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Abstract Let G be an edge-colored graph ané vertex ofG. The color degree of

v is the number of colors appearing on the edges incident forainbow triangle

in G is one in which all edges have distinct colors. In this paperfirst prove that
an edge-colored graph anvertices contains a rainbow triangle if the color degree
sum of any two adjacent vertices is at least 1. Afterwards, we characterize the
edge-colored graphs arnvertices containing no rainbow triangles but satisfyingtth
each pair of adjacent vertices has color degree sum atrleast

Keywords edge-colored graphgainbow triangles

1 Introduction

All graphs considered in this paper are finite, simple andrected. LeG = (V(G),E(G))
be a graph, wher¢(G) andE(G) are the vertex set and the edge seébpfespective-

ly. An edge-coloringpf G is a mappind : E(G) — N, whereN is the set of natural
numbers. Denote b@(e) the color of an edge in G. An edge-coloring igroper

if adjacent edges receive distinct colors. WH&(G) is assigned an edge-coloring,
we call G an edge-colored graplfor briefly, acolored graph. LetH be a subgraph
of G. If each two edges il have distinct colors, theHl is calledrainbow. For a
vertexv of G, denote byNg(v) anddg(v) the neighbor set and the degreevdh G,

Supported by NSFC (No. 11271300).

Ruonan Li
Department of Applied Mathematics, School of Science, Neestern Polytechnical University
E-mail: liruonan@mail.nwpu.edu.cn

Bo Ning
Center for Applied Mathematics, Tianjin University
E-mail: bo.ning@tju.edu.cn

Shenggui Zhang
Department of Applied Mathematics, School of Science, Neestern Polytechnical University
E-mail: sgzhang@nwpu.edu.cn



2 Ruonan Li et al.

respectively. Theolor degreeof vin G with respect to the edge-colori@j denoted
by d&(v), is the number of colors appearing on the edges incident Benote by
0°(G) the minimum color-degree of vertices@ Letr be a color. We usdf(v) to
denote the number of edges incidenttand receiving the colar. When there is no
ambiguity, we writeN(v) for Ng(v), d(v) for dg(v), d°(v) for d&(v) andd'(v) for
dg(v). Atriangle is a cycle of length 3. I contains no triangles, then we say tfeat
is triangle-free For terminology and notations not defined here, we refer¢ader
to [2].

The topic of rainbow subgraphs has been well studied, sudir@sow matchings
and rainbow cycles, see the survey paper [3]. Here we maiclys on the existence
of rainbow triangles in colored graphs.

Let G be a graph om vertices. We know from Mantel’s Theorem ti@atontains
atriangle if|E(G)| > |n?/4]. As a corollaryG contains a triangle ifi(v) > (n+1)/2
for every vertew € V(G).

In order to generalize Mantel's Theorem to a colored gi@p¥ith ordern, Li and
Wang [6] conjectured in 2006 th& contains a rainbow triangle @(v) > (n+1)/2
for every vertew € V(G). This conjecture was formally published in [7] in 2012 and
confirmed by Li [4] in 2013.

Theorem 1 (Li [4]) Let G be a colored graph on n vertices. f(d) > (n+1)/2 for
every vertex & V(G), then G contains a rainbow triangle.

Independently, Li et al. [5] proved a stronger result, alited Theorem 1 as a
corollary.

Theorem 2 (Li et al. [5]) Let G be a colored graph on n vertices ey ) d°(v) >
n(n+1)/2, then G contains a rainbow triangle.

Li et al. [5] also proved that the bound of color-degree in dieen 1 is tight
for the existence of rainbow triangles, but can be lowered/®with some simple
exceptions.

Theorem 3 (Li et al. [5]) Let G be a colored graph on n vertices. f(g) > n/2 for
every vertex & V(G) and G contains no rainbow triangles, then n is even and G is
a properly colored I/, />, unless G= K4 — e or Ky when n= 4.

