
DNN Migration in IoTs:
Emerging Technologies,
Current Challenges, and
Open Research
Directions

Min Xue and Huaming Wu
Tianjin University

Ruidong Li
Kanazawa University

Abstract—With the rapid development of the Internet of Things (IoT) and communication

technology, deep neural network (DNN) applications, such asmedical imaging, speech

transcription, handwritten text recognition, have beenwidely used in IoT devices.

However, due to resource constraints on these devices, e.g., limited memory capacity,

weak computing capacity, and low battery capacity, IoT devices cannot support

complicated DNN operation effectively and, thus, fail to fulfill the requirements of Quality

of Service of mobile users. One promising approach is to migrate the DNNmodel to a

remote cloud server to reduce the computing burden on IoT devices. Unfortunately, it still

suffers from high delay and low bandwidth when communicating with cloud servers.

Although the transmission delay of the edge server is low, its computing capacity lacks

scalability and elasticity.To makematters worse, in the real world, the wireless

connection between IoT devices and the cloud is intermittent, which can cause offloading

failures during large-scale DNN data transmission. In this article, we describe a DNN

model migration framework to overcome the abovementioned challenges, which consists

Digital Object Identifier 10.1109/MCE.2022.3159348

Date of publication 15 March 2022; date of current version

8 April 2023.

Feature Article: DNN Migration in IoTsFeature Article: DNN Migration in IoTs

28
2162-2248 � 2022 IEEE Published by the IEEE Consumer Technology Society IEEE Consumer Electronics Magazine

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

of three parts: DNNmodel preprocessing, partition-offloading plan, and partition-

uploading plan. Accordingly, we introduce the operation of the DNNmigration and the

available methods for each part. In addition, we improve the DNN partition-uploading plan

in amultiuser edge-cloud collaborative computing environment. Finally, we highlight the

important challenges of achieving more efficient DNNmigration and point out the

unresolved issues of DNNmigration, whichmay shed light on future research directions.

& IN RECENT YEARS, the Internet of Things

(IoT) and mobile Internet have developed rapidly,

smart cities, smart homes, and smart transporta-

tion have become an indispensable part of social

life. As the core of artificial intelligence, deep learn-

ing technology, especially deep neural networks

(DNNs), has been widely used in a variety of fields,

which also brings many new challenges to mobile

terminals with limited resources. The require-

ments of emerging intelligent applications on com-

munication systems are mainly reflected in four

aspects: low response time, low energy consump-

tion, low monetary cost, and balanced-computing

resource allocation. The most obvious contradic-

tion is between the limited computing capacity of

IoT devices and running complicated DNN infer-

ence. When DNN models implement inference in

a resource-constrained computing environment,

how to optimize objectives, such as delay, energy,

andmonetary cost, is of great significance.

Considering that the limited computing resour-

ces of mobile devices cannot support complex

DNN operations, the traditional approach is to off-

load partial DNNmodels to remote cloud servers to

reduce the pressure of local devices. DNN migra-

tion in edge, cloud, or fog computing environment,

as well as other computing platforms1 have

attracted great attention. As we all know, cloud

computing has a high computing capacity and suffi-

cient storage space. However, the cloud server is

usually far away from the local device, and the data

transmission between the cloud server and the cli-

ent is readily affected by various factors, such as

transmission delay, data volume, and central com-

puting capacity. These factors put great pressure

on the network bandwidth and easily cause exces-

sive transmission delay, which cannot meet user

quality of service (QoS) requirements. Compared

with the cloud servers, edge servers are closer to

the client, which can effectively improve the effi-

ciency of DNN offloading and reduce the pressure

on network bandwidth. However, edge servers still

suffer from limited computing capacity and insuffi-

cient storage.

Generally, it takes a long time to upload and

execute the DNNmodel, due to the large size of the

DNN model, such as YOLO and FaceNet. Accord-

ingly, DNN query, i.e., the process of DNN infer-

ence, will only be implemented on the client until

the DNN model is uploaded. However, the client’s

computing capacity is low, which leads to the poor

performance of the DNN query. Thus, we perform

the DNN query while uploading the DNN partition,

and then use edge/cloud servers to optimize query

performance. We usually use DNN migration to

achieve two goals: one is to determine the DNN

layer distribution on the edge/cloud server; the

other is to determine the upload order of the DNN

layer. Thus, how to obtain the optimal DNN migra-

tion scheme has become an urgent problem to be

solved. In general, the migration of DNN models

faces the following challenges.

