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Upper and Lower Bounds on the Capacity of the DNA-Based Storage Channel

Zihui Yan , Cong Liang , and Huaming Wu , Senior Member, IEEE

Abstract— The application of DNA as a powerful tool for
storing digital information in chemically synthesized molecules
has undergone continuous development. To explore its potential
and limitations, we model the DNA storage channel as a cascade
of a series of parallel and independent DNA noisy synchronization
error channels and a shuffling-sampling channel, and derive novel
lower and upper capacity bounds through a purely information-
theoretic approach. Our results reveal the potential of DNA
storage density and can be used to guide the design of error
correction codes.

Index Terms— DNA-based storage systems, synchronization
error channels, channel capacity.

I. INTRODUCTION

IN THE digital era of exploding quantities of data, break-
through technologies are desired to achieve low-cost and

low-consumption storage. DNA, the molecule encoding bio-
logical information, becomes an encouraging storage medium
owing to its longevity and high information density. In recent
years, researches and applications of this field have been
widely concerned and studied [1], [2].

As shown in Fig. 1, in a typical DNA-based storage system,
the data are first segmented into small pieces due to the limit
of the synthesizing and sequencing technologies, then encoded
into quaternary codewords via error correction codes [3], [4],
and subsequently synthesized into DNA strands and stored.
The data recovery process includes strand amplification, PCR
experiments (polymerase chain reaction), random extraction,
and sequencing, which finally output duplicate, disordered, and
incorrect readouts.

Based on thorough assessments of the error sources and
ratios under various experimental setups [5], there are typically
three categories of errors in the aforementioned processes.
Firstly, since the short DNA strands stored in test tubes are spa-
tially disordered, the context of readouts cannot be intuitively
derived from the order of receipt as in the communications
field. Second, there are duplicates and unread DNA strands
(called dropouts) due to the unstable and non-uniform number
of synthesis and sequencing times of DNA strands. These
two sources of error happen at the molecular level. Third,
insertions, deletions, and substitutions are introduced at the
nucleotide level during DNA synthesis and sequencing.
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Fig. 1. The outline of the DNA-based storage system.

Nucleotide deletions are mainly caused by insufficient
biochemical reactions. Whereas nucleotide insertions are
mainly caused by overreaction, possibly a series of ran-
dom nucleotides. These two errors are named synchroniza-
tion errors in the classical communication channels. While
nucleotide substitutions are mainly due to mutations. To char-
acterize such errors, we model the transmission of each
DNA strand as a DNA noisy synchronization error channel
(DNSEC). Under different biochemical experimental condi-
tions, the proportion of errors is various. Nevertheless, the
common feature is a significant proportion of synchronization
errors. The error analysis in [1] and [5] showed that synchro-
nization errors account for at least half of the errors.

Unfortunately, synchronization errors have not been taken
into consideration in previous studies of DNA storage chan-
nels; only substitutions have been studied. Shomorony and
Heckel first characterized the random selecting and sequencing
process as a shuffling-sampling channel (SSC) and derived the
DNA storage channel capacity by cascading a binary symmet-
ric channel (BEC) and a SSC [6]. Lenz et al. [7] extended
this work and derived an upper bound for the cases when
readout are duplicated and have substitution errors. However,
these capacity bounds are overestimated significantly since
synchronization errors are not accounted for.

For synchronization errors, the information coding theorem
has been established by Dobrushin in [8]. See [9] for a recent
survey. Previous work has deduced capacity bounds for many
special synchronization error channels, such as the deletion
channel (where pi = ps = 0) and the sticky channel (where
pd = ps = 0 and insertions are the same as the input).

