Color degree sum conditions for rainbow triangles in edge-colored graphs

Ruonan Li · Bo Ning · Shenggui Zhang

Received: date / Accepted: date

Abstract Let *G* be an edge-colored graph and *v* a vertex of *G*. The color degree of *v* is the number of colors appearing on the edges incident to *v*. A rainbow triangle in *G* is one in which all edges have distinct colors. In this paper, we first prove that an edge-colored graph on *n* vertices contains a rainbow triangle if the color degree sum of any two adjacent vertices is at least n + 1. Afterwards, we characterize the edge-colored graphs on *n* vertices containing no rainbow triangles but satisfying that each pair of adjacent vertices has color degree sum at least *n*.

Keywords edge-colored graphs · rainbow triangles

1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let G = (V(G), E(G)) be a graph, where V(G) and E(G) are the vertex set and the edge set of G, respectively. An *edge-coloring* of G is a mapping $C : E(G) \to \mathbb{N}$, where \mathbb{N} is the set of natural numbers. Denote by C(e) the color of an edge e in G. An edge-coloring is *proper* if adjacent edges receive distinct colors. When E(G) is assigned an edge-coloring, we call G an *edge-colored graph* (or briefly, a *colored graph*). Let H be a subgraph of G. If each two edges in H have distinct colors, then H is called *rainbow*. For a vertex v of G, denote by $N_G(v)$ and $d_G(v)$ the neighbor set and the degree of v in G,

Supported by NSFC (No. 11271300).

Ruonan Li

Department of Applied Mathematics, School of Science, Northwestern Polytechnical University E-mail: liruonan@mail.nwpu.edu.cn

Bo Ning Center for Applied Mathematics, Tianjin University E-mail: bo.ning@tju.edu.cn

Shenggui Zhang Department of Applied Mathematics, School of Science, Northwestern Polytechnical University E-mail: sgzhang@nwpu.edu.cn respectively. The *color degree* of *v* in *G* with respect to the edge-coloring *C*, denoted by $d_G^c(v)$, is the number of colors appearing on the edges incident to *v*. Denote by $\delta^c(G)$ the minimum color-degree of vertices in *G*. Let *r* be a color. We use $d_G^r(v)$ to denote the number of edges incident to *v* and receiving the color *r*. When there is no ambiguity, we write N(v) for $N_G(v)$, d(v) for $d_G(v)$, $d^c(v)$ for $d_G^c(v)$ and $d^r(v)$ for $d_G^r(v)$. A triangle is a cycle of length 3. If *G* contains no triangles, then we say that *G* is *triangle-free*. For terminology and notations not defined here, we refer the reader to [2].

The topic of rainbow subgraphs has been well studied, such as rainbow matchings and rainbow cycles, see the survey paper [3]. Here we mainly focus on the existence of rainbow triangles in colored graphs.

Let *G* be a graph on *n* vertices. We know from Mantel's Theorem that *G* contains a triangle if $|E(G)| > \lfloor n^2/4 \rfloor$. As a corollary, *G* contains a triangle if $d(v) \ge (n+1)/2$ for every vertex $v \in V(G)$.

In order to generalize Mantel's Theorem to a colored graph *G* with order *n*, Li and Wang [6] conjectured in 2006 that *G* contains a rainbow triangle if $d^c(v) \ge (n+1)/2$ for every vertex $v \in V(G)$. This conjecture was formally published in [7] in 2012 and confirmed by Li [4] in 2013.

Theorem 1 (Li [4]) Let G be a colored graph on n vertices. If $d^c(v) \ge (n+1)/2$ for every vertex $v \in V(G)$, then G contains a rainbow triangle.

Independently, Li et al. [5] proved a stronger result, obtaining Theorem 1 as a corollary.

Theorem 2 (Li et al. [5]) Let G be a colored graph on n vertices. If $\sum_{v \in V(G)} d^c(v) \ge n(n+1)/2$, then G contains a rainbow triangle.

Li et al. [5] also proved that the bound of color-degree in Theorem 1 is tight for the existence of rainbow triangles, but can be lowered to n/2 with some simple exceptions.

Theorem 3 (Li et al. [5]) Let G be a colored graph on n vertices. If $d^c(v) \ge n/2$ for every vertex $v \in V(G)$ and G contains no rainbow triangles, then n is even and G is a properly colored $K_{n/2,n/2}$, unless $G = K_4 - e$ or K_4 when n = 4.

