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Abstract

Let G be a graph on n ≥ 3 vertices. A graphG is almost distance-hereditary if each

connected induced subgraph H of G has the property dH(x, y) ≤ dG(x, y) + 1 for any

pair of vertices x, y ∈ V (H). Adopting the terminology introduced by Broersma et al.

and C̆ada, a graph G is called 1-heavy if at least one of the end vertices of each induced

subgraph of G isomorphic to K1,3 (a claw) has degree at least n/2, and is called claw-

heavy if each claw of G has a pair of end vertices with degree sum at least n. In this

paper we prove the following two theorems: (1) Every 2-connected, claw-heavy and

almost distance-hereditary graph is Hamiltonian. (2) Every 3-connected, 1-heavy and

almost distance-hereditary graph is Hamiltonian. The first result improves a previous

theorem of Feng and Guo [J.-F. Feng and Y.-B. Guo, Hamiltonian cycle in almost

distance-hereditary graphs with degree condition restricted to claws, Optimazation

57 (2008), no. 1, 135–141]. For the second result, its connectedness condition is

sharp since Feng and Guo constructed a 2-connected 1-heavy graph which is almost

distance-hereditary but not Hamiltonian.

Keywords: Hamilton cycle; Almost distance-hereditary graph; Claw-free graph; 1-
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1 Introduction

In this paper, we only consider the graphs which are finite, undirected and without multi-

edges and loops. For terminology and notation not defined here, we refer to Bondy and

Murty [1].
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Let G be a graph with vertex set V (G) and H be a subgraph of G. For a vertex

v ∈ V (G), we denote by NH(v) the set of vertices which are adjacent to v in H, and by

dH(v) = |NH(v)| the degree of v in H. For two vertices x, y ∈ V (G), an (x, y)-path in H is

a path starting from x to y with all vertices in H. The distance of x and y in H, denoted

by dH(x, y), is defined as the length of a shortest (x, y)-path in H. When there is no

danger of ambiguity, we use N(v), d(v) and d(x, y) instead of NG(v), dG(v) and dG(x, y),

respectively.

A graph is called Hamiltonian if it contains a Hamilton cycle, i.e., a cycle passing

through all the vertices of the graph. The study of cycles, especially Hamilton cycles, may

be one of the most important and most studied areas of graph theory. It is well-known

that to determine whether a given graph contains a Hamilton cycle is NP-complete,

shown by Karp [2]. However, if we only consider some restricted graph classes, then the

situation is completely changed. A graph G is called distance-hereditary if each connected

induced subgraph H has the property that dH(x, y) = dG(x, y) for any pair of vertices

x, y in H. This concept was introduced by Howorka [3] and a complete characterization

of distance-hereditary graphs could be found in [3]. In 2002, Hsieh, Ho, Hsu and Ko [4]

obtained an O(|V | + |E|)-time algorithm to solve the Hamiltonian problem on distance-

hereditary graphs. Some other optimization problems can also be solved in linear time for

distance-hereditary graphs although they are proved to be NP-hard for general graphs.

For references in this direction, we refer to [5, 6].

A graph G is called almost distance-hereditary if each connected induced subgraph H

of G has the property dH(x, y) ≤ dG(x, y) + 1 for any pair of vertices x, y ∈ V (H). For

some properties and a characterization of almost-distance hereditary graphs, we refer to

[7].

Let G be a graph. An induced subgraph of G isomorphic to K1,3 is called a claw. The

vertex of degree 3 in the claw is called its center and the other vertices are its end vertices.

G is called claw-free if G contains no claw. Throughout this paper, whenever the vertices

of a claw are listed, its center is always the first one.

Many results about the existence of Hamilton cycles in claw-free graphs have been

obtained. In particular, Feng and Guo [8] gave the following result on Hamiltonicity of

almost distance-hereditary claw-free graphs.

Theorem 1 (Feng and Guo [8]). Let G be a 2-connected claw-free graph. If G is almost

distance-hereditary, then G is Hamiltonian.

Let G be a graph on n vertices. A vertex v of G is called heavy if d(v) ≥ n/2. Broersma

et al. [9] introduced the concepts of 1-heavy graph and 2-heavy graph. Later, Fujisawa and
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Yamashita [10] and C̆ada [11] introduced the concept of claw-heavy graphs, independently.

Following [9, 10, 11], we say that a claw in G is 1-heavy (2-heavy) if at least one (two) of

its end vertices is (are) heavy. G is called 1-heavy (2-heavy) if every claw of it is 1-heavy

(2-heavy), and called claw-heavy if every claw of it has two end vertices with degree sum

at least n. It is easily seen that every claw-free graph is 1-heavy (2-heavy, claw-heavy),

every 2-heavy graph is claw-heavy and every claw-heavy graph is 1-heavy. But not every

claw-heavy graph is 2-heavy, and not every 1-heavy graph is claw-heavy.

In [12], Feng and Guo extended Theorem 1 to a larger graph class of 2-heavy graphs.

Theorem 2 (Feng and Guo [12]). Let G be a 2-connected 2-heavy graph. If G is almost

distance-hereditary, then G is Hamiltonian.

Feng and Guo [12] also constructed a 2-connected 1-heavy graph which is almost

distance-hereditary but not Hamiltonian. Thus it is natural to ask which is the mini-

mum connectivity for a 1-heavy almost distance-hereditary graph under this connectivity

condition to be Hamiltonian.