1) Large-scale DNN partition: In order to deter-

mine the upload order of the DNN layer, previ-

ous studies, such as He et al.’s work,2 have to

divide the DNN model, but the DNN partition

is usually very large, so there is no chance to

realize more efficient DNN query performance

throughmore fine-grained partitions.

2) Poor search ability:Most studies use traditional

algorithms, e.g., swarm intelligence algorithms,

to divide DNNmodels and obtain the DNN layer

distribution under each server. However, these

algorithms suffer frompoor global search capa-

bilities and tend to fall into local optimality.

3) Simple computing environment: DNN migration

is only suitable for very simple environments,

not formore realistic computing environments,

such as multiuser multiedge/cloud server envi-

ronments. In addition, it is also difficult to

achieve parallel processing of DNNmodels.

May/June 2023 29

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

4) User requirements: The requirements of users

for QoS are constantly increasing, especially

obtaining the results of DNN migration with

relatively low delay and energy consumption

at a lower cost. However, how to obtain an

ideal cost on the premise of balancing time

delay and the energy consumption is an

urgent issue to be solved.

The framework of DNN migration is shown in

Figure 1. First, the edge-cloud collaborative com-

puting environments can effectively integrate and

utilize different types of computing resources,

which ismore suitable for a large-scale DNNmigra-

tion. Second, we expand the application of the

DNNmigration plan under the edge-cloud collabo-

rative computing environment and realize the effi-

cient partition-offloading plan and partition-

uploading plan after DNN model preprocessing.

Finally, we propose the generation and operation

of DNN migration in a multiserver environment

and introduced the information flow in it in detail.

ENVIRONMENTS AND
REQUIREMENTS FOR DNN
MIGRATION

Computing Environments of DNN Model

The IoT devices will generate a large number

of DNN tasks, but they cannot handle large-scale

DNN tasks, so some DNN tasks are often migrated

to edge/cloud servers. We treat each DNN model

as a task, and each layer in the DNN model as a

subtask. Common computing environments usu-

ally include cloud computing environments, edge

computing environments, and edge–cloud collab-

orative computing environments.

Cloud Computing Environment According

to the deployment form, the cloud can be

divided into three types: private cloud, public

cloud, and hybrid cloud. The traditional cloud

computing environment has the advantages of

strong computing capacity and sufficient storage

space. However, because the cloud server is too

far away from the IoT device, problems, such as

high transmission delay, network instability, and

limited bandwidth are prone to occur, and thus,

it is difficult to meet the QoS requirements of

users.

Edge Computing Environment Any comput-

ing and network resource from the data source to

the cloud computing center can be defined as the

edge. Since the edge server is closer to the IoT

device, it can respond to requests from the device

in real time, and the transmission is more secure.

In addition, due to a large number of load flow

nodes, the data transmission speed is fast, which

is suitable for migrating DNN tasks that are highly

sensitive to delay. However, the edge server has

some defects, such as small computing capacity

and insufficient storage space.

Edge–Cloud Collaborative Computing

Environment Since IoT devices will generate a

large number of DNN tasks, the edge–cloud collab-

orative computing environment, as a novel system

architecture, can effectively accelerate the compu-

tational efficiency of DNN models. Figure 2 shows

the general diagram of the edge-cloud collabora-

tive computing environment. Compared with the

FIGURE 1. Framework of DNN migration.

FIGURE 2. Diagram of edge–cloud collaborative

computing environments.

DNN Migration in IoTs

30 IEEE Consumer Electronics Magazine

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

traditional cloud/edge computing environment,

the edge–cloud collaborative computing environ-

ment owns the advantages of both the high trans-

mission rate of edge computing and the high

computing capacity of cloud computing, which

can meet the migration requirements of the DNN

model.

Migration Requirements of DNN Model

With the explosive development of IoT tech-

nology, the number of wireless devices has grown

exponentially. In the meantime, a large number of

delay-sensitive and computationally intensive

applications are being deployed on these devices.

The computing environment is required to pro-

vide the powerful computing capabilities and

transmission rates to ensure low-delay service

quality. Themigration of DNNmodels usually con-

siders the effects of low delay, low energy con-

sumption, and lowmonetary cost. In addition, the

impact of network resource allocation is also

taken into consideration.