Motivated by the relation between the classic Dirac’s ctiadiand Ore’s condi-
tion for long cycles, we wonder whether a grapleontains a rainbow triangle when

d*(u)+d°(v) > V(G)| +1 @

for any nonadjacent verticesv € V(G).

In fact, Bondy [1] proved that a grafghonn vertices is pancyclic ifl(u) +d(v) >
n+ 1 for any nonadjacent verticesv € V(G). Certainly,G contains a triangle when
G is pancyclic.

However, when we study the existence of rainbow trianglesdolored grapit
under the color degree sum condition (1), we find a class afitsvexamples.
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Example1 Construct a colored graph G as follows:

V(G) ={vi,v2,...,Vn},

E(G)={viv;:1<i<j<nl1<i<][c/2]},

and
C(vivj) = min{i,j},

where ce [n+ 1,2n— 2] is a constant integer. Obviously, G satisfies thaétuj +
d(v) > ¢ > n+ 1for every pair of nonadjacent verticeswe V(G) but contains no
rainbow triangles.

Oppositely, motivated by the fact that a grapltontains a triangle if there is an
edgeuv € E(G) satisfyingd(u) +d(v) > |G|+ 1, we show that the color degree sum
condition for adjacent vertices is able to guarantee thetexce of rainbow triangles
in colored graphs.

Theorem 4 Let G be a colored graph on n vertices an@® = 0. If d®(u) +d°(v) >
n+ 1for every edge u¢ E(G), then G contains a rainbow triangle.

In fact, the color degree sunm“- 1" is sharp for the existence of rainbow trian-
gles. This can be shown by the following two kinds of coloreais.

Example 2 A properly colored complete bipartite graph K  with1 <k <n/2.

Example 3 Let D, be a colored graph defined as follows:
V(Dn) = {ug,up,v1,Vo,...,Vn_2},
E(Dn) = {utip} U{uyv;:i=1,2; j=1,2,....,n—2},
Cuiup) =0, C(uvj) =j, (i=1,2; j=1,2,...,n-2).

It is easy to check that both examples satisfy tifgt1) + d°(v) > n for every
edgeuv but contain no rainbow triangles. L&t* be the set of all properly colored
complete bipartite graphs asgf be the set of alD,-type graphs.

With more efforts, we can prove tha}® and¥; are the only classes of extremal
graphs when lowering the bound af4 1" to “n”".

Theorem 5 Let G be a colored graph on r 5 vertices and EG) # 0. If d°(u) +
d®(v) > n for every edge ug E(G) and G contains no rainbow triangles, thenes
GrUYy.

Here the condition th& (G) # 0 in above theorems is necessang(fS) is emp-
ty, then the restrictions on the color degree sum of adjagentices are meaningless.
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2 Two lemmas

Before presenting the proofs of the main results, we firs¢@tbe following lemmas.

Lemmal Let G be a colored graph on n vertices an@® +# 0. If G is triangle-free
and f(u) 4+ d°(v) > n for every edge ug E(G), then G is a complete bipartite graph
with a proper edge-coloring.

Proof Since G contains no triangles, for every edge € E(G), we haveN(u) N
N(v) = 0. Sod(u) 4+ d(v) < n. Also, d(u) +d(v) > d°(u) +d°(v) > n. Henced(u) +
d(v) = d°(u) +d%(v) = n. This implies thaG is properly colored.

Letxy be an edge i andN(x) = A. ThenN(y) =V (G)\A. LetN(y) = B. Then
y € Aandx € B. SinceG is triangle-freeG[A] andG[B] are empty graphs. For any
vertexa € A, we haveax e E(G) andN(a) C B. Thus

B| > d(a) > d°(a) = n—d°x) =n—d(x) =n— |A| = |B].