Motivated by [9, 13, 14, 15], in this paper we obtain the following two theorems which

extend Theorem 1 and Theorem 2. In particular, Theorem 3 improves Theorem 2, and

Theorem 4 answers the problem proposed above.

Theorem 3. Let G be a 2-connected claw-heavy graph. If G is almost distance-hereditary,

then G is Hamiltonian.

Theorem 4. Let G be a 3-connected 1-heavy graph. If G is almost distance-hereditary,

then G is Hamiltonian.

We emphasize that our technique of proofs is different from Feng and Guo [12]. One

of our main tools is the so called ”Ore-cycle” (motivated by Lemma 3 in [13]) introduced

by Li et al. [16].

Remark 1. The graph in Fig.1 shows that the result in Theorem 3 indeed strengthen that

in Theorem 2. As shown in [13, Fig.2], let n ≥ 10 be an even integer and Kn/2 +Kn/2−3

denote the join of two complete graphs Kn/2 and Kn/2−3. Choose a vertex y ∈ V (Kn/2)

and construct a graph G with V (G) = V (Kn/2+Kn/2−3)∪{v, u, x} and E(G) = E(Kn/2+

Kn/2−3)∪{uv, uy, ux}∪{vw, xw : w ∈ V (Kn/2−3)}. It is easy to see thatG is a Hamiltonian

graph satisfying the condition of Theorem 3, but not the condition of Theorem 2.

We postpone the proofs of Theorem 3 and 4 to Section 3.
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2 Preliminaries

Let G be a graph on n vertices and k ≥ 3 be an integer. Recall that a vertex of degree

at least n/2 in G is a heavy vertex ; otherwise it is light. A claw in G is called a light

claw if all its end vertices are light, and is called an o-light claw if any pair of end

vertices has degree sum less than n. A cycle in G is called a heavy cycle if it contains

all heavy vertices of G. Following [16], we use Ẽ(G) to denote the set {uv : uv ∈ E(G)

or d(u) + d(v) ≥ n, u, v ∈ V (G)}. A sequence of vertices C = v1v2 . . . vkv1 is called an

Ore-cycle or briefly, o-cycle of G, if we have vivi+1 ∈ Ẽ(G) for every i ∈ {1, 2, · · · , k},

where v1 = vk+1.

Let G be a graph and k be a nonnegative integer. For a cycle C of G and a vertex

u ∈ V (G)\V (C), a subgraph F of G is said to be a (u,C; k)-fan if F is a union of paths

P1, P2, . . . , Pk, where Pi is a (u,wi)-path (1 ≤ i ≤ k), Pi ∩ C = {wi} (1 ≤ i ≤ k) and

Pi ∩Pj = {u} for 1 ≤ i < j ≤ k. In the following, we use F = (u;P1, P2, . . . , Pk) to denote

the fan. The vertices in V (F )\{w1, w2, . . . , wk} are called internal vertices of F.

We need some notations from [13]. Let H be a path or a cycle with a given orientation.

We denote by
←−
H the same graph as H but with the reverse orientation. For a vertex

v ∈ V (H), we use v+H to denote the successor of v on H, and v−H to denote its predecessor.

If S ⊆ V (H), then define S+

H = {v+H : v ∈ S} and S−

H = {v−H : v ∈ S}. If there is no danger

of ambiguity, we denote v+H , v−H , S+

H and S−

H by v+, v−, S+ and S−, respectively. For

two vertices u, v ∈ V (H), we denote by H[u, v] the segment of H from u to v, and denote

H(u, v), H[u, v) and H(u, v] by the paths H[u, v]−{u, v}, H[u, v]−{v} and H[u, v]−{u},

respectively.

To prove Theorems 3 and 4, the following six lemmas are needed. In particular, similar

proofs of the facts in Lemma 3 can be found in [13, 16] (for example, see Claims 1-4 of

Theorem 8 in [16]). For the convenience of the readers, we write the detailed proofs here.

Lemma 1 (Bollobás and Brightwell [17], Shi [18]). Every 2-connected graph contains a

heavy cycle.

Lemma 2 (Li, Wang, Ryjáček, Zhang [16]). Let G be graph and let C ′ be an o-cycle of

G. Then there exists a cycle C of G such that V (C ′) ⊆ V (C).

Lemma 3. Let G be a non-Hamiltonian graph on n vertices, C be a longest cycle (a

longest heavy cycle) of G, R a component of G − V (C), and A = {v1, v2, . . . , vk} the set

of neighbors of R on C. Let u ∈ V (R) and vi, vj ∈ A. Then there hold

(a) uv−i /∈ Ẽ(G), uv+i /∈ Ẽ(G); (b) v−i v
−

j /∈ Ẽ(G), v+i v
+

j /∈ Ẽ(G); and (c) if v−i v
+

i ∈ Ẽ(G),

then viv
−

j /∈ Ẽ(G), viv
+

j /∈ Ẽ(G).
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Furthermore, if G is a 2-connected claw-heavy graph, then

(d) v−i v
+

i ∈ Ẽ(G) and v−j v
+

j ∈ Ẽ(G); (e) v−i v
+

i ∈ E(G) or v−j v
+

j ∈ E(G).

Proof. (a) Suppose that uv−i ∈ Ẽ(G). Then C ′ = uviC[vi, v
−

i ]v
−

i u is an o-cycle of length

longer than C, a contradiction. The other assertion can be proved similarly.