Motivated by the relation between the classic Dirac's condition and Ore's condition for long cycles, we wonder whether a graph G contains a rainbow triangle when

$$d^{c}(u) + d^{c}(v) \ge |V(G)| + 1 \tag{1}$$

for any nonadjacent vertices $u, v \in V(G)$.

In fact, Bondy [1] proved that a graph *G* on *n* vertices is pancyclic if $d(u) + d(v) \ge n + 1$ for any nonadjacent vertices $u, v \in V(G)$. Certainly, *G* contains a triangle when *G* is pancyclic.

However, when we study the existence of rainbow triangles in a colored graph G under the color degree sum condition (1), we find a class of counterexamples.

Example 1 Construct a colored graph G as follows:

$$V(G) = \{v_1, v_2, \dots, v_n\},$$
$$E(G) = \{v_i v_j : 1 \le i < j \le n, 1 \le i \le \lceil c/2 \rceil\},$$

and

$$C(v_i v_j) = \min\{i, j\}$$

where $c \in [n + 1, 2n - 2]$ is a constant integer. Obviously, G satisfies that $d^{c}(u) + d^{c}(v) \ge c \ge n + 1$ for every pair of nonadjacent vertices $u, v \in V(G)$ but contains no rainbow triangles.

Oppositely, motivated by the fact that a graph *G* contains a triangle if there is an edge $uv \in E(G)$ satisfying $d(u) + d(v) \ge |G| + 1$, we show that the color degree sum condition for adjacent vertices is able to guarantee the existence of rainbow triangles in colored graphs.

Theorem 4 Let G be a colored graph on n vertices and $E(G) \neq \emptyset$. If $d^c(u) + d^c(v) \ge n + 1$ for every edge $uv \in E(G)$, then G contains a rainbow triangle.

In fact, the color degree sum "n + 1" is sharp for the existence of rainbow triangles. This can be shown by the following two kinds of colored graphs.

Example 2 A properly colored complete bipartite graph $K_{k,n-k}$ with $1 \le k \le n/2$.

Example 3 Let D_n be a colored graph defined as follows:

$$V(D_n) = \{u_1, u_2, v_1, v_2, \dots, v_{n-2}\},\$$
$$E(D_n) = \{u_1 u_2\} \cup \{u_i v_j : i = 1, 2; j = 1, 2, \dots, n-2\},\$$
$$C(u_1 u_2) = 0, C(u_i v_j) = j, (i = 1, 2; j = 1, 2, \dots, n-2).$$

It is easy to check that both examples satisfy that $d^c(u) + d^c(v) \ge n$ for every edge uv but contain no rainbow triangles. Let \mathscr{G}_1^c be the set of all properly colored complete bipartite graphs and \mathscr{G}_2^c be the set of all D_n -type graphs.

With more efforts, we can prove that \mathscr{G}_1^c and \mathscr{G}_2^c are the only classes of extremal graphs when lowering the bound of "n + 1" to "n".

Theorem 5 Let G be a colored graph on $n \ge 5$ vertices and $E(G) \ne \emptyset$. If $d^c(u) + d^c(v) \ge n$ for every edge $uv \in E(G)$ and G contains no rainbow triangles, then $G \in \mathscr{G}_1^c \cup \mathscr{G}_2^c$.

Here the condition that $E(G) \neq \emptyset$ in above theorems is necessary. If E(G) is empty, then the restrictions on the color degree sum of adjacent vertices are meaningless.

2 Two lemmas

Before presenting the proofs of the main results, we first prove the following lemmas.

Lemma 1 Let *G* be a colored graph on *n* vertices and $E(G) \neq \emptyset$. If *G* is triangle-free and $d^c(u) + d^c(v) \ge n$ for every edge $uv \in E(G)$, then *G* is a complete bipartite graph with a proper edge-coloring.

Proof Since *G* contains no triangles, for every edge $uv \in E(G)$, we have $N(u) \cap N(v) = \emptyset$. So $d(u) + d(v) \le n$. Also, $d(u) + d(v) \ge d^c(u) + d^c(v) \ge n$. Hence $d(u) + d(v) = d^c(u) + d^c(v) = n$. This implies that *G* is properly colored.