For deletion channels, Diggavi and Grossglauser obtained
a lower bound of the deletion channel using an appropriate
decoder, i.e., by detecting the unique correspondence of
an output sequence and all subsequences of some original
sequence [10]. For sticky channels, it is feasible to calculate
its capacity by the equivalent capacity per unit cost [11],
or only calculate its error-free capacity [12]. However, most
previous work has focused on channels with a finite number
of synchronization errors. Despite there being many methods

1558-2558 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 11,2022 at 03:08:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7191-8458
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-3229-0204


YAN et al.: UPPER AND LOWER BOUNDS ON THE CAPACITY OF THE DNA-BASED STORAGE CHANNEL 2587

to estimate capacity bounds for these channels, there are no
significant improvements in capacity bounds for channels with
substitutions, deletions, and geometrically random insertions
of which we are aware.

We clarify that the DNA channel is distinct from the noisy
permutation channel introduced in [13]. Three assumptions
of [13] that make its model different from ours: (i). no syn-
chronization errors are introduced at the nucleotide level;
(ii). no dropouts are introduced at the molecular level; (iii).
the input alphabet is finite. Furthermore, our main problem is
the fundamental limits of the asymptotic results in terms of
achievable rate under a vanishing error probability formalism.

In this letter, we provide a new channel model for the
DNA-based storage system and obtain its capacity. The chan-
nel capacity refers to the maximum of all rates where reliable
transmission is possible, and it further represents the maximum
number of bits that could be reliably stored in a single DNA
molecule (called storage capacity). Our main contributions to
this work are as follows.

• We model the DNA storage channel as a cascade of a
set of DNA noisy synchronization error channels and a
shuffling-sampling channel. Such a channel can character-
ize nucleotide errors, dropouts, and disorders, thereby it
is more comprehensive and accurate than previous work.
To the best of our knowledge, it is the first work on
synchronization errors for DNA storage.

• We drive the upper and lower capacity bounds of the
above channel through a purely information-theoretic
approach. This work is the first to obtain a non-trivial
capacity bound for DNSECs, and further obtains a novel
capacity bound for DNA storage channels. While our
work deals only with a few asymptotic results on informa-
tion rates, we think that this model is useful for designing
error correction codes for DNA storage in general.

II. DNA STORAGE CHANNEL MODEL

A DNA strand is composed of four nucleotides (Adenine,
Cytosine, Guanine, and Thymine) and can be treated as a
sequence on a four-letter alphabet Σ. We use upper case
letters to represent random variables, while their realizations
are depicted in lower case.

Based on the common characteristics of current biochemical
technologies of DNA synthesis and sequencing, we conclude
that the inputs of the DNA channel are quaternary codewords
and the outputs are duplicate, disordered, and erroneous qua-
ternary sequences. Since conventionally a clustering algorithm
is applied to obtain consensus sequences before decoding [14],
we assume that each original DNA strand corresponds to at
most one received sequence, that is, no duplicate.

The mathematical model of the our channel is shown in
Fig. 2. It can be seen as a cascaded channel, where the inner
channel is the DNSEC, and the outer channel is the SSC. Let
Xn

1 , Xn
2 , . . . , Xn

m denotes m inputs, where each Xn
i ∈ Σn.

In the inner channel, the input Xn
i is translated into Y Ni

i

via a DNSEC. Here, N denotes the number of received
bits, which is a random variable depending on the realiza-
tion of the insertion/deletion process. For illustration, the
transition process characterizing a single use of the channel
is shown in Fig. 3. Each input symbol is either deleted or

Fig. 2. The mathematical model of the DNA storage channel.

Fig. 3. A single use of the DNSEC.

transmitted. If transmitted, multiple random symbols might
insert ahead of it with geometric probabilities, and the symbol
may also be substituted. Here, since a deletion followed by
an insertion makes a substitution error, we assume that the
deletion does not occur after insertions in our model, which
is different from models described in [15]. We denote the
deletion, insertion, and substitution probabilities as pd, pi, and
ps, respectively, and assume that errors are independent and
identically distributed (i.i.d.). The transmission probability is
pt = (1 − pi)(1 − pd) for normalization.