ARCHITECTURE OF DNN MIGRATION
The DNN migration plan includes DNN model

preprocessing, DNN partition processing, DNN

partition-offloading plan, and DNN partition-

uploading plan, as shown in Figure 3. The details

are as follows.

DNN model preprocessing: It refers to com-

pressing or merging DNN models before the DNN

partition-offloading plan and partition-uploading

the plan, thereby improving the processing effi-

ciency of the DNN model. As shown in Figure 3, it

mainly includes inception module preprocess-

ing, convolutional layer preprocessing, and fully

connected layer preprocessing.

DNN partition-offloading plan: As shown in

Figure 3, the DNN partitioning plan refers to split-

ting the DNN model, while DNN partition-offload-

ing plan refers to specifying the corresponding

offloading server for the DNN subtask. When the

offloading location is determined by the parti-

tion-offloading algorithm, the partitioning result

of the DNN model will be obtained naturally. We

FIGURE 3. Framework of DNN model migration. �1 Indicates the DNN model preprocessing. �2 Represents

the partition-offloading and partition-uploading operations on the preprocessing results.�3 Means that after

the corresponding server for DNN subtask offloading is determined by the partition-offloading plan, the DNN

partition-uploading plan obtains the upload order of DNN partition.�4 Describes the uploading process of the

DNN partition under the computing environment.

May/June 2023 31

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

refer to the abovementioned algorithm as DNN

partition-offloading algorithm.

DNN partition-uploading plan: Due to the large

size of the DNN model, if we directly upload the

full DNN model to the cloud/edge server, this will

lead to high transmission delay. Therefore, we

consider performing DNN queries while upload-

ing DNN partitions P3. The DNN uploading plan

refers to determining the sequence of uploading

DNN partition to the edge/cloud server.

Existing DNN partition-uploading methods

are mainly applied to the situation from a single

local device to a single edge/cloud server. Most

of the pioneering methods combine the shortest

path, and after multiple iterations, the partition-

ing plan is generated while obtaining the parti-

tion-uploading plan.

It should be noted that in the DNN partition

generated in the DNN partition-offloading plan,

the DNN subtask deployed to the edge/cloud

server is called P1; the DNN subtask deployed on

the client is called P2. The DNN partition gener-

ated in the DNN partition-uploading plan is a fur-

ther division of the DNN partition P1 generated

in the DNN partition-offloading plan. In other

words, the DNN partition-uploading plan builds

the upload sequence by dividing the DNN parti-

tion P1 into a finer-grained DNN partition, namely

P3. Obviously, the DNN partition P1 is composed

of the DNN partition P3.

DNN Model Preprocessing:
Inception Module Preprocessing For the

inception modules, it is common to consider split-

ting each inception module and executing them

together on both local and edge/cloud servers. To

avoid excessive data transmission on the wireless

network, the inception module is partitioned only

once, which can be considered as a minimum cut

problem, where algorithms, such as Boykov–Kol-

mogorov maximum flow algorithm and topologi-

cal sorting algorithm, can be applied. Then, the

inception module is cut into two disjoint sub-

graphs, with the first one processed locally and

the second one offloaded to the edge/cloud

server.3 In addition, when the difference between

the predecessor’s out-degree and the successor’s

in-degree under the inception module is 1, two

adjacent layers are merged into a new layer. The

data dependency between the predecessor and

successor will disappear after preprocessing.1

Some scholars have also proposed to directly

treat the inception module as a whole.4

Convolutional Layer Preprocessing In

view of the computationally intensive charac-

teristics of the convolutional layer, the tradi-

tional convolution process is accelerated by

low-rank decomposition schemes, and then the

original kernel set in the convolutional layer is

approximated by two low-rank decomposition

kernels. In another way, the feature map of the

convolutional layer is divided into blocks in

space, and a related feature mapping block is

assigned to an edge server, so that the feature

map of the convolutional layer can be indepen-

dently run on the edge server. In addition, the

introduction of a 1� 1 convolution kernel can

effectively enhance the nonlinear expression

ability of the network and greatly reduce the

number of model parameters.

Fully Connected Layer Preprocessing For

the storage-intensive fully connected layer, the

number of parameters in the fully connected

layer is actually the size of the weight matrix.

