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Subclass-wise Logit Perturbation for Multi-label Learning
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Logit perturbation refers to adding perturbation on logit, which has been shown to be capable of enhancing the robustness and

generalization capabilities of deep neural networks in machine learning. However, studies on logit perturbation for multi-label learning

are limited and they only consider the issue of class imbalance in the training data. Furthermore, the logit perturbation vectors in

these methods are identical for negative classes containing di�erent subclasses when multi-label learning is viewed as a multiple

binary classi�cation problem. This study investigates logit perturbation by exploring the characteristics of subclass-wise multi-label

training data. First, the in�uence of the characteristics of multi-label training data on classi�cation performance is analyzed in terms of

the three data characteristics, namely, proportion, variance, and co-occurrence for each category (or subclass). Quantitative analyses

reveal that variance di�erences among the subclasses in the negative class of a decomposed binary task also negatively impact the

training performance, and if multiple characteristics a�ect simultaneously, the performance deterioration will be more severe. Second,

theoretical analysis is performed for subclass-wise logit perturbation and a new subclass-wise logit perturbation method is proposed

for multi-label learning. In our method, each class/subclass has a carefully designed perturbation implementation according to its

proportion, variance, and co-occurrence. Finally, our proposed method is further explained through a regularization view. Extensive

experiments demonstrate that our method consistently enhances the generalization performance of popular depth networks on

multi-label benchmark datasets.

Additional Key Words and Phrases: Logit perturbation, long-tailed classi�cation, multi-label learning, subclass-wise.
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1 INTRODUCTION

Multi-label learning is a crucial research �eld in machine learning, as a sample is associated with multiple classes

rather than just a single one in numerous real-world machine learning scenarios. Compared with single-label learning,

multi-label learning (MLL) presents more challenges. One of the most signi�cant issues in multi-label training data,
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2 ZHU and WU, et al.

such as VOC-MLT [36], COCO-MLT [36], and Reuters-21578 [12], is the presence of class imbalance. Many MLL

algorithms focus on this challenge [10, 12, 16, 27, 36]. In addition, label co-occurrence is a typical characteristic of MLL

and it can be challenging to mitigate the impact of label co-occurrence proportion imbalance. For two classes with

a high co-occurrence proportion, when only one class appears in a sample, the existing class may be missed or the

non-existing class may be incorrectly detected. Conversely, for two classes with a low co-occurrence proportion, when

two classes appear simultaneously in a sample, it can be easy for one of the classes to be ignored [39]. However, only

a few studies have focused on the bias caused by the imbalanced co-occurrence proportion of labels in MLL [36, 39].

Class 1

Class 2

Fig. 1. Illustration of the decision boundary

between Class1,and Class2. The circle with

solid line represents the logit īğ , the circle

with do�ed line represents the perturbation

bound, and the arrow indicates any pertur-

bation direction.

The technical approaches in multi-label studies are similar to those in

single-label studies, encompassing the following paradigms (which may over-

lap): new backbone network, new basic training loss, new training data per-

turbation scheme, and new learning strategy (e.g., weighting) [16, 21, 26, 27].

Training data perturbation mainly refers to feature [14, 38], logit [10, 16],

and label [30, 37] perturbation. In this study, our focus is on designing more

e�ective logit perturbation schemes for MLL.

Logit vectors (or logits) are the outputs of the �nal feature encoding layer in

almost all deep neural networks. Let ď = {xğ ,~ğ}
Ċ

ğ=1
be a corpus of Ċ training

samples. Let uğ and~ğ denote the logit vector and the label of a given training

sample xğ , respectively. It can be obtained by uğ = Ĝ (xğ ,] ), where Ĝ (·, ·) is

the deep neural network with parameter] . Employing logit perturbation

during training can be described using the following formula:

L=

∑
ğ
Ģ (Ā (uğ + �uğ ),~ğ ), (1)

where �uğ is the perturbation term for uğ , Ā (·) is the sigmoid activation function, Ģ (·, ·) is the loss function, and L

refers to the overall training loss. In addition, �uğ = Ċ · v, where Ċ ∈ R is the perturbation magnitude and v ∈ R
Ě is

the perturbation direction. Perturbation bound is the maximal allowed magnitude of the add perturbation on logit.

For better understanding, in Fig. 1, we illustrate the perturbation bound and direction using geometric diagrams. Li

et al. [16] showed that several classical learning methods [2, 25, 34], which are based on distinct motivations and

theoretical inspirations, essentially belong to logit perturbation methods in single-label learning. There are also a few

logit perturbation-based MLL methods. Wu et al. [36] proposed a negative-tolerant regularization (NTR) to handle class

imbalance that occurs in the decomposed binary learning tasks. The NTR loss function actually incorporates an implicit

logit perturbation term. Guo and Wang [10] assumed that the logits obey the Gaussian distribution, and utilized the

distribution’s mean and variance to perform logit compensation (LC) for the positive and negative samples, respectively.

Experiments for these two studies indicate the potential of the logit perturbation for MLL.

However, two major shortcomings can be identi�ed in current MLL logit perturbation researches. First, the logit

perturbation vectors developed in existing studies are designed exclusively to address the class imbalance. We will

demonstrate that there exist other signi�cant characteristics that should also be taken into consideration. Second, the

logit perturbation vectors (including both the bound and the direction) in studies we have retrieved so far are identical

1Assume that subclass 1, subclass 2, and subclass 3 follow two-dimensional Gaussian distributions with di�erent means but the same variance. The
distances from subclass 1 and subclass 3 to the class center of subclass 2 are equal. The number of subclass samples is 20, 200, and 1000, respectively,
with 80% used as training data and 20% as test data. For more speci�c experimental settings, refer to the last paragraph of Section 3.2 (Analysis on Toy
Datasets).
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(a) Binary cross-entropy
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(b) Negative-tolerant regularization
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(c) Learning to perturb logit
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(d) Our logit perturbation

Fig. 2. Illustrating the behavior of di�erent decomposed binary classifiers in di�erent scenarios where negative subclasses are located

in di�erent directions around the positive class. Subclasses 1 and 2, as negative classes, have smaller sample sizes compared to

subclass 3, which serves as the positive class. Obviously, the classification margin (the minimum distance between samples in the

sample set and the classification boundary) of the subclass 1 in Fig. 2(a) is larger than that in Fig. 2(b) and (c), which are all smaller

negative numbers. This indicates that negative-tolerant regularization (NTR) [36] and learning to perturb logit (LPL) [16] methods

implemented consistent directional perturbations on all negative subclasses, further damaging the performance of subclass 1 (low

proportion, named weak subclass), compared to binary cross-entropy (BCE) loss. Our proposed logit perturbation method applies

di�erent directional perturbations to di�erent negative subclasses, thereby ensuring that the classification margin of the weaker

negative subclasses does not decrease1.

for all training samples in the same category or even the entire training corpus [36]2. To illustrate the drawbacks

of applying the same directional perturbations to subclasses, we draw the behavior of di�erent decomposed binary

classi�ers in Fig. 2, in which all models are trained using polynomial logistic regression. It is noticeable that those

methods of adding perturbations of the same direction for the negative subclasses3 further harms the weak subclasses

in cases where each negative class is located in a di�erent direction around the positive class, as shown in Fig. 2(b) and

(c). We will demonstrate that using di�erent perturbation vectors for di�erent subclasses can be more e�ective.

In this study, we delve into the data characteristics of MLL and propose a new logit perturbation method that applies

varying logit perturbations to di�erent subclasses in the training of decomposed binary classi�ers. First, the data

2In fact, this conclusion holds true for almost all existing logit perturbation methods in single-label learning.
3In decomposed binary learning tasks for MLL, the negative class can contain numerous categories, which are referred to as “subclasses" in this study.
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characteristics of multi-label training data are explored in terms of three crucial characteristics, namely, proportion,

variance, and co-occurrence of di�erent categories during the training process. Quantitative analysis is performed on

real and toy datasets, and several valuable �ndings are revealed. Variance di�erences among categories may have a

more serious negative impact on classi�cation performance. If two or three characteristics simultaneously a�ect, then

the performance will decrease much. Second, theoretical analysis for subclass-wise logit perturbation is performed

and a new subclass-wise logit perturbation method is proposed by accounting for the three characteristics mentioned

earlier. Speci�cally, perturbation bounds and directions are determined based on the three characteristics for both the

positive clasting multi-label logit perturbation methods. It reveals that our proposed method enforces intra-subclass

compactness by minimizing the variance of the subclasses’ mapped inputs, while also encouraging larger subclass-wise

margin. Third, we provide an explanation with a regularization view for both our proposed and existing methods.

Extensive experiments are trained on benchmark datasets for MLL, and the results demonstrate that our methods

are highly competitive compared to existing methods.

Our main contributions are summarized as follows:

• We perform a quantitative analysis of the training data characteristics in MLL, and �nd that all three character-

istics, namely proportion, variance, and co-occurrence, have a signi�cant impact on the performance of both

the positive class and negative subclasses. Thus, they should not be ignored during the training process.

• Motivated by the defects of existing methods and our quantitative �ndings, we perform theoretical analysis for

subclass-wise logit perturbation and propose a novel subclass-wise logit perturbation method and empirically

demonstrate its e�ectiveness on MLL benchmarks.

• We explain our and several typical multi-label logit perturbation methods in a regularization view. The results

reveal that our method has more theoretical merits in feature learning.

2 RELATED WORK

2.1 Multi-label Learning (MLL)

MLL has been widely applied in emotion classi�cation [7, 40], text classi�cation [13, 41], and image recognition [10, 27].

Compared with single-label learning, MLL is more prevalent, since some objects belonging to di�erent classes usually

co-occur in the real world. Modeling label co-occurrence relationships is important in MLL, as simply decomposing

it into independent binary classi�cation tasks may not be appropriate in cases where label co-occurrence is dense.

To overcome this problem, recent researches have explored various approaches for capturing label dependencies.

Probabilistic graphical model-based approaches [18, 20] are proposed to explicitly model label dependencies. Recurrent

neural networks (RNNs) [33], graph convolutional networks (GCNs) [3, 4], and BERT [1] are utilized to learn label

co-occurrence relationships and label embedding in multi-label image/text learning. Attention mechanisms [42] are

also widely applied to implicitly capture the label co-occurrence relationships in the MLL. Lin et al. [23] proposed

a multi-label-speci�c feature space ensemble, which creates features customized to each label and utilizes the label

correlation to optimize the margin distribution of the base classi�ers. However, the above-mentioned current methods

neglect the bias of co-occurrence proportion imbalance between the subclass of the negative class and the current

positive class. Ye et al. [39] modeled semantic relations for each input image by estimating an image-speci�c dynamic

graph, which helps overcome the co-occurrence proportion imbalance bias that exists in constructing a global graph

based on the entire dataset [3, 4]. Re-weighting [36] is shown to be an e�ective method for mitigating the bias caused
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Subclass-wise Logit Perturbation for Multi-label Learning 5

by co-occurrence proportion imbalance. Song et al. [29] proposed a simple sampling strategy, i.e., copy-decoupling

re-sampling which converts a multi-label image into multiple single-label images with special labels, eliminating the

e�ect of label co-occurrence on the re-sampling strategy. For the �rst time, we investigate the use of logit perturbation

to mitigate the bias of co-occurrence proportion imbalance.

2.2 Long-tailed Learning

Current research on deep long-tailed learning is generally categorized into three main approaches: class re-

balancing [2, 8, 25], information augmentation [5, 19], and module improvement [15]. Class re-balancing is the dominant

paradigm in long-tailed learning and can be further subdivided into three methods: re-sampling [8], cost-sensitive

learning [2], and logit adjustment (LA) [25], all of which balance the number of training samples of di�erent classes

during model training. Information augmentation is a strategy that enhances model performance by introducing

additional information. Head-to-tail knowledge transfer [5] and head-to-tail data augmentation [19] are typical of this

type of method. Wang et al. [31] designed an e�ective manner to transfer the statistics from relevant head classes to

infer the distribution of tail classes and sample from calibrated distribution further facilitates additional features for tail

classes. Compared with long-tailed single-label learning [2, 16, 25], the category labels in MLL may exhibit an even

more severe long-tailed distribution [12]. To solve the long-tailed distribution problem in multi-label classi�cation,

existing work also mainly uses information augmentation [32], re-sampling [10, 36], cost-sensitive re-weighting [36, 40],

and logit perturbation [10]. Speci�cally, Wang et al. [32] proposed a multiple-stage training framework to exploit

both model- and feature-level knowledge from the head labels, to improve both the representation and generalization

ability of multi-label text classi�cation models. Wu et al. [36] extended the re-balanced sampling and cost-sensitive

re-weighting methods to handle long-tailed multi-labels, resulting in signi�cant performance improvements. Yilmaz

et al. [40] performed a novel approach to multi-label emotion classi�cation by dynamically weighting method that

balances the contribution from each class during training. Guo and Wang [10] proposed a new collaborative training

approach to multi-label classi�cation that leverages two branches: one takes the uniform sampling as input while

the other takes the re-balanced sampling as the input. For each branch, they conducted binary classi�cation using

a binary-cross-entropy-based classi�cation loss with learnable logit perturbation. Label co-occurrence tends to be

harmful to the logit perturbation algorithm. Nevertheless, the designing of logit perturbation strategies considering

label co-occurrence for MLL tasks is rarely explored.