This implies thatN(a) = B. Similarly, for any vertexb € B, we haveN(b) = A.
HenceG = (A, B) is a complete bipartite graph with a proper edge-coloringl

Lemma2 Let G be a colored graph on h 6 vertices such thatqu) + d®(v) > n
for every edge u¢ E(G). Let x be a vertex in G such thaf) = d°(G) and let
G' = G—x.If G is a properly colored complete bipartite graph and G is naiigle-
free, then G contains a rainbow triangle.

Proof Let G’ be a properly coloreti,_1-k = (A, B). Then for any verticeag € A
andbp € B, we havedg (ag) = n—k—1 anddg (bo) = k. Let A’ = N(x) N A and
B’ = N(x) N B. SinceG is not triangle-free, we haw # 0 andB’ # 0.

Claim 1 Forany ac A’ and be B, d§ (a) >n/2—1and ¢ (b) > n/2—1.
Proof Sinced®(a) > d®x) > n—d°®%(a) andd®(b) > d°(x) > n—d¢(b), we have
d®(a) > n/2andd®(b) > n/2. So we obtainl, (a) > d°(a) —1>n/2—1anddg (b) >
d¢(b)—1>n/2-1.
Claim2 d°(x) >3
Proof Choosea € A’ andb € B'. Then

If nis odd, them > 7. By Claim 1 and (2)dg (a) = dg (b) = (n—1)/2. Thus
d®(b) <d§ (b)+1= (n+1)/2. Sod®(x) > n—d(b )z(n 1 )/2> 3.

If nis even. By Claim 1 and (2) we have njif, (a),dg (b)} =n/2—1. Thus

min{d®(a),d®(b)} <min{dg (a),ds (b)}+1=n/2. Sodc( )Zn min{d¢(a),d(b)} >
n/2>3.
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Claim 2 implies that there exis € A’ andb; € B’ such thatC(xay) # C(xby).
LetC(xa;) = 1 andC(xby) = 2. Now, we will prove by contradiction.

Suppose thaG contains no rainbow triangles. Th&taib;) € {1,2}. Without
loss of generality, le€(aib;) = 1. Thend®(a;) = dg (a1). Hence, for any € B, we
getd®(b) > n—d%(ay) = n—dS (a1) = dS,(b) + 1. ThusB' = B andd“*® (b) = 1.

Since|B'| = |B| =dg (a1) > n/2—1> 2, we haveB'\{b1} # 0. Letb be a vertex
in B'\ {b; }. Consider the triangbea; b. Sinced®*® (b) = 1 andG' is properly colored,
we haveC(xb) = C(xa;) = 1. This means th&(xb) = 1 for every verteso € B'\ {b1 }.

Furthermore, by Claim 2, there is a ver@xe A’ such thaC(xap) & {1,2}. Let
C(xap) = 3. Letb, be a vertex irB'\{b;}. ThenC(xh,) = 1. Since the trianglgayb;
is not rainbow andi®*®)(b;) = 1, we haveC(azb;) = 3. Similarly, consider the
trianglexaphy and the fact thad®*2) (b,) = 1. We geiC(azb,) = 3. This contradicts
thatG' is a properly colored graph. O

3 Proofsof Theorems

Proof of Theorem 4. Suppose the contrary. LEtbe a counterexample withl (G)| +
|[E(G)| as small as possible. Ley be an edge oB. Then

n—1> max{d°(x),d°(y)} > (d°(0) +d°(y))/2 > (n+1)/2

This implies thatn > 3. If 6(G) > (n+1)/2, then by Theorem 1G contains a
rainbow triangle, a contradiction. So there must be a vextexV(G) such that
d°(x) < (n+1)/2. LetG' =G —x.

Claim 1 E(G') is nonempty.

Proof If d(x) =0, then there is nothing to prove dfx) > 0, then there exists a vertex
ye N(x) andd(y) > d°(y) > n+1—-d%x) > (n+1)/2>2. Sodz (y) =d(y)—1>1.
This shows thaE(G') is nonempty.

Claim 2 For any edge ue E(G'), d (u) +dg (v) > n.

