BILINEAR EXOTIC CALDERON-ZYGMUND OPERATORS

JIN BAIL JINSONG LI, AND KANGWEI LI

ABSTRACT. We introduce a bilinear extension of the so-called exotic Calderén-Zygmund
operators. These kernels arise naturally from the bilinear singular integrals associated
with Zygmund dilations. We show that such a class of operators satisfy a 7'1 theorem in
the same form as the standard Calderén-Zygmund operators. However, one-parameter
weighted estimates may fail in general, and unlike the linear case, we are not able to
provide the end-point estimates in full generality.

1. INTRODUCTION AND MAIN RESULTS

We work in R? = R x R, and if z € R2, we use (x!,2?) to denote its coordinates. Let
K :R? x R?\ {z! = ¢! or 22 = y?} — C satisfy the size estimate

1 1
(1.1) ‘K([E,y)‘ S ‘1_1 D92($,y)

=y 2% — y?|
and the mixed Holder and size estimate

|zt — w!|? 1
D@ x,y
2l — Yy 100 2 = 2] 2 (2,9)

K (2,y) = K((w',2%), )| < |

whenever |21 — w!| < |z — y!|/2, where 01,65 € (0,1] and

—0s
A
1.2 D = 1.
( ) 02(37711) <|x2—y2]+]a§1—y1| <

We also demand K to satisfy the other three symmetric mixed Holder and size estimates.
Then we call K a linear exotic Calderén-Zygmund kernel (see [10]).

The singularity of such kernels lie in between the standard Calderén-Zygmund ker-
nels and product Calderén-Zygmund kernels [5, 12, [18]]. Indeed, this can be seen directly
by the fact that for all 6, € (0, 1],

1 < 1 1 Do ( ) < 1 1
> 02\T, Y
e e T R e

So the standard Calderén-Zygmund kernels satisfy automatically, and the linear
exotic Calderén-Zygmund kernels always satisfy the size estimate of product Calderén-
Zygmund kernels as well.

The study of this class of kernels is motivated by the recent work [11], where the
singular integrals associated with Zygmund dilations are systematically studied. In
R? =R x R x R Zygmund dilations are

o=yl =

(21,2, x3) > (0121, 022, 010223).
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A key feature in the singular integrals associated with Zygmund dilations (see [8} 9} 11])
is that, in the kernel estimates there is an extra decay factor of the form
Lo
(t+)

comparing with the standard product Calderén-Zygmund kernels on R?. This motivates
the authors in [10] to consider the above exotic Calderén-Zygmund operators, which can
be seen as a counterpart of Zygmund singular integrals on R2. In fact, the definition of
exotic Calderén-Zygmund operators follows exactly the same logic, that is, comparing
with the standard product setting in R? = R x R, there is such an extra decay factor
Do, (2, y).

Extending linear results to the bilinear setting is an important topic in harmonic anal-
ysis, see [6] and [16] for instance, where the linear one-parameter and bi-parameter
Calderén-Zygmund theory are extended to the bilinear setting, respectively. Recently
in [1]], Airta, Martikainen and the third named author have extended the result in [11] to
the bilinear setting. In particular, using a bilinear variant of the Fefferman-Pipher multi-
plier (see [4]) as a model, they derived the natural kernel estimates in the bilinear setting,
and the T'1 theorem for paraproduct free bilinear singular integrals associated with Zyg-
mund dilations is also presented. The point we would like to emphasize here is that,
similar to the linear case, in the kernel estimates there is also an extra decay factor of the
form (t +¢~!)~% comparing with the standard bilinear product theory. This motivates us
to consider the decay factor

-0
ot — gt et =2t e =P+ e - 2
22 —y?| + |22 — 22| |zl =yl 4|2t =2 )

(1.3) Dy(z,y,z) := (

where |21 — y!| + |2t — 21| # 0 and |22 — y?| + |22 — 22| # 0 and 6 € (0, 2]. Here the range
of 6 coincides with that in [1]. Then combining with the standard bilinear product kernel
estimates we get the bilinear exotic Calderén-Zygmund (bilinear CZX) kernel estimates.
The detailed definition will be given in Section 2}

On the other hand, weighted estimates are also a core problem in singular integral
theory. In the linear case, weighted estimates are inequalities of the form

(1.4) [wsre<e [ifre, 1<p<s,

where w is a non-negative locally integrable function. In [10] the authors proved that
any linear exotic Calderén-Zygmund operator 7" satisfies when w is a bi-parameter
Muckenhoupt A, weight, and one can use one-parameter Muckenhoupt A4, weight if
and only if 6, = 1 (we refer the readers to Section 2| for the related notations). One of the
main goals of the paper is to extend this result to the bilinear setting.

In the multilinear setting, Lerner et al. [14] first introduced the multilinear A; weights,
which are the natural extension of Muckenhoupt A, weights since they characterize the
weighted boundedness of the multilinear maximal function and multilinear Riesz trans-
forms. For this reason, weighted estimates for multilinear (multi-parameter) singular
integrals using multilinear (multi-parameter) A; weights will be referred as genuinely
weighted estimates. In [14], the authors proved the genuinely weighted estimates of gen-
eral multilinear Calderén-Zygmund operators. However, the counterpart in the product
setting (i.e. multi-parameter setting) are only formulated recently in [16]. In this paper
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we focus on the bilinear setting. Recall that we say w = (w1, w2) is a bilinear Az weight
in R? with ' = (p1,p2) and 1/p = 1/p1 + 1/p2, where 1 < p1,pa < 00, if
] ~1 ~1
[Wa, = sup  (w)p,(wy )p, Wy )pyq < 00 w = wiws.
Q: cubes in R?

p
loc”

Wna=(ig; ,7)"

Note that in the product setting, the weights are defined similar as above, but just with
cubes replaced by rectangles. One may denote the related weighted class by A%. Similar
to the linear case, we show that the value of 6 is critical for the weighted estimates.

1.5. Theorem. Let T be a bounded operator from L? x L? — L' with a bilinear CZX kernel.

(1) If 0 < 2in (1.3), then for every p = (p1,p2) with 1 < p1,ps < coand 1/p = 1/p; +
1/p2 > 0, and for every o € A%

IT(f, g)wllLr < C([w]az)

Moreover, if W € Ag, then the operator T may fail to be bounded from LP*(w}') x
LP2(wh?) — LP(wP) in general.

(2) If 0 = 2 in ([1.3), then for every p = (p1,p2) with 1 < py,p2 < ccand 1/p = 1/p1 +
1/p2 > 0, and for every @ € Ag, the operator T extends boundedly from LP'(wi") x
LP2(wh?) — LP(wP).