2.3 Logit Perturbation

Logit perturbation, which involves modifying the model logits based on various research goals such as data augmen-

tation or long-tailed learning, etc., is a classic idea to adjust the whole loss [16]. Implicit semantic data augmentation

(ISDA) [35] acquires a perturbation item associated with the intra-class covariance matrix of each class by positing

an in�nitely large sample size. Label-distribution-aware margin (LDAM) [2] is a class-wise perturbation method that

considers the proportion for long-tailed single-label classi�cation. Logit compensation (LC) [10] is a corpus-wise

perturbation method for long-tailed multi-label classi�cation that takes variance into account. The learning of learning

to perturb logits (LPL) [16] perturbation term draws on the idea of adversarial training and controls the magnitude and

direction of the perturbation using the proportion and logit variance of positive to negative classes. Negative-tolerant

Regularization (NTR) [36] is a corpus-wise logit perturbation work for MLL. Let � be the number of classes. NRT
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6 ZHU and WU, et al.

Table 1. Comparison of existing logit perturbation methods.

Method Application task Perturbation granularity Perturbation factor

LA [25] single-label learning corpus-wise class proportion

ISDA [35] single-label learning class-wise variance

LDAM [2] single-label learning class-wise class proportion

NTR [36] multi-label learning corpus-wise class proportion

LC [10] multi-label learning corpus-wise variance

LPL [16] multi-label learning class-wise class proportion and variance

decomposes MLL into� independent binary classi�cation tasks and de�nes the negative-tolerant binary loss as follows:

LĊĐĎ = −
1

#

Ċ∑

ğ=1

1

�

ÿ∑

ę=1

[~ğ,ę log(1 − Z (Dğ,ę + �Dğ,ę )) +
1

B
(1 − ~ğ,ę )log(Z (B (Dğ,ę + �Dğ,ę )))] . (2)

In the above equation, B is hyper-parameter, and �Dğ,ę = −i log( Ċ
Ċę

− 1). # and #ę denote the total number of samples

and the number of samples belonging to the 2Īℎ category, respectively. Besides, Dğ,ę and ~ğ,ę represent the 2
Īℎ elements

of the predicted logits uğ and the ground-truth label ~ğ , respectively. The function Z (·) is the sigmoid function maps

logits in R to probabilities in the range of (0, 1) by

Z (Dğ,ę ) = 1/(1 + 4−īğ,ę ) . (3)

In Eq. (2), logit perturbation term (�uğ ) can also be expressed as follows:

�uğ=�ũ= −k [log(
#

#1

− 1), · · · , (
#

#ÿ

− 1)]Đ , (4)

where �ũ is corpus-wise vector andk is non-negative in Wu et al.’s experiments [36]. Thus, if # < 2#ę , samples with

label 2 are dominant, and the value of �uğ in Eq. (2) is negative. In other words, the loss term corresponding to ~ğ,ę = 1

decreases, and the loss term corresponding to ~ğ,ę = 0 increases. However, if # > 2#ę , the opposite is true.

Table 1 summarizes the comparison of existing logit perturbation methods. It can be clearly seen from Table 1 that

the existing logit perturbation methods for multi-label learning still only consider the label proportion and variance like

single-label learning. In fact, due to the correlation between category labels in the scenario of multi-label classi�cation,

categories with di�erent co-occurrence proportions should not be treated equally. To treat classes with di�erent

co-occurrence proportions inconsistently, we will study subclass-wise logit perturbation for MLL.

3 QUANTITATIVE ANALYSIS ON SUBCLASS-WISE MULTI-LABEL DATA CHARACTERISTICS

This section conducts quantitative analysis for the in�uence of three subclass-wise characteristics, namely, proportion,

variance, and co-occurrence of multi-label training data on the model performance.

3.1 Analysis on Real Dataset

To analyze how the data characteristics of a subclass in a real dataset a�ect the model, we �rst perform statistical

analyses of subclass proportion, label co-occurrence, and logit variance on data from various classes in the VOC-MLT

dataset. To facilitate presentation, we randomly select the head (index 8) and tail (index 16) classes of the VOC-MLT

dataset as positive classes in two decomposed binary learning tasks.
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(c) Co-occurrence distribution of the subclasses when
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(d) Co-occurrence distribution of the subclasses when
the tail class (index 16) is positive.

Fig. 3. Proportion and co-occurrence distributions of the subclasses.

We �rst conduct a statistic on the subclass-wise proportion and co-occurrence, as illustrated in Fig. 3. Our statistics

indicate that the proportion exhibits a long-tailed distribution, and similarly, the co-occurrence also demonstrates an

imbalanced state.

To record the logit variance of each positive and negative subclass, we use ResNet-50 [11], pre-trained on ImageNet,

as the backbone feature extractor on the VOC-MLT dataset. Standard binary cross-entropy (BCE) loss is employed. To

illustrate the logit variance changes for head, middle, and tail subclasses, we perform uniform sampling with a step

size of 6 on the proportionally arranged negative subclasses from two randomly selected binary tasks (index 8 or 16 as

positive), and plot the normalized logit variance curves of these subclasses over training epochs, as shown in Fig. 4.

We observe that the logit variance between the sampled subclasses has a signi�cant di�erence in the later stages of

training, no matter whether the positive class comes from the head or the tail.

To analyze how the features of a training set in�uence the model, we calculate the correlation coe�cient between

the proportion of medium and tail subclasses in the training set and the F1 scores for medium and tail subclasses in the

test set. We also performed similar calculations for the features of logit variance and label co-occurrence proportion.

The results, as shown in Fig. 5, indicate that the most of them are negatively correlated, which means that in most

cases, the lower the class proportion, the poorer the performance is. The situations with logit variance and label

co-occurrence proportion are opposite to this. This is consistent with the conclusions of previous researches, which

considers long-tailed [36] and high label co-occurrence frequency [39] to reduce the model’s recognition performance.
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(a) Normalized variance variation of the subclasses
in epochs when the head class (index 8) is positive.

label index

16 15 3 0 epoch5 10
15

va
ria

nc
e

0.2
0.4
0.6
0.8
1.0

positive class
subclass of negative class

(b) Normalized variance variation of the subclasses
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Fig. 4. Normalized variance variation of the subclasses in epochs.

In the succeeding subsection, to facilitate variable control, we will construct toy datasets to analyze the in�uence of

the three characteristics on the performance of existing multi-label logit perturbation methods.

3.2 Analysis on Toy Datasets

To observe the e�ects of subclass proportion, variance, and label co-occurrence proportion on di�erent algorithms, as

well as the impact of mixed factors, we construct four typical cases by controlling variables. We design toy datasets with

well-de�ned data typical characteristics and training classi�ers using existing multi-label logit perturbation methods.

Logistic regression is employed as the basic classi�er network.

The �rst case explores how class (proportion) imbalance among the negative subclasses a�ects performance. The

toy dataset is simulated as follows. Let subclass 1, subclass 2, and subclass 3 obey the two-dimensional Gaussian

distribution ofN(ą1, Ă21 I ),N(ą2, Ă22 I ) andN(ą3, Ă23 I ), respectively. Assuming subclasses have equidistant class center

ą1 = (0, 2
√
3), ą2 = (−2, 0), ą3 = (2, 0)4, and the same covariance coe�cient Ă1 = Ă2 = Ă3 = 1. The number of samples

of the subclasses is Ĥ1, Ĥ2, and Ĥ3 of which 80% is used as training data and 20% is used as test data. Let Ĥ1 = 1000,

Ĥ2 = 200, Ĥ3 = 10005. The classi�cation results of di�erent methods in the binary classi�cation with subclass 3 as the

positive class are shown in Fig. 6(a). Fig. 6(a) shows the AUC (Area Under the Curve) values of various methods in the

legend. In the other sub�gures, the AUC values of di�erent methods are also shown in the legend. The BCE loss has a

signi�cant negative impact on the negative subclass with fewer samples (subclass 2). Although the NTR [36]method

considers the overall positive-to-negative sample proportion, it still harms subclass 2 due to not accounting for subclass

imbalance, compared to BCE.

The second case explores how di�erences in variance among the negative subclasses a�ect performance. The toy

dataset is simulated as follows. Assuming the mean same as in the previous case, but di�erent covariance coe�cient

Ă1 = 1, Ă2 = 5, Ă3 = 1, and the same amount of data Ĥ1 = Ĥ2 = Ĥ3 = 1000. The classi�cation results of di�erent methods

in binary classi�cation, with subclass 3 as the positive class, are presented in Fig. 6(b). The BCE loss has a detrimental

4The mean values are set so that the distances between the class centers of the subclasses are consistent, meaning the coordinates of the means form a
simplex.
5In the following three cases, when considering the impact of the covariance coe�cient and label co-occurrence proportion, the ratio of the covariance
coe�cient or label co-occurrence between subclasses is also set to 1:5.
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(a) Class proportion.
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(b) Logit variance.
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(c) Label co-occurrence proportion.

Fig. 5. Correlation coe�icient between each of the three data characteristics of the medium and tail subclasses in the training set and

F1 scores of the medium and tail subclasses of the test set.

e�ect on the performance of the negative subclass with large variance. Although the LC [10] method considers the

overall variance of positive and negative classes, it does not show a signi�cant performance improvement.

The third case explores how the co-occurrence proportion imbalance among the negative subclasses a�ects per-

formance. The toy dataset is simulated as follows. Assuming the same mean and data size as stated previously, the

covariance coe�cient is also identical (f1 = f2 = f3 = 1). Furthermore, there are 100 samples that belong to both

subclass 1 and subclass 3, and 20 samples that fall under both subclass 2 and subclass 3, meaning that they have two

labels simultaneously. The classi�cation results of di�erent methods in the binary classi�cation with subclass 3 as the

positive class are shown in Fig. 6(c). The NTR [36], LC [10], and LPL [16] methods all cause signi�cant harm to subclass

2, which has a high co-occurrence proportion with subclass 3.

The fourth case examines how the simultaneous occurrence of three di�erent characteristics, namely proportion,

variance, and co-occurrence, in negative subclasses a�ects performance. The toy data is simulated as follows. Assuming
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Fig. 6. The influence of three characteristics di�erence in the subclass of negative class on the existing methods.

the mean same as above, di�erent covariance coe�cient f1 = 1, f2 = 5, f3 = 1, and di�erent amounts of data =1 = 1000,

=2 = 200, =3 = 1000. In addition, the label co-occurrence situation is the same as above. The classi�cation results of

di�erent methods in the binary classi�cation with subclass 3 as the positive class are shown in Fig. 6(d). In the case

where all three factors are present simultaneously in the negative subclasses, BCE and LC [10] show a signi�cant

misclassi�cation.

Based on the above analysis, the following conclusions are obtained:

• Existing multi-label logit perturbation methods (e.g., NTR [36]) employ undiscriminating perturbation bounds

and directions for each negative subclass, which brings more harm to the minority subclasses.

• In addition to the commonly considered class imbalance, di�erences in variance and co-occurrence proportion

also a�ect performance.

