vol. 7, no. 10,
pp. 9441–9455, Oct. 2020.

[28] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
AI: Intelligentizing mobile edge computing, caching and communica-
tion by federated learning,” IEEE Netw., vol. 33, no. 5, pp. 156–165,
Jul. 2019.

[29] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904, 3rd
Quart., 2020.

[30] Q. Qi et al., “Knowledge-driven service offloading decision for vehicular
edge computing: A deep reinforcement learning approach,” IEEE Trans.
Veh. Technol., vol. 68, no. 5, pp. 4192–4203, Jan. 2019.

[31] Y. Kang et al., “NeuroSurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615–629, 2017.

[32] W. Chen et al., “Cooperative and distributed computation offloading
for blockchain-empowered industrial Internet of Things,” IEEE Internet
Things J., vol. 6, no. 5, pp. 8433–8446, May 2019.

[33] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, “Deep reinforce-
ment learning for vehicular edge computing: An intelligent offloading
system,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 6, p. 60, 2019.

[34] J. Feng, F. R. Yu, Q. Pei, X. Chu, J. Du, and L. Zhu, “Cooperative
computation offloading and resource allocation for blockchain-enabled
mobile-edge computing: A deep reinforcement learning approach,” IEEE
Internet Things J., vol. 7, no. 7, pp. 6214–6228, Jul. 2020.

[35] Z. Zhang, Z. Hong, W. Chen, Z. Zheng, and X. Chen, “Joint computa-
tion offloading and coin loaning for blockchain-empowered mobile-edge
computing,” IEEE Internet Things J., vol. 6, no. 6, pp. 9934–9950,
Aug. 2019.

[36] Y. Dai, D. Xu, S. Maharjan, Z. Chen, Q. He, and Y. Zhang, “Blockchain
and deep reinforcement learning empowered intelligent 5G beyond,”
IEEE Netw., vol. 33, no. 3, pp. 10–17, Aug. 2019.

[37] J. Kang et al., “Blockchain for secure and efficient data sharing in vehic-
ular edge computing and networks,” IEEE Internet Things J., vol. 6,
no. 3, pp. 4660–4670, Jun. 2019.

[38] Y. Jiao, P. Wang, D. Niyato, and K. Suankaewmanee, “Auction
mechanisms in cloud/fog computing resource allocation for public
blockchain networks,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 9,
pp. 1975–1989, Sep. 2019.

[39] Z. Zhou, S. Yu, W. Chen, and X. Chen, “CE-IoT: Cost-effective cloud-
edge resource provisioning for heterogeneous IoT applications,” IEEE
Internet Things J., vol. 7, no. 9, pp. 8600–8614, Sep. 2020.

[40] H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision making for
mobile cloud offloading,” IEEE Trans. Cloud Comput., vol. 8, no. 2,
pp. 570–584, Jan. 2020.

[41] T. Zhao, S. Zhou, X. Guo, and Z. Niu, “Tasks scheduling and resource
allocation in heterogeneous cloud for delay-bounded mobile edge com-
puting,” in Proc. IEEE Int. Conf. Commun. (ICC), 2017, pp. 1–7.

[42] X. Wang, X. Li, S. Pack, Z. Han, and V. C. M. Leung, “STCS:
Spatial–temporal collaborative sampling in flow-aware software defined
networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 999–1013,
Jun. 2020.

[43] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Secure
computation offloading in blockchain based IoT networks with deep
reinforcement learning,” 2019. [Online]. Available: arXiv:1908.07466.

[44] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Trans. Wireless Commun., vol. 11, no. 6,
pp. 1991–1995, Apr. 2012.

[45] B.-G. Chun and P. Maniatis, “Dynamically partitioning applications
between weak devices and clouds,” in Proc. 1st ACM Workshop Mobile
Cloud Comput. Services Soc. Netw. Beyond, 2010, p. 7.

[46] K. Peng et al., “An energy-and cost-aware computation offloading
method for workflow applications in mobile edge computing,” EURASIP
J. Wireless Commun. Netw., vol. 2019, no. 1, p. 207, 2019.