Here if a non-negative function f € L
namely,

we use (f), o to denote its L” average over @),

| fwil|zes |gw2 | Lr2 -

Theorem demonstrates that in most cases the operators associated with bilinear
CZX kernels behave like bilinear bi-parameter singular integrals when considering weighted
estimates, mainly because the kernel estimates are more singular than the one-parameter
bilinear Calderén-Zygmund kernels (see Section [2). Nevertheless, they still behave like
standard one-parameter bilinear Calderén-Zygmund operators in many ways. In partic-
ular, we have the following T'1 theorem.

1.6. Theorem. Let T be a bilinear operator defined initially on finite linear combinations of char-
acteristic functions of cubes of R?, and such that

T(f,9)(x) = // K(z,y,2)f(1)g(2) dy dz

whenever x ¢ supp f N supp g, where K (x,y, z) is a bilinear CZX kernel. Suppose that the T'1
conditions

(1.7) S(1,1) € BMO forall S € {T,T*',T**}
and the weak boundedness property

1
(1.8) sup  —[(T(1g, 1), 10)| S1
Q: cubes in R? ‘Q|

hold, then T extends to a bounded operator from LP x LY — L" for any 1 < p,q < oo with
= 5+1 > 0. Conversely, if T is a bounded operator from LP x LY — L" for some 1 < p,q < o0

T

with 1 = % + % > 0, then the T'1 conditions (1.7) and the weak boundedness property (1.8) must
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hold. Moreover, under the above assumptions, the operator T' extends to a bounded operator from
L' x LY — L2 if g € (1,2),

Here, note that the adjoints 7*! and 7*? are defined via

(T(f,9),h) = (T*(h,g). ) = {T"*(f,h), 9),

and the notation S(1,1) for S € {T, T*!, T*?} is defined in the usual way, see e.g. [17]. In
below, if T is a bilinear operator associated with a bilinear CZX kernel, and if it satisfies
the two conditions in Theorem [1.6 (or equivalently, 7' is bounded from L? x L? — L),
then we say 7 is a bilinear exotic Calderén-Zygmund operator.

The quantitative weighted estimates have received a lot of attention in singular in-
tegral theory, which is also the main motivation to study the sparse bound of singular
integrals. Our last result is concerned with the quantitative weighted estimates when
6 = 2, which can be viewed as a completion to the statement (2) of Theorem [1.5(and has
independent interest.

1.9. Theorem. Let T be a bilinear exotic Calderdn-Zygmund operator with 0 = 2 in the decay
factor. Then for every p = (p1,p2) with 1 < p1,p2 < occand 1/p = 1/p1 + 1/pa > 0, and for
every w € Ay,

-3 \ /’ /
I7(F, gywllie S PP fuy o guws | oa.

This paper is organized as the following. Section[2)is devoted to providing basic def-
initions. In Section [3| we give a representation theorem for bilinear exotic Calderén-
Zygmund operators, and prove the weighted boundedness of the involved model op-
erators. In particular this gives a proof for the first part of statement (1) of Theorem
(see Theorem [3.9). In Section [4 we first prove Theorem [1.6]and the second part of state-
ment (1) of Theorem then we prove Theorem which also serves as a proof of the
statement (2) of Theorem

Throughout this paper we write A < B if there is some absolute constant C' > 0 such
that A < CB. Moreover, A <; B means that the constant C' can also depend on some
relevant given parameter 7 > 0. We also write A ~ B if simultaneously A < B and
B < A. Sometimes we also use C'(7) to mean a constant depending on 7.

Acknowledgements. The authors are supported by National Key R&D Program of China
(No. 2021YFA1002500), and National Natural Science Foundation of China (No. 12222114
and 12001400). Thanks also go to the anonymous referees for their helpful suggestions
which have improved the presentation of the paper significantly.

2. PRELIMINARIES

2.1. CZX kernel. Let § € (0,2], a € (0,1]. For z = (z},22), y = (v},9?), z = (21,2%) €
R?, we define the decay factor

S 4l K i BN et B A
X z) =
o\, Y, ]xQ—y2\+\$2—22\ \xl—y1]+|x1—z1]

whenever (z,y, z) € E, where

E:={(z,y,2) e R? x R? x R?: [z} — ¢!| + |2 — 2! # 0and |22 — | + |2® — 2%| # 0}.
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We assume that the kernel K(z,y, z) : E — C satisfies size estimate

1
’K(l‘,y,Z)‘S 2 Dg(l',y,Z)

[T(j2" =y + [* = 2])
i=1

and the mixed Holder and size estimate

\K%%@—K%ﬂfxwwé(

’x1_w1| “ Dg(ﬂl‘,y,Z)
! — gyl 4 |2t — 21 2 o
e (R
i=1
whenever |z! — w!| < Fmax{|z! — y!|,|2! — 2|}, together with other five symmetric
mixed Holder and size estimates. We will denote by K € BCZX (R?) if K satisfies all
the above assumptions.

Recall that in the linear case, when 6, = 1 one can consider an extra logarithmic factor,
that is, instead of (1.2)) one can define

-1

! —y'| | 2® — o) et O ot '

D = 1

) (uhw%+Mwa A\
and the related results still hold, see [10, Remark 4.10]. This logarithmic factor is relevant
from the point of view of Fefferman-Pipher multipliers (an important class of Zygmund
type singular integrals, see [4] and [11]). However, currently the understanding to the
bilinear Zygmund type singular integrals (see [1]]) are not at the same level of the linear

case. Hence we do not have strong motivation to discuss the logarithmic factor when
0 = 2, we just leave it to the interested readers.

2.2. Dyadic lattices and Haar functions. Given a dyadic grid D in R (or R?), I € D and
k € N, we define

¢(I) is the length of I;

I®) € D is the k-th parent of I, i.e., I ¢ I'®) and ¢(I%)) = 2k¢(I);

ch(I) is the collection of the children of I,i.e., ch(I) = {J € D: JM =T};

E[f = <f>]1[, where <f>[ = ﬁ f[ f;

Ay f is the martingale difference A;f = > E;f —Erf.
Jéech(I)

Let Dy be the standard dyadic grid in R. We define the shifted lattice

Dw):=¢L+w:=L+ Z 27w, : L €Dy yp,
i: 270<U(L)
where w = (w;)icz € {0,1}%2 =: Q. Let P, be the product probability measure on (.

Recall the notion of k-good cubes (denoted by D(w, k)) introduced in [7]. We say that
G € D(w,k), k> 2,if G € D(w) and

) _ 2=20(@).

(k)
d(G, ag(k)) > Z(GT

Observe that for all L € Dy and k£ > 2 we have

(2.1) P,({w: L+weDw,k)}) = %
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We also inherit the notation in [10]. For o = (o', 0?%) € {0,1}% x {0,1}% and dyadic A > 0
define

D(o) = D(0") x D(?),
Da(o) i= {I' x I? € D(0): €(I") = M(12)},
Do(o) = Di(o).