One method is to find a low-rank weight matrix

to approximate the original weight matrix,

thereby reducing the number of parameters of

each fully connected layer, and then reducing

the required storage space.5 Another method is

to use network pruning methods to sparse the

network, reduce the overfitting network, and

then improve the generalization ability of the

network.6

DNN Partition-Offloading Plan
One-StepSegmentation It mainly refers to the

processing of dividing the DNN model once and

then offloading one of the partitions to the edge/

cloud server. Some work considers the offload

performance of partitioning at each candidate

point, and selects the point with the optimal

delay/energy consumption performance for parti-

tioning.7 Furthermore, some scholars have also

proposed a binary search method, and then

proved that the optimal partition-offloading deci-

sion follows a one-climb policy. Based on this, the

Gibbs sampling algorithm was proposed to obtain

the optimal partition-offloading decision.8

DNN Migration in IoTs

32 IEEE Consumer Electronics Magazine

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

Swarm Intelligence Optimization This

method only relies on sampling the objective

function, and then realizes the overall random

search through a certain search mechanism,

mainly including simulated annealing (SA), parti-

cle swarm optimization (PSO), and genetic algo-

rithm (GA). In the edge-cloud collaborative

computing environment, for each preprocessed

DNN subtask, the optimal allocation of each sub-

task is searched as the partition-offloading strat-

egy of the DNN model.1

Distributed Deep Learning Deep learning is

a branch of machine learning that emphasizes

learning from continuous layers. The distributed

deep learning algorithm9 closely combines dis-

tributed learning and deep learning, and uses

multiple parallel DNNs to generate partition-off-

loading decisions, providing a new way for DNN

partition-offloading decisions in an edge-cloud

collaborative computing environment.

Deep Reinforcement Learning (DRL) DRL10

reflects human learning by exploring and exploit-

ing feedback from the environment. In order to

achieve system optimization, previous works

usually convert the DNN offloading process into

a Markov decision process (MDP), and then

select the appropriate DRL algorithm to achieve

system optimization.

Meta Deep Reinforcement Learning Since

the sample complexity of meta-learning is

closely related to DRL, it is considered to com-

bine meta-learning and DRL in depth to obtain a

meta-deep reinforcement learning (meta-DRL)

algorithm.11 It can quickly adapt to new tasks

and new computing environments, and then

make partition-offloading decisions for the DNN

model faster in an edge–cloud collaborative

computing environment.

Deep Imitation Learning (DIL) DIL12 is a tra-

ditional supervised learning method, which

includes offline training and online decision-mak-

ing. After the high-quality demonstration is gen-

erated, the model can be trained offline, and

then the online decision can be made at a fast

online inference speed, which can obtain the

DNN partition-offloading plan very efficiently.

DNN Partition-Uploading Plan
Direct Uploading Algorithm This approach

typically estimates the expected query execution

time for each possible partition point and, based

on that, finds the optimal partition point for the

DNN model. By partitioning the DNN model once,

we can obtain the DNN partition-uploading plan

(i.e., partition-offloading plan), and then directly

upload the corresponding DNN partition P3 (i.e.,

P1) to the edge/cloud server.13

IONN Algorithm The DNN partition-uploading

plan is obtained by using the shortest path

method and penalty factor method. IONN uses

up to eight penalty factors to find partitions P3:

1; 0:5; 0:25; . . . ; 0:016; 0:0. However, partitions P3

are often very large, and there is a lack of oppor-

tunities for fine-grained partitions P3 to provide

better performance.14

Efficiency-Based Algorithm The upload effi-

ciency and the shortest path method are com-

bined to find the next partition in each iteration,

where the upload efficiency acts as a penalty fac-

tor. However, different from the fixed penalty

factor, the upload efficiency has higher flexibility

and selectivity. A greedy algorithm is designed

based on the upload efficiency, and the partition

P3 with the highest upload efficiency is repeat-

edly selected to obtain a more fine-grained DNN

partition-uploading plan.15

Recursive Efficiency Algorithm This

approach recursively splits partitions obtained by

the efficient-based algorithm and creates a more

fine-grained DNN partition-uploading plan.15 Com-

pared with the efficient-based algorithm, it is obvi-

ous that this algorithm further improves the query

performance of the DNNmodel.

GENERATION AND OPERATION OF
MIGRATION PLAN

Installation Phase: Generate Migration Plan

In this section, we will describe the installa-

tion of applications in an edge-cloud collabora-

tive computing environment, briefly introduce

the role of applications, and discuss the flow of

information between applications.