Let *xy* be an edge in *G* and N(x) = A. Then $N(y) = V(G) \setminus A$. Let N(y) = B. Then $y \in A$ and $x \in B$. Since *G* is triangle-free, *G*[*A*] and *G*[*B*] are empty graphs. For any vertex $a \in A$, we have $ax \in E(G)$ and $N(a) \subseteq B$. Thus

 $|B| \ge d(a) \ge d^{c}(a) = n - d^{c}(x) = n - d(x) = n - |A| = |B|.$

This implies that N(a) = B. Similarly, for any vertex $b \in B$, we have N(b) = A.

Hence G = (A, B) is a complete bipartite graph with a proper edge-coloring. \Box

Lemma 2 Let G be a colored graph on $n \ge 6$ vertices such that $d^c(u) + d^c(v) \ge n$ for every edge $uv \in E(G)$. Let x be a vertex in G such that $d^c(x) = \delta^c(G)$ and let G' = G - x. If G' is a properly colored complete bipartite graph and G is not trianglefree, then G contains a rainbow triangle.

Proof Let *G'* be a properly colored $K_{k,n-1-k} = (A,B)$. Then for any vertices $a_0 \in A$ and $b_0 \in B$, we have $d_{G'}^c(a_0) = n - k - 1$ and $d_{G'}^c(b_0) = k$. Let $A' = N(x) \cap A$ and $B' = N(x) \cap B$. Since *G* is not triangle-free, we have $A' \neq \emptyset$ and $B' \neq \emptyset$.

Claim 1 For any $a \in A'$ and $b \in B'$, $d_{G'}^c(a) \ge n/2 - 1$ and $d_{G'}^c(b) \ge n/2 - 1$.

Proof Since $d^c(a) \ge d^c(x) \ge n - d^c(a)$ and $d^c(b) \ge d^c(x) \ge n - d^c(b)$, we have $d^c(a) \ge n/2$ and $d^c(b) \ge n/2$. So we obtain $d^c_{G'}(a) \ge d^c(a) - 1 \ge n/2 - 1$ and $d^c_{G'}(b) \ge d^c(b) - 1 \ge n/2 - 1$.

Claim 2 $d^{c}(x) \ge 3$.

Proof Choose $a \in A'$ and $b \in B'$. Then

$$d_{G'}^c(a) + d_{G'}^c(b) = n - 1.$$
 (2)

If *n* is odd, then $n \ge 7$. By Claim 1 and (2), $d_{G'}^c(a) = d_{G'}^c(b) = (n-1)/2$. Thus $d^c(b) \le d_{G'}^c(b) + 1 = (n+1)/2$. So $d^c(x) \ge n - d^c(b) \ge (n-1)/2 \ge 3$.

If *n* is even. By Claim 1 and (2), we have $\min\{d_{G'}^c(a), d_{G'}^c(b)\} = n/2 - 1$. Thus $\min\{d^c(a), d^c(b)\} \le \min\{d_{G'}^c(a), d_{G'}^c(b)\} + 1 = n/2$. So $d^c(x) \ge n - \min\{d^c(a), d^c(b)\} \ge n/2 \ge 3$.

Claim 2 implies that there exist $a_1 \in A'$ and $b_1 \in B'$ such that $C(xa_1) \neq C(xb_1)$. Let $C(xa_1) = 1$ and $C(xb_1) = 2$. Now, we will prove by contradiction.

Suppose that *G* contains no rainbow triangles. Then $C(a_1b_1) \in \{1,2\}$. Without loss of generality, let $C(a_1b_1) = 1$. Then $d^c(a_1) = d^c_{G'}(a_1)$. Hence, for any $b \in B$, we get $d^c(b) \ge n - d^c(a_1) = n - d^c_{G'}(a_1) = d^c_{G'}(b) + 1$. Thus B' = B and $d^{C(xb)}(b) = 1$. Since $|B'| = |B| = d^c_{G'}(a_1) \ge n/2 - 1 \ge 2$, we have $B' \setminus \{b_1\} \ne \emptyset$. Let *b* be a vertex

Since $|B'| = |B| = d_{G'}^c(a_1) \ge n/2 - 1 \ge 2$, we have $B' \setminus \{b_1\} \ne \emptyset$. Let *b* be a vertex in $B' \setminus \{b_1\}$. Consider the triangle xa_1b . Since $d^{C(xb)}(b) = 1$ and *G'* is properly colored, we have $C(xb) = C(xa_1) = 1$. This means that C(xb) = 1 for every vertex $b \in B' \setminus \{b_1\}$.