LetP, := P 1 xP,.. For k = (k' k?), k', k? > 2, we define D(o, k) = D(c, k') x D(0?, k?).
Given an interval I C R, let I; and I, be the left and right halves of I. Define

W) =|I"21; and  hb=|I|"2(1, —1z).
Now if I = I' x I? is a cube, we define the Haar function 27, n = (n1,72) € {0,1}?, via
h77 = hnl & h

For notational convenience, we denote h(} = h?l ® h?z, and for n # (0,0), we simply
denote h}’ by hr. Note that Ay is cancellative. It is well-known that

Arf= > (D]
n#(0,0)
In below we may abuse of notation to simply write
Arf = (f hr)h
since the sum over 7 does not affect the main results of the paper.
2.3. BMO functions and weights. We say a locally integrable function b € BMO(R?) if
1
[¥lasio = [blvo@ = sup o [ b= (bi] < .
I: cubes in R? 11| Jr
Given p' = (p1,p2) with 1 < p1,ps < ocoand 1/p = 1/p1 + 1/p2. We say @ = (w1, wz) is a
bilinear A5 weight in R? if

[Wa, = sup  (whpolwi )y 0wy Nyo <oo,  wi=wiws.
Q: cubes in R?

Here if a non-negative function f € LI
namely,

locr We use (f), o to denote its LP average over Q,

fa= (g [ #7)’

Note that the definition above is a reformulation of the initial definition given in [14]. We
also define the bilinear strong A;; weights. Given ' = (p1,p2) with 1 < pj,p2 < co and

- - . ey * . . 2 .
1/p=1/p1 + 1/p2. We say & = (w1, w2) is a bilinear strong A% weight in R* if

(0] 4z = sup (w)p,r(wy ) g(wy )y g <00, wi= wiwy.
R:rectangles in R2
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3. DYADIC REPRESENTATION AND 71’1 THEOREM

In this section, we will provide a representation formula for the bilinear exotic Calderén-
Zygmund operators, and then use it to deduce the 7’1 theorem. That is, we prove that
in the expectation sense, a bilinear exotic Calderén-Zygmund operator can be decom-
posed into model operators such as bilinear shifts and bilinear paraproducts. And then
we prove the T'1 theorem via the boundedness of the model operators.

We begin with the definition and boundedness properties of the model operators.

3.1. Definition. For k = (k',k?), k& > 0, we define that the bilinear shift Q. , has either
the form

(Qrolfr,fo) f) = > > anw ((Frh9) (Fa b)) = (Frs WG ) (Far b)) (s, hury)
KeD kl k2(U)I EDD(U)
M=k

or the symmetric forms (i.e. the role of f3 is replaced by f; or f»), or

3
(32) <Qk,o’(f17f2)7f3> = Z Z aj,KH<fi771’Ij>7
KGDle 12 (a’)[ GDD(U) =1
M=k

where there exist two indices jo, j1 € {1,2,3}, jo # j1, so that ?”J'o = thO’ 7”].1 = h;. and

e J1
for the remaining index j ¢ {jo,j1} we have h;, € {hy;, h?j }. Here no matter in which

form, 1% = 1FF) — (1)) 5 (12)(*) and

Ik
|K|2

lar; k| <

Note that if K is a cube (i.e. k' = k?), then the boundedness of Q- is well-known,
see e.g. [2]. It is not surprising that in general Q. is still bounded. To establish the
boundedness of the model operators, we introduce the definition of general shifts in our
set-up: we say Sk, k, ks,o 1S a shift with complexity (k1, k2, k3), where k; = (kj, k3) € N?,
j=1,2,3,if

2
(Skrhokso (1o f2) o) = > ag k(fa ha) [[ (i by
KeD kl k2 (O’) IgG'DD(O') i=1
(k)
;=K

where there exists jo € {1,2} with E[jo = hr,, and for j1 € {1,2}\ {jo} we have EIJ. €
{h I h(}j }. The symmetric form, i.e. the role of f3 is replaced by f; or f, is also a general
shift. Notice that the key is, among I;, j = 1,2, 3, at least one of them is a cube.

3.3. Lemma. Lef (wq,ws) € A} We have

(4,4)

(Qio (1, f2), f3)] S[w]A& Y (K 4+ B)?|| frwy || pall fowa | sl faw ™| 22
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Proof. We first show that if Qi , has the form
(@ro(fi fo) fa) = > an k(1 b)) oy h,) =1y G, ) (fa h2,)) (f3, by

KeDle _k2 (O’) I €Dn (O’)
I](k):K

then it can be rewritten as sum of general shifts. This process will be quite similar as
[2, Lemma 2.18] (where the case k! = k? is addressed). By symmetry, we may assume
k' > k%. We have

L)~ [<f17h91>(f2,h92> - (f1>h93><f27h93>] = (fun(f2) e — (f)n{f2)n.
Then write
G4) (fun{fo)n — (fun{f)r

= ((fun — (k) {(f2)n + (O ((f2)n — (f2) k) + (U r(f2)k — (f1) 1. (f2) 1

Since
k2 Kl
(fln = (i) = Z<A]{i)fl>l1 + Y (AlmeEkefn,
i=1 i=k241
we have

> S an L) 0 — () r) (o) r(f )

KeD klsz( )I EDD(U)

k2
=3 ¥ > > S anklhlE ()

i=1 KeD okl — k2(U)I EDD(U) L(k;lfz k2—i) KIleDD( )
M=k =1,
7=2,3

<h‘L1>Il <f27 h(}2><f37 h13>

1
11]2
+ Z > X X 2. MK

i=k24+1 KeD okl k2( )I EDD( (Ll)(klfz) K1 IIEDD( ) ’ |
W=k (1)W=Lj
; 25 (12)(1@2) K2

X <f17 hLi ® h?(2><hL%>]11 <f27 h?2><f3a h13>

Now note that
1
2 IRk NN AL
Z CLIj,K|Il|2<hL1>11’ < Z WL{ ||L | T
]1€Dg(o) IlEI'DD(U)
19=r, 19=L,
and

1 1 1
|11]2 |I2]2|13]2 1—L 21
PO e ST D DI s 1[1 ATV
I |K2|2 K]

1€Dg(0) ILieDg(o)

(IH)W=L} (IHW=Lg

(1) =K (1)) =k
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AR SHISE \13!2
K2
So the object involved with the first term in the RHS of (3.4) can be decomposed into

k2 Kt

Z<S(k1—i,kz2—i),k,k,a(flvf2)7f3>+ Z (S (k1 =i,0) k0 (f15 f2), f3).