(b) Suppose that v−i v
−

j ∈ Ẽ(G). Then C ′ = uvjC[vj, v
−

i ]v
−

i v
−

j

←−
C [v−j , vi]viu is an o-cycle

of length longer than C, a contradiction. The other assertion can be proved similarly.

(c) Suppose that viv
−

j ∈ Ẽ(G). Then C ′ = viuvjC[vj , v
−

i ]v
−

i v
+

i C[v+i , v
−

j ]v
−

j vi is an o-

cycle of length longer than C, a contradiction. The other assertion can be proved similarly.

(d) If v−i v
+

i /∈ E(G), then by (a), we know uv−i /∈ E(G), uv+i /∈ E(G). Thus

{vi, u, v
−

i , v
+

i } induces a claw. Since G is claw-heavy, by (a), we have d(v−i ) + d(v+i ) ≥ n.

This implies that v−i v
+

i ∈ Ẽ(G). If v−i v
+

i ∈ E(G), then obviously v−i v
+

i ∈ Ẽ(G). The

other assertion can be proved similarly.

(e) Suppose that v−i v
+

i /∈ E(G) and v−j v
+

j /∈ E(G). By (d), we have d(v−i )+ d(v+i ) ≥ n

and d(v−j ) + d(v+j ) ≥ n. This implies that d(v−i ) + d(v−j ) ≥ n or d(v+i ) + d(v+j ) ≥ n. Thus

v−i v
−

j ∈ Ẽ(G) or v+i v
+

j ∈ Ẽ(G), a contradiction to (b).

Lemma 4. Let G be a non-Hamiltonian graph, C be a longest cycle (a longest heavy cycle)

of G, R a component of G− V (C), and A = {v1, v2, . . . , vk} the set of neighbors of R on

C. Let vi, vj ∈ A. Then there hold

(a) for l ∈ V (C(vi, v
−

j ]), if v
−

i l ∈ Ẽ(G), then l−v+j /∈ Ẽ(G) and l+v+j /∈ Ẽ(G);

(b) for l ∈ V (C[vi, v
−

j ]) ∩ N(vi), if v
−

i v
+

i ∈ Ẽ(G), then l−v−j /∈ Ẽ(G) and l+v+j /∈ Ẽ(G);

and

(c) for l ∈ V (C[vi, v
−

j ]) ∩N(vi) ∩N(v−j ), if v
−

i v
+

i ∈ Ẽ(G), then l−l+ /∈ Ẽ(G).

Proof. Let P be a (vi, vj)-path with all internal vertices in R.

(a) Suppose l−v+j ∈ Ẽ(G). Then C ′ =
←−
P C[vi, l

−]l−v+j C[v+j , v
−

i ]v
−

i lC[l, vj ] is an o-

cycle such that V (C) ⊂ V (C ′). By Lemma 2, there is a longer cycle C ′′ containing all

vertices in C, that is, a longer cycle (a longer heavy cycle) in G, contradicting the choice

of C. Suppose l+v+j ∈ Ẽ(G). Then C ′ = P
←−
C [vj , l

+]l+v+j C[v+j , v
−

i ]v
−

i l
←−
C [l, vi] is an o-cycle

such that V (C) ⊂ V (C ′), a contradiction.

(b) Suppose l−v−j ∈ Ẽ(G). Then C ′ = PC[vj , v
−

i ]v
−

i v
+

i C[v+i , l
−]l−v−j

←−
C [v−j , l]lvi is

an o-cycle such that V (C) ⊂ V (C ′), a contradiction. Suppose l+v+j ∈ Ẽ(G). Then

C ′ = P
←−
C [vj , l

+]l+v+j C[v+j , v
−

i ]v
−

i v
+

i C[v+i , l]lvi is an o-cycle such that V (C) ⊂ V (C ′), a

contradiction.

(c) Suppose l−l+ ∈ Ẽ(G). Then C ′ = PC[vj, v
−

i ]v
−

i v
+

i C[v+i , l
−]l−l+C[l+, v−j ]v

−

j lvi is

an o-cycle such that V (C) ⊂ V (C ′), a contradiction.
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Lemma 5. Let G be a 3-connected 1-heavy non-Hamiltonian graph and C be a longest

heavy cycle of G, R a component of G − V (C). Let u ∈ V (R), and v0, v1, v2 be three

neighbors of u which are in the order around C and v−
1
, v+

1
are light. Let li ∈ C[v+i , v

−

i+1
)

such that v−i+1
li ∈ E(G) and livi ∈ E(G), si ∈ C(v+i−1

, v−i ] such that v+i−1
si ∈ E(G) and

sivi ∈ E(G) (where the indices are taken modulo 3).

(a) If v−
2
v+
2

/∈ E(G) and v−
0
v+
0

/∈ E(G), then (i) v−
1
v2 /∈ E(G), (ii) v1l

−

1
∈ E(G) and

v1s
+

1
∈ E(G), (iii) v1, l

+

1
, l−

1
, s−

1
, s+

1
, l1, s1 are light;

(b) If v−
2
v+
2
∈ E(G) and v−

0
v+
0
∈ E(G), then {v+

1
, l+

0
, s+

2
} induces an independent set.

Proof. By Lemma 3 (a), uv−
1

/∈ E(G) and uv+
1

/∈ E(G). If v−
1
v+
1

/∈ E(G), then since

u, v−
1
, v+

1
are light, {v1, u, v

−

1
, v+

1
} induces a light claw, a contradiction. Thus v−

1
v+
1
∈

E(G).