Furthermore, by Claim 2, there is a vertex $a_2 \in A'$ such that $C(xa_2) \notin \{1,2\}$. Let $C(xa_2) = 3$. Let b_2 be a vertex in $B' \setminus \{b_1\}$. Then $C(xb_2) = 1$. Since the triangle xa_2b_1 is not rainbow and $d^{C(xb_1)}(b_1) = 1$, we have $C(a_2b_1) = 3$. Similarly, consider the triangle xa_2b_2 and the fact that $d^{C(xb_2)}(b_2) = 1$. We get $C(a_2b_2) = 3$. This contradicts that G' is a properly colored graph.

3 Proofs of Theorems

Proof of Theorem 4. Suppose the contrary. Let *G* be a counterexample with |V(G)| + |E(G)| as small as possible. Let *xy* be an edge of *G*. Then

$$n-1 \ge \max\{d^{c}(x), d^{c}(y)\} \ge (d^{c}(x) + d^{c}(y))/2 \ge (n+1)/2$$

This implies that $n \ge 3$. If $\delta^c(G) \ge (n+1)/2$, then by Theorem 1, *G* contains a rainbow triangle, a contradiction. So there must be a vertex $x \in V(G)$ such that $d^c(x) < (n+1)/2$. Let G' = G - x.

Claim 1 E(G') is nonempty.

Proof If d(x) = 0, then there is nothing to prove. If d(x) > 0, then there exists a vertex $y \in N(x)$ and $d(y) \ge d^c(y) \ge n+1-d^c(x) > (n+1)/2 \ge 2$. So $d_{G'}(y) = d(y) - 1 > 1$. This shows that E(G') is nonempty.

Claim 2 For any edge $uv \in E(G')$, $d_{G'}^c(u) + d_{G'}^c(v) \ge n$.

Proof If $u \notin N(x)$ or $v \notin N(x)$, then $d_{G'}^c(u) + d_{G'}^c(v) \ge d^c(u) + d^c(v) - 1 \ge n$. If $u, v \in N(x)$, then $d^c(u) > (n+1)/2$ and $d^c(v) > (n+1)/2$. Thus $d_{G'}^c(u) + d_{G'}^c(v) \ge d^c(u) + d^c(v) - 2 > n - 1$. Hence, $d_{G'}^c(u) + d_{G'}^c(v) \ge n$.

By Claims 1 and 2, G' is a smaller counterexample, a contradiction.

Proof of Theorem 5.

Case 1 n = 5.

If *G* is triangle-free, then by Lemma 1, *G* is a properly colored complete bipartite graph, thus $G \in \mathscr{G}_1^c$. Now, suppose that *G* contains a triangle. Let $S = \{v : d^c(v) \le 2\}$ and $T = \{v : d^c(v) \ge 3\}$.

Claim 1 *S* is an independent set and *T* is a clique with $|T| \ge 2$.

Proof Since $d^c(u) + d^c(v) \ge 5$ for every edge $uv \in E(G)$, *S* is an independent set. Furthermore, we have $|T| \ge 1$ by the fact that $E(G) \ne \emptyset$. If |T| = 1, then *G* is a bipartite graph, this contradicts that *G* contains a triangle. So we have $|T| \ge 2$. Now we will prove that *T* is a clique by contradiction.

Assume that there are $u, v \in T$ such that $uv \notin E(G)$. Then d(u) = d(v) = 3 and $d^c(u) = d^c(v) = 3$. Let $\{x, y, z\} = V(G) \setminus \{u, v\}$. Let C(ux) = 1, C(uy) = 2 and C(uz) = 3. Since *G* is not a bipartite graph, the edge-set of $G[\{x, y, z\}]$ is nonempty. So there exists a vertex in $\{x, y, z\}$, say *x*, satisfying that $d^c(x) \ge 3$. Furthermore, there is a vertex $s \in \{y, z\}$ such that $xs \in E(G)$ and $C(xs) \neq 1$. Without loss of generality, let s = y. Then C(xy) = 2. Now consider the triangle *vxy*. We have C(xv) = 2 or C(yv) = 2.

If C(xv) = 2, then $xz \in E(G)$ and C(xz) = 3. Now, xzv is a triangle, and $C(zv) \neq C(xv)$. So C(vz) = C(xz) = 3. Note that $d^c(z) \ge 5 - d^c(v) = 2$. So $yz \in E(G)$ and $C(yz) \neq 3$. Since xyz is a triangle but not rainbow, we have C(yz) = 2, thus $d^c(y) \le 2$ and for the edge yz we have $d^c(y) + d^c(z) \le 4 < 5$, a contradiction.

