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Abstract Let G be an edge-colored graph andv a vertex ofG. The color degree of
v is the number of colors appearing on the edges incident tov. A rainbow triangle
in G is one in which all edges have distinct colors. In this paper,we first prove that
an edge-colored graph onn vertices contains a rainbow triangle if the color degree
sum of any two adjacent vertices is at leastn+ 1. Afterwards, we characterize the
edge-colored graphs onn vertices containing no rainbow triangles but satisfying that
each pair of adjacent vertices has color degree sum at leastn.

Keywords edge-colored graphs· rainbow triangles

1 Introduction

All graphs considered in this paper are finite, simple and undirected. LetG=(V(G),E(G))
be a graph, whereV(G) andE(G) are the vertex set and the edge set ofG, respective-
ly. An edge-coloringof G is a mappingC : E(G)→ N, whereN is the set of natural
numbers. Denote byC(e) the color of an edgee in G. An edge-coloring isproper
if adjacent edges receive distinct colors. WhenE(G) is assigned an edge-coloring,
we callG anedge-colored graph(or briefly, acolored graph). Let H be a subgraph
of G. If each two edges inH have distinct colors, thenH is calledrainbow. For a
vertexv of G, denote byNG(v) anddG(v) the neighbor set and the degree ofv in G,
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respectively. Thecolor degreeof v in G with respect to the edge-coloringC, denoted
by dc

G(v), is the number of colors appearing on the edges incident tov. Denote by
δ c(G) the minimum color-degree of vertices inG. Let r be a color. We usedr

G(v) to
denote the number of edges incident tov and receiving the colorr. When there is no
ambiguity, we writeN(v) for NG(v), d(v) for dG(v), dc(v) for dc

G(v) anddr(v) for
dr

G(v). A triangle is a cycle of length 3. IfG contains no triangles, then we say thatG
is triangle-free. For terminology and notations not defined here, we refer thereader
to [2].

The topic of rainbow subgraphs has been well studied, such asrainbow matchings
and rainbow cycles, see the survey paper [3]. Here we mainly focus on the existence
of rainbow triangles in colored graphs.

Let G be a graph onn vertices. We know from Mantel’s Theorem thatG contains
a triangle if|E(G)|> ⌊n2/4⌋. As a corollary,G contains a triangle ifd(v)≥ (n+1)/2
for every vertexv∈V(G).

In order to generalize Mantel’s Theorem to a colored graphG with ordern, Li and
Wang [6] conjectured in 2006 thatG contains a rainbow triangle ifdc(v)≥ (n+1)/2
for every vertexv∈V(G). This conjecture was formally published in [7] in 2012 and
confirmed by Li [4] in 2013.

Theorem 1 (Li [4]) Let G be a colored graph on n vertices. If dc(v)≥ (n+1)/2 for
every vertex v∈V(G), then G contains a rainbow triangle.

Independently, Li et al. [5] proved a stronger result, obtaining Theorem 1 as a
corollary.

Theorem 2 (Li et al. [5]) Let G be a colored graph on n vertices. If∑v∈V(G) dc(v)≥
n(n+1)/2, then G contains a rainbow triangle.

Li et al. [5] also proved that the bound of color-degree in Theorem 1 is tight
for the existence of rainbow triangles, but can be lowered ton/2 with some simple
exceptions.

Theorem 3 (Li et al. [5]) Let G be a colored graph on n vertices. If dc(v)≥ n/2 for
every vertex v∈V(G) and G contains no rainbow triangles, then n is even and G is
a properly colored Kn/2,n/2, unless G= K4−e or K4 when n= 4.

Motivated by the relation between the classic Dirac’s condition and Ore’s condi-
tion for long cycles, we wonder whether a graphG contains a rainbow triangle when

dc(u)+dc(v)≥ |V(G)|+1 (1)

for any nonadjacent verticesu,v∈V(G).
In fact, Bondy [1] proved that a graphGonn vertices is pancyclic ifd(u)+d(v)≥

n+1 for any nonadjacent verticesu,v∈V(G). Certainly,G contains a triangle when
G is pancyclic.

However, when we study the existence of rainbow triangles ina colored graphG
under the color degree sum condition (1), we find a class of counterexamples.
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Example 1 Construct a colored graph G as follows:

V(G) = {v1,v2, . . . ,vn},

E(G) = {viv j : 1≤ i < j ≤ n,1≤ i ≤ ⌈c/2⌉},

and

C(viv j) = min{i, j},

where c∈ [n+ 1,2n− 2] is a constant integer. Obviously, G satisfies that dc(u) +
dc(v)≥ c≥ n+1 for every pair of nonadjacent vertices u,v∈V(G) but contains no
rainbow triangles.