Proof If u¢& N(x) orv ¢ N(x), thendg, (u) +dg (v) > d°(u) +d°(v) =1 >n.If u,ve
N(x), thend®(u) > (n+1)/2 andd®(v) > (n+1)/2. Thusdg, (u) +dg,(v) > d°(u) +
d°(v) —2>n— 1. Hencedg, (u) +dg (v) > n.

By Claims 1 and 2 is a smaller counterexample, a contradiction. O

Proof of Theorem 5.
Casel n=5.

If Gis triangle-free, then by Lemma @, is a properly colored complete bipartite
graph, thu$s € 4. Now, suppose thds contains a triangle. Le= {v: d°(v) < 2}
andT = {v:d°(v) > 3}.

Claim 1 Sis anindependentsetand T is a clique with> 2.
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Proof Sinced®(u) +d¢(v) > 5 for every edgaiv e E(G), Sis an independent set.
Furthermore, we havgl| > 1 by the fact thaE(G) # 0. If |T| =1, thenG is a
bipartite graph, this contradicts th@tcontains a triangle. So we hayE| > 2. Now
we will prove thatT is a clique by contradiction.

Assume that there argv € T such thauv ¢ E(G). Thend(u) = d(v) =3 and
d®(u) =d¢(v) =3. Let{x,y,z} =V (G)\{u,v}. LetC(ux) = 1,C(uy) = 2 andC(uz) =
3. SinceG is not a bipartite graph, the edge-setGif x,y,z}] is nonempty. So there
exists a vertex inx,y,z}, sayx, satisfying thatd®(x) > 3. Furthermore, there is a
vertexs € {y,z} such thatxse E(G) andC(xs) # 1. Without loss of generality, let
s=Yy. ThenC(xy) = 2. Now consider the trianghexy. We haveC(xv) =2 orC(yv) =
2.

If C(xv) = 2, thenxze E(G) andC(x2) = 3. Now, xzvis a triangle, ane(zv) #
C(xv). SoC(vz) = C(x2) = 3. Note thatd®(z) > 5—d°(v) = 2. Soyze E(G) and
C(y2) # 3. Sincexyzis a triangle but not rainbow, we ha@yz) = 2, thusd®(y) < 2
and for the edggzwe haved®(y) + d°(z) < 4 < 5, a contradiction.

If C(yv) = 2, thend®(y) < 2. Furthermore, we haw“(y) > 5—d°(u) = 2. So
d®(y) = 2. This implies thayze E(G) andC(yz) = 3. Sinced®(z) > 5—d°(y) = 3,
we haveC(vz) # 3. Consider the trianglgzv We haveC(zv) = 2. However, this
contradicts tha€(vy) # C(vz).

In summary|T| is a clique.

Clam2 |T|=2.
Proof By contradiction.

If |T| =5. By Theorem 1( contains a rainbow triangle, a contradiction.

If |T| =4. By Claim 1,G[T] 2 K4. We first prove thadgm (v) =2 for every vertex
veT. Since 3> dgm (v) >d¢(v)—1> 2, itis sufficient to show thaigm (v) #£ 3for
every vertexv € T. Suppose that this is not true. Then there is a vergex T such
thatdgm (vo) = 3. LetT = {vo,v1,V2,v3}. Without loss of generality, leE(vovi) =
i (i=1,2,3)and letC(v1v2) = 1. To guarantee thaigm (vi) >2(i=1,3), we have
C(v1v3) = 3 andC(vsv,) = 2 by considering trianglegyv;vs andvgvovs. Thus, we
obtain a rainbow triangle; vov3, a contradiction. So for every vertex T, d(CB[T] (V)=

2. Let{x} =V(G)\T. We haveC(xvi) € E(G) anddS"(v) = 1 (i=0,1,2,3). Since
G contains no rainbow triangleS(xv;) =C(xv;) (i, j =0,1,2,3). Thusd®(x) =1 and
d®(x) 4+ d®(vp) = 4 < 5, a contradiction.