If C(yv) = 2, then $d^c(y) \le 2$. Furthermore, we have $d^c(y) \ge 5 - d^c(u) = 2$. So $d^c(y) = 2$. This implies that $yz \in E(G)$ and C(yz) = 3. Since $d^c(z) \ge 5 - d^c(y) = 3$, we have $C(vz) \ne 3$. Consider the triangle yzv. We have C(zv) = 2. However, this contradicts that $C(vy) \ne C(vz)$.

In summary, |T| is a clique.

Claim 2 |T| = 2.

Proof By contradiction.

If |T| = 5. By Theorem 1, *G* contains a rainbow triangle, a contradiction.

If |T| = 4. By Claim 1, $G[T] \cong K_4$. We first prove that $d_{G[T]}^c(v) = 2$ for every vertex $v \in T$. Since $3 \ge d_{G[T]}^c(v) \ge d^c(v) - 1 \ge 2$, it is sufficient to show that $d_{G[T]}^c(v) \ne 3$ for every vertex $v \in T$. Suppose that this is not true. Then there is a vertex $v_0 \in T$ such that $d_{G[T]}^c(v_0) = 3$. Let $T = \{v_0, v_1, v_2, v_3\}$. Without loss of generality, let $C(v_0v_i) = i$ (i = 1, 2, 3) and let $C(v_1v_2) = 1$. To guarantee that $d_{G[T]}^c(v_i) \ge 2$ (i = 1, 3), we have $C(v_1v_3) = 3$ and $C(v_3v_2) = 2$ by considering triangles $v_0v_1v_3$ and $v_0v_2v_3$. Thus, we obtain a rainbow triangle $v_1v_2v_3$, a contradiction. So for every vertex $v \in T$, $d_{G[T]}^c(v) = 1$.

2. Let $\{x\} = V(G) \setminus T$. We have $C(xv_i) \in E(G)$ and $d_G^{C(xv_i)}(v_i) = 1$ (i = 0, 1, 2, 3). Since *G* contains no rainbow triangles, $C(xv_i) = C(xv_j)$ (i, j = 0, 1, 2, 3). Thus $d^c(x) = 1$ and $d^c(x) + d^c(v_0) = 4 < 5$, a contradiction.

If |T| = 3. Let $T = \{x, y, z\}$ and $S = \{u, v\}$. By Claim 1, *xyz* is a triangle and $uv \notin E(G)$. Furthermore, we can assume that C(xy) = C(xz) = 1, C(ux) = 2 and C(vx) = 3. This implies that $d^c(x) = 3$ and $d^c(u) = d^c(v) = 2$. Thus, there exists a vertex $s \in \{y, z\}$ such that $C(us) \neq C(us)$. Combining this with the fact that $C(us) \neq C(xy)$ and $C(ux) \neq C(xz)$, we have C(us) = C(xs). Without loss of generality, let s = y. Then C(uy) = 1. Now, consider that $d^c(y) \ge 3$ and $d^c(v) = 2$. We have C(yv) = C(xv) = 3 and C(vz) = C(xz) = 1. Note that the edge *yz* is contained in the triangle *vyz*. So C(yz) = 1 or 3. However, this implies that $d^c(y) \le 2$, a contradiction.

Thus we have $|T| \le 2$. By Claim 1, we get |T| = 2.

Now, let $T = \{u, v\}$ and $S = \{x, y, z\}$. By Claim 1, $uv \in E(G)$ and S is an independent set. If $d^c(x) = d^c(y) = d^c(z) = 1$, then $d^c(u) = d^c(v) = 4$. Thus, obviously,

 $G \in \mathscr{G}_2^c$. If there is a vertex in *S*, say *x*, satisfying $d^c(x) = 2$, then $C(xu) \neq C(xv)$. Since *xuv* is not a rainbow triangle, we can assume that C(xu) = C(uv). Thus we have $yu, zu \in E(G), d^c(u) = 3, C(yu) \neq C(uv), C(zu) \neq C(uv)$ and $d^c(y) = d^c(z) = 2$. Since *yuv* and *zuv* are not rainbow triangles, we have C(yv) = C(zv) = C(uv). This implies that $d^c(v) \leq 2$, a contradiction.