Current multi-label logit perturbation methods not only neglect subclass imbalance but also fail to consider variance

and co-occurrence di�erences among subclasses. We also design a toy data sample to demonstrate the in�uence of

perturbation direction is also explored. Polynomial logistic regression is employed as a basic network for investigating

the in�uence of the direction of perturbation on the toy dataset, which is simulated as follows. Let subclass 1, subclass 2,

and subclass 3 obey the two-dimensional Gaussian distribution ofN(-1, f21 I ),N(-2, f22 I ) andN(-3, f23 I ), respectively.
The number of subclass samples is =1 = 20, =2 = 200, and =3 = 1000, respectively, of which 80% is used as training

data and 20% is used as test data. Assuming the mean -1 = (−3, 3), -2 = (0, 0), -3 = (3,−3), the same variance

f1 = f2 = f3 = 1. The classi�cation results of di�erent methods in the binary classi�cation with subclass 3 as the

positive class are shown in Fig. 2. Since the perturbation directions of the negative subclasses are the same, the NTR [36]

and LPL [16] methods are more bene�cial to the negative subclass 2 with a large sample ratio, but both hurt the
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performance of negative subclass 1. It is necessary to explore a subclass-wise logit perturbation method that takes into

account all three characteristics.

4 METHODOLOGY

In this section, we will �rst invest the relationships among loss variations, performance improvements, and subclass-

wise logit perturbations. Then, we will introduce the proposed subclass-wise logit perturbation loss and illustrate

the di�erences between the proposed loss and the current multi-label perturbation loss. Next, we will deduce the

perturbation coe�cient in the proposed loss and provide the method for its dynamic estimation. Subsequently, we will

describe the optimization procedure for the logit perturbation term in the proposed loss. Finally, we will describe the

overall optimization procedure for the proposed loss.

4.1 Theoretical Analysis for Subclass-wise Logit Perturbation

Under the settings of subclass proportion, variance, and co-occurrence proportion imbalance, we respectively employ

simple binary classi�cation tasks to quantitatively investigate the relationships among loss variations, performance

improvements, and subclass-wise logit perturbations.

A

B

C

(a) Proportion imbalance.

A

B

C

(b) Variance imbalance.

A
B

C

(c) Co-occurrence proportion imbalance.

Fig. 7. Illustrative examples for subclass-wise logit perturbation in di�erent scenarios. Di�erent subclasses apply perturbations with

di�erent directions and magnitudes.

For proportion imbalance, the data from each of the three classes {�, �,�} follow three Gaussian distributions, which

are centered on ) = [[, ..., [] (3−dimensional vector and [ > 0), 0, and -) , respectively. The data follow

~2
D.0.A∼ {�, �,�} (5)

x ∼



N
(
) , f2O

)
if ~2 = �

N
(
0, f2O

)
if ~2 = �

N
(
−) , f2O

)
if ~2 = �

(6)

For a classi�er 5 , the overall natural error is de�ned as R=0C (5 ) = Pr . (5 (x) ≠ ~). We use R=0C (5 , ~) to denote the

natural error conditional on a speci�c class~. The overall natural error is de�ned asRA>1 (5 ) = Pr .
(
5
(
w) x + 1 + �D

)
≠ ~

)
,

where �D represents logit perturbation. We use RA>1 (5 , ~) to denote the robust error conditional on a speci�c class ~.
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Following the work of Zhang et al. [43], we decompose the robust error (RA>1 ) into natural error (R=0C ) and boundary

error (R13~ ), and use the boundary error to assess the classi�er’s sensitivity to logit perturbation. It can be easily

obtained that R13~ (5 ) = RA>1 (5 ) − R=0C (5 ).
In our theoretical analysis, we de�ne subclass-wise logit perturbation as follows:

�D∗2 = arg min
|�īę |f |Ċę |
�īę ·Ċę g0

E(x,~) :~ę=2 [; (D + �D2 , 2)] , (7)

where D = w) x + 1. The prior probabilities of the three classes %� := % (~2 = �), %� := % (~2 = �) and %� := % (~2 = �)
are assumed to be di�erent. Without loss of generality, we assume %� : %� : %� = � : � : 1 − 2� and 0 < � <

1
3 . An

illustrative example of subclass-wise logit perturbation at corresponding proportion is shown in Fig. 7 (a). We have the

following theorem:

Theorem 1. For the binary classi�cation task where class A is the positive class, and subclasses B and C are the negative

classes with logit perturbation d1 · n , d1 · n , and d2 · n , respectively. The optimal robust linear classi�er 5A>1 that minimizes

the average classi�cation error is

5rob = argmin
5

Pr .(S
(
D + �D∗2

)
≠ ~2 ), (8)

where D = 5 (x) = w) x + 1; S(·) is the signum function (if 0 g 0, then S (0) = 1; else S (0) = −1 ). It has the intra-class
natural error for the positive class and two negative subclasses:

R=0C (5rob , �) = Pr .

{

N (0, 1) < −
log( �

1−� )
Λ

−
√
3[

2f

}

,

R=0C (5rob , �) = Pr .

{

N (0, 1) <
log( �

1−� )
Λ

−
√
3[

2f

}

,

R=0C (5rob,�) = Pr .

{

N (0, 1) <
log( �

1−� )
Λ

− 3
√
3[

2f

}

,

(9)

where Λ =
2n ·d1−3[√

3f
.

The proof is attached in the appendix. Theorem 1 indicates that logit perturbation parameterized by n , d1, and d2

in�uences performance of positive class and all subclasses. We then show how the classi�cation errors of the positive

class and negative subclasses change as d1 or d2 increases.

Corollary 1. For the binary classi�cation task investigated in Theorem 1, when 0 < � <
1
3 , as d1 or d2 increases,

the logit perturbations in Theorem 1 will decrease the error for the positive class, and increase the error for the negative

subclasses B and C.

Corollary 2. For the binary classi�cation task investigated in Theorem 1,R13~ (5rob , �),R13~ (5rob , �), andR13~ (5rob ,�)
represent the boundary errors for the positive class and the two negative subclasses, respectively. The total boundary error of

the classi�er is R13~ (5rob ). The upper bound of R13~ (5rob ) can be obtained as:

R13~ (5rob ) < 2 Pr .

{
0 < N (0, 1) < n · d1√

3f

}
+ Pr .

{

−
√
3[

f
< N (0, 1) < n · d1√

3f

}

(10)

For variance imbalance, the data from each of the three classes {�, �,�} follow three Gaussian distributions, which

are centered on ) = [[, ..., [] (3-dimensional vector and [ > 0), 0, and ) , respectively. The data follow
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~2
D.0.A∼ {�, �,�} (11)

x ∼



N
(
) ,  2f2O

)
if ~2 = �

N
(
0,  2f2O

)
if ~2 = �

N
(
−) , (1 − 2 )2f2O

)
if ~2 = �

(12)

where 1
3 <  <

1
2 . An illustrative example of subclass-wise logit perturbation at corresponding variance proportion is

shown in Fig. 7 (b).

In our theoretical analysis, we de�ne subclass-wise logit perturbation as follows:

�D∗2 = arg min
|�īę |f |Ċę |
�īę ·Ċę g0

E(x,~) :~ę=2 [; (D + �D2 , 2)] , (13)

where D = w) x + 1. We have the following theorem:

Theorem 2. For the binary classi�cation task where class A is the positive class, and subclasses B and C are the negative

classes with logit perturbation d1 · n , d1 · n , and d2 · n , respectively. The optimal robust linear classi�er 5A>1 that minimizes

the average classi�cation error is

5rob = argmin
5

Pr .(S
(
D + �D∗2

)
≠ ~2 ), (14)

where D = 5 (x) = w) x + 1; S(·) is the signum function (if 0 g 0, then S (0) = 1; else S (0) = −1 ). It has the intra-class
natural error R=0C for the positive class and two negative subclasses:

R=0C (5rob , �) = Pr .{N (0, 1) < − log 2

Λ
−

√
3[

2 f
},

R=0C (5rob , �) = Pr .{N (0, 1) < log 2

Λ
−

√
3[

2 f
},

R=0C (5rob ,�) = Pr .

{

N (0, 1) <  

1 − 2 

log 2

Λ
− 3

√
3[

2(1 − 2 )f

}

,

(15)

where Λ =
3[−2n ·d1√

3 f
.

The proof is attached in the appendix. Theorem 2 indicates that logit perturbation parameterized by n , d1, and d2

in�uences performance of positive class and all subclasses. We then show how the classi�cation errors of the positive

class and negative subclasses change as d1 or d2 increases.

Corollary 3. For the binary classi�cation task investigated in Theorem 2, when 1
3 <  <

1
2 , as d1 or d2 increases,

the logit perturbations in Theorem 2 will decrease the error for the positive class A, and increase the error for the negative

subclasses B and C.

Corollary 4. For the binary classi�cation task investigated in Theorem 2,R13~ (5rob , �),R13~ (5rob , �), andR13~ (5rob ,�)
represent the boundary errors of the positive class and two negative subclasses, respectively. The total boundary error of the

classi�er is R13~ (5rob ). The upper bound of R13~ (5rob ) can be obtained as:

R13~ (5rob ) < 2 Pr .

{
0 < N (0, 1) < n · d1√

3 f

}
+ Pr .

{

− 3
√
3[

2(1 − 2 )f < N (0, 1) < n · d1√
3 f

−
√
3[

2 f

}

(16)
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For co-occurrence proportion imbalance, the data from each of the three classes {�, �,�} follow two Gaussian

distributions, which are centered on ) = [[, ..., [] (3-dimensional vector and [ > 0), and -) , respectively. The data

follow

x ∼
{

N
(
) , f2O

)
if . = {�, �} with probability %,. = {�} with probability (1 − %)

N
(
−) , f2O

)
if . = {�}

(17)

In our theoretical analysis, we de�ne subclass-wise logit perturbation as follows:

�D∗2 = arg min
|�īę |f |Ċę |
�īę ·Ċę g0

E(x,~) :~ę=2 [; (D + �D2 , 2)] , (18)

where D = w) x + 1. We have the following theorem:

Theorem 3. For the binary classi�cation task where class A is the positive class, and subclasses B and C are the negative

classes with logit perturbation 0, d1 · n , and d2 · n , respectively. The optimal robust linear classi�er 5A>1 that minimizes the

average classi�cation error is

5rob = argmin
5

Pr .(S
(
D + �D∗2

)
≠ ~2 ), (19)

where D = 5 (x) = w) x + 1; S(·) is the signum function (if 0 g 0, then S (0) = 1; else S (0) = −1 ). It has the intra-class
standard natural error R=0C for the positive class and two negative subclasses:

R=0C
(
5opt , �

)
= Pr .

{

N (0, 1) < Λ

2
−
log( 1−%1+% )

Λ

}

,

R=0C
(
5opt , �

)
= Pr .

{

N (0, 1) < −Λ

2
+
log( 1−%1+% )

Λ

}

,

R=0C
(
5opt ,�

)
= Pr .

{

N (0, 1) < −Λ

2
+
log( 1−%1+% )

Λ
− 2

√
3[

f

}

,

(20)

where Λ =
n ·d1√
3f

.

The proof is attached in the appendix. Theorem 3 indicates that logit perturbation parameterized by n , d1, and d2

in�uences performance of positive class and all subclasses. We then show how the classi�cation errors of the positive

class and negative subclasses change as d1 or d2 increases.

Corollary 5. For the binary classi�cation task investigated in Theorem 3, when 1−%
1+% > 4

− (Ċ ·Ā1 )2
2ĚĂ2 , as d1 or d2 increases,

the logit perturbations in Theorem 3 will decrease the error for the positive class A, and increase the error for the negative

subclasses B and C.

Corollary 6. For the binary classi�cation task investigated in Theorem 3,R13~ (5rob , �),R13~ (5rob , �), andR13~ (5rob ,�)
represent the boundary errors of the positive class and two negative subclasses, and the total boundary error of the classi�er

is R13~ (5rob ). The upper bound of R13~ (5rob ) can be obtained as:

R13~ (5rob ) < Pr .

{
0 < N (0, 1) < n · d1√

3f

}
+ Pr .

{

0 < N (0, 1) < 2
√
3[

f

}

(21)
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Based on the above theoretical analysis, it can be concluded that adding positive perturbations to weak negative

subclasses, negative perturbations to strong negative subclasses, and applying the opposite strategy to positive classes

with varying data characteristics will help reduce classi�cation errors.

