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ABSTRACT
With the popularity of edge computing, numerous Internet of
Things (IoT) applications have been developed and applied to vari-
ous fields. However, for the harsh environment with network fluc-
tuations and potential attacks, traditional task offloading decision-
making schemes cannot meet the requirements of real-time and
security. For this reason, we propose a novel task offloading deci-
sion framework to cope with the special requirements of the en-
vironment. This framework uses a task offloading decision model
based on deep reinforcement learning algorithms, and is located
on the user side to reduce the impact of network fluctuations. To
improve the efficiency and security of the model in harsh edge
computing environments, we adopt federated learning and intro-
duce the blockchain into the process of parameter upload and de-
centralization of federated learning. In addition, we design a new
blockchain consensus algorithm to reduce the waste of computing
resources and improve the embedding and propagation speeds of
the blockchain. Furthermore, we demonstrate the effect of task
offloading of this model by performing offloading decisions on a
simulation platform.

CCS CONCEPTS
• Computing methodologies→ Distributed computing method-
ologies; Simulation evaluation; • Networks → Network reliability;
• Security and privacy→ Network security.
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1 INTRODUCTION
Recently, the popularity of edge computing has changed the tradi-
tional information communication structure by connecting devices
at the network edge to Internet of Things (IoT) and cloud centers.
The computing tasks of IoT devices can be offloaded to the edge
or cloud for processing, which can break through the resource lim-
itations of mobile devices, e.g., reduce computing load, improve
task processing efficiency, and save energy consumption [13, 15].
However, it is still difficult to popularize edge computing in harsh
environments, e.g., suburban and rural areas, satellite-terrestrial
networks, and low orbit satellite edge computing [2], which own
the following characteristics:

• In a stable environment, there aremany edge nodes and abun-
dant communication resources. However, the edge service
nodes in the harsh environment are scarce and communica-
tion resources are scarce, and there is a possibility that the
node may suddenly disconnect.

• The stable environment has little interference, and the harsh
environment has untrusted nodes, and even the possibility
of malicious attacks.

Therefore, the harsh environment requires more attention to re-
liability and security. How to make the edge offloading system have
a certain ability to resist harsh environments is becoming the key
to the development of edge computing. The task offloading decision
algorithm is the most critical part of the entire offloading model.
Currently, task offloading decision-making schemes are mainly
divided into traditional algorithms and intelligent algorithms. Tra-
ditional computing offloading techniques often use some heuristic
algorithms [6, 8, 12]. Complex algorithms are usually difficult to
solve and require a huge amount of computation. Methods based
on deep learning, e.g., deep reinforcement learning, can promote of-
floading decision-making, dynamic resource allocation, and content
caching, which are conducive to coping with the growth of com-
munication and computing in emerging IoT applications. Recently,
intelligent algorithms have gradually emerged. By introducing neu-
ral networks and other methods, offloading decision-making can
achieve good results, but there are still many challenges, e.g., slow
learning speed and long training time. At present, common intelli-
gent offloading algorithms are generally deployed on edge servers
because they require sufficient computing capacity. For this reason,
existing research considers the introduction of distributed learning
into the task offloading intelligent algorithm [4], but in a harsh en-
vironment, how to ensure that the parameters are kept safe during
the transfer process is worth studying.
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This paper mainly focuses on task offloading decision-making
against harsh edge computing environments. This kind of envi-
ronment has communication fluctuation and security problems,
especially client poisoning, which is the most common defect in
distributed systems [10]. The main contributions of this paper can
be summarized as follows:

• To effectively take offloading decisions in harsh environ-
ments, we propose a novel task offloading framework based
on Deep Reinforcement Learning (DRL), which is placed
on the user side to resist network fluctuations caused by
communication.

• To improve the efficiency and security of the model in harsh
environments, the blockchain format is adopted to transmit
parameter information in federated learning. As far as we
know, this is the first to combine federated learning with
blockchain is integrated into the field of edge computing.

• We propose a new blockchain consensus algorithm to im-
prove thewaste of computing power and slow iteration in the
traditional consensus algorithm. The improved blockchain
consensus algorithm can improve the efficiency and safety
of the entire model.

2 SYSTEM MODEL AND OFFLOADING
ALGORITHM

This section provides a detailed task offloading framework in harsh
environments and the specific algorithms used in the framework.