From Figure 4, the applications Program1 and

Program3 installed on the client and the edge/

May/June 2023 33

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

cloud server, respectively, are used to obtain the

execution time and index of DNN subtasks. The

application Program2 installed on the client is

used to generate the migration plan. The infor-

mation flow between the edge/cloud server and

the client is as follows: First, we install Program1

on the client, run each DNN subtask, and record

the execution time and index of the DNN subtask

as file1. Then, the edge/cloud server cannot

determine which DNN subtask will be executed,

so the edge/cloud server cannot collect the exe-

cution delay of each DNN subtask like the client

does. Install Program2 on the edge/cloud server,

where Program2 uses regression functions to cre-

ate prediction functions for DNN subtasks,

which can estimate the execution delay of each

DNN subtask under the edge/cloud server based

on the parameters of the DNN and the server.

Then, record the execution time and index of

each DNN subtask as file2. Finally, when the user

enters the computing environment, Program1 on

the client runs and obtains file1. At the same

time, Program2 will send the prediction results of

each DNN subtask file2 to the client. Then,

Program3 on the client combines file1 and file2 to

create a migration plan.

Running Phase: Operate Migration Plan

Existing DNN partition-uploading methods

are mainly applied to the situation from a single

local device to a single edge/cloud server. We

will execute the DNN query while uploading DNN

partitions P3, so two threads are required: 1)

Upload thread: upload DNN model and 2) Query

thread: execute real-time DNN query.

Upload Thread The application Program2 first

creates a partition-offloading plan to obtain the

DNN partition P1 and its distribution on the

edge/cloud server, and then creates a partition-

uploading plan to obtain the DNN partition P3

(P3 is divided by the DNN partition P1) and its

upload sequence on the edge/cloud server. Then

the upload thread starts to run the partition-

uploading plan. First, the upload thread sends

the first DNN partition P3 in the partition-upload-

ing plan from the client to the edge/cloud server,

and sends the confirmation result (CR) of the

DNN partition P3 offloading back to the client. If

the upload thread receives a failed result CR, it

resends the DNN partition P3 to the edge/cloud

server. Conversely, if the upload thread receives

a successful result CR, it sends the next DNN

FIGURE 4. Framework of information flow.

DNN Migration in IoTs

34 IEEE Consumer Electronics Magazine

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

partition P3 to the edge/cloud server, and then

sends CR of the next DNN partition P3 back to

the client. Repeat the uploading process until

the last DNN partition P3 is uploaded to the

edge/cloud server.

Query Thread Consider performing DNN queries

when uploading DNN partitions P3. The client will

repeatedly perform DNN queries, and immediately

propose a new query after the previous query is

completed. Before the DNN model is completely

uploaded, the query can be executed jointly

through the DNN partition P2 under the client and

the DNN partition P3 under the edge/cloud server.

The query thread is the process of uploading

DNN models, and performs a DNN query on the

incomplete uploaded DNN model under the edge-

cloud collaborative computing environment. The

local device obtains which DNN partitions have

been uploaded to the edge/cloud server by check-

ing whether the CR of each DNN partition P3 has

arrived. When a DNN query is triggered, the query

thread will execute the DNN partitions P3 in serial

order. The first local DNN partition is performed,

and then the input matrix (i.e., the output matrix

of the first local DNN partition) and the index of

the second DNN partition P3 are sent to the desig-

nated client or edge/cloud server. After the sec-

ond DNN partitions P3 is executed, the input

matrix and the index of the next DNN partitions P3

will be sent to the client or the edge/cloud server

where the next DNN partitions P3 is located. In

this way, the client and the edge/cloud server

jointly execute the DNN partition P3 until the

whole DNNmodel is executed.

IMPROVEMENT AND COMPARISON

Improvement of Partition-Uploading Plan

It is known that the existing partition-upload-

ing algorithm is only suitable for the situation

from a single client to a single edge/cloud server,

which is obviously not suitable for DNN uploads

in real scenarios. In this part, we will discuss the

performance of the DNN partition-uploading

plan in a multiuser edge-cloud collaborative

computing environment. It is mainly divided into

the following two steps.

1) We simply apply the PSO algorithm to

obtain the corresponding offloading position of

the DNN subtasks in a multi-user edge-cloud col-

laborative environment. 2) According to the

existing partition-upload algorithm, combined

with the unloading position of the DNN subtask,

the DNN partition P1 is divided to obtain the

DNN partition P3, and the upload order of each

DNN partition P3 can be determined.