4.2 The Proposed Loss

Based on the theoretical analyses under the three data characteristics (class proportion, variance, and label co-

occurrence proportion) imbalance settings and inspired by the logit perturbation method used in LPL [16], we establish

the following new logit perturbation for MLL, named subclass-wise logit perturbation (SLP). It can be represented as a

uni�ed end-to-end training loss, as shown in Fig. 8. This loss allows for the virtual generation and deletion of samples6

at the classi�cation boundary for each decomposed binary classi�er. Virtual generation or deletion samples are used to

simulate and study the model’s behavior near decision boundaries, helping to understand and improve the model’s

sensitivity to boundary changes and dependence on class divisions. The generation and removal of these samples assist

in optimizing the model’s decision boundaries. Let � be the number of categories. The proposed SLP loss function is as

follows:

L(!% = − 1

#

#∑

8=1

1

�

�∑

2=1

[ min
|�ī+ę |f |Ċ+ę |
�ī+ę ·Ċ+ę g0

~8,2;>6(Z (D8,2 + �D+2 )) +
1

wt(~8 )

�∑

9=1

min
|�ī−

ę,Ġ
|f |Ċ−

ę,Ġ
|

�ī−
ę,Ġ

·Ċ−
ę,Ġ

g0

(1 − ~8,2 )~8, 9 ;>6(1 − Z (D8,2 + �D−2,9 ))],

(22)

where Z (·) is the sigmoid function; ~8 = {~8,1, ..., ~8,2 , ...~8,� }, where ~8,2 = 1 if label 2 is associated with given training

sample x8 , and is otherwise zero7; wt(~8 ) denotes the Hamming weight of ~8 , i.e., the number of elements with a value

of 1 in ~8 ; D8,2 and ~8,2 represent the 2
Cℎ elements of the predicted logits u8 and the ground-truth label ~8 , respectively;

n+2 and n−2,9 are used to determine perturbation bounds for the positive class and negative subclasses, respectively. The

‘+’ sign in n+2 is used to indicate that the perturbation bound is related to the positive class, regardless of the actual

sign of its value. While the ‘−’ sign in n−2,9 indicates that the perturbation bound is related to the negative class. Thus,

the perturbation terms �D+2 and �D−2,9 belong to the intervals [<8=(n+2 , 0),<0G (n+2 , 0)] and [<8=(n−2,9 , 0),<0G (n
−
2,9 , 0)],

respectively. We can see that in the second term of Eq. (22), n−2,9 indicates that the perturbation term of each negative

subclass is di�erent. In addition, the direction of the perturbation is determined by the sign of n−2,9 , and the bound of the

perturbation is related to the value of |n−2,9 |. De�ne the perturbation bound of the positive sample for the 2Cℎ classi�er

as follows:

n+2 = −;>6( 2> 52,2
[

)�n. (23)

The perturbation bounds of samples of di�erent subclasses in the negative class for the 2Cℎ class classi�er are as

follows:

n−2,9 = ;>6(
2> 52,9

[
)�n, (24)

where 2> 52,9 indicates the perturbation coe�cient of the 9Cℎ subclass when the 2Cℎ class is the positive class; [ > 0 is a

variable threshold. The speci�c calculation of the perturbation coe�cients and the perturbation optimization process

will be introduced in the next subsection. The use of the logarithmic function is inspired by Wu et al. [36]. Eq. (23)

indicates that when the subclass perturbation coe�cient is less than the threshold [, the subclass perturbation bound is

6Virtual generation samples refer to those samples that, after the perturbation term is applied, are moved closer to the decision boundary, assuming they
are generated. Conversely, virtual deletion samples refer to those samples that, after the perturbation term is applied, are moved further away from the
decision boundary, assuming they are deleted.
7If a text belongs to classes 1 and 3, then ~ğ = {1, 0, 1}.
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Fig. 8. Our subclass-wise logit perturbation loss performs calculating the perturbation coe�icient on the base of three characteristics,

namely proportion, variance, and co-occurrence proportion, to avoid consistent perturbations that only consider a single factor in

negative class. Assuming there are� classes in the data, it is divided into� tasks. For each task, we can calculate various statistics,

including proportion, logit variance, and co-occurrence proportion of the positive class and negative subclasses. Based on the

normalized proportion, logit variance, and co-occurrence proportion, we can obtain the perturbation coe�icient for each positive class

and negative subclass.

a positive number; when it is greater than the threshold [, the subclass perturbation bound is a negative number; when

it is equal to the threshold [, the perturbation bound is 0. Eq. (24) is the opposite of the above. [ = (∑�2=1
∑�
9=1 2> 52,9 )/�2

can be used as a simple form of threshold selection. We also provide a varying form threshold selection method in the

experimental section, as detailed in Section 6.3. �n is a hyper-parameter.

For positive classes with a perturbation coe�cient greater than a threshold, the �rst term loss increases; for negative

subclasses with a perturbation coe�cient greater than a threshold, the second term loss increases. The opposite is true

for the case where the perturbation coe�cient is less than a threshold. This shows that our proposed subclass-wise logit

perturbation loss increases the attention to positive classes and negative subclasses with large perturbation coe�cients,

and decreases the attention to positive classes and negative subclasses with small perturbation coe�cients.

As shown in Fig. 9, we present the curves of the SLP loss and the existing losses. It can be observed that, compared

to the BCE loss, our proposed SLP loss suppresses and encourages the strong and weak positive classes and negative

subclasses separately. However, other losses adopt a single approach of either suppression or encouragement.

4.3 Perturbation Coe�icient Calculation

Based on the analysis on both toy and real datasets in the aforementioned section, we have obtained that the

perturbation bound and direction for the positive class and each negative subclass are determined according to the

following principles:

• The smaller the proportion of subclasses, the larger the perturbation bound, and the more the perturbation

direction tends to increase the loss.
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Fig. 9. Illustrative the curves of the SLP and existing loss.

• The larger the logit variance of the subclasses, the larger the perturbation bound, and the more the perturbation

direction tends to increase the loss.

• The more co-occurrences of the subclasses and the positive class, the larger the perturbation bound, and the

more the perturbation direction tends to increase the loss.

Therefore, we calculate the perturbation coe�cient. The speci�c calculation process is as follows:

Statistic three characteristics and normalize. Let .2 be the sample set containing the 2 class. Let g2 = (# −
|.2 |)/|.2 |, which indicates the ratio of negative samples to positive samples when 2 is a positive class. Let g2,9 =

(# − |.2 |)/(|.9\(.2 ∩ .9 ) | + Y), which indicates the reciprocal of the proportion of negative subclass 9 when 2 is the

positive class. Y = 10−8. Let f2 and f2,9 be the logit variance of positive class and negative subclass 9 in the 2 classi�er,

respectively. Let d2,9 = |.2 ∩.9 |/|.9 |, which indicates the co-occurrence proportion with the positive class 2 in negative

subclass 9 . ĝ2 and f̂2 indicate the Min-Max normalized value of g2 and f2 , respectively. The normalization method used

below is the same. ĝ2,9 , f̂2,9 , and d̂2,9 indicate the normalized value of g2,9 , f2,9 , and d2,9 , respectively.

Calculate perturbation coe�cient. The perturbation coe�cients of positive class 2 and negative subclass 9 are

de�ned as follows:

2> 52,2 = [1 − (1 − U)V]ĝ2 + (1 − U)Vf̂2 , (25)

2> 52,9 = Uĝ2,9 + (1 − U) [Vf̂2,9 + (1 − V)d̂2,9 ], (26)

where U and V are hyper-parameters. In order to avoid complicated parameter tuning, we regard three characteristics

as equally important in our experimental settings, namely, U = 1/3, V = 1/2.
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Table 2. Symbol explanations used in this section.

Quantity Formula Description

g2 (# − |.2 |)/|.2 | Ratio of negative samples to positive samples in the 2 classi�er

ĝ2 (g2 −<8=(3 ))/(<0G (3) −<8=(3 )) Normalized ratio of negative samples to positive samples in the 2 classi�er

g2,9 (# − |.2 |)/(|.9\(.2 ∩ .9 ) | + Y) Reciprocal of the proportion of negative subclass 9 in the 2 classi�er

ĝ2,9 (g2,9 −<8=(3 ))/(<0G (3) −<8=(3 )) Normalized reciprocal of the proportion of negative subclass 9 in the 2 classi�er.

f2
1

|.ę |
∑ |.ę |
8=1 (D8,2 −

1
|.ę |

∑ |.ę |
8=1 D8,2 )

2 Logit variance of positive class in the 2 classi�er

f̂2 (f2 −<8=(2))/(<0G (2) −<8=(2)) Normalized logit variance of positive class in the 2 classi�er

f2,9

∑|ĕĠ (\(ĕę∩ĕĠ ) ) |
ğ=1 (Dğ,Ġ−

∑|ĕĠ (\(ĕę∩ĕĠ ) ) |
ğ=1

īğ,Ġ

|ĕĠ (\(ĕę∩ĕĠ ) ) |
)2

|.Ġ (\(.ę∩.Ġ ) ) | Logit variance of negative subclass 9 in the 2 classi�er

f̂2,9 (f2,9 −<8=(2))/(<0G (2) −<8=(2)) Normalized logit variance of negative subclass 9 in the 2 classi�er

d2,9 |.2 ∩ .9 |/|.9 | Co-occurrence proportion with the positive class 2 in negative subclass 9 .

d̂2,9 (d2,9 −<8=(1))/(<0G (1) −<8=(1)) Normalized co-occurrence proportion with the positive class 2 in negative subclass 9

2> 52,2 [1 − (1 − U)V]ĝ2 + (1 − U)Vf̂2 Perturbation coe�cient of positive class 2

2> 52,9 2> 52,9 = Uĝ2,9 + (1 − U) [Vf̂2,9 + (1 − V)d̂2,9 ] Perturbation coe�cient of the negative subclass 9 in the 2 classi�er

n+2 ;>6(2> 52,2/[)�n Perturbation bound of the positive class 2

n−2,9 −;>6(2> 52,9/[)�n Perturbation bound of the negative subclass 9 in the 2 classi�er

The perturbation coe�cient matrix cof composed of 2> 52,9 is as follows:

cof =



2> 51,1 · · · 2> 51,�
...

. . .
...

2> 5�,1 · · · 2> 5�,�



. (27)

For clarity, Table 2 summarizes the symbol explanations used in this section. In the table,<8=(·)/<0G (·) denotes
obtaining the minimum/maximum value from a vector.

Dynamic estimation of perturbation coe�cient. During implementation, all three characteristics that a�ect the

perturbation coe�cient are computed online from the summary statistics of each mini-batch. Their estimation method

follows the strategy leveraged in MetaSAug [19]. The estimation process is as follows:

.
(C )
2 =

= (C−1). (C−1)
2 +< (C ).

′ (C )
2

= (C−1) +< (C ) , (28)

f
+(C )
2 =

=
(C−1)
2 f

+(C−1)
2 +< (C )

2 f
+′ (C )
2

=
(C−1)
2 +< (C )

2

, (29)

f
−(C )
2 =

(= (C−1) − = (C−1)2 )f−(C−1)
2 + (< (C ) −< (C )

2 )f−
′ (C )

2

(= (C ) − = (C−1)2 ) + (< (C ) −< (C )
2 )

, (30)

f
(C )
2,9 =

=
(C−1)
2,9 f

(C−1)
2,9 +< (C )

2,9 f
′ (C )
2,9

=
(C−1)
2,9 +< (C )

2,9

, (31)

where .
(C )
2 and .

′ (C )
2 are the estimated and true values of the number of 2Cℎ class samples of the CCℎ mini-batch; f

+(C )
2

and f
+′ (C )
2 are the estimated and true values of the logit variance of the positive class at the CCℎ step when the 2Cℎ class

is positive class; f
−(C )
2 and f

−′ (C )
2 are the estimated and true values of the logit variance of the negative class at the

CCℎ step when the 2Cℎ class is positive class; f
(C )
2,9 and f

′ (C )
2,9 are the estimated and true values of the logit variance of

subclass 9Cℎ in the negative class at the CCℎ step when 2Cℎ is a positive class.
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Algorithm 1 Perturbation optimization algorithm

Input: Logit vector u8 , Perturbation bound n+2 , n
−
2,9 , Hyper-parameter _.

Output: Perturbation �u
 ę
2 .