(a) Since v−
2
v+
2

/∈ E(G) and v−
0
v+
0

/∈ E(G), we have v−
2
, v+

0
are heavy or v+

2
, v−

0
are

heavy by Lemma 3 (b).

(i) Suppose v−
1
v2 ∈ E(G) and v−

2
, v+

0
are heavy. Let C ′ = v−

1
v2C[v2, v0]v0uv1C[v1, v

−

2
]v−

2

v+
0
C[v+

0
, v−

1
]. Then C ′ is an o-cycle such that V (C) ⊂ V (C ′), a contradiction.

Suppose v−
1
v2 ∈ E(G) and v+

2
, v−

0
are heavy. Now {v2, v

−

2
, u, v−

1
} induces a light claw,

a contradiction.

(ii) Suppose v1l
−

1
/∈ E(G). Note that v1l

+

1
/∈ Ẽ(G) and l−

1
l+
1

/∈ Ẽ(G) by Lemma 4 (b)

and (c). Since v−
2
, v+

0
are heavy or v+

2
, v−

0
are heavy, by Lemma 3 (c) and Lemma 4 (b),

v1, l
+

1
, l−

1
are light. Now {l1, l

+

1
, v1, l

−

1
} induces a light claw, a contradiction. Similarly, we

can prove that v1s
+

1
∈ E(G).

(iii) By Lemma 3 (c) and Lemma 4 (b), v1, l
+

1
, l−

1
, s−

1
, s+

1
are light. Since v1l

−

1
∈ E(G),

we obtain v+
2
l1 /∈ Ẽ(G) and v+

0
l1 /∈ Ẽ(G) by Lemma 4 (b). Note that either v+

0
or v+

2
is a

heavy vertex. This implies l1 is a light vertex. The other assertion that s1 is light can be

proved similarly.

(b) Since v0l0 ∈ E(G) and v2s2 ∈ E(G), v+
1
l+
0

/∈ Ẽ(G) and v+
1
s+
2

/∈ Ẽ(G) by Lemma 4

(b). Furthermore, we can prove that l+
0
s+
2

/∈ E(G). (Otherwise, C ′ = v0uv2s2
←−
C [s2, l0

+]l0
+s+

2

C[s+
2
, v−

2
]v−

2
v+
2
C[v+

2
, v−

0
]v−

0
v+
0
C[v+

0
, l0]l0v0 is an o-cycle such that V (C) ⊂ V (C ′), a con-

tradiction.)

Lemma 6. Let G be a non-Hamiltonian almost distance-hereditary graph, C be a longest

cycle (a longest heavy cycle) of G, R a component of G − V (C). If there exists a vertex

u ∈ V (R) such that NC(u) = {v1, v2, . . . , vr}, then there hold

(a) for any induced (u, v)-path P , where v ∈ N−

C (u) or v ∈ N+

C (u), the length of P is at

most 3;

(b) if v−i v
+

i ∈ Ẽ(G), then there exists a vertex li ∈ C[v+i , v
−

i+1
) such that v−i+1

li ∈ E(G)
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and livi ∈ E(G), and there exists a vertex si ∈ C(v+i−1
, v−i ] such that v+i−1

si ∈ E(G) and

sivi ∈ E(G);

(c) if v−i v
+

i ∈ E(G) and v−i+1
v+i+1

∈ E(G), then v+i+1
li ∈ E(G); and

(d) if v−i v
+

i ∈ E(G) and v−i+1
v+i+1

∈ E(G), then both {li, l
−

i , vi, v
−

i+1
} and {li, l

+

i , vi, v
+

i+1
}

induce claws.

Proof. (a) Suppose there exists an induced (u, v)-path P such that the length of P is at

least 4. It follows that dP (u, v) ≥ 4, contradicting the fact that dG(u, v) = 2 and G is

almost distance-hereditary.

(b) Let H = G[{u} ∪ V (C[vi, vi+1])] − {vi+1}. Since dG(v
−

i+1
, u) = 2 and G is almost

distance-hereditary, we have dH(v−i+1
, u) ≤ 3. Since v−i v

+

i ∈ Ẽ(G), by Lemma 3 (c), we

have viv
−

i+1
/∈ E(G) and dH(v−i+1

, u) = 3. It follows that dH(v−i+1
, vi) = 2. So there exists

a vertex li ∈ C[v+i , v
−

i+1
) such that v−i+1

li ∈ E(G) and livi ∈ E(G). The other assertion

can be proved similarly.

(c) Suppose v+i+1
li /∈ E(G). Let H = G[{v+i+1

, v−i+1
, li, vi, u}]. By Lemma 3 (c), viv

−

i+1
/∈

E(G) and viv
+

i+1
/∈ E(G). We can see H is an induced (u, v+i+1

)-path of length 4 in G,

contradicting Lemma 6 (a).

(d) By Lemma 3 (c) and Lemma 4 (b), we have viv
−

i+1
/∈ Ẽ(G) and l−i v

−

i+1
/∈ Ẽ(G). By

Lemma 6 (c) and Lemma 4 (b), we have vil
−

i /∈ E(G). So {li, l
−

i , vi, v
−

i+1
} induces a claw.

The other assertion can be proved similarly.