A single use of the DNSEC is characterized by an input
alphabet Σ, an output alphabet Y = ∪∞

r=0Σ
r, and a condi-

tional probability distribution p(�y|x) for every x ∈ Σ and
�y ∈ Y . The transition probabilities are

p(�y|x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pd, �y = �;

(
1
4
pi)r−1pt(1 − ps), �y = ∗x ∈ Σr, r ≥ 1,

(
1
4
pi)r−1pt

1
3
ps, �y = ∗x′ ∈ Σr, x′ �= x, r ≥ 1,

(1)

where � denotes the empty sequence and ∗ denotes a (r− 1)-
length sequence with random symbols. Given n inputs xn =
x1x2 · · ·xn ∈ Σn, the output of each xi is denoted as �yi.
The overall output is the in-order concatenation of �yi without
delimiters, rewritten as Y N = (y1, y2, . . . , yN) ∈ ΣN .

In the outer channel, (Y N1
1 , Y N2

2 , . . . , Y Nm
m ) is the input,

and the output is (SN ′
1

1 , S
N ′

2
2 , . . . , S

N ′
M

M ). The model of the SSC
is an extension of the work by Shomorony and Heckel [6].
Specifically, it samples each input sequence independently
with a uniform probability and outputs the samples in shuffled
order. This results in that each output has no direct information
to point to their corresponding original input, and some inputs
are lost. Hence, the dropout error makes M ≤ m, and each
N ′

i is independent of Ni due to the shuffle.

III. CAPACITY BOUNDS FOR DNA-BASED

STORAGE CHANNELS

We use n and m to denote the length and number of original
DNA strands, respectively. Then β is a positive constant
which represents limm,n→∞ n

log m . Let pd, pi and ps denote
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deletion, insertion, and substitution probabilities, respectively.
Let q denote the probability that a given sequence is never
sampled in the SSC. We use CDNA to represent the DNA
storage channel capacity. For notation convenience, let (a)+ �
max{a, 0}, and H(p) � −p log p − (1 − p) log(1 − p) with
0 log 0 = 0.

Theorem 1: The capacity of the DNA storage channel can
be bounded as(

(1 − q)
(
Cinn − 1

β

))+

≤ CDNA ≤
(

(1 − q)
(
Cinn − 1

β

))+

, (2)

where
Cinn = (1 − pd)(2 − H(ps) − ps log 3) − H(pd)

− 1 − pd

1 − pi
H(pi),

Cinn = (1 − pd) (2 − H(ps) − ps log 3) − 1 − pd

1 − pi
H(pi).

(3)

Proof: Since the transmission of DNA strands is modeled
as the cascade channel introduced in Section II, we first
calculate the capacity of the inner channel (i.e., the DNSEC),
denoted as Cinn, and then extend the result to the cascade
case.

According to Dobrushin [8], the capacity of synchronization
error channels can be obtained by maximizing the mutual
information. To be specific, since∑

�y∈Y
|�y| · p(�y|x) = 0 · pd +

∞∑
r=1

rptp
r−1
i =

1 − pd

1 − pi
, (4)

which shows that
∑

�y∈Y |�y| · p(�y|x) is bounded as long as
pi �= 1. Thus, the capacity of the inner channel can be
estimated via the mutual information, it follows that

Cinn = lim
n→∞max

PXn

I(Xn; Y N )
n

. (5)

We calculate the mutual information by revealing some
side-information about the input to the receiver, drawing
inspiration from works on [16]. Firstly, through estimating
the mutual information when inputs are independent and
uniformly distributed (i.u.d.), we obtain the lower/upper bound
of Cinn, denoted as Cinn.

Lemma 1: The lower bound of the DNSEC is

Cinn =
(

(1 − pd)(2 − H(ps) − ps log 3) − H(pd)

− 1 − pd

1 − pi
H(pi)

)+

,

and can be achieved with an i.u.d. input.
Proof: The proof follows the assumption that the input dis-

tribution is uniform. We first introduce an auxiliary sequence
Dn = (D1, D2, . . . , Dn), where Di ∈ Z uniquely determines
the length of �Yi. This auxiliary sequence is not observed for
the decoder. And D1, D2, . . . , Dn are i.i.d. with the probability
distribution

Pr[D = r] =

{
pd, r = 0;
ptp

r−1
i , r ≥ 1.