=1 i=k2+1

Similarly the object involved with the second term in the RHS of can be decomposed
into

k2 il
Z<S(O,O),(k1—i,k2—i),k,a(fla f2), f3) + Z (5(0,0),(k1=i,0), k0 (f15 f2), f3)-
i—1 i—k241

For the last term, since
kl

(f1)r(fo)x — (f1)(f2)1s = Z (<fl>1§i,k2)<f2>1§i,k2) <f1>1(z 1k2)<f2>1§i—1,k2))

i=k2+1
+Z ()20 = <f1>1§i—1)<f2>[§i—1>)-

This is similar as well since for instance, we can write
o (f2d o = (fu) oo (f2) -0 = —(A 0 i) f) o0 = (fu)0 (B0 f2) -

Then we use Iéi) as the new ‘parent’, for example, we have

(3.5) > > arkT[(A 1@ S f2) 60 {fs, )
K€D2k17k2( )I EDD( )
M=k

Z Z ( Z anJék)|11’<hL>]3‘L2|_%5(I3’L2)>

LEDD(U) LQ,IgEDD(O') Il,IQE'DD(U)
LV=r{P=r 1M=rH=r®

X (fi, ) (f2. b9, ) (f3s b)),
where 6(13, Lo) = 1if I3 C Lo and otherwise §(I3, L2) = 0. One can check that
| S oy ol Bl gLl 3675, L)
J"3

Il,IQGDD (0‘)
Iik)zlék):L(kl —'L,k2—i)

1 1 1 1 1
3 [Lil2|lfs2 1 |I3lz 4[L|z|Lof2[15]2
M2 |Lz|Ly2 |L|3|Lo)? |LJ?

IN

Il,IQEDD(J) |I3
k k k
1000

Hence the RHS of is 4(S(0,0),(1,1),(i,i).0 (f1, f2), f3). The rest terms can be handled
similarly. In summary, we have reduced the problem to general shifts. To finish the

proof we invoke the following sparse domination result, which is essentially proved in
[17, Section 5].
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3.6. Proposition. Let n € (0,1) and Sy, k, ks,0 be a shift with complexity (ki, ko, k3) with
ki = (k},k3) € N%, j = 1,2,3 of the form

J'

2
<Sk1,k2,k370(f17f2)7f3> = Z Z aIJ,K f37h15 H f’uhI
KeD kl k2 (0’) I3€DD(O') i=1
I( ])—K

Then there exists an n-sparse family S C D 1,2 (o) such that

‘<Sk?17k2,k‘57 (flan) f3>‘ S max{kl} Z |S‘ H ’fj

SeS Jj=1

Here recall that we say S C D, (o) for some dyadic A > 0 is an 7-sparse family if for
any S € S there exists a measurable Eg C S with |Eg| > 7|S| such that {Eg}gses are
pairwise disjoint.

With Proposition athand, note that by our decomposition process we have max; ; {k;} =
max{k!, K%}, then we have

[(Qro(f1, f2), F3)| S (K + k?)? supZ El H 1£il)s

SesS j=1
Let (wy,ws) € A& 1) and w = wyws. Then of course (w1, w2) € A(44)(D
standard Carleson embedding theorem we have

ZISIH\fgs—Z(HM (g L) w

Ses j=1

2,%7,% (0’)) and by

1 : 2
< Z <w?(5)/s [Mp e (o) (f1, fo) M. kl 2 (@) y(faw™ 2)]2w2) w?(9)

Ses

Shw] s /M oz (o (flﬁfZ) ]

1
(4,4) 2 3
2

(o) (f1 f2)l L2 (w2) HM%;” iz (@) (fs0 2wy

S[w}Am) | frwi || pall fowa | pall faw™ 1HL27

(o')(f3w_2)w2

k

< ||Mp

kl k2

where
2
M. o (f1, fo)(x) = I
a0 = w10 [T(he
and
2 1
MY o (h)(z) = sup 1 x/ hlw?,
By qo )= w106 g [
2

whose boundedness are well-known. Then it follows that
(Qro(f1, f2), f3)] S[w]A& Y (k' + k22| frws || | fowa | pa | faw ™| 2
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0

3.7. Definition. We define the bilinear (one-parameter) paraproduct m, , if it has the form
(Moo (frs f2), f3) = > (b ha) () i(fa)r(fs, )
1eDn (O’)
or the symmetric forms (i.e., either fi or fs is pairing with hr), where b € BMO.
The (weighted) boundedness of 7, , is well-known. See e.g. [17, Section 5] for the
sparse bound of 7, , and from which the corresponding (weighted) boundedness follows

immediately. One can also use the H! — BMO duality to obtain the boundedness of 7, ,
directly.

3.8. Lemma. Let (wy,ws) € Ay,4)- Then
(b0 (f15 f2), f3)| S[w]A(“) | frows || pall fowa | pall faw ™| 2
Now we are ready to present our representation theorem.

3.9. Theorem. Let T' be a bilinear operator associated with a bilinear CZX kernel satisfying the
weak boundedness property and the T'1 conditions. Then we have

3
(3.10) <T(f1,f2),f3>=Ea[ > (k) @uo(frsf2), f3) + D (To,0(fr, f2), £3)
=1

k1,k2>0

where QD(]C) S 2_akm1n2_9(kmax_kmm) and kpax = max;=12 k‘i, kmin = minizl,g ]{Ji, and {bl, bz, bg} =
{T(1,1),T*(1,1), T**(1,1)}. In particular, we have for all 1 < p,q < oo with 1/p +1/q =
1/r>0

1T (f1, fo)wllr S C([(wr, w2)]ar

(P-,q))HflwlHLPHf2'LU2”Lq

ZKP»Q)'

Proof. Assuming (3.10) momentarily, by Lemmata 3.3|and [3.8 we have

(T (fr, f2): f3)] S Cl(wr,wa)laz, ) frws |l pall frwa | e fw™ ) 2 > (kA E) (k)
k1 k220

M frwsll pall fawal| ol f3w™ | 2.

holds for every (w1, ws2) € A

S Ol(wr, w2)lar,

Hence by duality
IT(f1; f)wllzz S C([(wr, wa)] a

e D frwnllgall frwall o

Then the desired estimate follows from extrapolation (see e.g. [16, Theorem 3.12]).
It remains to prove (3.10). First of all, note that

<T(f17f2)7f3> = Z <T(A11f17A[2f2)7A13f3>

I1,I2,I3€D (o)

SD VREEED SEIR T VR 3

5(11),€(IQ)>€(13) 5(12)72(13)>€(11) @(13),5(11)>£(12) Z(Il)>€(12)=€(13)
D DD DR D

f([2)>f(13):£(.[1) £(13)>€(Il):é(12) Z(Il):f(fz)zf(fg)
=S 4+ 4+ 2
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The general philosophy here is “contraction produces cancellation”. For example, for ¥;
we have