3 Proofs of Theorems 3 and 4

Proof of Theorem 3

Let G be a graph satisfying the condition of Theorem 3. Let C be a longest cycle of

G and assign an orientation to it. Suppose G is not Hamiltonian. Then V (G)\V (C) 6= ∅.

Let R be a component of G−C, and A = {v1, v2, . . . , vk} be the set of neighbors of R on

C. Since G is 2-connected, there exists a (vi, vj)-path P = viu1 . . . urvj with all internal

vertices in R, and vi, vj ∈ A. Choose P such that:

(1) |V (C(vi, vj))| is as small as possible;

(2) |V (P )| is as small as possible subject to (1).

Claim 1. There is no o-cycle C ′ in G such that V (C) ⊂ V (C ′).

Proof. Otherwise, C ′ is an o-cycle such that V (C) ⊂ V (C ′). By Lemma 2, there exists a

cycle containing all vertices in C ′ and longer than C, contradicting the choice of C.

By Lemma 3 (e), without loss of generality, assume that v−i v
+

i ∈ E(G).
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Claim 2. r = 1, that is, V (P ) = {vi, u1, vj}.

Proof. Suppose r ≥ 2. Consider H = G[V (P ) ∪ V (C[vi, vj ])]− {vj}. Since v−i v
+

i ∈ E(G),

viv
−

j /∈ E(G) by Lemma 3 (c). Thus dH(v−j , vi) ≥ 2. By the choice condition of P and

Lemma 3 (a), we have dP (vi, ur) ≥ 2 and dH(v−j , ur) = dH(v−j , vi) + dP (vi, ur) ≥ 4, which

yields a contradiction to the fact G is almost distance-hereditary and dG(v
−

j , ur) = 2.

Hence V (P ) = {vi, u1, vj}.

Claim 3. |V (C[vi, vj ])| ≥ 5.

Proof. Suppose |V (C[vi, vj ])| = 4 or |V (C[vi, vj ])| = 3. This means C[vi, vj ] = viv
+

i v
−

j vj

or C[vi, vj ] = viv
−

j vj . Let C
′ = viu1vjv

−

j v
+

j C[v+j , v
−

i ]v
−

i v
+

i vi or C
′ = viu1vjv

−

j v
+

j C[v+j , vi].

Then C ′ is an o-cycle such that V (C) ⊂ V (C ′) by Lemma 3 (d), contradicting Claim

1.

Recall that v−i v
+

i ∈ E(G). LetH = G[{u1, v
−

i }∪V (C[vi, vj ])]−{vi}. Since dG(v
−

i , u1) =

2 and G is almost distance-hereditary, dH(v−i , u1) ≤ 3. By Lemma 3 (c) and (d), we have

v−i vj /∈ E(G). By the choice of P , u1v /∈ E(G), where v ∈ C[v+i , v
−

j ]. It follows that

dH(v−i , u1) = 3 and dH(v−i , vj) = 2. By Lemma 3 (b), (c) and (d), v−i v
−

j /∈ E(G) and

v+i vj /∈ E(G). Thus there exists a vertex w ∈ C(v+i , v
−

j ) such that v−i w ∈ E(G) and

wvj ∈ E(G). Note that w is well-defined.

Claim 4. wv+j /∈ Ẽ(G).

Proof. Suppose wv+j ∈ Ẽ(G). By Lemma 4 (a), we obtain v−i w
+ /∈ Ẽ(G). Since v−i w ∈

E(G), we have vjw
+ /∈ Ẽ(G) by Lemma 4 (b) and by symmetry. Note that vjv

−

i /∈ Ẽ(G)

by Lemma 3 (c). Thus {w,w+, vj , v
−

i } induces an o-light claw in G, a contradiction.

Next we will show that {vj , u1, w, v
+

j } induces an o-light claw and get a contradiction.

Before proving this fact, the following claim is needed.

Claim 5. u1w /∈ Ẽ(G).

Proof. First we will show that w−v−i /∈ Ẽ(G). Since v−j v
+

j ∈ Ẽ(G) and vjw ∈ E(G), we

have w−v−i /∈ Ẽ(G) by Lemma 4 (b) and symmetry.

Next we will show that w−vj ∈ Ẽ(G). Suppose not. Consider the subgraph induced

by {w,w−, vj , v
−

i }. Note that vjv
−

i /∈ Ẽ(G) by Lemma 3 (c) and w−v−i /∈ Ẽ(G) by the

analysis above. Then {w,w−, vj , v
−

i } induces an o-light claw, a contradiction.

Now we will show that u1w /∈ Ẽ(G), since otherwise, C ′ = u1wC[w, v−j ]v
−

j v
+

j C[v+j , w
−]w−

vju1 is an o-cycle such that V (C) ⊂ V (C ′), contradicting Claim 1.
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By Claims 4, 5 and Lemma 3 (a), {vj , u1, w, v
+

j } induces an o-light claw, contradicting

the fact G is claw-heavy. The proof of Theorem 3 is complete. �

Proof of Theorem 4.

Let G be a graph satisfying the condition of Theorem 4. By Lemma 1, there exists a

heavy cycle in G. Now choose a longest heavy cycle C of G and assign an orientation to it.

Suppose G is not Hamiltonian. Then V (G)\V (C) 6= ∅. Let R be a component of G − C

and A = {w1, w2, . . . , wk} be the set of neighbors of R on C. Since G is 3-connected,

for any vertex u of R, there exists a (u,C; 3)-fan F such that F = (u;Q1, Q2, Q3), where

Q1 = ux1 . . . xr1wi, Q2 = uy1 . . . yr2wj and Q3 = uz1 . . . zr3wk, and wi, wj , wk are in the

order of the orientation of C.

