Briefings in Bioinformatics, 2022, 23(5), 1-16

https://doi.org/10.1093/bib/bbac336
Problem Solving Protocol

OXFORD

Clover: tree structure-based efficient DNA clustering for
DNA-based data storage

Guanjin Qu, Zihui Yan and Huaming Wu
Corresponding author: Huaming Wu, Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China. E-mail: whming@tju.edu.cn

Abstract

Deoxyribonucleic acid (DNA)-based data storage is a promising new storage technology which has the advantage of high storage
capacity and long storage time compared with traditional storage media. However, the synthesis and sequencing process of DNA
can randomly generate many types of errors, which makes it more difficult to cluster DNA sequences to recover DNA information.
Currently, the available DNA clustering algorithms are targeted at DNA sequences in the biological domain, which not only cannot adapt
to the characteristics of sequences in DNA storage, but also tend to be unacceptably time-consuming for billions of DNA sequences in
DNA storage. In this paper, we propose an efficient DNA clustering method termed Clover for DNA storage with linear computational
complexity and low memory. Clover avoids the computation of the Levenshtein distance by using a tree structure for interval-specific
retrieval. We argue through theoretical proofs that Clover has standard linear computational complexity, low space complexity, etc.
Experiments show that our method can cluster 10 million DNA sequences into 50 000 classes in 10 s and meet an accuracy rate of over
99%. Furthermore, we have successfully completed an unprecedented clustering of 10 billion DNA data on a single home computer and

the time consumption still satisfies the linear relationship. Clover is freely available at https://github.com/Guanjinqu/Clover.

Keywords: DNA storage, DNA clustering, Tree structure, Levenshtein distance

Introduction

In recent years, along with the influx of new Internet of Things
(IoT) devices and the exponential growth in demand for their ser-
vices, massive amounts of data are being generated and collected
[1]. The traditional storage media, e.g. floppy disks, CDs and USB
sticks, face daunting challenges and fail to meet the requirements
of large capacity and excellent durability [2]. Deoxyribonucleic
acid (DNA) has become an attractive medium for long-term infor-
mation storage due to its advantages of high storage density,
capacity and longevity [3-7]. DNA storage technology refers to the
use of synthetic DNA consisting of four bases named Adenine (A),
Thymine (T), Guanine (G) and Cytosine (C) for digital data storage.
With the rapid development of DNA synthesis and sequencing
technologies such as single-cell sequencing [8], large-scale DNA
storage has become a ground-breaking future-proof storage tech-
nology to cope with the explosion of data [9-12].

A complete DNA storage system consists of multiple steps
including encoding, DNA synthesis, amplification, sequencing,
reading and decoding. One of the dominant difficulties is that syn-
thesizing and sequencing DNA sequences are still far from perfect
[13, 14]. As a result, a variety of errors such as base substitutions,
deletions, insertions and strand breaks will occur in the original
DNA sequence during the processes of DNA synthesis, polymerase
chain reaction (PCR) amplification, sequencing and other pro-
cesses [15, 16]. In addition, the sequenced sequences are disor-
dered and have a large number of repeats, which makes decoding
difficult. Clustering is an effective method to improve the success
rate of decoding, especially in the case of high error rates or
big data [17, 18]. By clustering a large number of sequenced

DNA sequences, clustering can reduce duplicate decoding when
decoding. Moreover, clustering can be used to fit out candidate
sequences by clustering to correct some of the erroneous bases.
The DNA storage process and the role of clustering are illustrated
in Figure 1.

If we treat DNA clustering as a text clustering problem, then
we can also use conventional clustering algorithms for DNA
clustering. Since it requires clustering a large number of DNA
sequences, the clustering algorithm used must have low com-
putational complexity. However, partition-based clustering algo-
rithms such as K-Means [19] are not suitable for DNA clustering
because the number of clusters must be specified in advance and
the Euclidean distance must be strictly used as a metric function,
despite their low computational complexity. In addition, although
density-based clustering algorithms such as DBSCAN [20] are
also less computationally complex than quadratic, they require
a significant amount of time due to the computation of distance
metrics. We will verify that it is nearly impossible to cluster more
than 100 000 DNA sequences using the DBSCAN algorithm. To
sum up, the traditional clustering algorithms cannot effectively
solve the DNA clustering problem.

Currently, there are several DNA clustering methods available,
e.g. CD-HIT [21], MeShClust [22], SEED [23], Starcode [24] and
UCLUST [25]. CD-HIT [21] is a DNA clustering model that pro-
cesses sequences from long to short by using a greedy incremental
algorithm; however, there is no guarantee that an optimal solution
can be found. SEED [23] is an efficient algorithm that uses devel-
oped hashing techniques and interval seeding to index sequences.
Starcode [24] is one of the effective DNA clustering algorithms

Guanjin Qu is a PhD candidate at the Center for Applied Mathematics, Tianjin University. His research focuses on DNA storage.
Zihui Yan is a PhD candidate at the Center for Applied Mathematics, Tianjin University. Her research focuses on error control coding and communication

algorithms.

Huaming Wu is an Associate Professor at the Center for Applied Mathematics, Tianjin University. His research interests include edge computing, internet of

things and DNA storage.
Received: May 18, 2022. Revised: July 21, 2022. Accepted: July 22, 2022

© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

https://github.com/Guanjinqu/Clover

Error base
EEEEEEE mEEE) [T e
I
A 5 5 5 i
(]
I 5 Read] Decode
—
A B I A
Encode j—]
[N - Repeat
' []]
[- scquences
T T
NN EEEEEEEE
(-]
T Sequenced sequences (B)
I 0
EEEEE EEEEEE O
Synthesis l EEEEEES SEEE| e , .
o [MEEeeEEE Clusting, | [T S Read\i (.] Decode
7 r !
CTIIIT1TTT1] e | e |
& -] IO | T ——
[—] j— 0] : ’
j— 0]
DNA strands
Sequenced sequences
(A) (9)

Figure 1. DNA storage process and the role of DNA clustering. (A) shows the process of converting a file into a DNA sequence, including encode and
synthesis. (B) shows the process of decoding DNA storage without clustering, which shows that the sequenced sequence has wrong bases, sequence
duplication, etc. It is possible that direct reading and decoding of sequenced sequences may not successfully recover the files. (C) shows the decoding
process after DNA clustering is used. Clustering can fit homogeneous sequences into a candidate sequence, which in turn improves the decoding
efficiency and reduces the error rate. Therefore, using DNA clustering can improve the success rate of decoding.

in open source, which derives the Levenshtein distance mainly
by using edit matrices. Meshclust [22] reduces the parameter
sensitivity problem by using the mean-shift algorithm. UCLUST
[25]is a well-established and widely used clustering method based
on USEARCH [25], which clusters sequences by finding common
short words between sequences [26]. Unfortunately, the above
clustering algorithms are still very time-consuming for the huge
amount of data in DNA storage. Antkowiak et al. [18] developed a
location-sensitive, hash-based clustering algorithm in DNA stor-
age, which reduces the computational cost by using hash tables.
Jeong et al. [17] proposed a Hamming distance-based clustering
method. Additionally, Microsoft has developed a DNA clustering
algorithm [27], which uses a minimal hash algorithm to cluster
5 billion pieces of DNA data; however, it still requires reading all
the DNA data into memory for clustering, which will consume a
lot of memory for storing large-scale DNA data. In general, most of
them suffer from greedy algorithms that may not produce optimal
clusters and are sensitive to sequence similarity thresholds. Over-
all, although there are many efficient DNA clustering algorithms
available, they still face two difficulties when dealing with the
data used in DNA storage, as shown below.

¢ Existing DNA sequence clustering algorithms focus more on
DNA sequences in the biological field, and thus cannot be
well adapted to the characteristics of DNA storage data. For
instance, sequence similarity is hardly used as a basis for
clustering discrimination in the DNA storage field, because
DNA sequences are only used as the medium of information
in this field, and the differences between their sequences are
mainly affected by channel encoding. DNA sequence cluster-
ing does not need to strictly consider the similarity between

each sequence, as long as the sequences in the clusters are
the same original codeword after clustering.

e As the storage capacity of DNA storage field gradually
increases, the dataset may contain billions of 200nt oligos
under Gigabyte data. The established DNA clustering algo-
rithms rarely have strictly linear computational complexity,
and thus often incur unacceptable time consumption for
datasets of this order of magnitude.