Oppositely, motivated by the fact that a graphG contains a triangle if there is an
edgeuv∈ E(G) satisfyingd(u)+d(v)≥ |G|+1, we show that the color degree sum
condition for adjacent vertices is able to guarantee the existence of rainbow triangles
in colored graphs.

Theorem 4 Let G be a colored graph on n vertices and E(G) 6= /0. If dc(u)+dc(v)≥
n+1 for every edge uv∈ E(G), then G contains a rainbow triangle.

In fact, the color degree sum “n+1” is sharp for the existence of rainbow trian-
gles. This can be shown by the following two kinds of colored graphs.

Example 2 A properly colored complete bipartite graph Kk,n−k with 1≤ k≤ n/2.

Example 3 Let Dn be a colored graph defined as follows:

V(Dn) = {u1,u2,v1,v2, . . . ,vn−2},

E(Dn) = {u1u2}∪{uiv j : i = 1,2; j = 1,2, . . . ,n−2},

C(u1u2) = 0, C(uiv j) = j, (i = 1,2; j = 1,2, . . . ,n−2).

It is easy to check that both examples satisfy thatdc(u) + dc(v) ≥ n for every
edgeuv but contain no rainbow triangles. LetG c

1 be the set of all properly colored
complete bipartite graphs andG c

2 be the set of allDn-type graphs.
With more efforts, we can prove thatG c

1 andG c
2 are the only classes of extremal

graphs when lowering the bound of “n+1” to “n”.

Theorem 5 Let G be a colored graph on n≥ 5 vertices and E(G) 6= /0. If dc(u)+
dc(v) ≥ n for every edge uv∈ E(G) and G contains no rainbow triangles, then G∈
G c

1 ∪G c
2 .

Here the condition thatE(G) 6= /0 in above theorems is necessary. IfE(G) is emp-
ty, then the restrictions on the color degree sum of adjacentvertices are meaningless.
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2 Two lemmas

Before presenting the proofs of the main results, we first prove the following lemmas.

Lemma 1 Let G be a colored graph on n vertices and E(G) 6= /0. If G is triangle-free
and dc(u)+dc(v)≥ n for every edge uv∈ E(G), then G is a complete bipartite graph
with a proper edge-coloring.

Proof SinceG contains no triangles, for every edgeuv∈ E(G), we haveN(u)∩
N(v) = /0. Sod(u)+d(v)≤ n. Also, d(u)+d(v)≥ dc(u)+dc(v)≥ n. Henced(u)+
d(v) = dc(u)+dc(v) = n. This implies thatG is properly colored.

Let xy be an edge inG andN(x) = A. ThenN(y) =V(G)\A. Let N(y) = B. Then
y ∈ A andx ∈ B. SinceG is triangle-free,G[A] andG[B] are empty graphs. For any
vertexa∈ A, we haveax∈ E(G) andN(a)⊆ B. Thus

|B| ≥ d(a)≥ dc(a) = n−dc(x) = n−d(x) = n−|A|= |B|.

This implies thatN(a) = B. Similarly, for any vertexb∈ B, we haveN(b) = A.
HenceG= (A,B) is a complete bipartite graph with a proper edge-coloring.⊓⊔

Lemma 2 Let G be a colored graph on n≥ 6 vertices such that dc(u)+dc(v) ≥ n
for every edge uv∈ E(G). Let x be a vertex in G such that dc(x) = δ c(G) and let
G′ =G−x. If G′ is a properly colored complete bipartite graph and G is not triangle-
free, then G contains a rainbow triangle.

Proof Let G′ be a properly coloredKk,n−1−k = (A,B). Then for any verticesa0 ∈ A
andb0 ∈ B, we havedc

G′(a0) = n− k− 1 anddc
G′(b0) = k. Let A′ = N(x)∩A and

B′ = N(x)∩B. SinceG is not triangle-free, we haveA′ 6= /0 andB′ 6= /0.

Claim 1 For any a∈ A′ and b∈ B′, dc
G′(a)≥ n/2−1 and dc

G′(b)≥ n/2−1.

Proof Sincedc(a) ≥ dc(x) ≥ n− dc(a) and dc(b) ≥ dc(x) ≥ n− dc(b), we have
dc(a)≥ n/2 anddc(b)≥ n/2. So we obtaindc

G′(a)≥ dc(a)−1≥ n/2−1anddc
G′(b)≥

dc(b)−1≥ n/2−1.