El - Z <T(A11flaA]2f2)aAI3f3>

5(11)73(12)>£(13)

= Z <T(E11fla E12f2)’ A13f3>
= Z <T(h(ljlvh?2)7h’13><f17h?1><f27h92><f37h13>
= < (hhvh2)>h13>(<flah(l)1><f2ah?2><f3>h13>

- <f17 h(}3><f27 h?5><f3a h13> + <f17 h?3><f27 h93><f37 h13>)7

where the last term is readily a paraproduct. For the first two terms, we denote I3 =
I.Iy =14 no, I =1+ ny, where I +n =1+ nl(I), then we have

> (TG, 09 ha) [ G ) (fa 1Y) — (fra b ) (fa, 1G,)] (f3, hury )

O(I1)=6(I2)=¢(13)

= Z Z < (hl+m’h1-4'—n2)’h1>

n,n2 €73 I1eDp(o)
max(|n ,|n}|)7#0
or max(|n?|,|n2[)#£0

X [(frs hG i, ) Fos Y 10,) — (fro B (f2, BD)] (f3, ha)

Here we can reduce to max(|ni|, [ni|) # 0 or max(|n?|, |n3|) # 0 since otherwise n,ny =
(0,0) and then

(fr,h ) f2. h9,) — (f1, hQ,) (f2, hY,) = 0

Now write
(3.11) ) - 5 + + S
ni,no€Z? ni1,na€Z2 ni,no€Z? ni,na€Z?
max(|nj|,[ng|)7#40 max(|nq,[n3|)7#0 maX(\n1| \n2|) #0 ni=n3=0
or max(|n?|,|n2|)#£0 max(|n?|,[n3|)#0 n?=n2=0 max(|n?|,|n2|)#0

We are in the position to invoke the goodness of I. Indeed, for the first term, using (2.1)
we have

> Y =m Y 2 2

n1,n2€Z2 IeDg(o) kb k2=2 n1,noEZ> IeD(o,k)
max(|nl],|nl|)#0 2k1—3’2k1—2}

max(|nl|,Ink])€(
max(|n2|,[n2])70 o

2 2
max(|n3,[n3])€ (25" ~3,2F" 2]

s, Y > >y

k1 k2=2 ni,n2€7? K€D 41 _42(0) IED(o}k)
1 1 k
max(|n}|,|nd|)e(2* —3,2F —2] IW=K

2 2
max(|n?|,|nd|)e(2* —3,2F" 72
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Note that when max(|ni|,|nd]) € (2¥'=3,2¥'~2] and max(|n2|,|n2|) € (2¥"3,2"~2] we
have

(I +n)® = (I +ny)® =K.
Therefore, the first term in the RHS of (3.11) can be written as

4Ea Z Z Z P)/Ij <T(h?17h?2)7h13>
k1 k2=2 KeD 12 (o) I;€D?(0,k)

(k) _
I]. =K

X [(flah?1><f27h9'2> - <f17h93><f27h(1)3>] <f37h13>7

where v, = 1if thereis ny, ny € Z? with max(|n{l, [n3|) € (28 =3 2k 2] and max(|n?|, |n3|) €

(2+°=3 2% =2] such that I} = I3 + ny and I = I + ny, otherwise 71, = 0. The second and
third terms in the RHS of (3.11) can be handled similarly.
Note that ¥9 and X3 are symmetrical to ¥;. Regarding ¥4, we have

Yy= Z <T(A11f17A12f2)’A13f3> = Z <T(E[1f1,A]2f2),A[3f3>

2(I)>4(I2)=¢(I3) £(I1)=£(I2)=L(13)

= Z <T(h?phf2)7h13><f17h91><f27h12><f37hf3>'
L(I1)=£(12)=¢(I3)
Then everything can be handled just as above, the only difference is now we allow the
case n1 = ng = 0. Then again X5 and X are symmetrical to ¥4. Finally, 37 is similar as
well, note that we even have more cancellative Haar functions than we need.

Now the main problem is to estimate (T'(h? Lng> hY iny)s h1). We remark that tlrlle esti-
mate works also for e.g. (T'(h}.,, , hrin,), hr), we will only use that |hrip,| < [I]7 21114,
Setm® = max \n; |, then the analysis of the coefficients splits to the following three cases :
J: )

m' € (2ki*3, 2ki*2] for somei € {1,2}and k" > 3, (Separated)

max m' =1 (Adjacent)
m! =m? =0 (Identical)

In below we assume that m’ = n! for i = 1, 2 since the other cases are similar.

3.1. Separated. This case is split into three sub-cases.
Case L. [ni| > 2,i = 1,2. In this case there exist some k!, k? such that

M B0(1) < (Inf| - 1)e(I) < |a — y'| < (Inf| + 1)e(T) < 28 e(1),

1 =1,2,s50 we have

-0
PR it h et B i
RN T R I E
-0
- <\x1—ylf I ’902—92\) - (le—k2+2k2—kl)’9.
22 =y fat =y

Let c; = (¢}, c?), then

’ <T(h[12+n1 Y h(}+n2)7 h‘[> ’
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:‘ ///(K(x,yvz) — K(cr,v, Z))h?_;_nl(y)h(j)_;_n2(2)h](l‘)dxdydz‘
SW |$1_Cl| N ‘$2_62| o
[l =yt et ==t [ =y o
X (2]"1_"C2 + 2k2—k1) g(l)ﬂu( )h(l)+n2( z)hi(z)

[T(a" =o'+ |2* = 27)?

=1

dxdydz

—kmineo—0(kmax—k ||2
52 min 2 ( max mln

[KP
Case IL. |n}| < 2 < |n2|. In this case we have |22 — 32| ~ 2¥°((I), then
Dy(z,y,2) = <‘$1 S el ot O ol I ol s 22‘)9
SN F R PR F R

( 2K 0(I) >—9
lzt =yt + [zt =21/
It follows that

(TS, O ) )| < // K (2,5, 2) 1, (1)H 4, (2)H () 2
< // 2 (1) ) 0Ny )My DHY ()
~ |K2\2 R e b G ’
/// Il+n ( )h(I)1+n ( 1)h?1($1)d 1q.1dqe!
< \sz 2 — (@l a0 Y

S fg§’2(2k2z( )~0e(1)? /h?l(xl)dxl

3
120 XL) o kminaig—0(kmax—tmin) |12
| K22 |K|?

Case III. [n?| < 2 < |n}|. This case is symmetrical to Case II. Hence the estimates are
similar and we omit the details.