Experimental Comparison
Experimental Setup We build an edge-cloud

collaborative computing environment R ¼ fr1;
r2; . . . ; r12g, where the first two belong to the cli-

ents, the last five belong to the cloud servers,

and the remaining five belong to the edge serv-

ers. We set the bandwidth between the local and

the edge is 10 MB/s, between the local and the

cloud is 0.5 MB/s, between the edge and the

cloud is 0.5 MB/s, between different cloud serv-

ers is 5 MB/s, and between different edge servers

is 10 MB/s. The CPU processing capacity

of the client, the edge server, and the cloud

server are set to 1:1� 2:3 GHz, 4:2� 18:3 GHz,

and 40� 120 GHz, respectively. Moreover, the

model size of Alexnet is 223 MB, and the model

size of the VGG model is 548 MB.

Performance Comparison and Analysis

We apply the classic Direct Uploading algorithm,

IONN algorithm, and Recursive Efficiency algo-

rithm to the multiuser edge-cloud collaborative

computing environment, so as to illustrate the

feasibility and necessity of the DNN partition-

uploading plan in the multiserver environment.

As shown in Figure 5, we track the system

delay changes of repeated queries of the Alexnet

model and VGG model, respectively. Among

them, the horizontal axis represents the upload

delay of the DNN partition P3, and the vertical

axis represents the change of the system delay

with the upload of the DNN partition P3. We con-

sider performing DNN queries while uploading

DNN partitions. In this process, we assume that

the client will repeatedly put forward DNN

queries, and execute new queries immediately

after the previous one is completed, until the

entire model is uploaded. In addition, During the

upload period of the DNN partition P3, the DNN

system delay will not change during the upload

period of the DNN partition P3.

May/June 2023 35

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

When compared with the Direct Uploading algo-

rithm that does not adopt the DNN partition-

uploading plan, the IONN algorithm and Recursive

Efficiency algorithmusing theDNNpartition-upload-

ing plan have a lower total system delay to com-

plete the DNN model query. This is mainly due to

the DNN partition P1 being too large and the trans-

missiondelayof uploading thewholeDNNpartition

P1 being too high. In the process of uploading the

DNN partition P1, DNN queries will only be com-

pleted by local devices, and the insufficient com-

puting capacity of local devices leads to the high

delay of DNNqueries. In addition, theRecursive Effi-

ciency algorithm has better query results than that

of IONN algorithm, which is mainly obtained by

more fine-grained partitions P3. In summary, we

know that adopting the DNN partition-uploading

plan can obtain more efficient DNN query perfor-

mance, and more fine-grained DNN partition P3

helps to obtainmore efficient DNNquery results. In

short, the abovementioned experimental results

demonstrate that themethod proposed in this sec-

tion can extend different types of DNN partition-

uploading plans to a multiserver environment. Fur-

thermore, the comparisonwith the direct uploading

algorithm also illustrates the necessity of extending

the DNN partition-uploading plan to a multiserver

environment.

CURRENT CHALLENGES AND
FUTURE DIRECTIONS OF DNN
MIGRATION

Along with the increasing number of IoT devi-

ces, people have new demands for service quality

in daily life. In addition to the large granularity of

DNN partitions and not being suitable for multi-

server environments, DNN migration also faces

some challenges and opportunities in real-world

scenarios.

On the one hand, applications such as

unmanned driving, virtual reality (VR), and aug-

mented reality (AR) all put forward strict require-

ments for the delay. However, processing massive

amounts of data on the IoT devices puts a heavy

burden on battery consumption, and the high data

transmission delay of the cloud computing center

also brings greater transmission energy consump-

tion pressure on the client. Furthermore, The

requirements of users for QoS are constantly

increasing, and they hope to obtain the results of

DNN migration at a lower cost. In summary, when

DNN migration is performed in a resource-limited

environment, how to achieve the overall system

optimization of latency, energy consumption, and

cost andhow to specifically adjust the optimization

degree of each optimization objective according to

user requirements is an urgent issue to be solved.

On the other hand, we consider practical

issues that are ignored in the process of DNN

model migration. These issues are caused by the

greedy occupation of resources by users and the

unbalanced metric optimization. It is known that

the users entering the computing environment

are constantly changing, so when the users

entering the environment first occupy all the

computing resources of some edge/cloud serv-

ers, the users entering the environment later will

not be able to use the above servers, resulting in

FIGURE 5. Comparison of various DNN partition-uploading methods. (a) Alexnet model. (b) VGG model.