Claim 2 dc(x)≥ 3.

Proof Choosea∈ A′ andb∈ B′. Then

dc
G′(a)+dc

G′(b) = n−1. (2)

If n is odd, thenn ≥ 7. By Claim 1 and (2),dc
G′(a) = dc

G′(b) = (n−1)/2. Thus
dc(b)≤ dc

G′(b)+1= (n+1)/2. Sodc(x)≥ n−dc(b)≥ (n−1)/2≥ 3.
If n is even. By Claim 1 and (2), we have min{dc

G′(a),dc
G′(b)} = n/2−1. Thus

min{dc(a),dc(b)}≤min{dc
G′(a),dc

G′(b)}+1= n/2.Sodc(x)≥ n−min{dc(a),dc(b)}≥
n/2≥ 3.
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Claim 2 implies that there exista1 ∈ A′ andb1 ∈ B′ such thatC(xa1) 6= C(xb1).
LetC(xa1) = 1 andC(xb1) = 2. Now, we will prove by contradiction.

Suppose thatG contains no rainbow triangles. ThenC(a1b1) ∈ {1,2}. Without
loss of generality, letC(a1b1) = 1. Thendc(a1) = dc

G′(a1). Hence, for anyb∈ B, we
getdc(b)≥ n−dc(a1) = n−dc

G′(a1) = dc
G′(b)+1. ThusB′ = B anddC(xb)(b) = 1.

Since|B′|= |B|= dc
G′(a1)≥ n/2−1≥ 2, we haveB′\{b1} 6= /0. Letb be a vertex

in B′\{b1}. Consider the trianglexa1b. SincedC(xb)(b)= 1 andG′ is properly colored,
we haveC(xb) =C(xa1) = 1. This means thatC(xb) = 1 for every vertexb∈B′\{b1}.

Furthermore, by Claim 2, there is a vertexa2 ∈ A′ such thatC(xa2) 6∈ {1,2}. Let
C(xa2) = 3. Letb2 be a vertex inB′\{b1}. ThenC(xb2) = 1. Since the trianglexa2b1

is not rainbow anddC(xb1)(b1) = 1, we haveC(a2b1) = 3. Similarly, consider the
trianglexa2b2 and the fact thatdC(xb2)(b2) = 1. We getC(a2b2) = 3. This contradicts
thatG′ is a properly colored graph. ⊓⊔

3 Proofs of Theorems

Proof of Theorem 4. Suppose the contrary. LetG be a counterexample with|V(G)|+
|E(G)| as small as possible. Letxy be an edge ofG. Then

n−1≥ max{dc(x),dc(y)} ≥ (dc(x)+dc(y))/2≥ (n+1)/2

This implies thatn ≥ 3. If δ c(G) ≥ (n+ 1)/2, then by Theorem 1,G contains a
rainbow triangle, a contradiction. So there must be a vertexx ∈ V(G) such that
dc(x)< (n+1)/2. LetG′ = G− x.

Claim 1 E(G′) is nonempty.

Proof If d(x) = 0, then there is nothing to prove. Ifd(x)> 0, then there exists a vertex
y∈N(x) andd(y)≥ dc(y)≥ n+1−dc(x)> (n+1)/2≥ 2. SodG′(y) = d(y)−1> 1.
This shows thatE(G′) is nonempty.

Claim 2 For any edge uv∈ E(G′), dc
G′(u)+dc

G′(v)≥ n.

Proof If u 6∈ N(x) or v 6∈ N(x), thendc
G′(u)+dc

G′(v)≥ dc(u)+dc(v)−1≥ n. If u,v∈
N(x), thendc(u)> (n+1)/2 anddc(v)> (n+1)/2. Thusdc

G′(u)+dc
G′(v)≥ dc(u)+

dc(v)−2> n−1. Hence,dc
G′(u)+dc

G′(v)≥ n.

By Claims 1 and 2,G′ is a smaller counterexample, a contradiction. ⊓⊔

Proof of Theorem 5.

Case 1 n= 5.

If G is triangle-free, then by Lemma 1,G is a properly colored complete bipartite
graph, thusG∈ G c

1 . Now, suppose thatG contains a triangle. LetS= {v : dc(v)≤ 2}
andT = {v : dc(v)≥ 3}.