Case 2 $n \ge 6$.

We prove by induction. Note that Theorem 5 is ture for graphs on 5 vertices. Assume that it is true for graphs of order n - 1 ($n \ge 6$). We will prove that it is also true for graphs of order n.

Let *G* be a graph on $n \ge 6$ vertices. Since *G* contains no rainbow triangles, by Theorem 1, we have $\delta^c(G) \le n/2$. If *G* is triangle-free, by Lemma 1, *G* is a complete bipartite graph with a proper edge-coloring. If $\delta^c(G) = n/2$, by Theorem 3, *n* is even and *G* is a properly colored $K_{n/2,n/2}$. In both cases, we have $G \in \mathscr{G}_1^c$. Now, consider the case that $\delta^c(G) < n/2$ and *G* is not triangle-free. Let *x* be a

Now, consider the case that $\delta^c(G) < n/2$ and *G* is not triangle-free. Let *x* be a vertex in *G* such that $d^c(x) = \delta^c(G)$. Let G' = G - x. Similar to the proof of Theorem 4, we have $E(G') \neq \emptyset$ and $d^c_{G'}(u) + d^c_{G'}(v) \ge n - 1$ for every edge $uv \in E(G')$. This implies that *G'* satisfies the conditions in Theorem 5. By assumption, $G' \in \mathscr{G}_1^c \cup \mathscr{G}_2^c$. However, by Lemma 2, *G'* is not a properly colored bipartite graph. Hence, $G' \in \mathscr{G}_2^c$. Now, we will prove that $G \in \mathscr{G}_2^c$. Without loss of generality, let

$$V(G') = \{u_1, u_2, v_1, v_2, \dots, v_{n-3}\},\$$

$$E(G') = \{u_1u_2\} \cup \{u_iv_j : i = 1, 2; j = 1, 2, \dots, n-3\},\$$

$$C(u_1u_2) = 0, C(u_iv_j) = j, (i = 1, 2; j = 1, 2, \dots, n-3).$$

Thus we have

.

(

$$d_{G'}^c(u_1) = d_{G'}^c(u_2) = n - 2,$$

 $d_{G'}^c(v_i) = 1, (i = 1, 2, ..., n - 3).$

Since

$$d^{c}(x) + d^{c}(v_{i}) \leq 2d^{c}(v_{i}) \leq 2d^{c}_{G'}(v_{i}) + 2 = 4 < n \ (i = 1, 2, \dots, n-3),$$

we have

$$N(x) \subseteq \{u_1, u_2\},\$$

$$C(v_i) = d_{G'}^c(v_i) = 1, (i = 1, 2, \dots, n-3).$$

Furthermore, we get

ď

$$n \le d^c(u_j) + d^c(v_1) \le d^c_{G'}(u_j) + 2 = n, (j = 1, 2).$$

This implies that

$$d^{c}(u_{i}) = d^{c}_{C'}(u_{i}) + 1, (i = 1, 2).$$

Thus

$$\{u_1, u_2\} \subseteq N(x),$$

$$1 \le d^c(x) \le d^c(v_1) = 1,$$

Now, $N(x) = \{u_1, u_2\}$, $d^c(u_1) = d^c(u_2) = n - 1$ and $d^c(x) = d^c(v_i) = 1$ for i = 1, 2, ..., n - 3. This implies that $G \in \mathscr{G}_2^c$. The proof is complete.

References

- 1. J.A. Bondy, Pancyclic graphs I, J. Combin. Theory, 11, 80-84 (1971)
- 2. J.A. Bondy, U.S.R. Murty, Graph Theory with Application, Macmillan London and Elsevier, New York (1976)
- 3. M. Kano, X. Li, Monochromatic and heterochromatic subgraphs in edge-colored graphs a survey, Graphs Combin., 24, 237–263 (2008)
- 4. H. Li, Rainbow C₃'s and C₄'s in edge-colored graphs, Discrete Math., 313, 1893–1896 (2013)
- B. Li, B. Ning, C. Xu, S. Zhang, Rainbow triangles in edge-colored graphs, European J. Combin., 36, 453–459 (2014)
- H. Li, G. Wang, Color degree and heterochromatic cycles in edge-colored graphs, RR L.R.I No., 1460, (2006)
- 7. H. Li, G. Wang, Color degree and heterochromatic cycles in edge-colored graphs, European J. Combin., 33, 1958–1964 (2012)