By the choice of C, all internal vertices of F are not heavy. By Lemma 3 (b), there

is at most one heavy vertex in N+

C (R) and at most one heavy vertex in N−

C (R). With-

out loss of generality, assume that w−

i , w
+

i are light. Hence w−

i w
+

i ∈ E(G), otherwise

{wi, w
−

i , w
+

i , xr1} induces a light claw, contradicting G is 1-heavy.

Claim 1. There exists a (u,C;3)-fan F such that V (F ) = {u,wi, wj , wk}.

Proof. Now we choose the fan F in such a way that:

(1) Q1 = uwi;

(2) |V (C[wi, wj ])| is as small as possible subject to (1);

(3) |V (Q2)| is as small as possible subject to (1) and (2);

(4) |V (C[wk, wi])| is as small as possible subject to (1), (2) and (3);

(5) |V (Q3)| is as small as possible subject to (1), (2), (3) and (4).

Since G is 3-connected, for any neighbor of C in R, say u (with uwi ∈ E(G), where

wi ∈ V (C)), there are three disjoint paths from u to C. Obviously, we can choose one

such path as uwi. Thus (1) is well-defined, and furthermore, the choice condition of F is

well-defined.

Claim 1.1. V (Q2) = {u,wj}.

Proof. Suppose V (Q2)\{u,wj} 6= ∅. Without loss of generality, set y = yr2 . Let H =

G[V (Q1) ∪ V (Q2) ∪ V (C[wi, wj ])] − {wj}. Note that w−

i w
+

i ∈ E(G). By Lemma 3 (c),

it is easy to see that wiw
−

j /∈ E(G), so dH(w−

j , wi) ≥ 2. Meantime, the choice condition

(2) implies that N(V (Q2)\{wj}) ∩ V (C(wi, wj)) = ∅. This means that dH(w−

j , y) =

dH(w−

j , wi) + dH(wi, y) ≥ 2 + dH(wi, y). Since G is almost distance-hereditary and

dG(w
−

j , y) = 2, we have dH(w−

j , y) = 3 and ywi ∈ E(G). Let F ′ = (y;Q′

1, Q
′

2, Q
′

3) such

that Q′

1 = ywi, Q
′

2 = ywj and Q′

3 = Q2[y, u]Q3[u,wk]. Then F ′ is a (y,C; 3)-fan satisfying

(1), (2) and |V (Q′

2)| = 2, contradicting the choice condition (3), a contradiction.
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Claim 1.2. V (Q3) = {u,wk}.

Proof. Suppose V (Q3)\{u,wk} 6= ∅. Without loss of generality, set z = zr3 .

If zwi /∈ E(G), then set H = G[V (Q1)∪V (Q3)∪V (C[wk, wi])]−{wk}. Since w
−

i w
+

i ∈

E(G), we obtain w+

k wi /∈ E(G) by Lemma 3 (c). This means dH(w+

k , wi) ≥ 2. By the

choice condition (4), we have N(V (Q3)\{wk})∩V (C(wk, wi)) = ∅, and hence dH(w+

k , z) =

dH(w+

k , wi) + dH(wi, z). Since zwi /∈ E(G), dH(wi, z) ≥ 2 and we get dH(w+

k , z) ≥ 4. It

yields a contradiction to the fact G is almost distance-hereditary and dG(w
+

k , z) = 2.

If zwi ∈ E(G), then set H = G[V (C[wi, wj ]) ∪ V (Q3[u, z])] − {wi}. Note that

NC(z) ∩ V (C(wi, wj ]) = ∅ (by the choice conditions (2), (5)) and NC(V (Q3)\{z, wk}) ∩

V (C(wi, wj)) = ∅ (by the choice condition (2)). Since dG(w
+

i , z) = 2 and G is al-

most distance-hereditary, dH(w+

i , z) ≤ 3. But if w+

i wj /∈ E(G), then the distance

from z to w+

i in H is at least 4, where in such a shortest path, the path Q3[z, u] con-

tributes at least 1, the path Q2[u,wj ] contributes 1, a contradiction. Thus we have

w+

i wj ∈ E(G), and hence w−

j w
+

j /∈ Ẽ(G) by Lemma 3 (c). Consider the subgraph in-

duced by {wj , w
+

i , w
+

j , u}. Since G is 1-heavy and w+

i , u are light, w+

j is heavy. Now let

H = G[{w−

i }∪V (C[wi, wj ])∪V (Q3[u, z])]−{wi}. Similarly, since dG(w
−

i , z) = 2, we have

dH(w−

i , z) = 3, and w−

i wj ∈ E(G). Consider the subgraph induced by {wj , w
−

i , w
−

j , u}.

Similarly, we can see w−

j is heavy, and hence w−

j w
+

j ∈ Ẽ(G), a contradiction. Thus

V (Q3) = {u,wk}.

By Claims 1.1 and 1.2, the proof of Claim 1 is complete.

By Claim 1, there exists a (u,C; 3)-fan F such that V (F )\V (C) = {u}. Suppose that

NC(u) = {v1, v2, . . . , vr} (r ≥ 3) and v1, v2, . . . , vr are in the order of the orientation of C.