1: Let u08 = u8

2: Calculate  2 =<0G{+ |n
+
ę |
_

,, + |n
−
ę,1 |
_

,, ..., +
|n−
ę,Ġ

|
_

,, ..., + |n
−
ę,ÿ

|
_

,}
3: for : = 1 to  2 do

4: Calculate
m; (Z (uğ ),~ğ )

muğ
= Z (u8 ) −~8

5: if : f + |n
+
ę |
_

, then
6: Calculate perturbation item �D:,+2 by Eq. (33)
7: else

8: �D:,+2 = �D:−1,+2

9: end if

10: if : f +
|n−
ę,Ġ

|
_

, then
11: Calculate perturbation item �D:,−2,9 by Eq. (34)

12: else

13: �D:,−2,9 = �D:−1,+2,9

14: end if

15: Calculate perturbation vector �u:2
16: Update u:+18 := u:8 + �u:2
17: end for

4.4 Perturbation Optimization

The perturbation term in Eq. (22) can be solved by an optimization method similar to PGD [24]. Algorithm 1 gives the

speci�c optimization process. The BCE loss function calculates the derivative of the logit vector, resulting in:

m; (Z (u8 ),~8 )
mu8

= Z (u8 ) −~8 . (32)

�D+2 in the Eq. (22) represents the 2Cℎ element of %2 . �D
+
2 is updated by the following formula:

�D+2 =
sign(n+2 )_

|.2 |
∑

8:~ğ,ę=1

(Z (u8 ) −~8 ), (33)

where _ is a hyper-parameter, and sign(·) represents a symbolic function. In Eq. (22), �D−2,9 represents the 9
Cℎ element

of �u2 . �D
−
2,9 is updated by the following formula:

�D−2,9 =
sign(n−2,9 )_

|.9\(.2 ∩ .9 ) | + Y
∑

8:(~ğ,Ġ=1,~ğ,ę=0)
(Z (u8 ) −~8 ). (34)

4.5 The Overall Learning Procedure

The overall learning procedure within each mini-batch consists of four steps: (1) Dynamically estimate the perturbation

coe�cients. (2) Solve the perturbation bounds. (3) Perform perturbation optimization to update logits. (4) Update the

network parameters. Algorithm 2 presents the overall optimization steps of our SLP for MLL.
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Algorithm 2 Subclass-wise logit perturbation algorithm

Input: Y , max iteration ) , hyper-parameters for perturbation optimization algorithm, batch size, hyper-parameter �n
and threshold [ for calculating the perturbation bound, momentum and weight decay for calculating SGD.

Output: Deep neural network parameters] .
1: for C = 1 to ) do

2: Sample a mini-batch from ( .
3: Dynamic estimation of perturbation coe�cient by Eqs. (28)- (31).
4: Calculate perturbation bound by Eqs. (23) and (24).
5: Update logits using Algorithm 1.
6: Update] with SGD.
7: end for

5 EXPLANATION IN REGULARIZATION VIEW

This section conducts a comprehensive analysis of NTR [36], LC [10], LPL [16], and our SLP from the perspective of

regularization. To the best of our knowledge, this is the �rst study that uses regularization to explain these multi-label

logit perturbation methods. Our �ndings suggest that our SLP has more theoretical merits.

Table 3. Regularization terms and reflected generalization factors of four losses (NTR [36], LC [10], LPL [16], and SLP).

Loss Regularization term Generalization factor

NTR [36] 1
�

∑�
2=1{[~8,2Z (D8,2 ) − (1 − ~8,2 ) (1 − Z (BD8,2 ))] (−k log( ##ę

− 1))} !Class-wise margin

LC [10] − 1
�

∑�
2=1 [~8,2 (1 − Z (f+2 D8,2 )`+2 ) + (1 − ~8,2 )Z (f−2 D8,2 )`−2 ] !Intra-class compactness

LPL [16] 1
�

∑�
2=1 S(2 − g) (Z (D8,2 ) − ~8,2 )2n2 !Class-wise margin

Our SLP 1
�

∑�
2=1 [(~8,2 (Z (D8,2 ) − 1))2n+2 + 1

|~ğ |
∑
9 ((1 − ~8,2 )~8, 9Z (D8,2 ))2n−2,9 ]

!Class-wise/subclass-wise margin

!Intra-class/intra-subclass compactness

Using the �rst-order Taylor expansion of the loss, we have

ℓ��� (u + �u) ≈ ℓ��� (u) + ( mℓ���
mu

))�u = ℓ��� (u) + (Z (u) −~))�u, (35)

where ~ is the label. Considering '��� = (Z (u) −~))�u, the underlying regularizers of all approaches can be derived.

The regularization terms of the four losses are presented in Table 3.

NTR [36] loss for sample x i is

ℓ#)' = − 1

�

�∑

2=1

[~8,2;>6(1 − Z (D8,2 + �D2 )) +
1

B
(1 − ~8,2 );>6(Z (B (D8,2 + �D2 )))], (36)

where �D2 = −k log( ##ę
− 1) is the perturbation term of the positive and negative classes. According to Eq. (35), we can

derive its regularization term as

'#)' =
1

�

�∑

2=1

{[~8,2Z (D8,2 ) − (1 − ~8,2 ) (1 − Z (BD8,2 ))] (−k log(
#

#2
− 1))}. (37)

'#)' increases the class-wise margin of the positive class of the tail classi�er.
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LC [10] loss for sample x i is

ℓ!� = − 1

�

�∑

2=1

[~8,2;>6(Z (f+2 (D8,2 + �D+2 ))) + (1 − ~8,2 );>6(1 − Z (f−2 (D8,2 + �D−2 )))], (38)

where �D+2 =
`+ę
f+
ę
and �D−2 =

`−ę
f−
ę
are the perturbation terms of the positive and negative classes, respectively. According

to Eq. (35), we can derive its regularization term as

'!� = − 1

�

�∑

2=1

[~8,2 (1 − Z (f+2 D8,2 )`+2 ) + (1 − ~8,2 )Z (f−2 D8,2 )`−2 ], (39)

where −~8,2 (1 − Z (f+2 D8,2 ))`+2 and −(1 − ~8,2 )Z (f−2 D8,2 )`−2 will force the model to decrease the logit variance (Fig. 10,

and thus increase intra-class compactness.

LPL [16] loss for sample x i is

ℓ!%! =
1

�

�∑

2=1

{S(2 − g) × max
| |�Dę | | fnę

[ℓ��� (Z (D8,2 + �D2 ), ~8,2 )S(2 − g)]}, (40)

where �D2 =
mℓþÿā

mDğ,ę
n2 or �D2 = − mℓþÿā

mDğ,ę
n2 is the perturbation term when 2 g g or 2 < g . According to Eq. (35), we can

derive its regularization term as

'!%! =
1

�

�∑

2=1

S(2 − g) (Z (D8,2 ) − ~8,2 )2n2 . (41)

LPL [16] increases the class-wise margin of the positive and negative classes of the tail classi�er, which is bene�cial to

the learning of tail classes.

Our SLP loss for sample x i is

ℓ(!% = − 1

�

�∑

2=1

[ min
|�ī+ę |f |Ċ+ę |
�ī+ę ·Ċ+ę g0

~8,2;>6(Z (D8,2 + �D+2 )) +
1

wt(~8 )
∑

9

min
|�ī−

ę,Ġ
|f |Ċ−

ę,Ġ
|

�ī−
ę,Ġ

·Ċ−
ę,Ġ

g0

(1 − ~8,2 )~8, 9 ;>6(1 − Z (D8,2 + �D−2,9 ))], (42)

where�D+2 = − m (~ğ,ę;>6 (Z (Dğ,ę ) ) )mDğ,ę
n+2 = ~8,2 (Z (D8,2 )−1)n+2 and�D−2,9 = − m ( (1−~ğ,ę )~ğ,Ġ ;>6 (1−Z (Dğ,ę ) ) )mDğ,ę

n−2,9 = (1−~8,2 )~8, 9Z (D8,2 )n−2,9
are the perturbation terms of the positive class and negative subclasses. Fig. 10 shows the necessity of varying amplitude

and direction of perturbations. According to Eq. (35), we can derive its regularization term as

ℓ(!% (u8 + �u8 )

≈ ℓ(!% (u8 ) +
1

�

�∑

2=1

[~8,2 (Z (D8,2 ) − 1)�D+2 + 1

wt(~8 )
∑

9

(1 − ~8,2 )~8, 9Z (D8,2 )�D−2,9 ]

= ℓ(!% (u8 ) +
1

�

�∑

2=1

[(~8,2 (Z (D8,2 ) − 1))2n+2 + 1

wt(~8 )
∑

9

((1 − ~8,2 )~8, 9Z (D8,2 ))2n−2,9 ] .

(43)

'(!% =
1

�

�∑

2=1

[(~8,2 (Z (D8,2 ) − 1))2n+2 + 1

wt(~8 )
∑

9

((1 − ~8,2 )~8, 9Z (D8,2 ))2n−2,9 ] . (44)
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Fig. 10. Illustrative figure for the variance and the perturbation amplitude and direction. There are significant di�erences in both the

variances (fÿ−
1
and fÿ−

2
) and the perturbation amplitudes and directions (deep orange arrow and deep green arrow) between the two

negative subclasses (�−
1 and�−

2 ).

Our SLP increases the class-wise margin of weak positive classes and the subclass-wise margin of weak negative

subclasses. Meanwhile, SLP makes n+2 and n−2,9 decrease, which increases the intra-class compactness of weak positive

classes and the intra-subclass compactness of weak negative subclasses.

6 EXPERIMENTS

6.1 Datasets

The proposed SLP is evaluated on �ve di�erent datasets, namely Ren-CECps, SemEval18, Reuters-21578, VOC-MLT,

and COCO-MLT. These datasets represent a diverse range of �elds including emotion classi�cation, text classi�cation,

and visual recognition. Figs.11 and 12 show the label distribution and label co-occurrence of these datasets.

Ren-CECps: Ren-CECps is a Chinese emotion corpus which is originally partitioned into two sets: training set

and test set, and annotated on three levels, namely, document, paragraph, and sentence. Each level is annotated with

eight emotion classes (“期à"Ċ“高t"Ċ“Ýs"Ċ“ê¿"Ċ“焦Ó"Ċ“òo"Ċ“d怒"Ċ“憎h" (“expect", “joy", “love",

“surprise", “anxiety", "sorrow", "angry", and "hate")) and discrete emotion intensities from 0.0 to 1.0. The eight labels are

divided into three groups: head classes (“love", “anxiety", and “sorrow"); medium classes (“joy", “expect", and “hate"); tail

classes (“angry" and “surprise"). As in [7], we follow the methodology where emotion intensity greater than 0.0 is set to

1, otherwise 0.

SemEval18: SemEval18 task 1 includes an array of subtasks on labeled multilingual tweets in English, Arabic and

Spanish. The data is originally partitioned into three sets, namely, training set, validation set and test set. We utilize

the English Emotion Classi�cation (E-c) dataset from SemEval18 which comprises of 10,983 labeled samples with 11

di�erent emotion categories: “anger", “anticipation", “disgust", “fear", “joy", “love", “optimism", “pessimism", “sadness",
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“surprise", and “trust". The 11 labels of the SemEval18 dataset are divided into three groups: head classes (“disgust",

“anger", and “joy"); medium classes (“sadness", “optimism", “fear", and “anticipation"); tail classes (“pessimism", “love",

“surprise" and “trust").

Reuters-21578: Reuters-21578 (version 1.0) contains Reuters Newswire documents from 1987 that were manually

annotated with 90 labels [12]. We follow the train-test split used by Huang et al. [12], obtaining 7,769 training documents

(of which 1,000 are used for validation) and 3,019 test documents. Labels are divided into head classes (sample size g
35), medium classes (sample size 8-35), and tail classes (sample size f 8).

VOC-MLT: The long-tailed multi-label versions of VOC sampled and compiled from VOC-2012 and VOC-2007

datasets based on Pareto distribution by Wu et al. [36]. The training and test con�gurations used in [36] are followed.

The training set contains 1,142 images and 20 classes, the number of images per class ranges from 4 to 775. Labels are

divided into head classes (sample size g 100), medium classes (sample size 20 - 100), and tail classes (sample size f 20).

The test set is built on VOC-2007 [9] test that contains 4,952 images.

COCO-MLT: The long-tailed multi-label versions of COCO sampled and compiled from MS-COCO-2017 dataset

based on Pareto distribution by Wu et al. [36]. The training and test con�gurations used in [36] are followed. The

training set contains 1,909 images and 80 classes, and the number of images per class ranges from 6 to 1,128. The test

set consists of 5,000 images from the MS-COCO-2017 test set. The ratio of head, medium, and tail classes is 22:33:25 in

COCO-MLT.