If |T|=3.LetT = {x,y,z} andS= {u,v}. By Claim 1,xyzis a triangle andiv¢
E(G). Furthermore, we can assume tldky) = C(xz) = 1, C(ux) = 2 andC(vx) =
3. This implies thad®(x) = 3 andd®(u) = d(v) = 2. Thus, there exists a vertex
s € {y,z} such thaC(us) # C(ux). Combining this with the fact th&(ux) # C(xy)
andC(ux) # C(x2), we haveC(us) = C(xs). Without loss of generality, let=y. Then
C(uy) = 1. Now, consider thad®(y) > 3 andd®(v) = 2. We haveC(yv) = C(xv) = 3
andC(vz) = C(x2) = 1. Note that the edggz is contained in the triangleyz So
C(y2) = 1 or 3. However, this implies tha(y) < 2, a contradiction.

Thus we haveT| < 2. By Claim 1, we ge{T| = 2.

Now, letT = {u,v} andS= {x,y,z}. By Claim 1,uve E(G) andSis an inde-
pendent set. 18°(x) = d°(y) = d°(z) = 1, thend®(u) = d°(v) = 4. Thus, obviously,
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G € ¢5. If there is a vertex ir§, sayx, satisfyingd®(x) = 2, thenC(xu) # C(xv).
Sincexuv is not a rainbow triangle, we can assume t@&tu) = C(uv). Thus we
haveyu,zue E(G), d°(u) = 3,C(yu) # C(uv), C(zu) # C(uv) andd®(y) = d°(z) = 2.
Sinceyuvandzuvare not rainbow triangles, we ha@yv) = C(zv) = C(uv). This
implies thatd®(v) < 2, a contradiction.

Case2 n> 6.

We prove by induction. Note that Theorem 5 is ture for graphm$bovertices.
Assume that it is true for graphs of order 1 (n > 6). We will prove that it is also
true for graphs of orden.

Let G be a graph om > 6 vertices. Sincé contains no rainbow triangles, by
Theorem 1, we hav&®(G) < n/2. If Gis triangle-free, by Lemma G is a complete
bipartite graph with a proper edge-coloringdff(G) = n/2, by Theorem 3nis even
andG s a properly colore&, , /2. In both cases, we haw € ¥f.

Now, consider the case thaf(G) < n/2 andG is not triangle-free. Lek be a
vertex inG such thatd®(x) = 8%(G). LetG' = G — x. Similar to the proof of Theorem
4, we haveE(G') # 0 anddg, (u) 4 d&, (v) > n—1 for every edgaiv € E(G'). This
implies thatG' satisfies the conditions in Theorem 5. By assumpti&ng ¥7 U¥;.
However, by Lemma &3’ is not a properly colored bipartite graph. HenGég ¢5.
Now, we will prove thaiG € 5. Without loss of generality, let

V(G') = {ug,Up,V1,Va, ..., Vn_3},
E(G) ={uuwu{uv;:i=12; j=12,....n—3},
C(uup) =0, C(uvj) =j, (i=1,2; j=1,2,...,n=3).
Thus we have
&(u1) =dg(uz) =n-2,
dg(vi)=1,(i=1,2,...,n-3).
Since
d°(x) +d°(vi) <2d°(vj) <2dg (vi)+2=4<n(i=1,2,...,n—3),
we have
N(x) € {uy, U},
d(vi) =d& (i) =1, (i=1,2,...,n—3).
Furthermore, we get
n<d°(uj) +d%wv1) <dg (uj)+2=n,(j =1,2).
This implies that
d®(uj) =dg (u)) +1, (j=1,2).
Thus
{uz, uz} S N(x),
1<d%x) <d%wy) =1,

Now, N(x) = {ug,uz}, d®(uz) = d%(uz2) = n—1 andd®(x) = d°(v;) = 1 fori =
1,2,...,n—3. This implies thaG € ¢5. The proof is complete. O
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