To address the aforementioned challenges, we propose a novel
DNA clustering method termed Clover for DNA storage, in which
a multiple tree structure is constructed to search for a specified
interval of DNA sequences, thus avoiding the time-consuming
computation of the Levenshtein distance. What’s more, a node-
drift algorithm is developed to counteract the interference caused
by errors in the DNA sequence. Compared with several existing
DNA clustering algorithms, Clover can cluster a large number of
unrecognized DNA sequences, and meanwhile perform error cor-
rection and comparison of the clustered DNA sequences, allowing
direct output of the original corrected DNA sequences. Therefore,
Clover can significantly reduce post-read processing time, and
achieve efficient and effective DNA sequence clustering. To sum
up, the proposed clustering solution owns the following merits:

¢ Low Computational Complexity: Clover has a standard lin-
ear computational complexity, much lower than that of con-
ventional clustering algorithms. We have verified this both
through theoretical proofs and experimental simulations.

e Low Memory Consumption: Clover allows memory to be
automatically released after a DNA sequence has been com-
pared, thus ensuring that memory is not heavily used. The
space complexity of our algorithm is only related to the size

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

of the original sequence and is independent of the number of
DNA sequencing sequences, thus preventing the high mem-
ory consumption that would result from low computational
complexity.

e High Accuracy: Clover uses retrieval intervals to classify
DNA sequences, which in turn ensures that there are highly
overlapping fragments within the same cluster. Theoretically,
the probability of misclassification is extremely low. Further-
more, we tested the accuracy of the algorithm on four real-
world datasets, including a DNA dataset using photolitho-
graphic synthesis with a very high error rate. Experimental
results demonstrate that Clover maintains an accuracy rate
of over 97% in all cases.

¢ Strong Scalability: Clover is very easy to use and has minimal
requirements for computer hardware and systems. We have
successfully clustered 10 billion pieces of simulated DNA
data on a single desktop computer. As far as we know, no
study has ever conducted clustering experiments on DNA
data of this order of magnitude. In addition, our algorithm
supports parallel computing, and by running it in parallel, the
speed of sequence clustering can be greatly improved. Experi-
mental results show that when using distributed computing,
Clover can cluster 10 million real DNA sequences to 50 000
categories within 10 s with an accuracy rate of over 99%.

Materials and methods

Clover is a general-purpose DNA sequence clustering algorithm
that can quickly cluster a large number of DNA sequences with
errors. The clustering process can be briefly described as follows:
(i) Clover constructs a core set of sequences, and then compares
each of the unclassified sequences with the core set. (ii) If the
sequence matches the core set, it is successfully classified into the
specified cluster, otherwise, it is added to the core set as a new core
sequence. (iii) When comparing the unclassified sequences with
the core set, we first construct the core set as an index tree and
then compare it with the sequences, thus avoiding the problem
of increased comparison time associated with a larger core set.
Moreover, we allow node drifting in the tree during retrieval to
reduce the impact of sequence errors.

In this section, we will define the tree structure, explain the
horizontal drift and vertical drift and describe the overall algo-
rithm.

Tree structure

A schematic diagram of some DNA sequences forming a tree
structure is illustrated in Figure 2. Since a DNA sequence can only
consist of A, T, G, C, there are at most four nodes under each root,
which is why our algorithm is called Clover, because Clover has at
most four leaves.

The core of our DNA sequence clustering approach is that it
employs a tree structure for DNA sequence clustering. The tree
structure is an important nonlinear data structure, in which data
elements are organized in branching relationships, much like a
tree in nature. To prove the complexity of the algorithm in the
following, we first give the definition of the tree structure.

Definition 1.1. A tree is a finite set of n(n > 0) elements,
where

(1) Each element is called a node.
(2) There is a particular node, called the root node or root.

Clover | 3

(3) Except for the root node, the remaining nodes are divided
into a finite number of disjoint sets, where each set is a tree.

We define a tree to have depth L if the tree is constructed
from M(M > 0) sequences of length L. A retrieval tree structure
algorithm is described in Algorithm 1. We next prove that the
retrieval time of the tree structure is independent of the number
of sequences contained in the tree.

Algorithm 1 Retrieval tree structure algorithm

Input: Tree structure and sequence of specified intervals [t, t +
L]
Output: Result of the retrieval
1: fori=1,2,3,--- ,L do
Select the i-th element in the specified interval [¢, ¢+ L]
of the sequence

b2

if exists the value of node is equal to that element then
Set that node to root

else
Abort algorithm, output search failure

end if

Output the index value returned when the tree structure

has been searched
end for

©

Theorem 1.2. For a tree of depth L consisting of M(M > 0)
sequences, the computational complexity of retrieving the tree
for any sequence is O(L).

Proof For a specified interval [t,t + L] of any sequence we will
retrieve the tree structure according to Algorithm 1. Obviously,
no matter how many nodes are included in the tree. For any
sequence of L-long intervals, the tree must be retrieved after at
most L cycles. Thus, the computational complexity of retriev-
ing the tree structure is O(L). It follows that howsoever many
sequences (nodes) the tree contains, it does not affect the time
taken to retrieve the tree. |

Node drift

In order to counteract the interference caused by DNA error bases,
we allow some degree of node drift when retrieving the DNA
sequence tree. We divide the drift into a horizontal drift and a
vertical drift.

Definition 1.3. (Horizontal drift): For nodes that do not
exist when the tree is retrieved, the rest of the nodes
that already exist under the root will be retrieved, and if
other nodes exist and the next node can still be
matched when the node is a subtree, then drifting to
other nodes is allowed.

Definition 1.4. (Vertical drift): For a sequence-specific
interval [a, b], where O < a < b, for which the tree should
have been retrieved, when the vertical drift is t(t < a),
then the tree is actually retrieved using the intervals
l[a+tb+tland[a—t b—t].

Figure 3 shows the node drift. Figure 3A shows the horizontal
drift, by which the impact of base substitution errors can be
reduced. Figure 3B shows the vertical drift, which reduces the
impact of base insertions and deletions in the preamble sequence.

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

4 | Quetal

[ACCGARNWMIGTACCGATCA]

Select the specified interval

Constructing tree

El—e

&
=

7

/
T

(A)

[A C GENMHA T GREENGC G ARSEA T C T
ATC TGA THCIA
G A TINAC A GEMNGIA T C [NeHIG A A
GTT G TG ATC
Positive Reverse
order order
reading reading

NN AN N
A A c] i O
/
]
A

N\
7
6]

I
i

|
G|

%

o
B—EN
B-E—
B-8~

E
&

(B) (C)

N
/

Figure 2. Tree structure diagram. (A) represents the first branch of a tree generated by selecting specific intervals [T, C, A, T] in a particular DNA sequence.
(B) represents the tree structure generated by multiple intervals. (C) represents the tree generated by different intervals in multiple DNA sequences,
where four sequences belong to each of the three original clusters. The depth of the tree is set to 3, generated by four specified intervals of each sequence:
positive base 1 to 3, positive base 7 to 9, reciprocal base 1 to 3 and reciprocal base 7 to 9. The tree structure formed by sequences under the same cluster
is identical. This is also the complete way to build a tree structure in Clover.

Index : AGCG
Number of Horizontal drift=1

(A)

Fre] -

X1, indexi
argmin (x:)
search

s

X2, indexa

Index;i

Xay+1, INA@Xay+1

Search Result

(B)

Figure 3. Node drift diagram. (A) indicates horizontal drift, for a specific sequence [ACCG], which has no matching node in the second layer of the tree,
for which we can candidate drift to T or G nodes, but we require that the subsequent two consecutive nodes of the drift node are not allowed to drift
again, so the branches ATTA and AGCT are not satisfied, for which the final match to the branch is AGCG, with a drift count of 1. (B) indicates the
longitudinal drift, where the longitudinal drift y value is 3. When selecting intervals for tree retrieval, the interval with the most y bits of displacement
before and after the original interval is allowed to be selected. After subjecting a total of 2y + 1 intervals to tree retrieval, the algorithm will output the
smallest lateral drift value and the corresponding index.