6.2 Experimental Se�ings

Evaluation Metrics. Following [1, 12], we evaluate micro-average F1-score (miF1) and macro-average F1-score (maF1)

for all classes of RenCECps, SemEval18 and Reuters-21578 datasets, and we also report miF1 and maF1 for each subset.

Micro-average F1 performs statistics on each sample in the dataset regardless of class to establish a global confusion

matrix, and then calculates the F1-score. Micro-average F1 treats each sample equally, so its value is more a�ected

by the head classes. Macro-average F1 calculates the F1-score for each class individually and then averages them.

Macro-average F1 treats every class equally, so its value is mainly a�ected by a tail classes.

Following [36], we evaluate mean average precision(mAP) for all the classes of VOC-MLT and COCO-MLT datasets,

and we also report mAP for each subset.

Competing methods. Several state-of-the-art MLL or logit perturbation methods are compared. For a fair compari-

son, their e�cient combination results are also reported. The following methods are all modi�cations based on binary

cross entropy (BCE).

(1) Empirical risk minimization (ERM): The plain model with equal weights and sampling probabilities for all samples.

(2) Re-weighting (RW) [36]: A smoothed version of re-weighting is performed that is inversely proportional to the

square root of the class frequency and normalized in mini-batches.

(3) Re-sampling (RS) [28]: A class-aware re-sampling without extra skills, which tries to make the probability of each

class appear the same in each batch as much as possible; and avoids the same order of pictures.

(4) Focal loss (FL) [21]: As in [36], we use a focal loss with W = 2 and a balance parameter of 2.

(5) ML-GCN [4]: A MLL method based on graph convolutional network (GCN).

(6) Class-balanced loss (CB) [6]: A class-wise re-weighting approach, guided by the e�ective number of each class

�= = (1 − V=) (1 − V).
(7) Label-distribution-aware margin loss (LDAM) [2]: A recently proposed class-wise margin-loss that is motivated

by minimizing a margin-based generalization bound.
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(a) Label distribution of the Ren-CECps dataset.
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(c) Label distribution of the SemEval18 dataset.
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(e) Label distribution of the Reuters-21578 dataset.
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Fig. 11. Statistical charts of the text datasets.
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(a) Label distribution of the VOC-MLT dataset.
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(c) Label distribution of the COCO-MLT dataset.
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Fig. 12. Statistical charts of the image datasets.

Table 4. Comparisons with state-of-the-art methods on the Ren-CECps dataset (%).

Methods total miF1/maF1 head miF1/maF1 medium miF1/maF1 tail miF1/maF1

BCE 61.11±0.15 /53.96±0.09 66.26±0.25/66.24±0.11 54.62±0.21/51.30±0.18 39.01±0.12/39.53±0.13
FL [21] 61.87±0.16/55.26±0.13 67.13±0.23/66.68±0.18 54.91±0.14/53.29±0.11 40.00±0.22/41.07±0.17
R-BCE [36] 61.79±0.14/55.16±0.12 67.06±0.19/66.61±0.18 54.83±0.24/53.23±0.13 39.86±0.17/40.86±0.20
R-BCE-Focal [36] 61.94±0.17/55.33±0.08 67.21±0.16/66.76±0.07 54.97±0.12/53.34±0.14 40.08±0.15/41.16±0.09
R-BCE+NTR [36] 61.90±0.12/55.29±0.16 67.11±0.11/66.65±0.05 55.06±0.16/53.47±0.21 40.03±0.15/40.99±0.13
R-BCE-Focal+NTR [36] 62.13±0.11/55.55±0.13 67.34±0.09/66.90±0.11 55.23±0.07/53.62±0.08 40.42±0.14/41.41±0.16
R-BCE+LC [10] 61.98±0.19/55.36±0.14 67.23±0.06/66.79±0.11 55.06±0.17/53.45±0.15 40.14±0.16/41.07±0.19
R-BCE-Focal+LC [10] 62.32±0.12/55.77±0.16 67.50±0.06/67.06±0.11 55.45±0.08/53.84±0.14 40.83±0.12/41.75±0.18
R-BCE+LPL [16] 62.34±0.12/55.87±0.08 67.65±0.11/67.19±0.17 55.48±0.07/53.99±0.13 40.59±0.14/41.68±0.12
R-BCE-Focal+LPL [16] 62.49±0.07/56.01±0.12 67.71±0.11/67.25±0.09 55.54±0.15/54.09±0.17 40.94±0.04/42.04±0.13
R-BCE+LPLE [17] 62.48±0.06/56.01±0.14 67.65±0.09/67.18±0.13 55.67±0.15/54.11±0.07 40.97±0.05/42.10±0.07
R-BCE-Focal+LPLE [17] 63.03±0.07/56.63±0.14 68.12±0.11/67.68±0.06 56.36±0.13/54.84±0.16 41.54±0.03/42.76±0.11

R-BCE+SLP(M) 63.02±0.06/56.65±0.07 68.16±0.05/67.69±0.09 56.24±0.13/54.81±0.08 41.67±0.03/42.86±0.06
R-BCE+SLP(V) 63.27±0.08/56.93±0.12 68.38±0.04/67.91±0.12 56.58±0.08/55.12±0.07 41.88±0.03/43.16±0.05
R-BCE-Focal+SLP(M) 63.91±0.03/57.63±0.07 68.92±0.12/68.47±0.08 57.42±0.05/56.05±0.06 42.48±0.04/43.74±0.05
R-BCE-Focal+SLP(V) 64.02±0.04/57.77±0.10 68.97±0.02/68.55±0.09 57.59±0.08/56.16±0.04 42.92±0.10/44.04±0.07
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(8) Re-balanced weighting binary cross entropy (R-BCE) [36]: A way to re-balance the weights that takes into account

the impact caused by label co-occurrence.

(9) Negative-tolerant regularization (NTR) [36]: A regularization to mitigate the over-suppression of negative labels.

(10) Logit compensation (LC) [10]: A corpus-wise logit perturbation method, which assumes that logit obeys a

Gaussian distribution. The logit variance of positive or negative samples is used as a multiplicative perturbation, and

the logit mean is used as an additive perturbation.

(11) Learning to perturb logits (LPL) [16]: A class-wise logit perturbation method, which adopts an idea similar to

adversarial training to implement positively/negatively augmented based on low/high performance or tail/head class.

(12) Learning to perturb logits extension (LPLE) [17]: An extended version of LPL in multi-label classi�cation.

Through threshold adjustment, when a multi-label task is converted into multiple binary classi�cation tasks, the binary

classi�cation task of the head class pays more attention to variance imbalance, while the tail class pays more attention

to class imbalance.

(13) CD-RS + AFL (Ensemble) [29]: An ensemble is obtained by averaging the predictions of the trained models on

the datasets with and without copy-decoupling re-sampling (CD-RS), these two models use adaptively focal loss (AFL).

Speci�cally, CD-RS converts a multi-label image into multiple single-label images with special labels, eliminating the

e�ect of label co-occurrence on the re-sampling strategy.

Implementation Details. For RenCECps, SemEval18 two emotion classi�cation datasets and Reuters-21578

text classi�cation dataset, we choose BertForSequenceClassi�cation as the backbone in the transformer library. The

bert-base-uncased, bert-base-chinese, and bert-base-case pre-trainedmodels are used in SemEval18, RenCECps,

and Reuters-21578, respectively. The maximum length of the pre-trained model is 512, the training data larger than

the maximum length will be truncated, and the batch size is 32. AdamW with a weight decay of 0.01 is used as the

optimizer, and the learning rate is determined by hyper-parameter search.

For the two multi-label visual recognition datasets VOC-MLT and COCO-MLT, we use the same con�guration as Wu

et al. [36], Guo and Wang [10], Li et al. [16] advanced methods for comparison. Speci�cally, we use ResNet50 pre-trained

on ImageNet as the backbone, followed by global average pooling and 2048×256 fully connected layers to obtain

image-level features. The �nal classi�er outputs logit through a fully connected layer of 256 × C. The input images are

resized to a spatial dimension of 224 × 224 and organized into batches of size 32 using standard data augmentation

methods [36]. We use SGD with a momentum of 0.9 and a weight decay of 0.0001 as the optimizer.

6.3 Comparisons with State-of-the-Arts

Our method has two variants SLP(M) and SLP(V). SLP(M) means that the threshold ā in Eqs. (23) and (24) take the mean

value of the elements of ęĥĜ . SLP(V) represents the threshold ā = (Ą ∗ģğĤ(ęĥĜ ) + (5 − Ą) ∗ģėĮ (ęĥĜ ))/5. Ą searches

from {0, 1, 2, 3, 4, 5}.

Results on Ren-CECps, SemEval18 and Reuters-21578. Given that original code of comparison method have

been open-sourced, we used the original open-source code provided by the authors, and the results shown are the

averages and standard deviations obtained from �ve runs. The results on Ren-CECps comparing our proposed method

with other traditional and state-of-the-art methods are shown in Table 4, where the underlined and bolded are the

best results among other traditional methods, and the best among all methods results, respectively. Other tables also

have similarly underlined and bolded. Compared to the best results of other methods, the best results achieved by the

proposed SLP improve by 0.99%/1.14% in the overall miF1/maF1, and by 0.85%/0.87%, 1.23%/1.32%, 1.38%/1.28% for head,

medium, and tail classes, respectively.
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Table 5. Comparisons with state-of-the-art methods on the SemEval18 dataset (%).

Methods total miF1/maF1 head miF1/maF1 medium miF1/maF1 tail miF1/maF1

BCE 70.06±0.20/54.24±0.23 80.22±0.21/79.86±0.16 66.12±0.17/60.36±0.13 38.85±0.21/28.89±0.24
FL [21] 70.33±0.14/54.80±0.20 80.35±0.15/80.01±0.16 66.32±0.14/60.35±0.17 40.16±0.17/30.33±0.11
R-BCE [36] 70.12±0.13/54.45±0.10 80.20±0.11/79.86±0.14 66.08±0.12/60.11±0.16 39.70±0.10/29.73±0.15
R-BCE-Focal [36] 71.14±0.09/56.36±0.11 80.81±0.17/80.46±0.12 67.29±0.19/61.69±0.21 42.34±0.20/32.97±0.17
R-BCE+NTR [36] 71.21±0.11/56.56±0.14 80.86±0.08/80.50±0.12 67.34±0.06/61.73±0.10 42.63±0.13/33.44±0.11
R-BCE-Focal+NTR [36] 71.43±0.11/56.79±0.10 81.01±0.07/80.56±0.15 67.62±0.14/61.97±0.14 43.00±0.12/33.73±0.17
R-BCE+LC [10] 71.24±0.13/56.30±0.14 81.00±0.04/80.65±0.05 67.58±0.05/62.34±0.12 41.30±0.09/31.98±0.10
R-BCE-Focal+LC [10] 71.49±0.14/56.92±0.12 81.04±0.10/80.69±0.09 67.73±0.11/62.21±0.13 43.09±0.07/33.80±0.05
R-BCE+LPL [16] 71.69±0.15/57.19±0.14 81.32±0.09/80.96±0.11 67.67±0.06/62.19±0.12 43.84±0.05/34.35±0.06
R-BCE-Focal+LPL [16] 71.92±0.03/57.77±0.11 81.47±0.08/81.12±0.09 67.95±0.10/62.50±0.06 44.37±0.13/35.53±0.12
R-BCE+LPLE [17] 71.90±0.10/57.60±0.13 81.28±0.16/80.93±0.10 68.25±0.08/62.83±0.12 44.01±0.04/34.88±0.11
R-BCE-Focal+LPLE [17] 72.42±0.12/58.41±0.05 81.58±0.11/81.22±0.13 68.96±0.10/63.60±0.07 45.10±0.13/36.12±0.07

R-BCE+SLP(M) 72.56±0.05/58.73±0.11 81.96±0.02/81.61±0.05 69.04±0.05/64.24±0.09 45.59±0.04/36.55±0.07
R-BCE+SLP(V) 72.79±0.10/59.31±0.09 82.10±0.12/81.76±0.11 68.96±0.06/64.06±0.12 45.32±0.06/37.70±0.13
R-BCE-Focal+SLP(M) 73.23±0.11/60.50±0.09 82.28±0.10/81.94±0.11 69.41±0.05/64.75±0.06 47.79±0.09/40.16±0.06
R-BCE-Focal+SLP(V) 73.49±0.04/60.91±0.05 82.15±0.03/81.79±0.09 70.23±0.11/65.34±0.10 48.04±0.08/40.82±0.12

Given that original code of comparison method have been open-sourced, we used the original open-source code

provided by the authors, and the results shown are the averages and standard deviations obtained from �ve runs. Table 5

shows the results of all method SemEval18. The proposed method performs similarly to the state-of-the-art method on

the head class; but shows a signi�cant improvement in both the medium and tail classes. For example, compared to the

best results of other methods, the best results achieved by the proposed SLP improve by 1.07%/2.50% in the overall

miF1/maF1, and by 0.70%/0.72%, 1.27%/1.74%, 2.94%/4.70% for head, medium, and tail classes, respectively. Compared

to the Ren-CECps dataset, this dataset shows greater improvement. We analyze this in relation to two factors: 1) the

higher frequency of label co-occurrence in the SemEval18 dataset, and 2) the greater impact of the proposed method on

the subclass variance (intra-class compactness) of the SemEval18 dataset.