(6)

According to the chain rule of information, we have

I(Xn; Y N ) = I(Xn; Y N , Dn) − I(Xn; Dn|Y N ). (7)

Here, since Dn indicates deletion and insertion error positions,
Xn → (Y N , Dn) induces a memoryless channel with the
erasure probability pd and the substitution probability ps,
it follows that

I(Xn; Y N , Dn) = n(1 − pd)(2 − H(ps) − ps log 3), (8)

where the equal sign is met since Xn and Dn are independent,
and X1, X2, . . . , Xn are i.u.d..

For the second term of (7), we have

I(Xn; Dn|Y N ) = H(Dn|Y N ) − H(Dn|Xn, Y N ). (9)

With an i.u.d. input, the output is also i.u.d., thereby the only
information obtained from Y N about Dn is the length of the
overall output, which is equivalent to the sum of Dn. Hence,

H(Dn|Y N ) =
∞∑

j=0

Pr[N = j]H(Dn|N = j). (10)

To obtain H(Dn|N = j), we consider the method
of types. For any sequence dn = (d1, d2, . . . , dn),
which satisfies

∑n
i=1 di = j, denote its type as

P
(j)
dn = (P (j)

dn (0), P (j)
dn (1), . . . , P (j)

dn (j)), where P
(j)
dn (i) =

N(i|dn)/n (i.e., N(i|dn) is the number of times the
symbol i occurs in the sequence dn). Let P(j)

n ={(
P

(j)
n (0), P (j)

n (1), . . . , P (j)
n (j)

)
∈ Rj+1 : P

(j)
n (i) ≥ 0,∑j

i=1 P
(j)
n (i) = 1,

∑j
i=1 iP

(j)
n (i) = j/n

}
denote the set

of types with denominator n, which is the subset of the
probability simplex in Rj+1. It is obvious that P

(j)
dn ∈ P(j)

n .
Let 	(P ) = {xn ∈ N

n : Pxn = P} denote the type class of
P , it follows that

∣∣∪dn:
�

di=j 	(P (j)
dn )

∣∣ =
∣∣P(j)

n

∣∣ =
(
n+j−1

n−1

)
.

We now use the size and the probability of type classes to
evaluate (10),

(10) =
∞∑

j=0

∑
P

(j)
dn ∈P(j)

n

Pr[P (j)
dn ] log

∣∣P(j)
n

∣∣. (11)

For any type Pdn , the probability of the type class 	(Pdn)
is 2−nD(Pdn ||PD). According to the law of large numbers,
we have D(Pdn ||PD) → 0 with probability 1. It follows

that the probability of the strongly typical set A
(n)
ε =

{
dn :∣∣N(i|dn)/n−pd(i)

∣∣ < �
}

goes to 1 as n → ∞. Thus, we can
use PD in (6) to estimate the properties of the sequence Dn,
it follows that

(11) = log
(
(1 − �)2n(H(D)−ε)

)
+ o(n)

= nH(D) + o(n)

= nH(pd) +
1 − pd

1 − pi
H(pi) + o(n). (12)

According to the non-negativity of entropy, we have
H(Dn|Xn, Y N ) ≥ 0 to estimate the upper bound of (9).

To sum up, the capacity can be lower bounded by plugging
the results of (8) and (9) into (7), and is achievable via an
i.u.d. input. �

Next we drive the upper bound of the inner channel, denoted
as Cinn.
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Lemma 2: The upper bound of the DNSEC is

Cinn =
(

(1−pd) (2 − H(ps) − ps log 3) − 1 − pd

1−pi
H(pi)

)+

.