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

Algorithm description

The Clover algorithmic process is as described in Algorithm 2.
Clover contains a core set of sequences. The core set is empty
before clustering, but we want the core set to contain the entire
original sequences after clustering. We construct multiple tree
structures with specified intervals at the front, middle and back
ends of the core set. For each sequence that enters the core
set, the specified intervals are added to the tree structure. If an
unclassified sequence successfully retrieves all the nodes of a
sequence in the tree, it is matched to that core sequence in the
core set, if not, it is added to the core set as a new sequence and
the specified interval is added to the tree structure. The node drift
parameter is specified at the time of retrieval so that sequences
with errors can still be retrieved successfully.

Due to the nature of the tree structure, the time taken to
retrieve the tree structure for the sequences to be tested is not
affected, regardless of the expansion of the core set of sequences.
The algorithm is executed once for each sequence in the dataset,
and the first and last sequences are processed in a theoretically
equal amount of time. Therefore, the time complexity of our
Clover is linear (even though node drift increases the number of
retrievals finitely). In addition, since the algorithm can release
memory once the unsorted sequences are read, the space com-
plexity is only related to the depth of the tree and the size of
the original sequence, which greatly reduces memory consump-
tion. It should be emphasized that the clustering process does
not rely on the global alighment between sequences [28], and
we have experimentally verified that the global comparison has
little impact on the clustering effect. Moreover, we also allow a
one-step global alignment between unclassified sequences and
matched core sequences to directly output the error-corrected set
of core sequences after clustering, enabling data read simplifica-
tion. Clover does not contain a global alignment algorithm, and
users can embed available mature algorithms. In addition, Clover
allows the multi-process mode to increase the execution speed of
the algorithm. The dataset will be triaged based on the first end of
the sequence, so Clover only allows indices with a process count
of four.

Algorithm 2 Clover: DNA sequence clustering algorithm

Input: M DNA sequences, lateral drift value =
Output: DNA taxonomic cluster C, core sequence R
: Depend on sequence front-end for sequence triage
: Initializing the tree structure
fori=1,2,3,---, M do
Compare the i-th sequence with the tree structure

ARl

Generate the closest core sequence ¢ and the number of
drifts n

6: if n < z then

7 Classify the i-th sequence into cluster ¢

8: Compare the i-th sequence to the core sequence of
cluster ¢ globally

9: else

10: Add the i-th sequence to the core sequence set and
use it as a new cluster

11: Add the specified interval of the i-th sequence to the
tree structure

12: end if

13: end for

The overall flow of the Clover DNA sequence clustering algo-
rithm is given in Figure 4. The triaged data will be retrieved with
a tree structure that is independent of the tree structure of the

Clover | 5

different processes. Generally, Clover will build multiple trees
for the first, middle and last intervals. In order to improve the
efficiency of the algorithm, we will first perform the tree structure
for the first and last intervals of the sequence, and any successful
tree retrieval (with a lateral drift value generated by the retrieved
index below the set threshold) will be considered as a successful
match and further retrieval will be stopped. If the retrieval fails,
a tree structure retrieval will be performed at the middle end,
where a vertical drift will be used to provide a retrieval success
rate. If a sequence is eventually successfully retrieved, it will be
regarded as a match to an existing cluster. If global alignment
is enabled, the sequence will also be globally compared with the
matching core sequence and bases with deviations are marked. If
a base position is marked too many times, it will be regarded as
an error in the core sequence, and then error correction will be
performed. If the match is unsuccessful, a new cluster is consid-
ered and added to the core sequence set and the tree structure is
updated.

Theoretical analysis

We first give the mathematical description of the problem:

Definition 1.5. We assume that the number of sequences
is M and they belong to N clusters, respectively, and the
original length of the sequences is L. The tree structure
has n and length t. We set the horizontal drift to x and
the vertical drift to y. We assume that the three error
rates for delete, insertion and substitution are ps, pg and
pi, respectively. We assume that the true cluster of the
sequence is C, where C = {c1,c2, -+, g}

Next, to evaluate the effect of clustering, we give the definition
of clustering accuracy as follows:

Definition 1.6. (Accuracy): We define C to be the clustering
result output by Clover, where C = {¢1,¢,, -+ ,Cx}. Then
the accuracy is defined as

Accuracy(C,C) = % Zm_ax [&ngl, (1)
—

where Accuracy(C,) is more concerned with the accuracy within
each cluster. This is because for DNA storage, if the sequences
within a cluster belong to different original sequences, it will
seriously affect the global comparison and subsequent data pro-
cessing. In addition, we will discuss other metrics such as Coverage
and Redundancy Rate to measure the quality of clustering.

We will next prove that the computational complexity of Clover
is linear. This property is based on the characteristics of the tree
structure and Clover’s data processing flow.

Theorem 1.7. (Computational Complexity) The
computational complexity of the Clover algorithm is
O(M). If the global matching function is enabled, the
theoretical number of global matches is (M — N), and
cannot exceed M.

Proof We first prove that the computational complexity is
OM) for M sequences to be classified. As can be seen from
Algorithm 2 that Clover only needs to loop M times to cluster
them. Although node drift sometimes increases the number of

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

6 | Quetal

—
ACATCG —
ACTCAG Core sequence set
GTGATC Tree structure
Performing ACGATC I
traige = Matching c
? ' 7 X
AN A
T A G A
[
CGACGT J T o€e e ¢

Matching Update sequence
SUCCESs P[Optlonal : global comparlson'—) [Logglng errorsl—)[sfersome Herations

Matching success

Matching failure

Matching

% Perform node drift
failure

Update tree structure (

L Adding the core sequence set]

Figure 4. The overall flow chart of the Clover algorithm with a multi-process and global comparison function, where the number of processes is 16 and

the dataset will be triaged according to the first 2 bases.

retrievals, the number of node drifts that can be generated per
sequenceislimited and the upper limit of node driftis not affected
by the increase of M. Therefore, it is clear that our computational
complexity is O(M).

Due to the nature of our algorithm, any sequence that enters
Clover for clustering will give a result of either matching one
of the core sequences or being added to the core set as a new
core sequence. We assume that a total of ¢ clusters are generated
after clustering, i.e. there are ¢ sequences in the core sequence
set. As sequences are added to the core sequence set no global
comparison is required. Therefore, there are C sequences that will
not be compared globally. The remaining M — C entries will then
either be discarded (e.g. due to broken chains resulting in too short
a sequence length) or clustered into clusters. If the sequences are
discarded then no global comparison will be performed. If they
are clustered into clusters they will only be compared with the
core sequences, and thus only once. The size of the total number
of comparisons A satisfies A<M —-C <M.

Theoretically, if N clusters are successfully recovered and all
sequences are accurately identified, then C = N. The number of
comparisonsis A=M—-C=M—N. |

Not only does Clover have linear computational complexity,
but its space complexity is also only related to the number of
original clusters and not to the total number of sequences. We
next give the space complexity of Clover, whose proof relies
on an extreme case discussion for the number of tree nodes,
since it is the nodes of the tree that mainly occupy memory in
Clover.

Theorem 1.8. (Space Complexity) The theoretical maximum
memory footprint of this algorithm is O(4%). However, if
the maximum occupancy is reached, the algorithm fails
at this point. In fact, the maximum memory usage of
this algorithm is O(N).

Proof We first show that the limiting case has a space complexity
of O(4Y). Since the tree has at most four branches, the number
of nodes in the tree structure at depth t is at most four, so the
space complexity is O(4'). However, due to the nature of the Clover
algorithm, when the tree structure is filled, the algorithm will lose
its clustering effect, so the actual space complexity will be much
lower than O(4Y). [|

Before proving the actual computational complexity, we first
prove a lemma.

Lemma 1.9. For a tree structure of depth t, if N sequences
are filled in, the number of nodes Q in the tree is

4log, NT+1 _ 4
3

4_|'log4 N]+1 _ 1

Sf

+ (t—[log,N]—1) + N — alle&:NT < o

+ (t— [log, NT) N — 4loe: N1 2)

Proof Due to the characteristics of the tree structure it is clear
that the earlier any two tree branches are offset the more nodes
they occupy, while the later the branches occur the fewer nodes
they occupy. Figure 5 shows schematic representations of the the-
oretical maximum and minimum occupancy of the n-sequence,
respectively.