Table 6 shows the results of all methods on Reuters-21578. The results marked with an asterisk in Table 6 are directly

from the paper by Huang et al. [12], while the methods without an asterisk also used the authors’open-source code,

with results being the averages and standard deviations from �ve runs. The proposed method signi�cantly improves

the performance of tail classes, demonstrating its advantage in dealing with imbalanced data. Compared to the best

results of other methods, the proposed SLP achieved an improvement of 0.53%/1.89% in terms of the overall miF1/maF1,

with improvements of 0.44%/1.66%, 0.80%/1.52%, and 0.91%/2.56% for the head, medium, and tail classes, respectively.

Table 7 presents the performance of our proposed approaches in terms of micro recall (miR), micro precision (miP)

and Jaccard index score (JacS), and compares them to the baseline and state-of-the-art models on Ren-CECps, SemEval18,

and Reuters-21578 datasets. It can be seen that our proposed method R-BCE-Focal+SLP(V) shows more signi�cant

improvements in miR and JacS metrics across the three datasets.

Results on VOC-MLT and COCO-MLT. In the VOC-MLT and COCO-MLT datasets, we evaluate the mAP for all

classes and report the mAP for the head, medium, and tail. The experimental results compared with other methods are

shown in Table 8, where the results of other methods are directly from the papers of Song et al. [29] and Li et al. [17].
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Table 6. Comparisons with state-of-the-art methods on the Reuters-21578 dataset(%).

Methods total miF1/maF1 head miF1/maF1 medium miF1/maF1 tail miF1/maF1

BCE* 89.14/47.32 91.75/82.81 66.28/57.26 0.00/0.00
FL [21]* 89.97/56.83 91.83/82.64 76.16/70.63 27.40/15.37
CB-Focal [6]* 89.23/52.96 91.56/80.44 71.64/66.61 23.08/9.93
R-BCE [36] 89.14/53.61 91.59/80.27 72.38/66.67 24.51/12.08
R-BCE-Focal [36]* 89.47/54.35 91.59/80.39 72.86/66.69 25.00/14.22
R-BCE+NTR [36]* 89.45/57.98 91.21/82.05 77.33/71.11 31.17/19.05
R-BCE-Focal+NTR [36]* 90.62/64.47 92.14/83.48 80.25/77.01 48.89/31.39
R-BCE+LC [10] 90.36±0.14/64.03±0.16 91.97±0.16/83.17±0.17 79.28±0.12/75.39±0.18 44.94±0.15/32.09±0.13
R-BCE-Focal+LC [10] 90.70±0.12/68.61±0.20 92.18±0.16/83.41±0.15 80.00±0.14/76.83±0.12 53.76±0.08/44.51±0.11
R-BCE+LPL [16] 90.65±0.07/65.91±0.12 92.53±0.15/83.50±0.14 79.82±0.07/76.21±0.13 48.38±0.10/34.05±0.16
R-BCE-Focal+LPL [16] 90.85±0.05/69.12±0.14 92.28±0.12/83.65±0.11 80.50±0.09/77.14±0.10 55.27±0.13/45.51±0.16
R-BCE+LPLE [17] 91.02±0.11/66.06±0.12 92.61±0.09/83.57±0.13 79.88±0.06/76.58±0.04 49.02±0.12/36.69±0.17
R-BCE-Focal+LPLE [17] 91.10±0.13/69.58±0.07 92.55±0.11/83.86±0.15 80.58±0.06/77.91±0.07 55.36±0.13/45.88±0.14

R-BCE+SLP(M) 91.18±0.06/66.13±0.10 92.80±0.04/84.39±0.06 79.88±0.11/76.10±0.08 48.33±0.08/36.56±0.10
R-BCE+SLP(V) 91.48±0.03/67.31±0.06 93.00±0.12/85.45±0.11 81.05±0.06/77.25±0.08 50.11±0.04/37.92±0.12
R-BCE-Focal+SLP(M) 91.22±0.10/69.90±0.11 92.69±0.12/84.36±0.14 80.44±0.05/76.82±0.06 54.83±0.11/47.51±0.06
R-BCE-Focal+SLP(V) 91.63±0.06/71.47±0.04 93.05±0.08/85.52±0.14 81.38±0.08/79.43±0.07 56.27±0.05/48.44±0.13

Table 7. Mean values and standard deviations on Ren-CECps, SemEval18 and Reuters-21578 in terms of miR, miP and JacS(%).

Methods
Ren-CECps SemEval18 Reuters-21578

miR miP JacS miR miP JacS miR miP JacS

R-BCE+LC [10] 58.12±0.15 66.40±0.21 49.17±0.11 65.22±0.12 78.49±0.20 59.44±0.12 86.08±0.09 95.07±0.21 91.16±0.07

R-BCE-Focal+LC [10] 58.47±0.24 66.70±0.21 49.48±0.15 65.50±0.13 78.69±0.23 59.72±0.09 86.62±0.16 95.19±0.19 91.57±0.07

R-BCE+LPL [16] 58.48±0.11 66.75±0.26 49.50±0.04 65.70±0.06 78.88±0.17 60.02±0.13 86.51±0.23 95.21±0.31 91.53±0.13

R-BCE-Focal+LPL [16] 58.66±0.02 66.86±0.13 49.67±0.05 65.93±0.07 79.11±0.16 60.30±0.06 86.75±0.08 95.36±0.18 91.76±0.09

R-BCE+LPLE [17] 58.64±0.14 66.86±0.25 49.62±0.07 65.97±0.14 79.00±0.26 60.22±0.18 86.89±0.13 95.56±0.31 91.94±0.22

R-BCE-Focal+LPLE [17] 59.18±0.06 67.42±0.12 50.27±0.02 66.49±0.04 79.51±0.04 60.94±0.14 87.10±0.05 95.49±0.08 91.95±0.05

R-BCE+SLP(M) 59.15±0.06 67.43±0.07 50.27±0.06 66.67±0.05 79.59±0.13 61.13±0.09 87.13±0.07 95.63±0.07 92.09±0.09

R-BCE+SLP(V) 59.43±0.07 67.63±0.21 50.52±0.06 66.88±0.06 79.85±0.16 61.43±0.03 87.58±0.07 95.74±0.18 92.34±0.08

R-BCE-Focal+SLP(M) 60.04±0.08 68.30±0.16 51.25±0.09 67.35±0.03 80.23±0.16 61.90±0.09 87.21±0.11 95.64±0.17 92.12±0.06

R-BCE-Focal+SLP(V) 60.22±0.03 68.33±0.16 51.27±0.06 67.66±0.04 80.41±0.15 62.18±0.04 87.69±0.06 95.94±0.12 92.53±0.04

Compared to the COCO-MLT dataset, the VOC-MLT dataset has a higher frequency of co-occurrence between the tail

and head classes. The proposed SLP loss, which considers label co-occurrence, results in a more signi�cant improvement

for this dataset compared to other methods. Compared with the best results of other methods, the proposed SLP

improved by 1.33% and 0.50% in overall mAP of VOC-MLT and COCO-MLT, respectively.

Manuscript submitted to ACM



1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Subclass-wise Logit Perturbation for Multi-label Learning 29

Table 8. Comparison results of mAP with state-of-the-art methods on the VOC-MLT and COCO-MLT datasets (%).

Methods
VOC-MLT COCO-MLT

total head medium tail total head medium tail

ERM 70.86 68.91 80.20 65.31 41.27 48.48 49.06 24.25
RW [36] 74.70 67.58 82.81 73.96 42.27 48.62 45.80 32.02
FL [21] 73.88 69.41 81.43 71.56 49.46 49.80 54.77 42.14
RS [28] 75.38 70.95 82.94 73.05 46.97 47.58 50.55 41.70
RS-Focal [28] 76.45 72.05 83.42 74.52 51.14 48.90 54.79 48.30
ML-GCN [4] 68.92 70.14 76.41 62.39 44.24 44.04 48.36 38.96
LDAM [2] 70.73 68.73 80.38 69.09 40.53 48.77 48.38 22.92
CB-Focal [6] 75.24 70.30 83.53 72.74 49.06 47.91 53.01 44.85
R-BCE [36] 76.34 71.40 82.76 75.22 49.43 48.77 53.00 45.33
R-BCE-Focal [36] 77.39 72.44 83.16 76.77 52.75 50.20 56.52 50.02
R-BCE+NTR [36] 78.65 73.16 84.11 78.66 52.53 50.25 56.33 49.54
R-BCE-Focal+NTR [36] 78.94 73.22 84.18 79.30 53.55 51.13 57.05 51.06
R-BCE+LC [10] 78.08 73.10 83.49 77.75 53.68 50.58 57.10 51.90
R-BCE-Focal+LC [10] 78.66 72.74 83.45 79.52 53.94 50.99 57.47 51.88
R-BCE+LPL [16] 79.07 73.68 82.86 80.28 54.27 51.15 57.83 52.34
R-BCE-Focal+LPL [16] 79.34 73.01 83.08 81.27 54.61 51.45 58.37 52.42
R-BCE+LPLE [17] 79.02 72.39 82.14 81.64 54.35 51.48 57.72 52.42
R-BCE-Focal+LPLE [17] 79.57 73.47 83.95 80.87 54.76 50.78 58.12 53.81
CD-RS+AFL (Ensemble) [29] 78.96 73.35 85.03 78.63 55.35 52.45 59.48 52.46

R-BCE+SLP(M) 79.79±0.06 73.68±0.04 83.94±0.07 81.27±0.06 55.04±0.05 51.50±0.04 58.21±0.09 53.96±0.09
R-BCE+SLP(V) 79.78±0.05 73.56±0.04 83.45±0.05 81.69±0.08 55.04±0.04 51.54±0.02 58.11±0.07 54.06±0.13
R-BCE-Focal+SLP(M) 80.23±0.05 73.71±0.03 84.52±0.07 81.90±0.05 55.38±0.06 51.67±0.05 58.57±0.07 54.44±0.11
R-BCE-Focal+SLP(V) 80.90±0.05 74.21±0.04 85.04±0.07 82.81±0.08 55.85±0.06 51.55±0.05 59.20±0.08 55.21±0.09

6.4 Feature Space Visualization

To gain additional insight, we look at the t-SNE [48] projection of learned representations and compared vanilla BCE

loss with our proposed method. Fig. 13 shows that our learned feature space is more compact low sample proportion,

large varianvce, and high co-occurrence proportion classes. Tail (low sample proportion) classes have larger margins.

6.5 �antitative Analysis

Ablation analysis. To further analyze the in�uence of proportion, variance, and co-occurrence on the proposed

method of improving the performance of long-tailed MLL, we conduct a set of ablation studies and report the results

in Table 9. It can be seen that the removal of any one of the three characteristics has an e�ect on the performance of

the proposed method. The results show that variance has the largest impact on performance, which is consistent with

our observations on toy datasets. In addition, co-occurrence has a signi�cant impact on tail classes, to verify that the

proposed method is e�ective for subclass friendly with large variance.

Class-wise analysis. In Fig. 14, we show that class average precision (AP) increments are computed by only the

perturbation coe�cients for proportion, variance, and co-occurrence, respectively. As shown in Fig. 14(a) and (b),

compared with not adding the perturbation term, calculating the perturbation coe�cient by proportion is not friendly

to the head classes, because its perturbation direction reduces the class-wise margin of the head classes classi�er. As
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(a) R-BCE.