3.2. Adjacent. Observe that

(2 plt el =] o a2l 21y

22— g7+ o =22 T fat =yl + ol = 2]
< <|x1 —ylllel =2 ety )‘9
AR 2T =y Jot = 2T
+<|x1—y1\+rm1—z1\+ ja? = 22| >9
|22 — 22| 2t —yl] + Jat — 21 '

Then by symmetry we may reduce to the case |n}| = 1, |[n?| < 1 and bound

///(Ifcl—yl\+!w1—zl\+ |22 — o2 >—"
|22 — 42| 2t — yl| + |zl — 21
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W OH (@)
. —~5 dzdydz.
[T (J2° =y + 2% — 2])
i=1,2
Write
(wl—yllﬂwl—zl! 2% — 37| )—9
2= 7] o — g1 + |1 — 21]

g (leoplin )

X{|z =yl |+ |zt —21|> |22 —y2
22 — 2| ) {l I+ Bd I}

N |2* — v~ =0
ol — gl + ot — 23]/ Mt —ylitlet==t<le? =2}
Then the estimate related with the second term is easy, one just integrate over 22,42, x?

and 2! in order, it will arrive at
111+n ( 1) 1 ‘I’%
(3.12) - // 1 dat dy! < |1]75 ~ 22
|zt — | K[?

For the estimate related with the first term, integrating over 2% and z!, we arrive at

-3 -y 1
! 1rin, (y)1r(x)dad
1] // (Jot —y I—Hx?—y ])1+9\m2—y2| Iny (¥)17(z) do dy

Simply split into |22 — y?| < 2! — y!'| and |22 — y?| > |2! — y!| when integrating over y?,
then after the trivial integration over 2%, we end up with as well.

3.3. Identical. In this case, we extend
(T(hg, k), he) = > (T(hLy, h1y), hily).
Ji€ch(I)

If J; # J;j for some i # j, then it can be handled similar as the adjacent case. Otherwise
by the weak boundedness property we have

3
J 1|2
3 <T(h‘}1j,h91J),hzlJ>)§ > | L: y|K||2'

Jech(I) Jeann 12
This completes the proof of theorem 3.9 O

4. PROOF OF THE MAIN RESULTS
We begin with the proof of Theorem

Proof of Theorem By Theorem [3.9we have already proved the ‘if” part of the T'1 theo-
rem. For the ‘only if” part, it suffices to prove the L> x L* — BMO boundedness of 7T'.
We will show that there exists some constant C such that

1

1 v
@) sup (157 [ 1T(er92) = Cal)” S il gl
Q@ M@lJg
Indeed, we split

T(p1,02) = T(p113q, 213q) + T(p113Q, v21i30)) + T(P11(30), v213Q)
+ T (011 (30)e; P21(30)e)-
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First of all, we use the LP x LY — L" boundedness of T,

1
(i / T(e11s0,02150)") " S (,Q|) lorllz=1QI7 I2llz=l@Q1s = lillze o2l

Secondly, note thatif Q@ =1 x J,
(3Q)° = [BI x (3J)JU[(31)° x 3J] U [(3I)° x (3J)].
Then for any fixed x € QQ we have

1T (1130, p213rx(3.2)) (7)]

(2,9, 2)
<lorlmloalim | [ 5 ’
3Ix(3J)c

5 H |t — yi| + |zt — 2i])2

dydz

< dy' dz? dy? dz
S llerllzeellezl Lo ; 7
31x31 (|Jzt — yl| + |zt — 21))271 J3ux@)e (|22 — 2| + |22 — 22])%*F
S llerllzee Izl zoe-
Similarly
IT(p113Q, P21 (31)ex32) ()] S lerllne w2l Lo

Lastly, we also have

I T(p113Q, P2l (31)ex(3.0)°) (@) = T(p113Q, P21(3r)ex(3.1)°) (cQ)|

0,a/2 (xvyv )
< ool e / / Drmingt.0/2)
e | AR

oy (Qy
e =t e )

< o el ol e / /
3Q J(31)x(3.J)¢
“Q-

oo ) A
(Q)" o
(lat = yl| + |at — 21[)2Hmind5) (|22 — 2| 4 |22 — 22|)2+e-min{f.5) Y

S llerllellp2|lpoe-

The term involved with T'(¢11(30)c, ¢213q) is completely similar. Finally, we will bound
the term involving

T(p11(30)e, P21(30)e) = T(P1l3rx37)e P2larx @) + T(@1lsrx(3.0)e P21(31)ex3.)
+ T(p1131x(3.7)> P21 31)ex(37)e) +

where we have 9 terms in the right hand side, each of them can be estimated in a similar
way as above. Therefore, we have proved (4.1) with suitable choice of Cy. This proves
the claim.
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Next we prove T : L' x L' — Lz boundedly if § € (1,2]. Without loss of generality,
we may assume || 1|1 = || f2]|z1 = 1, we shall prove

[{z e R?: [T (fi. fo) ()] > A} S A2

Applying Calder6én-Zygmund decomposition to fi and f; at height A2, we get two
families of disjoint cubes {Q}}, {Q5}, respectively. Meanwhile we have f; = g; + b; with
lgillz < A2, llgill 1+ < 1and

RSN LR NNUIPPPSL D SRR
’ J

=20 /bg:o’ 18510 S AV2IQS Do l@8I S AT

g k

Then we have

{o € R [T, @) > A < 3 3Q41+ 31804 + o € B2 [T(01.92)(@)| > A4}
J k
+ o e B\ J3QS £ (701, b2)(@)| > A4}
k
+ o e R\ J3QL £ [T(00,92)(@)| > A4}

+{z e R2\ | (3Q] UBQE) « [T(by, b2) ()| > A/4}.

gk
We already know that
D_13Q11+ > 13Q5 s A2
k

j
By the L? x L? — L" boundedness, it is also easy to see that

{z € B2 ¢ T (g1, 92)(x)] > M4H S AT (91,9015 S A7 g5 ll92 0
< AT/ (2p) \(g—=1)r/(29) — \—1/2

Next we bound

[{z e R2\[J3Q5 : [T (g1, b2)(2)| > A/4}|
k

4
<2 T(g1.b d
S0 BN
4
:fE [/ +/ —i—/ ]=111+I2+I3,
A siExa5)e  J3ex 38 J@BIE)ex(3IE)e

where we have denoted Q5 := I¥ x J§. First of all,

4

i< Z/ // K (2,9, 2)g1(y)b5(2)| dy dz da
A Jatkx @by
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_ Dy(z,y,z)dydzdz
<2y [ [
k

[T(Jz" = y| + |2 — 2*])
=1

<A 1/22/“)1: / / dy da dz
stix@ ) (jat =yl fot = )P (0 - 2]+ fa? - 22

where we have used Dy < Dy4. Note that for fixed z € I} x J%, we have

dy! dz! dat 0
[ Y g -
sy S (|t —yt| |2t = 2H)TTa Jerf ot — 2

/ / dy? da? </ dixg<g(@k)*%
@b ] (o2 = g2 4 lo2 = 228 Sy a2 -2 T

BAY [e)ds s 20,
k

The estimate of I, is completely similar. For I3, we have

Iy < A 1/22/,k . //yK 2., 2) — K (2,5, cgp)| b5 ()| dy dz da
< )\1/22/’b§(2)’d2/ / min{@,a/Z}(xa%z)
~ - (BI5)ex (3JE)e - o

(2" =yl + 2" — 27])?