We first consider the case of the maximum number of nodes.
In that case, we require the tree to quadruple fork from the vertex
up to the x-th level satisfying: 4* < N < 4*. Thus, x can be
expressed as x = [log, N|, where [] indicates an upper rounding.
The number of nodes in the first x layers is

log, N|+1
% _ (4[10& N _ N)) (3)
Since there will be no overlapping nodes in each sequence in the
latter t — x layers, the number of nodes in the latter t — x layers is
(t—[log,N]—1)N.

Considering the practical case that the number of joinable
entries in the tree is much greater than n at this point, t—x must be
greater than zero. Thus, the maximum number of nodes produced
by the n-th sequence is

4log, NT+1 _ q
3

Next, we consider the minimum number of nodes. Similar

to the maximum number of nodes, we need to concentrate the

forks of the tree at a certain interval level. But in contrast to the

maximum number of nodes construction, we try to fork at the

end of the tree to reduce the number of nodes generated. So for

the value of x found in the maximum number of nodes, we will

have only one node at each of the first t — x layers of the tree, and

fork from the t—x+ 1 layer. Thus, the number of nodes in the first

t—xlayersis (t — [log, N| — 1). The number of nodes in the second
X layers is

+ (t - [log, N7) N — 4[log:NT, (4)

4[logyNT+1 _ 1

3 - (4 [log, N] _ N) .)

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

00000000 00000000O0
00000000 00000000
Figure 5. Extreme case node situation.

The minimum number of nodes is calculated by

log, N|+1
4[&3# +(t—[log, N — 1) + N — 4[loa:NT, 6)

The memory footprint of Clover is mainly divided into the core
sequence set and the tree nodes, where the core sequence set
is shown as a linear complexity of about N. Based on the above
citation, we can learn that when the parameter t is fixed, the
maximum number of nodes is influenced by N and shows linear
complexity. Therefore, the space complexity of Clover is O(N). H

Based on the previous definition of accuracy, we give the theo-
retical error rate of Clover.

Theorem 1.10. (Error Rate) We assume that the effect of
pre-sequence base errors on post-sequence bases is not
considered (node drift can resist the effect caused by
pre-sequence base errors). The probability that the
sequence cannot be successfully matched to the
original sequence is

5 N
P< [1 - (1 _e) (1-P;— pi)t} . 7)

Proof We first consider the impact of matching due to substitu-
tion errors. Since when there are more than x errors, the node drift
will not be corrected back to the original sequence at this point,
and the match is incorrect at this point. Since the probability of
an error at each position is ps, the expectation of an error for an
interval of length tis tps = ¢.

Because of the characteristics of node drift as well as substitu-
tion errors, an error in one base will not affect subsequent base
comparisons. Therefore, by Chernoff Bound, it is known that

Py=P[E> (1+8)] <e7, V¥5>0. ®)
Specifying that the comparison fails when E > x, we have

(1+5)a=x:>3=§—1 ©)

Clover | 7

00000000 00000000O0

Thus, the probability of match failure due to base substitution is
(x—e)? xee?

Pa<e 2?2 =e 2 .

Next, we discuss the effect of base deletions and base additions
on sequence alignment. Since both deletions and additions pro-
duce substantial changes in the position of clips in the sequence,
the premise that an interval can be successfully matched must
be that no base additions and deletions occur, and therefore must
satisfy: Py = (1 — P4 — P)".

In summary, the probability that an interval will be success-
fully matched to the original interval is

_wxo?

Pz(lfe %)(1*Pd*Pi)t» (10)

In addition, for n intervals of a sequence, only one interval
needs to be matched to guarantee a successful sequence match,
so the probability that the sequence cannot be successfully
matched to the original sequence is

5 N
P< [1 - (1 —e 7) (1-Pg— Pi)t} . (11)
|

Based on the above theorems, we prove that the Clover
algorithm has theoretically linear computational complexity, its
memory consumption is only related to the original data and the
size of the tree and it has a very low theoretical error rate. Finally,
we conduct experiments with real-world data to verify the above
statement.

Experimental design
Dataset information
A total of four real-world datasets as well as one simulated

dataset were used for experiments and their details are as fol-
lows.

e PE-YAB [4]: Goldman et al. [4] proposed a practical use of
DNA storage in their pioneering work. They synthesized
153 335 DNA molecules, each of length 117, in which

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

8 | Quetal

Table 1. Statistical details of the datasets

Datasets Read count Original sequences count Read length Data sources
ERR1816980 14 654 644 72 000 152 [5]
ERR1817036 34095 791 72 000 152 [5]

PE-YAB 73688 127 153 334 117 4]
P10-5-BDDP210000009 16 217 014 187 973 200 [29]
118-s3-r1-001 15 169 628 16 383 60 [18]

the first and last two bases contain no information. The DNA
was synthesized using Agilent’s Oligo Library Synthesis (OLS)
Sureprint technology and sequenced using Illumina HighSeq
2000. Here, we selected the sequencing file PE-YAB in the text
as the experimental dataset.

e ERR1816980 and ERR1817036 [5]: Erlich and Zielinski [5] pro-
posed a fountain code-based DNA coding technique that will
allow the amount of information recoverable to be several
orders of magnitude higher than before. They synthesized
152 long 72 000 DNA molecules. The DNA synthesis was per-
formed using Twist Bioscience technology and the sequencing
was performed using Illumina Miseq V4 technology. Here, we
selected the sequencing files ERR1816980 and ERR1817036 as
the experimental datasets.

e P10-5-BDDP210000009 [29]: Song et al. [29] proposed a new
approach for DNA storage by synthesizing 210 000 DNA
sequences while storing a 6MB file. Here, we selected the
sequencing file P10-5-BDDP210000009 as the experimental
dataset.

e 118-S3-R1-001 [18]: Antkowiak et al. [18] proposed a DNA
storage system that relies on massively parallel light-
directed synthesis. They used a light-directed maskless array
technique to synthesize DNA to reduce costs, where 16 383
sequences at a length of 60 were synthesized. Experiments
showed that the measured error probabilities were 2.6% for
substitutions, 6.2% for deletions and 5.7% for insertions. This
is currently the highest error rate dataset in the DNA storage
field. Here, we selected the sequencing file 118-S3-R1-001 as
the experimental dataset.

e Simulated dataset: To evaluate the clustering of Clover for
a very large dataset, we constructed a simulated dataset
containing 10 billion sequenced sequences. The simulated
dataset has 10 million original sequences, which are evenly
amplified to 10 billion sequences, and each base position
has a 1 in 300 chance of having an addition, deletion or
substitution error when amplified (all three errors occur with
equal probability). The entire dataset was generated using the
python language and the random module.

Table 1 shows the specific details of each dataset. The real-
world data from four different sources contain the latest DNA
storage synthesis data that can be found and the photosynthesis
DNA data with a high error rate, which can improve the validity
of the algorithm evaluation.

Producing high confidence labeled datasets

In order to be able to obtain labeled datasets to test the accuracy
of the clustering, we compared the above datasets with its orig-
inal reference set to produce a highly confident labeled dataset.
Both bioinformatics software, pear and bowtie2, were used for the

comparison process. The details of the comparison are as follows.

Paired-end aggregation

Paired-End reAd mergeR (PEAR) [30] is a fast, low memory and
highly accurate read merge software for pairs of ends. For data
generated from both ends, we first use PEAR to perform a double-
ended merge.

Sequence matching

We then compare the merged sequences to the reference
sequence set by using Bowtie2 [31], which is a fast and efficient
sequence alignment tool. It is particularly good at matching
shorter sequences to reference sequences and is therefore well
suited to the matching of stored DNA sequences. We first build
the index using the reference sequence set.

The pear-merged sequence set seq-assembled.fastq was later
used for comparison. Since the real-world datasets PE-YAB,
ERR1816980, ERR1817036 and P10-5-BDDP210000009 have a
relatively low error rate, we use the default pattern of bowtie2 for
clustering. Since [18-S3-R1-001 is photochemically synthesized
and has a high error rate, bowtie2’s default mode does not
compare well, so we used local alignment mode and reduced
the length of the seed substring to make bowtie more sensitive
to alignment. It is important to note that, unlike other datasets
where the majority of sequences can be matched successfully,
the photosynthetic DNA sequences have a very high error rate,
resulting in only about half of the sequences being matched
even when the bowtie2 parameters are adjusted to be extremely
sensitive (we only consider sequences around 60bp in length).