[47] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro,
“Optimized placement of scalable IoT services in edge computing,”
in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manag. (IM), 2019,
pp. 189–197.

[48] S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlinear
programming: A survey,” Surveys Oper. Res. Manag. Sci., vol. 17, no. 2,
pp. 97–106, 2012.

[49] M. J. Neely, “Stochastic network optimization with application to com-
munication and queueing systems,” Synth. Lectures Commun. Netw.,
vol. 3, no. 1, pp. 1–211, 2010.

[50] E. H. Aarts and J. K. Lenstra, Local Search in Combinatorial
Optimization. Princeton, NJ, USA: Princeton Univ. Press, 2003.

[51] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4,
pp. 51–56, 2010.

[52] V. Haghighi and N. S. Moayedian, “An offloading strategy in mobile
cloud computing considering energy and delay constraints,” IEEE
Access, vol. 6, pp. 11849–11861, 2018.

[53] A. Juttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relaxation
based method for the QoS routing problem,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., vol. 2, 2001, pp. 859–868.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JIOT.2020.3007650
http://dx.doi.org/10.1109/TMC.2020.2994138
http://dx.doi.org/10.1109/TCC.2020.3002023
http://dx.doi.org/10.1109/TMC.2020.2967041
http://dx.doi.org/10.1109/TNSM.2020.3010967

2176 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

Huaming Wu (Member, IEEE) received the B.E.
and M.S. degrees in electrical engineering from
Harbin Institute of Technology, Harbin, China, in
2009 and 2011, respectively, and the Ph.D. degree
(Highest Hons.) in computer science from the Freie
Universität Berlin, Berlin, Germany, in 2015.

He is currently an Associate Professor with the
Center for Applied Mathematics, Tianjin University,
Tianjin, China. His research interests include wire-
less networks, mobile-edge computing, Internet of
Things, and deep learning.

Katinka Wolter (Associate Member, IEEE)
received the Ph.D. degree from the Technische
Universität Berlin, Berlin, Germany, in 1999.

She has been an Assistant professor with the
Humboldt-University Berlin, Berlin, and a Lecturer
with Newcastle University, Newcastle upon Tyne,
U.K. In 2012, she joined the Freie Universität
Berlin as a Professor of Dependable Systems.
Her research interests are model-based evaluation
and improvement of dependability, security, and
performance of distributed systems and networks.

Pengfei Jiao received the Ph.D. degree in computer
science from Tianjin University, Tianjin, China, in
2018.

He is a Lecture with the Center of Biosafety
Research and Strategy, Tianjin University. His cur-
rent research interests include complex network
analysis and data mining, and currently working
on community detection and link predication, com-
munity evolution in dynamic networks, network
embedding, and applications of statistical network
model.

Yingjun Deng (Member, IEEE) received the
B.S. degree in applied mathematics and the M.S.
degree in computational mathematics from Harbin
Institute of Technology, Harbin, China, in 2009
and 2011, respectively, and the Ph.D. degree in
systems optimization and dependability from Troyes
University of Technology, Troyes, France, in 2015.

He has been became a Lecturer with the Center for
Applied Mathematics, Tianjin University, Tianjin,
China, since 2016. His current research interests
include applied statistics, deep learning, prognostic

and health management, and predictive maintenance.

Yubin Zhao (Member, IEEE) received the B.S. and
M.S. degrees from Beijing University of Posts and
Telecommunications, Beijing, China, in 2007 and
2010, respectively, and the Ph.D. degree in computer
science from the Freie Universität Berlin, Berlin,
Germany, in 2014.

He is currently an Associate Professor with
Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
His current research interests include wireless power
transfer, indoor localization, and target tracking.

Minxian Xu (Member, IEEE) received the B.S.
and M.S. degrees in software engineering from the
University of Electronic Science and Technology of
China, Chengdu, China, in 2012 and 2015, respec-
tively, and the Ph.D. degree from the University of
Melbourne, Melbourne, VIC, Australia, in 2019.

He is currently an Assistant Professor with
Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China. His
research interests include resource scheduling and
optimization in cloud computing.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2021 at 00:50:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