31k % (3J5)e

and

Thus

::]m

i=1

[ ((Q5)° ((Q5)°
(e =y + a7 =% (& =]+ o7 = )"

X dy dx
< )\—1/2.
The estimate of |{z € R? \ U; 3Q7 ¢ |T(by, g2)(x)| > A/4}]| is similar. It remains to control

{z e R2\ | J (3Q] UBQSE) : |T(b1,b2)(x)| > A/4}]

j?k

)
<< |
A JZ,; R2\(3Q{U3Q%)

By symmetry we may assume £(Q}) < £(Q%). Note that
R\ (3Q] U3Q3) = (3Q1)° N (3Q5)°

/ K (z,y, 2)b) ()b (2) dy dz| d.

and
(31)° = 38 x (30U [BE)* x 3A] U [(B1)° x (3J{)]
(3Q5)° = [3I5 x (3J3)°] U [(313)° x 3J5] U [(315)° x (3.J3)°].
We first consider the combination [31] x (SJI)} (315 x (3J%)°]. We have

A Z /3I] x(3J9)e 31k ><(3J’“

K(z,y, 2)0 (y)b5(2) dydz’dx
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Z/ // |bj y)b5(2)| dy dz dz
ik 3I]><(3JJ 31’c (37%)¢ (Jot —yt)2=0(|22 — CJJ| + |22 — CJk|)2+€

Z (@)D / // |07 ()b (2)| dy dz da?
ik sayenebye (|27 — CJ]’ + |22 — CJk|)2+9

< INCENPRTIPN: da?
<D U@QHV1Q11Q5]
7.k

(3J3)en(3.Jk)e (Jo? — CJJ\ + |22 — CJk| + |C,~J - 01k|)2+9

Z Q] (6+1) Z/ . da® dz

@ryenede (27 —cpl 4 |2% = 22| + [egy — 21[)>*°

Z Q] (6+1) / / dz dz”
@3siye ] (|22 —CJJ|+|952—22|+|CI{ — 21])2+0

< Z Q] S A2
J

24N
y\H

N
y\H

Next we consider the combination [31 I % (3J] )¢l N [(315)¢ x 3J5]. We have

4

| /I K(x,y,z>b{<y>b§<z>dydz]da:
A 7 ) B x@I)] |31 <3

%

4 bj

= / . // | ()| Dy(z,y,2)dydzdx
31 x(377)¢ | n[(31%)x3J%] ,

ak (2" = y'| +[a* = 27[)?

<

::]m

=1

> // W)t
A Dy(x,cni,z)dydzde
A%@: 31 x(377)¢ | n[(315)°x3J%] ( @ )

MEEE

:|m

7 l

b )\1/2 j
Z/ / 5 | 2(2)| |Q1| D9($,CQj,Z) dzdz
=3 31 x (37| N[ (814)x 3. H (J — ¢ | + |ai — 20])? '
J

k
<A 1/22 ‘b \DG z,Y,2) dydz dz,
(31K)ex3Jk

— Y[+ [’ = 2Y)?

which can be estimated similarly as I>. Likewise, the combination [3[{ X (3Jf )] N

[(315)¢ x (3J5)¢] can be reduced to something similar as /3. By symmetry we have con-
sidered all combinations, we are done.

O

Next we prove the first part of Theorem The second part will be a consequence of
Theorem
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4.1. Counterexample. Let 0 € (0,2], t1,t2 > 0, and ¢ be a non-negative bump function.
Define
tl tg -0 2 1 Z‘i yi
K = Koo = (1 +2) TLgao)
Let us first check that K(z — y,x — 2) is a bilinear exotic Calderén-Zygmund operator
uniformly on the parameters ¢;, t5. Indeed, suppose by symmetry that ¢; < t,, then

(|$1‘ + ’y1|)2+a1+51(|x2| + ‘y2’)2+a2+ﬂ2‘6aaﬁK($,y)‘

b0 (Lo g\ ot NN
<G5 () ()
to ]‘_11: t; t; t;

1=
0 | 4 |yf|\ 2+ei+Bi I+ |y [\ =N
S(’Ll)H(\lerly!) o <1+\x|+|y|>
tg ti ti

=1
<(;

—

)’ ('] + [y )> ettty =2 =h o
(2t + [yt + t)N
—0,N—2—as— 0
e <rx21+\y2\>9
(2] + [l + t2)N 21+ Ty"]

~

2

- (IxjH!in)?
|zt + [y
Thus,

(J2 [+ [y )25 (2] + [y2) 020007 K (2, )|
<mm{(|m2l+\y2l>9 (Ia:1|+|y1|)9}N (Ix1|+|y1| N Ix2!+ly2l)9
~ 2|+ [yt 7\ 22| + |y? |z2| + [y?]  [ot] + |yt

From o, 8 € {(0,0),(0,1),(1,0)} with |a| 4+ |3] < 1, we get the desired kernel estimates.
For the boundedness, notice that

70 1@ = | [ K= v = 2510 () dydz] £ M) @) M) o)

Now we fix t1, t2, # momentarily and let R be a rectangle with sidelengths ¢, t2, then
for f1, f2 >0,

T(fr, fo)(@) = // K(z—y.2 — 2)fi(y) fol2) dy d
-6 2 i i PR
(24 2) Moo a0 a0 s

=1 1t

> ecc(R) *1r(f1)r{f2) R,

where

t1 t
ecc(R) := max {—1, —2}
ta 11

is the eccentricity of R. Suppose now for p,q € (1,00) with 1/r =1/p + 1/q we have
IT(f1, fwller < C([(w1, w2)]a, )l frwil el fows]| La
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for all (w1, ws) € A, q) and fi € LP(w}), fo € LI(w3). Then

eco(R)~w" (R) ™ {f1)r(fa)r S Cl[(wr,w)]a, ) Frws | o]l fows | a-

Let fi = 1ro1 = 1Rw1_p/, fo = 1gos = 1Rw2_q,, then

1 1
1 v

(W) gl g (o2) % S C((wi,wa)a,,) ecc(R)’.
Now let oy (z) = |z|* withp'/(2r) < ay < p'/r, 02(z) = |z|*2 with¢'/(2r) < as < ¢'/r.
Then since
pir<2p' <22 -1), q/r<2d <202 1),
we have 01 € Ay, 02 € Ayyy. Now that

W = (wrwn)” = fof /e

and —aqr/p' —agr/q € (=2,—1), we see that w” € Ay C Ajg,. Therefore we get (w1, ws) €
A(p,q)- Now consider rectangles of the form R = (0,¢) x (g,1) with ecc(R) ~ 1/e. On R,
we have |z| = |(z!, 2?)| ~ 22, hence

€ 1
(oi)R ~ 5‘1/ / (%)% dz? dat ~ 1,
0 Je

"Yr~e / / T T 4a? dat ~ e MY T s ece(R)M Y T
Combining the analysis above, we obtain
a1 tas— 0
ecc(R) 7 7 < ecc(R)”.