Claim 1 S is an independent set and T is a clique with|T| ≥ 2.
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Proof Sincedc(u)+dc(v) ≥ 5 for every edgeuv∈ E(G), S is an independent set.
Furthermore, we have|T| ≥ 1 by the fact thatE(G) 6= /0. If |T| = 1, thenG is a
bipartite graph, this contradicts thatG contains a triangle. So we have|T| ≥ 2. Now
we will prove thatT is a clique by contradiction.

Assume that there areu,v ∈ T such thatuv 6∈ E(G). Thend(u) = d(v) = 3 and
dc(u) = dc(v) = 3. Let{x,y,z}=V(G)\{u,v}. LetC(ux) = 1,C(uy)= 2 andC(uz) =
3. SinceG is not a bipartite graph, the edge-set ofG[{x,y,z}] is nonempty. So there
exists a vertex in{x,y,z}, sayx, satisfying thatdc(x) ≥ 3. Furthermore, there is a
vertexs∈ {y,z} such thatxs∈ E(G) andC(xs) 6= 1. Without loss of generality, let
s= y. ThenC(xy) = 2. Now consider the trianglevxy. We haveC(xv) = 2 orC(yv) =
2.

If C(xv) = 2, thenxz∈ E(G) andC(xz) = 3. Now,xzvis a triangle, andC(zv) 6=
C(xv). SoC(vz) = C(xz) = 3. Note thatdc(z) ≥ 5− dc(v) = 2. Soyz∈ E(G) and
C(yz) 6= 3. Sincexyzis a triangle but not rainbow, we haveC(yz) = 2, thusdc(y)≤ 2
and for the edgeyzwe havedc(y)+dc(z) ≤ 4< 5, a contradiction.

If C(yv) = 2, thendc(y) ≤ 2. Furthermore, we havedc(y) ≥ 5−dc(u) = 2. So
dc(y) = 2. This implies thatyz∈ E(G) andC(yz) = 3. Sincedc(z) ≥ 5−dc(y) = 3,
we haveC(vz) 6= 3. Consider the triangleyzv. We haveC(zv) = 2. However, this
contradicts thatC(vy) 6=C(vz).

In summary,|T| is a clique.

Claim 2 |T|= 2.

Proof By contradiction.
If |T|= 5. By Theorem 1,G contains a rainbow triangle, a contradiction.
If |T|=4. By Claim 1,G[T]∼=K4. We first prove thatdc

G[T](v)= 2 for every vertex

v∈ T. Since 3≥ dc
G[T](v)≥ dc(v)−1≥ 2, it is sufficient to show thatdc

G[T](v) 6= 3 for
every vertexv ∈ T. Suppose that this is not true. Then there is a vertexv0 ∈ T such
thatdc

G[T](v0) = 3. Let T = {v0,v1,v2,v3}. Without loss of generality, letC(v0vi) =

i (i = 1,2,3) and letC(v1v2) = 1. To guarantee thatdc
G[T](vi)≥ 2 (i = 1,3), we have

C(v1v3) = 3 andC(v3v2) = 2 by considering trianglesv0v1v3 andv0v2v3. Thus, we
obtain a rainbow trianglev1v2v3, a contradiction. So for every vertexv∈T, dc

G[T](v) =

2. Let{x}=V(G)\T. We haveC(xvi)∈E(G) anddC(xvi )
G (vi) = 1 (i = 0,1,2,3). Since

G contains no rainbow triangles,C(xvi) =C(xvj) (i, j = 0,1,2,3). Thusdc(x) = 1 and
dc(x)+dc(v0) = 4< 5, a contradiction.

If |T|= 3. LetT = {x,y,z} andS= {u,v}. By Claim 1,xyzis a triangle anduv 6∈
E(G). Furthermore, we can assume thatC(xy) =C(xz) = 1,C(ux) = 2 andC(vx) =
3. This implies thatdc(x) = 3 anddc(u) = dc(v) = 2. Thus, there exists a vertex
s∈ {y,z} such thatC(us) 6=C(ux). Combining this with the fact thatC(ux) 6=C(xy)
andC(ux) 6=C(xz), we haveC(us) =C(xs). Without loss of generality, lets= y. Then
C(uy) = 1. Now, consider thatdc(y)≥ 3 anddc(v) = 2. We haveC(yv) =C(xv) = 3
andC(vz) = C(xz) = 1. Note that the edgeyz is contained in the trianglevyz. So
C(yz) = 1 or 3. However, this implies thatdc(y)≤ 2, a contradiction.

Thus we have|T| ≤ 2. By Claim 1, we get|T|= 2.