In order to avoid reducing the clustering difficulty by filtering
part of the data, for this dataset, we will input all sequences
around 60bp into the Clover algorithm for clustering, regardless
of whether these sequences have a label or not, thus enhancing
the validity of our experiment. However, for unlabeled sequences,
we will ignore the effect on accuracy when performing post-
clustering statistics (this is unavoidable, as it is not easy to deter-
mine the label of a sequence if the original sequence cannot be
identified by comparison with the original set of sequences. This
isnota flaw in our clustering algorithm). In addition, we also used
bowtie’s default comparison parameters to generate a smaller
dataset (about 420 000 sequences) for comparison of the accuracy
of the different algorithms.

Data processing

We use the SAM file output in bowtie2 for further data process-
ing. We use python to process the data, where the labels and
sequences are extracted to construct a dataset with labels in txt
format, where each row is Label Sequence. In addition, we also
perform the error rate statistics in Appendix using the CIGAR
values from the SAM file as a reference.

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

Table 2. Equipment information

Clover | 9

Type Name CPU Memory Equipment Provider

Desktop computer PC AMD Ryzen 5 3600 (6 processors) 64G -

Cloud Server VM-21E-0ZU41 Intel 6242R 3.1GHz (32 processors) 128G Yovole Cloud

Supercomputer Server D2Partest Intel 6258R 2.7GHz (112 processors) 3T National Supercomputing Center
Table 3. Clover function

Type Datasets Input Output Parallel mode Low memory mode Global comparison mode
Virtual mode Labeled datasets SAM, TXT Time, Accuracy, Coverage v X v

Actual mode Unlabeled datasets FASTA, FASTQ, TXT Time, Clusters, Core dataset v v v

Experimental setup

To simulate different experimental environments, three devices
are used in the experiments: a normal desktop computer, a cloud
server and a supercomputer, the detailed parameters of which are
shown in Table 2. In the experiments, all real-world datasets are
run on the cloud server, which is also the most common experi-
mental environment. In addition, the simulated datasets are exe-
cuted in single-threaded mode on a regular desktop computer to
demonstrate the applicability of Clover in extreme environments,
and in parallel mode on a supercomputer to demonstrate the
extreme performance of Clover.

Clover is a practical and efficient DNA sequence clustering
algorithm that allows the user to customize multiple param-
eters to meet different needs. Clover has two modes, one is
for inputting unlabeled sequences, in which Clover allows the
output of label classes for each sequence as well as the core
set of sequences. The other mode is for input sequences with
labels, where Clover allows the output of the labels, core set
and accuracy of the sequences to evaluate Clover’s clustering
effectiveness. Clover also allows the use of multiple processes
to improve the clustering speed, but the number of processes
must be an exponent of 4. We do not recommend using too
many processes as this will increase the number of clusters after
clustering. Clover is written in Python to allow users to embed
custom global matching algorithms; experiments will demon-
strate that it still has a very fast clustering speed. Clover also
has a low-memory mode, in which Clover will output clustering
results directly after each input sequence has been clustered,
thus reducing the memory footprint, but this mode does not
support outputting accuracy information, although this is not
affected in practice. Moreover, Clover supports other usage scenar-
ios, including the identification and compatibility with other types
of bases in the sequence, which are documented in detail in the
code documentation. The specific features of Clover are given in
Table 3.

As the length and structure of the sequences in different real-
world datasets vary, we use different Clover parameters to adjust
accordingly. Overall, the depth of the tree will be around 15-20, as
too shallow a depth will reduce accuracy, while too high a depth
will increase memory significantly. In terms of the number of
trees, we will have at least two trees at the front and back ends,
and one or two trees in the middle of the sequence. Table 4 shows
the detailed parameter settings for different datasets.

We choose CD-HIT [21], MeShClust [22], DNACLUST [32], Star-
code [24], UCLUST [25] and DBSCAN as the benchmark algorithms,
and they are the current sequence clustering algorithms with

excellent performance. The identity score threshold of all algo-
rithms was set to 0.9, where CD-HIT, DNACLUST, Starcode and
MeShClust used 16 threads, DBSCAN used single threads and
UCLUST used 10 threads due to memory constraints.

Scalability analysis

We extract different numbers of datasets for the ERR dataset as
benchmark datasets to demonstrate the clustering effect more
quantitatively.

Figure 6 shows a time-consuming comparison of different clus-
tering algorithms. It can be seen that the clustering speed of
Clover is faster than other benchmark algorithms. The multi-
process mode of Clover can speed up clustering by a factor of
about 10. Although all benchmark algorithms except DBSACAN
use multi-process mode, their clustering speed is still lower than
that of single-threaded Clover.

Figure 7 shows the memory usage of the algorithm for the
ERR1817036 dataset. It can be seen that the memory grows rapidly
at the beginning, and then grows steadily. This is mainly due
to the need to input a large number of sequences into the core
sequence set to build a tree structure in the early stage, while the
core sequence set basically stabilizes at the later stage, and the
addition of tree structure becomes less. It can be observed from
this figure that more memory is occupied after using multiple
processes. This is mainly due to the overlapping of tree structure
branches in different processes when the data are shunted. Over-
all, for the clustering of 70 million DNA sequences, Clover can
guarantee an accuracy rate of over 97% with minimum memory
consumption of 0.6G, which proves that the memory consumption
of Clover is very low.

Accuracy analysis

Table 5 shows the accuracy of Clover with different datasets.
It can be seen that Clover has very high accuracy on all four
real-world datasets, especially on the ERR1816980, ERR1817036
and P10-5-BDDP210000009. PE-YAB does not achieve very high
accuracy, mainly because its encoding method makes the original
sequences closer to each other, which increases the possibility
of errors. Note that the i18-s3-r1-001 has a 10 times higher error
rate than the others, which is the highest error rate we could find
for the real-world dataset. Compared with turning on the global
matching mode, the performance of Clover is not significantly
degraded, so the clustering accuracy of Clover does not depend
on the global comparison between sequences. In this case, we can
still maintain a high accuracy of over 97%, proving that Clover still
has a strong clustering ability for datasets with high error rates.

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

10 | Quetal

Table 4. Clover parameter setting

Datasets Number of trees Depth of tree Horizontal drift values Vertical drift values
ERR1816980 4 15 3 3
ERR1817036 4 15 3 3
PE-YAB 3 20 1 3
P10-5-BDDP210000009 4 20 3 3
118-s3-r1-001 4 20 1 3
Simulated dataset (low memory mode) 3 15 3 3
Simulation of dataset (parallel mode) 4 20 3 3
1.E+06 1.E+06 -
E OClover p=16 E OClover p=16
1.E+05 L EClover p=1 1.6+05 L EClover p=1
F gucLusT E OUCLUST
,61-5“04 F @starcode < 1.E+04 __ O Starcode
T F OCD-HIT T E BCD-HIT
» 1.E+03 + a F
o E EIDNACLUST w1.£403 L MDNACLUST
= 1E [@MeshClust < E B MeShClust
8 1E+02 ¢ 3 E
< E M DBSCAN S 1.£+02 L WDBSCAN
0 1.E+01 o :
g T 101 £
£ 1r+00 £ £
= = ;
€ ko1 & & LE+00
1E-02 £ 1.E-01
1603 L 1.E-02
(A) Num = 0.01M (B) Num = 0.1M
TIME OUT
1.E+06 — 1.E+06 TIME
E OClover p=16 e E OClover p=16 i
[@Clover p=1 [BEClover p=1
LEHIS ¥ gijciust 1.E+05 + BUCLUST
— [@starcode _ E OStarcode
() [} B
® LE+04 £ OCD-HIT Tuu [QCD-HIT
n E B DNACLUST 2 1E*0% £ mpnacLusT wnn
TC,,;l.E+03 L BMeShClust T?; F B8 MeShClust
° E © r
5 E MDBSCAN S 16403 ¢ ® DBSCAN
S 1E+02 ¢ 8 E
[E [-
£ F £ 1m0
S 1.E+01 b3 = E
o E o
1E+00 + LE+OL /7
1.E-01 1.E+00

(©) Num =1M

(D) Num = 10M

Figure 6. A time-consuming comparison of different clustering algorithms on datasets of different orders of magnitude. Different parameter settings of
Clover will have a certain impact on the runtime, but they are all lower than the time-consuming of the benchmark algorithms. The results that take

more than 10 h are marked as ‘time-out’ in red.