Since we can let ecc(R) — 0o, we must have % + % — 1< Leta; — p?/, g — q?/, then
1/r <0, thenletp,qg — 1sothat1l/r — 2, we getf > 2.

Thus weighted boundedness cannot hold in general for bilinear exotic CZOs if 0 < 2.
Next, we prove some sparse estimates, from which we get the desired weighted estimates
when 0 = 2. Define the bilinear sharp grand maximal function

ME L (f1, ) z) = supesssup | (T(f1, f2)(€) = T(filsg: f2110) (©))

Sz €neEQR
— (T(f1, f2)(n) — T(f1lsq, f2130)(n))|-
4.2. Lemma. Let T be a bilinear exotic CZO with 0 = 2. Then
MES(fr, f2)(@) S Mo fi(2) M, fo(w),

where the right-hand side is the strong maximal function, with supremum over all axes-parallel
rectangles containing x.

Proof. Fix a cube Q = I x J and some z,¢,n € (). Note that
T(f1, 12)(€) — T(filsq, f2130)(8)
=T(f113q, fal30)e) (&) + T(fi1lig)e, f213Q)(€) + T(filizgye, faligye)(§)-

As usual, we split

(3Q) = [3I x (3J)<] U [(31)° x 3J] U [(31)° x (3.J)°].
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First of all, we have
f1l3(y) f2l31x 3.0y (2) dy dz
T(f11 1 c <
| (fl 3Qaf2 3Ix(3J) )(€)| N/ (|£2 y2’ + |£2 _22‘)4

/ f113q(y) folarx 3z (2) dy dz

22 — 224

Ml )/3[>< 3J)e |T35’2f2—(2)2|4

S M fi(x Z/ /12 |’Ci|2f2_(z)2‘4

>1 —22|~35(Q
S M fi(z) Mo fo().
Similarly,

I T(f113q, f2l(31)ex3.0)(§)| S M fi(z) My fa(z).
Finally, similar as before

IT(f1l3Q, f21@31)ex30)¢)(§) — T(f113q, faliarex@ne)(n)]
</ / A2
3I)ex(3J)¢
(Q)”

[(w — gl g - )P OE (€2 — g2 4 g2 — 2] 2hmin(0S
N “Q)
(16" =yt + e = 2t )FmmOEH(e2 — y2| + €2 — 22| om0 )

HaQ)"
< . [e% : o
- /SQ /(3I)C><(3J)C ‘fl(y)fQ(Z)’ |:’£171 _ 21‘2+a—m1n{9,§}’x2 _ 22‘2+m1n{0,§
Q)"

‘1‘1 o z1|2+min{9,%}|x2 o 22|2+a—min{9,%}

N M*f1($)/ foy

(81)x (37)¢ | f2(2)] [|x1 _ 21’2+a7min{97%}|x2 _ Z2’2+min{9,%

E(Q)2+o¢

1 _ 21|2+min{0,%}|x2 _ z2|2+o¢—min{0,%

dz dy

} dz dy

+ } dz dy

|z
S M. fi(x) M. fo(x).

Other combinations can be handled in a similar way, we are done.

We also need the following result, which is a variant of Theorem 3.4 in [13]].

4.3. Theorem. [13| Theorem 3.4] Let 1 < q,r < oo and s = max(q,r). Let f1, fa be compactly
supported functions from L°. Assume that T' is bounded from L9 x L9 — LY/%* and MT 418
bounded from L" x L" — L"/%>. Then there exists a Fa-sparse family S such that

IT(f1, f2) (@) < C Y (I fil)s@llfel)sqla(z)

QeS
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fora.e. x € R, where C = ¢y (|| T|| Loy pa—ypar200 + IIM#QIIL,-XLT_,LT/Q,OO).

Observe that by Theorem [1.6] T'is bounded from L' x L' — L'/>*°, and by Lemma
and Holder’s inequality for the weak spaces we know that /\/l 7.3 is bounded from
L x L™ — L% with 1 <r < 2and

1M 5 (frs Fo)llprrze S IMefUMfoll prrzoe S UM fil| roe [ M. fol proe S ()2,

Hence

T(fr, f2) (@) S ()2 Y (1 Aihsellfal)sele(@).

QES
Then the desired qualitative weighted estimates are well-known, see e.g. [3] and [15].
Here we provide the details for the quantitative weighted estimates.

Proof of Theorem Suppose that (w1, ws) € A3 3), then by the reverse Holder property

_3
of o; =w; * (i =1,2) we take

s=1+ 3
cp max{[o1]a.., [02]ans [W2]a}
where w = wyws, then

1 / as 33-:13[ 1 TN 7]
sup (— w3—s) (/ w, s) ~ [ 1] Ay g -
Q \@lJg M@l g

Denote o; = wi_ 8¢ fori = 1,2, for h > 0 we have

Z<|flr>s,Q<rf2|>s,Q / h

QeS
l 1
=S (D) Gty L190)" (C252) (i [ 12) [
ek |Q! 01 |Q\
3 l 1
< [,73]13—s s s S s\
N[w]A@,S) /|f1 (0 /|f2 7@(}3 S(Q)/Qh) |Eq
5 ! ==
5 [w]j(g’s) /Mgal (flo'l S)MSDO_2 (f20'2 )Mspw%(h’w 3—s )w?)fs w,y 3 w, 3

3 _1 3
— ~— D 3

< (@5 M55, (77 (o) 1M, (o oo 1P (0”55

3
< 13, , I fresll ool fowall s ™ 5.

It follows that
3
IT(h, Pyl < ()L, Ll gall fowsl oo

2
-, 3.3
< (@50, L gall fows]l o

Quantitative extrapolation from [19, Theorem 2.2] gives that

3 max{p,p" ,p,
IT(f, )wllze S [@Am PP fun| o | guos | -
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