Now, let T = {u,v} andS= {x,y,z}. By Claim 1,uv∈ E(G) andS is an inde-
pendent set. Ifdc(x) = dc(y) = dc(z) = 1, thendc(u) = dc(v) = 4. Thus, obviously,
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G ∈ G c
2 . If there is a vertex inS, sayx, satisfyingdc(x) = 2, thenC(xu) 6= C(xv).

Sincexuv is not a rainbow triangle, we can assume thatC(xu) = C(uv). Thus we
haveyu,zu∈ E(G), dc(u) = 3,C(yu) 6=C(uv), C(zu) 6=C(uv) anddc(y) = dc(z) = 2.
Sinceyuvandzuvare not rainbow triangles, we haveC(yv) = C(zv) = C(uv). This
implies thatdc(v)≤ 2, a contradiction.

Case 2 n≥ 6.

We prove by induction. Note that Theorem 5 is ture for graphs on 5 vertices.
Assume that it is true for graphs of ordern−1 (n≥ 6). We will prove that it is also
true for graphs of ordern.

Let G be a graph onn ≥ 6 vertices. SinceG contains no rainbow triangles, by
Theorem 1, we haveδ c(G)≤ n/2. If G is triangle-free, by Lemma 1,G is a complete
bipartite graph with a proper edge-coloring. Ifδ c(G) = n/2, by Theorem 3,n is even
andG is a properly coloredKn/2,n/2. In both cases, we haveG∈ G c

1 .
Now, consider the case thatδ c(G) < n/2 andG is not triangle-free. Letx be a

vertex inG such thatdc(x) = δ c(G). LetG′ = G−x. Similar to the proof of Theorem
4, we haveE(G′) 6= /0 anddc

G′(u)+dc
G′(v) ≥ n−1 for every edgeuv∈ E(G′). This

implies thatG′ satisfies the conditions in Theorem 5. By assumption,G′ ∈ G c
1 ∪G c

2 .
However, by Lemma 2,G′ is not a properly colored bipartite graph. Hence,G′ ∈ G c

2 .
Now, we will prove thatG∈ G c

2 . Without loss of generality, let

V(G′) = {u1,u2,v1,v2, . . . ,vn−3},

E(G′) = {u1u2}∪{uiv j : i = 1,2; j = 1,2, . . . ,n−3},

C(u1u2) = 0, C(uiv j) = j, (i = 1,2; j = 1,2, . . . ,n−3).

Thus we have
dc

G′(u1) = dc
G′(u2) = n−2,

dc
G′(vi) = 1,(i = 1,2, . . . ,n−3).

Since

dc(x)+dc(vi)≤ 2dc(vi)≤ 2dc
G′(vi)+2= 4< n (i = 1,2, . . . ,n−3),

we have
N(x)⊆ {u1,u2},

dc(vi) = dc
G′(vi) = 1, (i = 1,2, . . . ,n−3).

Furthermore, we get

n≤ dc(u j)+dc(v1)≤ dc
G′(u j)+2= n,( j = 1,2).

This implies that
dc(u j) = dc

G′(u j)+1, ( j = 1,2).

Thus
{u1,u2} ⊆ N(x),

1≤ dc(x)≤ dc(v1) = 1,

Now, N(x) = {u1,u2}, dc(u1) = dc(u2) = n− 1 anddc(x) = dc(vi) = 1 for i =
1,2, . . . ,n−3. This implies thatG∈ G c

2 . The proof is complete. ⊓⊔



8 Ruonan Li et al.

References

1. J.A. Bondy, Pancyclic graphs I, J. Combin. Theory, 11, 80–84 (1971)
2. J.A. Bondy, U.S.R. Murty, Graph Theory with Application,Macmillan London and Elsevier, New York

(1976)
3. M. Kano, X. Li, Monochromatic and heterochromatic subgraphs in edge-colored graphs - a survey,

Graphs Combin., 24, 237–263 (2008)
4. H. Li, RainbowC3’s andC4’s in edge-colored graphs, Discrete Math., 313, 1893–1896 (2013)
5. B. Li, B. Ning, C. Xu, S. Zhang, Rainbow triangles in edge-colored graphs, European J. Combin., 36,

453–459 (2014)
6. H. Li, G. Wang, Color degree and heterochromatic cycles inedge-colored graphs, RR L.R.I No., 1460,

(2006)
7. H. Li, G. Wang, Color degree and heterochromatic cycles inedge-colored graphs, European J. Combin.,

33, 1958–1964 (2012)