Table 6 shows the comparison of the results of different cluster-
ing methods under the 118-s3-r1-001 small dataset. It can be seen
that Clover has lower time consumption than other benchmark
methods. Although Starcode is close to Clover in terms of time
consumption, its accuracy is only 23.17%, and it does not complete
the clustering very well. In terms of accuracy, despite the high
base error rate in the dataset, the accuracy of both Clover and

CD-HIT can exceed 99.9%. MeShClust has no accuracy because it
cannot be successfully clustered. Furthermore, we also compare
the number of clusters after clustering, and since the original
clusters of the dataset are about 10 000, we want the number of
clusters after clustering to be as close as possible to the original
number of clusters. The table shows that the number of clusters
of Clover is much smaller than the other benchmark methods

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

1.4+

12+

1.0+

Memory Usage (Gigabyte)

0:0 0.5 1.0 1.5
Number of Reads 1e6

Clover | 11

Clover p=16
Clover p=4
I Clover p=1

I

2.0 25 3.0 3.5

Figure 7. Memory usage graph. The abscissa is the number of sequences read and the ordinate is the memory usage. It can be seen that the memory
usage increases sharply at first and then stabilizes, and also increases as the number of processes increases.

Table 5. Accuracy comparison under various datasets

Dataset Cloverp =1 Clover p = 1 GM Clover p =4 Clover p = 4 GM Clover p = 16 Clover p = 16 GM
0.01M 100% 100% 100% 100% 100% 100%

0.1M 99.99% 99.93% 99.99% 99.99% 99.99% 99.99%

M 99.93% 99.93% 99.99% 99.99% 99.99% 99.99%

10M 99.52% 99.5% 99.93% 99.93% 99.94% 99.94%
ERR1816980 99.35% 99.33% 99.9% 99.9% 99.92% 99.92%
ERR1817036 99.41% 99.41% 99.89% 99.91% 99.93% 99.95%

PE-YAB 97.64% 97.33% 97.79% 97.8% 97.74% 97.74%
P10-5-BDDP210000009 99.87% 99.87% 99.87% 99.87% 99.87% 99.87%
118-s3-r1-001 97.86% 97.86% 97.25% 97.25% 97.49% 97.49%

and closer to the original number of clusters, because Clover will
discard garbage sequences and generate clusters in a strict way.

Stability analysis

This subsection will give the stability performance of Clover under
different parameters. We will give the differences in time con-
sumption, accuracy and memory usage of Clover for different tree
depths in real datasets. In addition, we will test the computational
complexity of Clover and its effectiveness in the limit state by
clustering a large-scale simulated dataset.

Figure 8 shows the effect of different tree depths on the clus-
tering effect. Figure 8A shows that the clustering time increases
as the tree gets deeper, but if the tree depth is too shallow, it
will increase the number of drifts generated during clustering,
which in turn will increase the time consumption. The memory
consumption is shown in Figure 8B. Due to the characteristics
of the tree structure, the memory consumption increases more
than linearly with the depth of the tree, but generally we do
not set the depth of the tree to be particularly large. This is

because as shown in Figure 8C, a depth of 15 can achieve very
high accuracy in terms of accuracy, especially for large amounts of
data.

To demonstrate the advantage of Clover’s clustering model
for extremely large-scale datasets, we simulate 10 billion DNA
sequences, the largest known dataset in the DNA storage
domain. To verify the ease of use of Clover, we conduct
experiments on a large-scale simulated dataset on a home
computer.

Figure 9 shows the correlation between dataset size and
elapsed time, and it can be seen that our algorithm retains
almost linear computational complexity under extremely large-
scale datasets. We then conduct multi-threaded experiments on
a supercomputing server, and the experimental results show that
Clover can cluster 10 billion DNA sequences in about 4 h with
a clustering accuracy of 99.99% under multiple processes. This
demonstrates that Clover can still cluster large-scale datasets
in a short time with high accuracy and excellent hardware
friendliness.

220z Jequiaoaq g1 uo 1senb Aq ZGZ8999/9€E0BAA/S/EZ/BI0NIE/qI/W0DdNO"dIWSpEo.)/:SARY WO} POPEOJUMOQ

12 | Quetal

Table 6. Comparison results of different clustering algorithms

Metrics algorithms Clover UCLUST CD-HIT DNACLUST Starcode MeShClust
Runtime 1.3s 25s 61.21s 237.1s 4.2s 2737.3s
Accuracy 99.94% 98.53% 99.96% 85.99% 23.17% -
Number of cluster 49 617 195 035 264 212 143 846 357127 425711
100.0%
175 10
150)
< 80.0%
= .;‘ 08
E 125 g
§ = oi § 60.0%
® 100 [S
e 8 g
E S < oo
g % g‘m 40.0%
= £
50 >
= 0.2 20.0%
25
0 0.0 . 0.0%
10 layers 15 [ayers 20 layers 25 layers 10 layers 15 layers (B) 20 layers 25 layers 10 layers 15 layers 20 layers 25 layers

Figure 8. The effect of different depths. (A) shows the effect of different depths of the tree on the time consumption. (B) shows the effect of different
depths of the tree on memory consumption. (C) shows the effect of different depths of the tree on the accuracy rate.

Discussion on coverage and redundancy

With our definition of accuracy, there is a theoretical extreme
case where we add every sequence as a class to the core set,
then by our definition of accuracy, it is still 100%, as there are
no clusters with different labels within each cluster. To avoid this,
Clover has a built-in parameter R. If the final output cluster has
less than R sequences in it, the cluster is simply discarded. It
is known that reducing logical redundancy can lead to a high
probability of decoding failure [33, 34]. However, if R is too large,
many valid clusters will be lost, so we will focus on the effect of
different values of R on the clustering of Clover. We first give the
definition of Coverage and Redundancy, where Coverage reflects
the inclusion of clustering results for the original clusters and
Redundancy Rate reflects the number of noisy clusters in the
clustered clusters.

Definition 1.11. (Coverage): If there are N original
sequences and the final output core set of sequences
belongs to N different original sequences, the coverage
o N
is -

Definition 1.12. (Redundancy Rate): If there are N original
sequences and the number of sequences in the final
output core sequence set is M, then the redundancy rate
io M=N
is ¥R

N

From the definition of coverage, we can see that a reduction
in coverage will leave some of the original sequences missing.
Although most current DNA storage coding algorithms overcome
the problem of partial DNA sequences by using multiple lay-
ers of coding, we still want to ensure as high a coverage as
possible. However, we do not want to have a very large redun-
dancy rate, as this would increase the time for subsequent DNA
decoding. We will then begin with a theoretical discussion of
coverage, followed by an experimental evaluation on coverage and
redundancy.

Theoretical analysis of coverage

We first give some assumptions. After the clustering is completed,
we will discard the classes that contain less than d sequences,
we assume that the clustering is finished with the original M
sequences and after filtering is M sequences. For any original
sequence, DNA synthesis and sequencing satisfy independent
identical distribution and the distribution satisfies the Bernoulli
distribution. That is, assume that the probability of being sampled
is q. Assume that each sequence is sampled n times, and each suc-
cess probability is q. And the different sequences are independent
of each other. Let C; denote the number of times x; is sampled,
we can find C; ~ B(n, q). Since we proved in the theorem that the
Clover error rate is extremely low, we do not consider the effect of
clustering errors.

It is known that all C; are independently and identically dis-
tributed and satisfy C ~ B(n, q), E(C) = ngq, D(C) = nq(1 — q). Let Dy
denote the number of sequences that are sampled d times. Thus,
it is obtained that

MV — ZK:Dd =M. (12)
d=0

After rearranging, we can further obtain

M 1 K 1 K M
ﬁ=1_ﬁng=1_ﬁzzpr[Ci=d]

d=0 i=1

=1—ZK:Pr[C=d]=1—Pr[C<k]. (13)
d=0

Using the central limit theorem, it is obtained that

1 _aw?
P[C=d] = ﬁe o , C~N(ng,nq(l-q). (14)

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

Runtime(seconds,log scale)

10 10° 10° 10"

Number of Reads(log scale)

Figure 9. Time-consuming growth graph for different orders of magnitude
of data.