2.1 System Model
Fig. 1 shows a schematic diagram of edge computing in a harsh
environment, where the user side can communicate through an
edge server (low-orbit satellite). As the communication between the
user and the edge server may be interrupted, how to overcome the
impact caused by communication is the focus of edge computing
in harsh environments.

Figure 1: A typical harsh environment: maritime satellite
communications

As depicted in Fig. 2, we design a brand-new distributed task
offloading framework, which can meet the efficient and stable op-
eration of task offloading decision-making algorithms, and has the
ability to withstand harsh environments and to cope with the com-
plex topology of multiple edge servers and multiple cloud servers.

The overall process of the proposed framework is as follows: Af-
ter the user generates a task, the task information is collected by
the local device for offloading decision-making. At the same time,
because the offloading decision algorithm uses a neural network,
in order to improve the training speed of the neural network on
the user side, we introduce federated learning to update the param-
eters. The federated learning improves the training speed of the
neural network in the task offloading decision-making algorithm by
collecting the parameters of the neural network in different client
terminals and aggregate them to the client terminal to update the
parameters. Fig. 2 shows a typical federated learning algorithm
flow. In addition, in order to ensure that the parameters will not be
tampered with during the parameter update process, we adopt a
blockchain-based data structure and create a new consensus algo-
rithm to ensure the safety and efficiency of the parameter transfer
process.

2.2 Offloading Algorithm
This model is mainly divided into a task offloading decision al-
gorithm based on deep reinforcement learning, and a federated
learning and blockchain mechanism based on an improved task
offloading decision algorithm. The following two parts of the algo-
rithm will be introduced in detail.

2.2.1 Task Offloading Decision Algorithm. We use a deep reinforce-
ment learning algorithm as the task offloading decision model. In
order to improve the model’s ability to resist network fluctuations,
we place the model’s offloading decision-making algorithm on the
user side, which can prevent the unloading decision server from
being unable to connect to the offloading decision server due to
sudden network disconnection. The specific parameter settings are
as follows:

• State 𝑆 : The state in this model includes task information,
communication information with other nodes, computing ca-
pability information of different devices, and pre-unloading
action information. When the user equipment generates a
task to be uninstalled, it will perceive other nodes communi-
cating with it, and obtain the communication and calculation
information of the node. After that, it will be standardized
as a set of state input task offloading models, and after the
actions are executed, the information of the tasks in the orig-
inal state and the previous offloading action information will
be updated

• Action 𝑎: Actions include local execution, offloading to a
certain edge server, and offloading to a certain cloud server. It
should be noted that since the nodes sensed each time might
be different, the same action value in different states may
represent different servers. This is also to resist the impact
of communication fluctuations in the harsh environment.

• Reward 𝑅: Reward is a negative linear correlation of the
total cost of the task. The total cost is the weighted sum of
the delay and energy consumption of the task. The former
includes calculation delay and transmission delay, while the
latter focuses on the energy consumption of the user side.

In order to improve the model’s ability to resist network fluc-
tuations, we place the model’s offloading decision algorithm on
the user side, which can prevent the situation where the offloading
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Figure 2: The proposed task offloading-decision framework against harsh environments

decision server cannot be connected due to sudden network discon-
nection. Here, we can directly use current mature DRL algorithms,
e.g., Deep Q-Learning (DQN) [9] and Deep Deterministic Policy
Gradient (DDPG) [3].

2.2.2 Task Offloading Decision Algorithm. Since deep reinforce-
ment learning requires the use of neural networks, which leads to
training requires a lot of calculations and puts a lot of pressure on
the user side, we introduce a distributed training method named
federated learning [5]. However, it will inevitably encounter two
challenges in a harsh environment as follows:

• How to prevent the updated parameters from being tampered
with during the decentralization process?

• How to identify the junk parameters uploaded by untrusted
users maliciously?

To this end, we have improved the blockchain and introduced it
into federated learning, so that the parameters of users in federated
learning are uploaded in the form of transactions, and the aggre-
gated parameters of federated learning are decentralized in the
format of blockchain to ensure that the parameters are transferred.
It will not be modified during the process. The federal learning
algorithm combined with blockchain can effectively prevent se-
curity attacks in harsh environments, such as uploading wrong
parameters to control the global model by poisoning clients [11].

The traditional blockchain uses a Proof-of-Work algorithm for
consensus authentication [7]. However, in the edge computing
environment with resource-constrained, the use of the Proof-of-
Work algorithm will result in a lot of waste of computing power,
and there is still the possibility of brute force cracking attacks [14].
For this reason, we adopt a new consensus mechanism to adapt
to parameter transmission in harsh environments. We introduce
the average reward value in deep reinforcement learning into the
consensus algorithm. Since the average reward value can reflect
the offloading effect of the model, the effect of the parameters can
be verified by verifying the average reward value.