DNN Migration in IoTs

36 IEEE Consumer Electronics Magazine

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

an unreasonable allocation of computing resour-

ces. It can be seen that the unreasonable alloca-

tion of computing resources caused by the

dynamic changes of the computing environment

is also a problem worth studying in the DNN

migration in reality.

Most importantly, it is necessary to consider a

more practical circumstance of migrating large-

scale DNN subtasks in a more complex and

resource-limited computing environment with

multiple users in future work. Among others,

researchers should consider whether the pro-

posed DNN partition-offloading plan and DNN par-

tition-offloading plan are suitable for DNN models

with different types, sizes, and structures, which

is an issue that researchers need to focus on.

CONCLUSION
In this article, we have given our vision and

explored numerous new trends for DNNmigration

in IoTs. To fulfill the requirements of intelligent

applications for communication systems in a com-

puting environment with limited resources, we

have designed a DNNmodel migration framework,

where the DNN migration plan consists of three

parts, including DNN model preprocessing, parti-

tion-offloading plan, and partition-uploading plan.

We first describe the computing environment and

migration requirements for the DNN model. Then,

we comb the generation and operation of DNN

migration and summarize the common algorithms

of DNN migration. Furthermore, we propose a

DNN partition-uploading plan in a multiuser edge-

cloud collaborative computing environment and

compare the performance of different partition-

uploading plans. Finally, we consider the pros-

pects and challenges of DNN migration under the

existing technical conditions.

Edge computing provides low latency, high

availability, and privacy protection for local com-

puting services, and solves the problems of high

latency of cloud computing and constraints by net-

work environment. Accordingly, the DNN migra-

tion or placement technology will vigorously

mitigate the contradiction between the limited

computing capacity of IoT devices and complex

DNN inference. We expect that this visionary

research will be helpful to practitioners and

researchers who are interested in doing research

on the DNNmigration technology to promote intel-

ligent applications, smart cities, and other indus-

trial upgrades.

ACKNOWLEDGMENTS
This work was supported in part by the

National Natural Science Foundation of China

under Grant 62071327 and in part by JSPS

KAKENHI under Grant 19H04105.

& REFERENCES

1. B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li,

“Cost-driven off-loading for DNN-based applications

over cloud, edge, and end devices,” IEEE Trans. Ind.

Informat., vol. 16, no. 8, pp. 5456–5466, Aug. 2020,

doi: 10.1109/tii.2019.2961237.

2. W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint DNN

partition deployment and resource allocation for delay-

sensitive deep learning inference in IoT,” IEEE Internet

Things J., vol. 7, no. 10, pp. 9241–9254, Oct. 2020,

doi: 10.1109/jiot.2020.2981338.

3. X. Tian, J. Zhu, T. Xu, and Y. Li, “Mobility-included

DNN partition offloading from mobile devices to edge

clouds,” Sensors, vol. 21, no. 1, 2021, Art. no. 229, doi:

10.3390/s21010229.

4. L. Lockhart, P. Harvey, P. Imai, P. Willis, and B.

Varghese, “Scission: Performance-driven and context-

aware cloud-edge distribution of deep neural

networks,” in Proc. IEEE/ACM 13th Int. Conf. Utility

Cloud Comput., 2020, pp. 257–268, doi: 10.1109/

ucc48980.2020.00044.

5. A. Ss, B. Dg, C. Rk, and D. Fa, “Sparse low rank

factorization for deep neural network compression,”

Neurocomputing, vol. 398, pp. 185–196, 2020, doi:

10.1016/j.neucom.2020.02.035.

6. W. Niu et al., “PatDNN: Achieving real-time DNN

execution on mobile devices with pattern-based

weight pruning,” in Proc. 25th Int. Conf. Architectural

Support Program. Languages Operating Syst., 2020,

pp. 907–922, doi: 10.1145/3373376.3378534.

7. C. Ding, A. Zhou, Y. Liu, R. Chang, and S. Wang, “A

cloud-edge collaboration framework for cognitive

service,” IEEE Trans. Cloud Comput., early access,

May 25, 2020, doi: 10.1109/TCC.2020.2997008.

8. J. Yan, S. Bi, Y. J. Zhang, andM. Tao, “Optimal task

offloading and resource allocation inmobile-edge

computingwith inter-user task dependency,” IEEE Trans.