The standardization leads to
Pr[C<k]=Pr [c* < k?%] , uw=nq,0 =/nq(l-q. (15)

Therefore, we can query the standard normal distribution table
to obtain the theoretical coverage. The above theoretical analysis
can show that Clover has high coverage in theory, as long as the
parameter R is not set too high.

Experimental analysis of coverage and
redundancy

We selected a real-world dataset of 10 million entries as the exper-
imental dataset, which is derived from ERR1816980 and has 49
119 clusters. We performed clustering using Clover with different
R and the number of processes, respectively, and calculated the
coverage and redundancy rates.

Figure 10 shows the effect of the choice of R, from which it can
be seen that as the number of processes increases, the redun-
dancy rate will also increase. In particular, at low R, due to the
fact that some of the sequences with errors in the front end will
be incorrectly shunted, which in turn leads to an increase in noisy
clusters. However, the increase in the number of processes can
weakly increase the coverage rate, which is due to the decrease
in the number of original clusters in each process, reducing the
probability of a cluster being misclassified. In addition, this figure
shows that the coverage and redundancy decrease as R increases,
which is obvious because as the range of discarding becomes
larger, more real clusters are discarded with noisy clusters, which
in turn reduces the coverage and redundancy.

In summary, although the clustering effect of Clover is affected
by the coverage and redundancy, by choosing a suitable R, we
can obtain a reasonable coverage and redundancy, and the effect
caused by discarding some clusters will hardly affect the decoding
work after clustering.

Conclusion

We present Clover, a novel DNA clustering method based on a
tree structure, which avoids a large amount of time spent on
computing the Levenshtein distance by retrieving the tree. We
theoretically prove that Clover has linear computational complex-
ity and low space complexity. Furthermore, we experimentally
verify its efficient clustering speed and small memory footprint

Clover | 13

100.0%
—— Clover p=1
===+ Clover p=4
N, ~—+ Clover p=16

99.5%

Q
£ 99.0%
g b
(9]
j=2)
o
[
>
8 985%
98.0%
97.5%
0 1 2 3 4 5 6 7 8 9 10
The value of R
(A) Coverage rate
\ —— Clover p=1
. === Clover p=4
\ —++ Clover p=16
40% \
2 30%
=
>
o
c
©
el
S 20%
o
J5)
o

10%

0%

The value of R

(B) Redundancy rate

Figure 10. The effect of different processes and R on coverage and
redundancy.

sinceit clusters an unprecedentedly large dataset on a home com-
puter. For future work, we will further improve the algorithm’s
ability to identify redundant clusters for solving the sequence
reconstruction problem in DNA data storage [35, 36], and extend
its application scenarios beyond the DNA storage domain.

Key Points

e We design Clover, a DNA sequence clustering method
dedicated to DNA data storage with linear complexity,
low memory consumption and parallelism.

e We demonstrate the linear complexity and high accu-
racy of Clover. We also experimentally verified that itis
more than 10 times faster than existing DNA clustering
methods.

e Clover can be applied to cluster 10 billion sequences with
an accuracy of 99.99%, an order of magnitude that has
not been studied before. Moreover, we successfully clus-
tered 10 billion sequences using a single home computer,
demonstrating the applicability of Clover.

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

14

| Quetal.

Supplementary data

Supplementary data are available online at https://github.com/
Guanjinqu/Clover.

Author contributions statement

G. Q. and H. W. conceived and designed the study. G. Q. conducted
the experiments and wrote the manuscript. G. Q. and Z. Y. ana-
lyzed the theoretical results. H. W. reviewed the manuscript.

Funding

This work is supported by the National Key Research and Devel-
opment Program of China (# 2020YFA0712102) and the National
Natural Science Foundation of China (# 62071327).

References

1.

10.

11.

12.

13.

14.

15.

Tavella F, Giaretta A, Dooley-Cullinane TM, et al. Dna molecu-
lar storage system: Transferring digitally encoded information
through bacterial nanonetworks. IEEE Trans Emerg Top Comput
2019;9(3):1566-80.

Ebrahimi S, Salkhordeh R, Osia SA, et al. Rc-rnn: Reconfigurable
cache architecture for storage systems using recurrent neural
networks. IEEE Trans Emerg Top Comput 2021;1-1.

Church GM, Gao'Y, Kosuri S. Next-generation digital information
storage in dna. Science 2012;337(6102):1628-8.

Goldman N, Bertone P, Chen S, et al. Towards practical, high-
capacity, low-maintenance information storage in synthesized
dna. Nature 2013;494(7435):77-80.

Erlich Y, Zielinski D. Dna fountain enables a robust and efficient
storage architecture. Science 2017;355(6328):950-4.

DongY, Sun F, Ping Z, et al. Dna storage: research landscape and
future prospects. Natl Sci Rev 2020;7(6):1092-107.

Lee O, Ang SD, Chen Y-], et al. Random access in large-scale dna
data storage. Nat Biotechnol 2018;36(3):242-8.

Jialu H, Zhong Y, Shang X. A versatile and scalable single-cell
data integration algorithm based on domain-adversarial and
variational approximation. Brief Bioinform 2022;23(1).

Cevallos Y, Nakano T, Tello-Oquendo L, et al. A brief review on
dna storage, compression, and digitalization. Nano Communica-
tion Networks 2022;31:100391.

Grass RN, Heckel R, Puddu M, et al. Robust chemical preservation
of digital information on dna in silica with error-correcting
codes. Angew Chem Int Ed 2015;54(8):2552-5.

Hossein Tabatabaei Yazdi SM, Kiah HM, Garcia-Ruiz E, et
al. Dna-based storage: Trends and methods. IEEE Transactions
on Molecular, Biological and Multi-Scale Communications 2015;1(3):
230-48.

Rasool A, Qiang Q, Wang Y, et al. Bio-constrained codes with
neural network for density-based DNA data storage. Mathematics
2022;10(5):845.

Smht Yazdi HM, Kiah E, Garcia-Ruiz J, et al. Dna-based storage:
Trends and methods. [EEE Transactions on Molecular, Biological and
Multi-Scale Communications 2015;1(3):230-48.

Alsaffar MM, Hasan M, McStay GP, Digital dna
lifecycle security and privacy: an overview. Brief Bioinform
2022;23(2):bbab607.

Heckel R, Mikutis G, Grass RN. A characterization of the dna data
storage channel. Sci Rep 2019;9(1):1-12.

et al

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Zzhang H, Lan Z, Zhang W, et al. Spider-web enables stable,
repairable, and encryptible algorithms under arbitrary local
biochemical constraints in dna-based storage. arXiv preprint
arXiv:220402855 2022.

Jeong], Park S-J, Kim J-W, et al. Cooperative sequence clustering
and decoding for dna storage system with fountain codes. Bioin-
formatics 2021;37(19):3136-43.

Antkowiak PL, Lietard J, Darestani MZ, et al. Low cost dna
data storage using photolithographic synthesis and advanced
information reconstruction and error correction. Nat Commun
2020;11(1):1-10.

Hartigan JA, Wong MA. Algorithm as 136: A k-means clustering
algorithm. J R Stat Soc Ser C Appl Stat 1979;28(1):100-8.

Ester M, Kriegel H-P, Sander J, et al. Density-based spatial clus-
tering of applications with noise. In Int Conf Knowledge Discovery
and Data Mining 1996;240:6.

Limin F, Niu B, Zhu Z, et al. Cd-hit: accelerated for clus-
tering the next-generation sequencing data. Bioinformatics
2012;28(23):3150-2.

James BT, Luczak BB, Girgis HZ. MeShClust: an intelligent tool
for clustering DNA sequences. Nucleic Acids Res 2018;46(14):
e83-3.

BaoE,Jiang T, Kaloshian I, et al. Seed: efficient clustering of next-
generation sequences. Bioinformatics 2011;27(18):2502-9.

Zorita E, Cusco P, Filion GJ. Starcode: sequence clustering based
on all-pairs search. Bioinformatics 2015;31(12):1913-9.

Edgar RC. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics 2010;26(19):2460-1.