Fig. 3 shows the structure and dissemination process of the
improved blockchain. The following will introduce the role of
blockchain in federated learning according to the blockchain pro-
cess:

• Information chain upload:After a certain number of train-
ing sessions are completed on the user side, the neural net-
work parameters will be transmitted in the form of an infor-
mation chain. The format of the information chain is shown
in the figure, which is similar to the format of the transac-
tion chain in the traditional blockchain. The information
chain contains public key hashes, timestamps and digital
signatures to facilitate identity verification. In addition, it
also needs to include the number of network iterations, pa-
rameter information, and average reward value. After the
information chain is generated, it will be uploaded to the
edge server. In order to reduce communication consumption,
it is only necessary to upload it once to the edge server with
the highest communication intensity.

• Information chain transmission: The edge server will
verify the signature after receiving the information chain. If
the verification succeeds, it will upload it to the cloud server.
If it fails, the information chain will be discarded. When
network fluctuations occur and the cloud server cannot be
connected, it can be passed to other edge servers. Because
federated learning is not very robust. Even if some parame-
ters are not uploaded to the cloud server, the final parameter
aggregation will not be affected.

• Block embedding: The cloud server collects parameter in-
formation and verifies the signature within a period of time.
Then, the cloud server will calculate whether the average
reward value of each parameter matches the average reward
value on the information chain (a certain deviation is al-
lowed) by simulating the offloading task. The cloud server
that first completes all parameter calculation tasks will gain
leadership and be responsible for embedding the blockchain.
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Figure 3: The blockchain structure and communication process

The leader server will aggregate the parameters and em-
bed the updated parameters into the blockchain, and then
broadcast the entire network.

• Blockchain spread: When the cloud server receives the
blockchain, it will verify whether the aggregated parameters
meet the marked average reward value. If it does, it will
stop its own parameter calculation process and continue to
broadcast to other nodes. When the edge server receives the
blockchain, it will also verify the parameters, and continue
to broadcast to other nodes after the verification is passed.
When the user terminal receives and passes the verification,
the parameters of the neural network are updated to the
parameters on the latest block.

During the entire verification process, the cloud server will elim-
inate the parameters that fail to pass the signature verification,
low unit profit value, and the number of iterations to ensure that
the collected parameters are true and effective, thereby preventing
untrusted users from maliciously uploading junk parameters. In
order to reduce the communication volume of the blockchain in the
harsh environment, the original blockchain structure is improved as
shown in Fig. 3. It still has the characteristics of unforgeability. We
require that the number of iterations for each aggregation is greater
than that of the original block. The transmission of the blockchain
can ensure the training process of each federation learning be
synchronized. Using calculation average reward value instead of
traditional PoW verification can prevent malicious tampering of
parameters by illegal users: when someone tries to construct a false
parameter and incorporate it into the blockchain for broadcasting,
the lower-end server will perform the parameter after receiving the
blockchain. We can verify that if the average reward generated by
the simulated uninstallation does not match the block, the false pa-
rameters will be detected. If they match, even if the parameters are
costly, the fraud will not have a negative impact on the model, thus
in the perspective of game theory Prevented parameter tampering.

The introduction of blockchain into federated learning will in-
evitably increase the extra cost of the system in terms of delay and
energy consumption mainly caused by the mining of blockchain
and consensus algorithm. For cloud servers with high computing
capabilities, whether it is a mining algorithm or a consensus algo-
rithm, we only test the neural network instead of training, so the
time cost is very low and it is not sensitive to energy consumption.
For the local device, because we only need to perform the average
reward calculation once, it only takes 0.25 seconds to verify the
authenticity of the blockchain using a 2.9 GHz CPU. Therefore, the
time delay and energy consumption caused by using blockchain are
acceptable, because to ensure the reliability of the model in harsh
environments, we must increase the complexity of the model.

3 EXPERIMENTAL VERIFICATION AND
ANALYSIS

In this section, we will implement the proposed offloading frame-
work on a simulation platform called Fedchain1, and evaluate the
effectiveness and reliability of the model.

3.1 Experimental Setup
The equipment and tools used in the experiment are summarized
in Table 1, and the entire structure of the experimental platform is
shown in Fig. 4.