In the following, all the subscripts of v are taken modulo r, and v0 = vr.

By Lemma 3 (b), there is at most one heavy vertex in N+

C (u) and at most one heavy

vertex in N−

C (u). Since r ≥ 3, we know that there exists vj ∈ NC(u), such that v−j , v
+

j

are light, and hence v−j v
+

j ∈ E(G) by the fact G is 1-heavy. Without loss of generality,

assume that v−
1
v+
1
∈ E(G) and v−

1
, v+

1
are light. By Lemma 6 (b), there exists a vertex

l1 ∈ C[v+
1
, v−

2
) such that v−

2
l1 ∈ E(G) and l1v1 ∈ E(G), and there exists a vertex s1 ∈

C(v+
0
, v−

1
] such that v+

0
s1 ∈ E(G) and s1v1 ∈ E(G).

We divide the proof into two cases.

Case 1. v−
2
v+
2

/∈ E(G) and v−
0
v+
0

/∈ E(G).

Both {v2, v
−

2
, v+

2
, u} and {v0, v

−

0
, v+

0
, u} induce claws. By Lemma 3 (b) and the fact G

is 1-heavy, v−
2

and v+
0

are heavy or v+
2

and v−
0

are heavy.
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Claim 2. v−
1
l1 ∈ E(G) and l1v2 ∈ E(G).

Proof. Suppose v−
1
l1 /∈ E(G). Note that uv−

1
/∈ Ẽ(G) by Lemma 3 (a). By Lemma 5 (a),

l1 is light. Now {v1, l1, u, v
−

1
} induces a light claw, a contradiction.

Suppose l1v2 /∈ E(G). Let H = G[{v−
1
, l1, v

−

2
, v2, u}]. By Lemma 3, we get uv−

2
/∈

E(G), uv−
1

/∈ E(G) and v−
1
v−
2

/∈ E(G). Note that v2v
−

1
/∈ E(G) by Lemma 5 (a). Now

G[{v−
1
, l1, v

−

2
, v2, u}] is an induced path of length 4 in G, contradicting Lemma 6 (a).

Now we consider the following two subcases.

Subcase 1.1. v−
2
, v+

0
are heavy vertices.

By Lemma 3 (a), uv+
2

/∈ Ẽ(G). By Lemma 5 (a), we have v1l
−

1
∈ E(G). Note that

l′ := l−
1
∈ N(v1) and v−

1
v+
1
∈ E(G). By Lemma 4 (b), l′+v+

2
= l1v

+

2
/∈ Ẽ(G). By Lemma

5 (a) and Lemma 3 (b), l1 and v+
2

are light. Now {v2, l1, u, v
+

2
} induces a light claw, a

contradiction.

Subcase 1.2. v+
2
, v−

0
are heavy vertices.

Consider the subgraph induced by {v+
0
, s1, l1, v2, u}. It is easily to check that v+

0
s1 ∈

E(G), l1v2 ∈ E(G) (by Claim 2) and v2u ∈ E(G). By Lemma 3 (a), v+
0
u /∈ E(G). By

Lemma 5 (a) and Lemma 4 (b), we know that v1l
−

1
∈ E(G) and v+

0
l1 /∈ E(G). Now we

obtain s1l1 /∈ E(G) or v+
0
v2 ∈ E(G) or s1v2 ∈ E(G) (Otherwise, G[{v+

0
, s1, l1, v2, u}] is an

induced path of length 4, contradicting Lemma 6 (a)).

Suppose s1l1 /∈ E(G). By Lemma 5 (a), l1, s1 are light. Now {v1, l1, s1, u} induces a

light claw, contradicting G is 1-heavy.

Suppose v+
0
v2 ∈ E(G). Consider the subgraph induced by {v2, v

−

2
, v+

0
, u}. By Lemma

3 (a), we have uv−
2

/∈ E(G) and uv+
0

/∈ E(G). Since v−
2
, v+

0
, u are light and G is 1-heavy,

v+
0
v−
2
∈ E(G). By Lemma 5 (a) and Claim 2, v1l

−

1
∈ E(G) and l1v2 ∈ E(G). Now

C ′ = v1l
−

1

←−
C [l−

1
, v+

1
]v+

1
v−
1

←−
C [v−

1
, v+

0
]v+

0
v−
2

←−
C [v−

2
, l1]l1v2C[v2, v0]v0uv1 is an o-cycle such that

V (C) ⊂ V (C ′), a contradiction.

Suppose s1v2 ∈ E(G). Consider the subgraph induced by {v2, v
−

2
, s1, u}. By Lemma

5 (a) and Lemma 3 (b), s1 and v−
2

are light. Since G is 1-heavy, s1v
−

2
∈ E(G). Now

C ′ = v1uv2C[v2, s1]s1v
−

2

←−
C [v−

2
, v+

1
]v+

1
s+
1
C[s+

1
, v1] is an o-cycle such that V (C) ⊂ V (C ′),

a contradiction. (First, we can prove s1v
+

1
∈ E(G). Otherwise, {v1, s1, v

+

1
, u} induces a

light claw, a contradiction. Note that v+
0
v+
1

/∈ E(G) and v+
0
s+
1

/∈ E(G) by Lemma 3 (b)

and Lemma 4 (b). Then we obtain v+
1
s+
1
∈ E(G) since otherwise {s1, v

+

0
, v+

1
, s+

1
} induces

a light claw, a contradiction.)