Proof: As shown in [16], the side-information Dn will not
decrease the capacity due to Xn → (�Y1, �Y2, . . . , �Yn) → Y N

forms a Markov chain. Thus the mutual information can be
calculated via

I(Xn; Y N ) ≤ I(Xn; �Y1, �Y2, . . . , �Yn)

=
n∑

i=1

(
H(�Yi) − H(�Yi|Xi)

)
. (13)

Since �Yi has a probability pd to be an erasure, it follows that

H(�Yi) ≤ 2
1 − pd

1 − pi
+ H(pd). (14)

Then, according to the transition probability (1), we have

H(�Yi|Xi)

= −pd log pd −
∞∑

r=0

(
pr
i pt(1 − ps) log(

pi

4
)rpt(1 − ps)

+ pr
i ptps log(

pi

4
)rpt

ps

3

)
= H(pd) +

1 − pd

1 − pi
(H(pi) + 2pi)

+ (1 − pd) (H(ps) + ps log 3) .

Hence, it follows that,

lim
n→∞

I(Xn; Y N )
n

≤ (1 − pd) (2 − H(ps) − ps log 3) − 1 − pd

1 − pi
H(pi). (15)

�
Let us now address the evaluation of the above capacity

bounds. When pi = 0, Lemma 1 coincides with the lower
bound provided in [10]. However, the decoding technique
provided in [10] (i.e., a common subsequence detection rule)
cannot be applied to our model due to random insertions.
An interesting finding is that when pd = ps = 0, our
proof shows that the i.u.d. input can achieve the capacity
of geometric random-insertion channels. The study of this
channel capacity is lacking. Our proof is reasonable because
the uniform distribution maximizes the entropy. And Dn

can be determined through trellis-structure decoding [17],
so that H(Dn|Xn, Y N ) tends to zero with the decoding error
probability goes to zero.

Armed with the above descriptions of the inner channel,
we now drive the overall channel capacity. In the context
of concatenated error correction coding schemes, the outer
decoding corrects the residual of the inner decoding. Based
on this consideration, we use Re

inn to represent the rate of the
inner code, in which the average error probability is denoted
as P e

inn. We have

nRe
inn ≤ 1 + P e

innnRe
inn + I(Xn; Y N ). (16)

Back to the overall channel, we use Xmn = Xn
1 Xn

2 . . .Xn
m

to represent the input, and SMN = SN1
1 SN2

2 . . . SNM

M to
represent the output. Let Rall denote the achievable rate of
the overall channel with the overall average error probability
P e

all goes to zero. Given that SMN is output out-of-order,

we introduce a side-information ΠM = (Π1, Π2, . . . , ΠM )
to represent the index of SMN (i.e., S

Ni(n)
i is transmitted

from Xn
Πi

). Hence,

mnRall
(a)
= H(Xmn)
(b)

≤ I(Xmn; SMN ) + H(Xmn|X̂mn)
(c)
= I(Xmn, ΠM ; SMN ) − I(ΠM ; SMN |Xmn)

+ H(Xmn|X̂mn), (17)

where (a) follows from the assumption that Xmn is uniform
over {1, 2, . . . , 2mnR}, (b) is the data-processing inequality,
and (c) is the chain rule for information.

We now calculate the first term of (17). Given the index
sequence ΠM , (Xmn, ΠM ) → SMN can be seen as the
DMC with the input alphabet GF(2nRe

inn) and the substitution
probability P e

inn. For this channel, it follows that

I(Xmn, ΠM ; SMN )

≤ (1 − q)m
(
nRe

inn − H(P e
inn) − P e

inn log(2nRe
inn − 1)

)
,

(18)

where the equal sign is met when input are i.u.d.. It could be
achievable when symbols in each Xn are i.u.d..

For the second term of (17), we have I(ΠM ; SMN |Xmn) =
H(ΠM |Xmn) − H(ΠM |SMN , Xmn). Here,

H(ΠM |Xmn)

(a)
=

m∑
i=1

Pr[M = i] log
m!

(m − i)!