The edge-cloud collaborative computing environment usually
involves IoT devices, edge nodes and cloud nodes. Here, we set
this environment to have one cloud server, one edge server, one
communication center and several IoT devices. We run the simula-
tion platform on devices in the edge-cloud collaborative computing
environment to implement communication and other functions.
Among them, the simulation experiment is performed based on the
HTTP protocol, and Flask is used as the HTTP service framework.

1More information about the proposed Fedchain will be given in our other papers.
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Figure 4: Equipment prototype with Fedchain

We simulate harsh environments on Fedchain. For the security
risks in a harsh environment, we use certain devices as poisoning
clients to upload wrong neural network parameters, in order to
destroy the global model. For the simulation of communication
fluctuations, every time we make an offloading decision, the com-
puting power and bandwidth of the offloading server perceived
by our device change in real time and satisfy the Poisson distri-
bution. After the offloading decision is generated, the model will
evaluate the effect according to the perceived environmental infor-
mation. So although our experimental equipment is connected to
the LAN through a router, it seems to be a stable communication
environment with high bandwidth. However, through the simula-
tion platform and parameter settings in the model, we can simulate
the possible communication fluctuations when tasks are offloaded.

Table 1: Hardware tools for experimental verification.

Tools Description

Router Responsible for building the network
Dell Workstation Simulate cloud server

NVIDIA Jetson nano Simulate edge server
Raspberry pi Simulate IoT devices

Nanopi Communication center

3.2 Experimental Analysis
From Fig. 5, the loss function curve of the device after using feder-
ated learning is not as stable as the control device without federated
learning, but it is still within the convergence range. This is because
our reinforcement learning uses a frozen network to reduce the
correlation between states, this will reduce the stability of the loss
curve during the federated learning process. Since the definition
of the loss function is different from that of the conventional deep
learning network, the loss function curve of the neural network
cannot represent the convergence of the DRL algorithm [1], so we
use the average reward of reinforcement learning to represent the
effect of the model.

Figure 5: The convergence performance under different de-
vices

(a) Three devices with federated learning (b) A control device without federated
learning

Figure 6: The average reward value of the task offloading
model under different devices

Figure 7: The effect of using different numbers of devices for
federated learning

From Fig. 6, as the number of training rounds arises, the av-
erage reward values of these four devices increase, and gradually
approach the highest value, especially the ones with federated learn-
ing. This reflects that with the training of the model, its decision-
making approaches the optimal solution, especially the one with
federated learning. In addition, it can be clearly seen that the equip-
ment using federated learning approaches the optimal solution
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faster than the unused equipment. Thus, the use of federated learn-
ing does improve the training speed of the model and the optimal
solution can be obtained faster.

Fig. 7 demonstrates that when the number of devices participat-
ing in federated learning is too small, it will affect the decision-
making effect of the model. Besides, as the number of participating
machines increases, the convergence speed of the model will also
become faster.

Figure 8: The effect of using different numbers of devices for
federated learning

To verify the effect of blockchain, we let four devices perform
federated learning, and one of them will upload wrong parameters.
We start with the consensus algorithm of the blockchain and close
it in the 1000𝑡ℎ round of training. It can be seen from Fig. 8 that the
blockchain model can effectively eliminate the wrong parameters
at the beginning, and closing it will cause the model to become
worse. Thus, the federated learning algorithm introduced into the
blockchain has higher security and efficiency, and can prevent
potential attacks from illegal users in harsh environments.

(a) Loss function after attack (b) Loss function as a control

Figure 9: Convergence performance in the attack and normal
states

Fig. 9 shows the convergence of the neural network loss function
after being attacked. It can be seen that compared with the loss
function under normal conditions, the loss function of the neural
network cannot convergewell after being attacked, and it is prone to
sudden fluctuations. This can illustrate the importance of ensuring
that the federated learning aggregation parameters are correct for
systems with potential attacks.

4 CONCLUSION
Due to communication fluctuations and potential attacks in harsh
environments, traditional task offloading models may be difficult
to handle these challenges. In this paper, we propose a task of-
floading decision framework that combines federated learning and
blockchain. The decision-making algorithm is placed on the user
side to ensure the normal execution of task decisions in harsh en-
vironments, and then through the use of federated learning and
blockchain structure, the training speed of the model is improved
and the risk of potential illegal users is eliminated. It provides a
more stable and feasible offloading solution for the popularization
of edge computing in a wide range of fields in the future.
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