WirelessCommun., vol. 19, no. 1, pp. 235–250, Jan. 2020,

doi: 10.1109/TWC.2019.2943563.

May/June 2023 37

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/tii.2019.2961237
http://dx.doi.org/10.1109/jiot.2020.2981338
http://dx.doi.org/10.3390/s21010229
http://dx.doi.org/10.1109/ucc48980.2020.00044
http://dx.doi.org/10.1109/ucc48980.2020.00044
http://dx.doi.org/10.1016/j.neucom.2020.02.035
http://dx.doi.org/10.1145/3373376.3378534
http://dx.doi.org/10.1109/TCC.2020.2997008
http://dx.doi.org/10.1109/TWC.2019.2943563

9. L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian,

“Distributed deep learning-based offloading for mobile

edge computing networks,”Mobile Netw. Appl., 2018,

doi: 10.1007/s11036-018-1177-x.

10. H. Lu, C.Gu, F. Luo,W.Ding, andX. Liu, “Optimization of

lightweight task offloading strategy formobile edge

computingbasedondeep reinforcement learning,” Future

Gener. Comput. Syst., vol. 102, pp. 847–861, 2020, doi:

10.1016/j.future.2019.07.019.

11. J. Wang, J. Hu, G.Min, A. Y. Zomaya, andN. Georgalas,

“Fast adaptive task offloading in edge computing based

onmeta reinforcement learning,” IEEE Trans. Parallel

Distrib. Syst., vol. 32, no. 1, pp. 242–253, Jan. 2021, doi:

10.1109/TPDS.2020.3014896.

12. S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J.

Zhang, “Intelligent edge: Leveraging deep imitation

learning for mobile edge computation offloading,”

IEEE Wireless Commun., vol. 27, no. 1, pp. 92–99,

Feb. 2020, doi: 10.1109/MWC.001.1900232.

13. Y. Kang et al., “Neurosurgeon: Collaborative

intelligence between the cloud and mobile edge,”

SIGPLAN Not., vol. 52, no. 4, pp. 615–629, Apr. 2017,

doi: 10.1145/3093337.3037698.

14. H.-J. Jeong, H.-J. Lee,C.H. Shin, andS.-M.Moon, “IONN:

Incremental offloading of neural network computations

frommobile devices to edge servers,” inProc. ACM

Symp.CloudComput., Oct. 2018, pp. 401–411, doi:

10.1145/3267809.3267828.

15. K. Y. Shin, H.-J. Jeong, and S.-M. Moon, “Enhanced

partitioning of DNN layers for uploading from mobile

devices to edge servers,” in Proc. 3rd Int. Workshop

Deep Learn. Mobile Syst. Appl., 2019, pp. 35–40, doi:

10.1145/3325413.3329788.

Min Xue is currently working toward the master’s

degree in mathematics with the Center for Applied

Mathematics, Tianjin University, Tianjin, China. Con-

tact her at xm_17@edu.cn.

Huaming Wu is currently an Associate Professor

with the Center for Applied Mathematics, Tianjin

University, Tianjin, China. Wu received the B.E. and

M.S. degrees from the Harbin Institute of Technol-

ogy, Harbin, China, in 2009 and 2011, respectively,

both in electrical engineering, and the Ph.D. degree

in computer science with Freie Universit€at Berlin,

Berlin, Germany, in 2015. He is a Senior Member of

the IEEE. He is the corresponding author of this arti-

cle. Contact him at whming@tju.edu.cn.

Ruidong Li is currently an Associate Professor with

the Institute of Science and Engineering, Kanazawa

University, Kanazawa, Japan. Li received the bach-

elor’s degree in engineering from Zhejiang Univer-

sity, Hangzhou, China, in 2001, and the Doctor of

Engineering degree from the University of Tsukuba,

in 2008. He is a Senior Member of the IEEE. Contact

him at liruidong@ieee.org.

DNN Migration in IoTs

38 IEEE Consumer Electronics Magazine

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 18,2023 at 07:23:54 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/s11036-018-1177-x
http://dx.doi.org/10.1016/j.future.2019.07.019
http://dx.doi.org/10.1109/TPDS.2020.3014896
http://dx.doi.org/10.1109/MWC.001.1900232
http://dx.doi.org/10.1145/3093337.3037698
http://dx.doi.org/10.1145/3267809.3267828
http://dx.doi.org/10.1145/3325413.3329788
mailto:whming@tju.edu.cn
mailto:liruidong@ieee.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