(b)
=

m∑
i=1

Pr[M = i]
(

i logm + (m − i) log
m

m − i

)
+ o(m)

(c)
= (1 − q)m log m + o(m), (19)

where (a) follows the fact that ΠM is independent of Xmn

and ΠM is chosen uniformly at random from all vectors
in {1, . . . , m} with distinct elements, (b) follows from the
Stirling approximation, and (c) is Jensen’s inequality,
m∑

i=1

Pr[M = i](m − i) log
m

m − i
≤ (1 − q)m log

1
q

= o(m).

Our last task is to estimate H(ΠM |SMN , Xmn). As the
idea provided in [5], given Xmn and SMN , we estimate the
permutation Π̂M by mapping each output and corresponding
input. To be specific, it is assumed that Πi = j if the decoding
result of SN

i is Xn
j . From SMN , we make an estimate X̂mn,

and let P e
all be the maximum error probability of the overall

decoding, so that Pr[XMN �= X̂MN ] = P e
all. Under this error

probability, we have Pr[ΠM �= Π̂M ] = P e
all. From Fano’s

inequality, it follows that

H(ΠM |SMN , Xmn) ≤ H(ΠM |Π̂M )
= H(P e

all) + P e
all(1 − q)m log m.

(20)

For the last term of (17), according to Fano’s inequality,
we have

H(Xmn|X̂mn) ≤ 1 + mnRallP
e
all. (21)
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Fig. 4. Capacity bounds, when q = 1/β = 0. The star mark points to the
storage capacity in [1].

Fig. 5. Capacity bounds, when q = 4.5%, pd = 6.3%, pi = 0.45%, and
ps = 0.94%.

Finally, by plugging results of (16), (18), (19), (20), and (21)
into (17), the achievable rate of the DNA storage channel (2)
can be obtained as m, n → ∞ and P e

all → 0. �

IV. NUMERICAL RESULTS

In this section, comparisons between the proposed bounds
and the existing DNA storage channel bounds are given.
The error probabilities we refer to come from two recent
instructive letters. Nguyen et al. [1] stored DNA data by
nanoscale electrode wells, in which error analysis showed that
pd = 6.3%, pi = 0.45%, and ps = 0.94%. Winston et al. [2]
presented a new combinatorial PCR method, in which a
filtering process resulted in an average of 4.5% of strands
being lost.

We first focus on channels with q = 0 and 1/β = 0,
that is, no information loss in the outer channel. And we
assume pd : pi : ps = 10 : 1 : 2 to simulate the
error probabilities. The capacity bounds (2) are reported in
Fig. 4. The proposed bounds significantly tighten the reference
benchmark, namely, the capacity bound of the DNA storage
channel from [6]. These curves indicate that DNA channel
capacity is appreciably overestimated if synchronization errors
are neglected.

Next, we focus on capacity loss due to the disordered per-
mutation in the outer channel. Consistent with the conclusion
in [6] and [7], our proof shows that a simple index-based
coding scheme is optimal for the outer code even taking
synchronization errors. There has also been research on how to
design these indexes, namely, primer sets [18]. The index leads
to a drop in capacity by at least 1/β. For large β, information
is difficult to transmit reliably over the channel, as shown

in Fig. 5. Thus, the capacity in (2) is only non-trivial if the
sequence length scales as n = Θ(log m).

V. CONCLUSION

In this work, we presented a new model for DNA storage
channel, which is a cascade of a series of parallel and
independent channels and a shuffling-sampling channel, and
derived its lower and upper capacity bounds. The presented
upper bound was obtained by exploiting an auxiliary system
where suitable side information is revealed to the receiver, and
by computing the relevant capacity via suitable information-
theoretical inequalities. The lower bound was obtained by
exploiting the same auxiliary system and was achievable
via an i.u.d. input. To the best of our knowledge, it is
the first work on the DNA storage channel that considers
synchronization errors, which provided tighter capacity bounds
on DNA storage channels. It further facilitates the exploration
of fundamental theoretical questions, e.g., establishing error
correction coding schemes for the DNA-based storage system.
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