Case 2. v−
2
v+
2
∈ E(G) or v−

0
v+
0
∈ E(G).
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Without loss of generality (by symmetry), assume that v−
2
v+
2
∈ E(G).

Subcase 2.1. v−
0
v+
0

/∈ E(G).

By Lemma 3 (a), uv−
0

/∈ E(G) and uv+
0

/∈ E(G). Now {v0, v
−

0
, v+

0
, u} induces a claw.

Since G is 1-heavy and u is light, v−
0

is heavy or v+
0

is heavy.

Suppose v−
0

is heavy. By Lemma 3 (b), (c) and Lemma 4 (b), v−
2
, v1 and l−

1
are light.

By Lemma 6 (d), {l1, l
−

1
, v1, v

−

2
} induces a light claw, a contradiction.

Suppose v+
0

is heavy. By Lemma 3 (b), (c) and Lemma 4 (b), we can see v+
2
, v1 and

l+
1

are light. By Lemma 6 (d), {l1, l
+

1
, v1, v

+

2
} induces a light claw, a contradiction. (Note

that v−
1
v+
1
∈ E(G) and v−

2
v+
2
∈ E(G). By Lemma 6 (c), l1v

+

2
∈ E(G).)

Subcase 2.2. v−
0
v+
0
∈ E(G).

By Lemma 6 (b), there exists a vertex s2 ∈ C(v+
1
, v−

2
] such that v+

1
s2 ∈ E(G) and

s2v2 ∈ E(G).

Claim 3. (i) v1 is heavy, (ii) l−
0
, l+

0
, s−

2
, s+

2
are light.

Proof. Recall that the definition of l0 occurred in the condition of Lemma 5 before. Let

l0 ∈ C[v+
0
, v−

1
) such that v−

0
l0 ∈ E(G) and l0v0 ∈ E(G).

(i) By Lemma 6 (d), each of {l0, l
−

0
, v0, v

−

1
} and {l1, l

−

1
, v1, v

−

2
} induces a claw. Since

G is 1-heavy, at least one vertex of {l−
1
, v1, v

−

2
} is heavy.

Suppose v−
2

is heavy. By Lemma 3 (b), (c) and Lemma 4 (b), v−
1
, v0 and l−

0
are light.

Now {l0, l
−

0
, v0, v

−

1
} induces a light claw, contradicting G is 1-heavy.

Suppose l−
1
is heavy. By Lemma 6 (c), v+

2
l1 ∈ E(G). By Lemma 4 (a) and (b), v−

1
l−
1

/∈

Ẽ(G) and v0l
−

1
/∈ Ẽ(G). This implies that v0, v

−

1
are light. At the same time, we can

prove that l0
− is light. (Otherwise, C ′ = v0uv2

←−
C [v2, l1]l1v

+

2
C[v+

2
, v−

0
]v−

0
v+
0
C[v+

0
, l−

0
]l−
0
l−
1

←−
C [l−

1
, l0]lv0 is an o-cycle such that V (C) ⊂ V (C ′), a contradiction.) Now {l0, l

−

0
, v0, v

−

1
}

induces a light claw, contradicting G is 1-heavy.

Note that {l1, l
−

1
, v1, v

−

2
} induces a claw and v−

2
, l−

1
are light. Since G is 1-heavy, v1 is

heavy.

(ii) Note that v1 is heavy. If l+
0

is heavy, then C ′ = v0uv1l
+

0
C[l+

0
, v−

1
]v−

1
v+
1
C[v+

1
, v−

0
]

v−
0
v+
0
C[v+

0
, l0]l0v0 is an o-cycle such that V (C) ⊂ V (C ′), a contradiction. If l−

0
is heavy,

then C ′ = v0l0C[l0, v
−

1
]v−

1
v+
1
C[v+

1
, v−

0
]v−

0
v+
0
C[v+

0
, l−

0
]l−
0
v1uv0 is an o-cycle such that V (C) ⊂

V (C ′), a contradiction. Similarly, by symmetry, we can prove that s−
2
, s+

2
are light.

Claim 4. v−
1
l+
0
∈ E(G) and v−

1
s+
2
∈ E(G).

Proof. Suppose v−
1
l+
0

/∈ E(G). By Lemma 4 (b) and (c), v−
1
l−
0

/∈ Ẽ(G) and l−
0
l+
0

/∈ Ẽ(G).

By Claim 3, l+
0
, l−

0
are light. Now {l0, l

−

0
, l+

0
, v−

1
} induces a light claw, a contradiction.
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By Lemma 6 (c) and by symmetry, we obtain v−
1
s2 ∈ E(G). Suppose v−

1
s+
2

/∈ E(G).

By Lemma 4 (b) and (c), v−
1
s−
2

/∈ Ẽ(G) and s−
2
s+
2

/∈ Ẽ(G). By Claim 3, s+
2
, s−

2
are light.

Now {s2, s
−

2
, s+

2
, v−

1
} induces a light claw, a contradiction.

By Claim 3, Lemma 5 (b) and Claim 4, l+
0
, s+

2
are light, {v+

1
l+
0
, v+

1
s+
2
, l+

0
s+
2
}∩E(G) = ∅

and {v−
1
l+
0
, v−

1
s+
2
} ⊂ E(G). It is proved that {v−

1
, v+

1
, l+

0
, s+

2
} induces a light claw, a

contradiction.

The proof of Theorem 4 is complete. �
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