Edgar RC. Local homology recognition and distance measures
in linear time using compressed amino acid alphabets. Nucleic
Acids Res 2004;32(1):380-5.

Rashtchian C, Makarychev K, Racz MZ, et al. Clustering billions
of reads for dna data storage. In: Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, Roman Garnett (eds) NIPS. Red Hook, NY, USA:
Curran Associates Inc., Vol. 2017, 2017, 3360-71.

Jialu H, Chen M, Zhou X. Effective and scalable single-cell
data alignment with non-linear canonical correlation analysis.
Nucleic Acids Res 2022;50(4):e21-1.

Song L, Geng F, Gong Z, et al. Robust data storage in dna by de
bruijn graph-based decoding. bioRxiv, pages 2020-12, 2021.
Zhang], Kobert K, Flouri T, et al. Pear: a fast and accurate
illumina paired-end read merger. Bioinformatics 2014;30(5):614-
20.

Langmead B, Salzberg SL. Fast gapped-read alignment with
bowtie 2. Nat Methods 2012;9(4):357-9.

Ghodsi M, Liu B, Pop M. Dnaclust: accurate and efficient
clustering of phylogenetic marker genes. BMC bioinformatics
2011;12(1):1-11.

Heckel R, Shomorony I, Ramchandran K, et al. Fundamental lim-
its of dna storage systems. In: 2017 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2017, 3130-4.

Ping Z, Chen S, Zhou G, et al. Towards practical and robust
DNA-based data archiving using the yin-yang codec system. Nat
Comput Sci 2022;2(4):234-42.

Srinivasavaradhan SR, Gopi S, Pfister HD, et al. Trellis bma:
Coded trace reconstruction on ids channels for dna storage.
In: 2021 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2021, 2453-8.

Sini MA, Yaakobi E. Reconstruction of sequences in dna storage.
In: 2019 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2019, 290-4.

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac336#supplementary-data
https://github.com/Guanjinqu/Clover
https://github.com/Guanjinqu/Clover

Appendix: Error distribution of DNA data

DNA is a long molecule consisting of four nucleotides (adenine,
cytosine, guanine and thymine). Throughout the DNA storage pro-
cess, the biological properties of nucleotides and the immaturity
of current technology lead to a variety of errors that can occur
during the synthesis of DNA, PCR amplification, DNA sequenc-
ing and other steps, including base addition, base deletion, base
substitution and strand breakage. Therefore, studying the data
characteristics and error distribution of DNA storage datasets will
facilitate the improvement of algorithms involved in DNA storage,
including coding and clustering algorithms. In the following text,
we will present a detailed distribution of the different features
of the DNA sequencing data using the real-world dataset P10-
5-BDDP210000009 as a statistical dataset. P10-5-BDDP210000009
is the most recent DNA storage sequencing data available and
the synthetic sequencing technology used is the mainstream
technology, so it is a strong reference.

Sampling distribution after sequencing

The PCR process is stochastic and can be simplified by assuming
that there are c homogeneous initial sequences in a sample pool
and that each sequence in the pool is amplified with a certain
probability p (becomes two) and not amplified with probability
1 — p (remains one) in each round of amplification. Furthermore,
due to the specific nature of the sequencing process, it is not
possible to sequence all the sequences in a sample to obtain its
data, but often only a small number of sequences in a sequencing
library, so the sequencing process is essentially a random sam-
pling process. Thus, it is clear that there is a degree of randomness
in both the amplification and sequencing processes, which will
result in different numbers of sequences being sequenced from
different original sequences in the final sequencing. The different
numbers of sequenced raw sequences will affect the effect of DNA
clustering and decoding, so it is important to assess the effect of
randomness on the experimental results and to find a suitable
mathematical algorithm.

Figure 11 shows the distribution of sequences in the 6MB
dataset. We can see that the data exhibit an approximately
normal distribution. Thus, we can use the normal distribution to
simulate the sampling distribution of the original sequences after
amplification and sequencing, which will have a strong reference
for designing DNA storage algorithms.

Distribution of errors in the data

We first focus on sequence errors. We consider a sequenced
sequence to be an errorifitis notidentical toits original sequence.
Statistically, the erroneous sequences in P10-5-BDDP210000009
accounted for 14.67% of all sequences. Figure 12 shows the statis-
tics of erroneous sequences for different original sequences. From
the figure we can see that the distribution of the proportion of
erroneous sequences for different raw sequences is an approxi-
mately normal distribution.

We also did an interesting statistic where we counted the
proportion of error sequences in which similar errors occur. We
defined that two error sequences are similar if they are identical.
The total similarity error rate of the data was 34.93%, meaning
that 34.93% of the erroneous sequences were similar sequences.
We believe that similar error sequences are mainly caused by DNA
synthesis or early PCR amplification. The study of similarity errors
is useful to examine at which stage of DNA storage the errors

Clover | 15
1e3
35

3.

o

2

<)

2.

o

Number of references
N
o

<)

(%))

‘ ‘““”‘|"m|||||||ll||||||||||m.....n., A

100 150 200 250
Number of amplified sequences

: H‘
i ||||||nmu|uﬂ|||||||||||ﬂ“
0 50

Figure 11. Reference amplification distribution. The horizontal coordi-
nate indicates the number of sequences sequenced and the vertical coor-
dinate indicates the number of sequences with that number of sequences.

1e4

0.8

0.6

Number of references

0.4

0% 20% 40% 60% 80% 100%
Read error rate

Figure 12. Ervor rate distribution. The horizontal coordinate indicates the
percentage of erroneous sequences and the vertical coordinate indicates
the number of raw sequences that have that percentage of erroneous
cases.

1e4
4.0

35

N I w
=} 3 o

Number of references
B

0.5

0o el ||....|.IJI|.‘ | ||||I. il |||I| el

0% 20% 40% 60% 80% 100%
Same error rate

Figure 13. Similar error rate distribution. The horizontal coordinate is the
similarity error rate and the vertical coordinate is the number of original
sequences with that similarity error rate.

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

16 | Quetal

led

©

Number of errors
~

allh

100 150 200
The position of the base

1
0 50

Figure 14. Base position error distribution. The horizontal coordinate is
the position of the base and the vertical coordinate is the total number of
base errors at that position.

are generated. Figure 13 shows the quantitative distribution
of the similarity error rate. From the graph we can see that
the distribution of the number of similarity error rates is less
pronounced. This is mainly due to the fact that the similarity error
rate is influenced by the total number of errors in the sequence,
so for a raw sequence with fewer errors, the similarity error rate
may be more extreme.

We next explore the base error errors at different positions.
Figure 14 shows the number of base errors at different positions
in the dataset. As can be seen from the graph, errors generally
occur at the head and tail ends of the sequence, which can be well
explained by the fact that the head and tail ends have a higher
chance of error when performing synthesis and PCR amplifica-
tion. In addition, the error rate increases nearer to the back end,
which is also influenced by DNA synthesis. Note that our statistics
are based on CIGAR values from bowtie comparisons and some

1e5

25

0.0 ““lllll“ll“lllllln
0 20

40 60 80 100
The length of the broken chain

N
o

Number of the broken chain
5 &

o
3

Figure 15. Broken chain length statistics. The horizontal coordinate is
the number of bases mutilated by the broken strand and the vertical
coordinate is the total number of broken strands of that length.

sequences with too many errors could not be compared and
therefore could not be counted as errors.

We also explored the distribution of the number of broken
chains. The broken chains are given in Figure 15. It can be seen
that the number of broken strands becomes less as the strand
is shortened. It can therefore be shown that the closer the bases
are to the ends, the more likely they are to be lost. This provides
an important reference for our subsequent DNA coding design
(e.g. we do not put important information at the ends of the
sequence).

220z +oquiada(¢ uo isanb Aq 2G28999/9€€0Eqq/G/€Z/0101ME/qIq/W0d dNo-dlWapede//:sd)y Woly papeojumod

	 Clover: tree structure-based efficient DNA clustering for DNA-based data storage
	 Introduction
	 Materials and methods
	 Theoretical analysis
	 Experimental design
	 Discussion on coverage and redundancy
	 Conclusion
	 Key Points
	 Supplementary data
	 Author contributions statement
	 Funding
	 Appendix: Error distribution of DNA data