(b) R-BCE+SLP(V).

Fig. 13. t-SNE visualization of embedding space of VOC-MLT obtained using BCE loss and BCE+SLP(V) Loss method. The feature

embedding of our model is more compact for low sample proportion (index 18), large varianvce (index 5), and high co-occurrence

proportion (index 11) classes and be�er separated.
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Table 9. Ablation study on the VOC-MLT dataset (%).

Methods total head medium tail

R-BCE-Focal+SLP(V) 80.90 74.21 85.04 82.81
w/o proportion 80.41 74.02 84.65 82.03
w/o variance 80.05 73.57 84.11 81.86
w/o co-occurrence 80.44 74.17 84.86 81.82
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Fig. 14. Class-wise AP increment of perturbation coe�icients by only proportion, variance, and co-occurrence proportion, respectively.

Class labels are sorted from head to tail classes le�-right.

shown in Fig. 14(c) and (d), the head classes and most of the medium and tail classes bene�t from calculating the

perturbation coe�cient by variance, as it increases the intra-class compactness. As shown in Fig. 14(e) and (f), compared

Manuscript submitted to ACM



1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 ZHU and WU, et al.

8 14 6 10 4 151719 7 1 11 3 5 2 13 9 12 0 1816

VOC-MLT: class index

0

5

10

15

V
ar

ia
nc

e

R-BCE-Focal
R-BCE-Focal+SPL(V)

(a) Variance of each subclass in the last epoch when the
head class (index 8) is positive.

1614 8 6 10 4 151719 7 1 11 3 5 2 13 9 12 0 18 
VOC-MLT: class index

0

5

10

15

V
ar

ia
nc

e

R-BCE-Focal
R-BCE-Focal+SPL(V)

(b) Variance of each subclass in the last epoch when the
tail class (index 16) is positive.

Fig. 15. Variance of each subclass in the last epoch.

with no perturbation term added, calculating the perturbation coe�cient only from the co-occurrence presents a similar

trend to the proportion.

Variance analysis. We plot the change in logit variance of the last epoch of positive class and negative subclasses

on the VOC-MLT dataset when the head or tail class (index 8 and 16) is positive, to verify that the proposed method is

e�ective for subclass with large variance friendly. The curves are shown in Fig. 15(a) and (b). For the head class (index

8) as the positive class, the proposed method reduces the logit variance of most negative subclasses. For the tail class

(index 16) as the positive class, our method also signi�cantly reduces the logit variance of the medium and tail classes.

6.6 �alitative Analysis

To better understand how our method handles the long tail multi-label data, we performed qualitative experiments

with NTR [36], LC [10], LPL [16], and our SLP on VOC-MLT. Fig. 16 presents several examples showing the predictions

of di�erent models. For example, in the middle column, all methods other than ours miss recognition of the "horse"

(belongs to the tail class and has a high degree of co-occurrence with "cow"). A similar problem exists in the third

example, which is a common challenge in MLL. Our model takes into account the degree of label co-occurrence, so that

the logit is well compensated. In addition, our model also shows better results in head-tail classi�cation.

6.7 Space and Time Complexity Analysis

It can be seen from Algorithm 2 that our logit perturbation algorithm mainly adds 4, 5, and 6 compared to the original

algorithm. Among them, steps 4 and 5 are to estimate the perturbation coe�cient and calculate the perturbation bound.

During the training process of the original algorithm, the proportions, variances, and co-occurrence proportions of

di�erent classes of each batch are recorded to obtain the perturbation coe�cient, and then the perturbation bound is

calculated.

Space complexity analysis. The space overhead of Algorithm 2 is mainly step 4, corresponding to the Eqs.(11)-(14),

that is, the process of estimating the perturbation coe�cient. A total of 14 ÿ-dimensional vectors need to be stored,

where ÿ is the number of classes in the dataset. Therefore, the space complexity of our logit perturbation algorithm is

O(14ÿ).

Time complexity analysis. There is no additional time overhead in steps 4 and 5 of Algorithm 2. Compared with

the original algorithm, the extra time overhead is mainly in step 6 of Algorithm 2, which is the process of Algorithm 1.
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GT:                         

NTR:     0.76       0.68     0.52    0.21       0.11        0.94       0.73     0.71         0.21       0.10             0.88       0.66     0.64       0.41         0.30                                      

LC:        0.92      0.55      0.51    0.31     0.08        0.89       0.78       0.62    0.54       0.25             0.82     0.60        0.57       0.40         0.22        

LPL:       0.98     0.61     0.53    0.20     0.16        0.99       0.60      0.55       0.43        0.16             0.90      0.65        0 .63      0.51        0.30                                     

SLP:       0.90     0.77      0.62    0.17    0.01        0.92      0.85        0.59       0.40      0.34            0.86     0.85     0.55        0.53        0.18      
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Fig. 16. Example decisions from our SLP, NTR [36], LC [10], and LPL [16] on VOC-MLT dataset. GT indicates the ground truth.

ÿĥĨĤĜ ĢĥĭěĨ ĘĢīě , ĥĨėĤĝě , ĩěė ĝĨěěĤ are the head, medium, and tail classes, respectively.

It can be seen that step 2 in Algorithm 1 is the number of perturbation updates ćę . Therefore, the time complexity of

our perturbation algorithm is ċ (ćę ), and the size of ćę can be controlled by hyper-parameters. Speci�cally, on the

NVIDIA RTX 3080, the training times for the baseline algorithm (R-BCE) and our proposed algorithm (R-BCE+SLP(V))

on the VOC-MLT dataset are approximately 280.16 seconds and 548.03 seconds, respectively.

6.8 E�ect of Hyper-parameter

E�ect of hyper-parameter �Ċ. To understand how �Ċ of Eq. (23) and Eq. (24) a�ect the results, we �rst vary �Ċ in a

set of {1,2,3,4,5,6} when the threshold ā in Eq. (22) takes the mean value of the elements of ęĥĜ . The results are shown

in Fig. 17. We can see that when �Ċ = 3, it can achieve the best performance on both VOC-MLT and COCO-MLT. If �Ċ

is too small, the perturbation term will not be e�ective for most samples. However, if �Ċ is too large, it will increase the

possibility of overlap between classes.
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Fig. 17. The e�ect of hyper-parameter �Ċ to the mAP performance on VOC-MLT and COCO-MLT datasets.
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Fig. 18. The e�ect of hyper-parameter Ą to the mAP performance on VOC-MLT and COCO-MLT datasets.

E�ect of hyper-parameter h. To explore the e�ects of di�erent values of [ in Eq. (23) and Eq. (24), we vary h in a

set of {0,1,2,3,4,5} to adjust [ ([ = (h ∗<8=(ęĥĜ ) + (5 − h) ∗<0G (ęĥĜ ))/5), and show the results for �xing �n = 3 in

Fig. 17. When h = 0, it means that all samples have added the perturbation term in the direction of loss increase; when

h = 5, it is just the opposite. We can observe that as h increases, the performance of the head classes gradually decreases

because a smaller h prevents the under�tting of the head classes; while the performance of the tail classes gradually

increases because a larger h prevents over�tting of tail classes. At h = 3 and h = 2, the proposed model achieves the best

results on two datasets, VOC-MLT and COCO-MLT, respectively.

7 CONCLUSION AND FUTUREWORK

This study focuses on logit perturbation in MLL. We have analyzed the impact of the characteristics of multi-label

training data on classi�cation performance from three statistical characteristics: category proportion, variance, and

co-occurrence. Based on the above quantitative analysis, this study proposes a new subclass-wise logit perturbation

(SLP) that takes the above three characteristics into consideration. SLP implements di�erent perturbations (in terms

of magnitude and direction) to the negative subclass and alleviates the di�erences in proportion, variance, and co-

occurrence within the negative class. Furthermore, we have theoretically analyzed existing and our proposed multi-label

logit perturbation methods from a regularization view. Extensive experimental comparison results on several typical

multi-label datasets demonstrate the proposed method’s e�ectiveness.
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Similar to existing logit perturbation methods, if the statistical distribution of data changes, the method proposed

here may experience a decline in generalization performance. However, strategies such as continual learning [45] can be

adopted. Our method can be naturally extended to continual learning, such as [46, 47]. In the future, we will focus more

on the problem of multi-label learning under concept drift and consider designing more e�ective logit perturbation

methods.
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A. PROOF FOR THEOREM 1

Proof. Xu et al. [44] proved that ĭ = 1 when the data distribution in Eq. (4.1) is given (Lemma 1 in [44]). According

to Lemma 1 [44], we can easily prove that when %ý : %� : %� = � : � : 1 − 2� and 0 < � <
1
3 , ĭ = 1 holds. Thus,
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5 (Į) =
3∑

8=1
G8 + 1 . Then Eq. (4.1) can be written as follows.

1∗ = argmin
1

Pr .

(

S

(
3∑

8=1

G8 + 1 + �D∗2

)

≠ ~2

)

. (A.1)

Now, we can calculate the optimal 1∗ when the logit perturbation is used. Then, the optimal linear classi�er is

5 (Į) =
3∑

8=1
G8 + 1∗. We use RA>1 (5rob ) to denote the robust error after logit perturbation.

RA>1 (5rob ) ∝ � · Pr .
(
∃



�D−1




 ≤ n · d1, S
(
D + �D−1

)
≠ +1 | ~ = +1

)

+� · Pr .
(
∃



�D−1




 ≤ n · d1, S
(
D + �D−1

)
≠ −1 | ~ = −1

)

+(1 − 2�) · Pr .
(
∃



�D−2




 ≤ n · d2, S
(
D + �D−2

)
≠ −1 | ~ = −1

)

= � · min
|�ī−

1
|≤ |Ċ ·Ā1 |

�ī−
1
·Ċ≥0

Pr .
(
S

(
D + �D−1

)
≠ +1 | ~ = +1

)
+ � · min

|�ī−
1
|≤ |Ċ ·Ā1 |

�ī−
1
·Ċ≥0

Pr .
(
S

(
D + �D−1

)
≠ −1 | ~ = −1

)

+(1 − 2�) · min
|�ī−

2
|≤ |Ċ ·Ā2 |

�ī−
2
·Ċ≥0

Pr .
(
S

(
D + �D−2

)
≠ −1 | ~ = −1

)

= � · Pr . (S (D − n · d1) ≠ +1 | ~ = +1) + � · Pr . (S (D + n · d1) ≠ −1 | ~ = −1)
+(1 − 2�) · Pr . (S (D − n · d2) ≠ −1 | ~ = −1)

= � · Pr .
{
3∑

8=1
G8 + 1 − n · d1 < 0 | ~ = +1

}
+ � · Pr .
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G8 + 1 + n · d1 > 0 | ~ = −1
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+(1 − 2�) · Pr .
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8=1
G8 + 1 − n · d2 > 0 | ~ = −1

}

= � · Pr .
{
N (0, 1) < −

√
3[
f − 1−n ·d1√

3f

}
+ � · Pr .

{
N (0, 1) < 1+n ·d1√

3f

}

+(1 − 2�) · Pr .
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√
3[
f + 1−n ·d2√

3f

}
.

(A.2)

For ease of computation, let d2 =
21
n − d1. The optimal 1∗ to minimize Rslp (5 ) is achieved at the point that m'slp (5 )

m1
= 0

. Then we can get the optimal 1∗ :

1∗ = −3[
2

+
3f2 log

(
�

1−�

)

2n · d1 − 3[
. (A.3)

By taking 1∗ into R=0C (5rob , �), R=0C (5rob , �), and R=0C (5rob ,�) , we can get the theorem.

R=0C (5rob , �) = Pr .

{

N (0, 1) < −
√
3[

f
− 1∗
√
3f

}

= Pr .

{

N (0, 1) < −
log( �

1−� )
Λ

−
√
3[

2f

}

,

R=0C (5rob , �) = Pr .

{
N (0, 1) < 1∗

√
3f

}
= Pr .

{

N (0, 1) <
log( �

1−� )
Λ

−
√
3[

2f

}

,

R=0C (5rob ,�) = Pr .

{

N (0, 1) < −
√
3[

f
+ 1∗
√
3f

}

= Pr .

{

N (0, 1) <
log( �

1−� )
Λ

− 3
√
3[

2f

}

,

(A.4)

where Λ =
2n ·d1−3[√

3f
.
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B. COROLLARY 1

Proof. According to Eq. (A.3), we compute the partial derivatives of 1∗ with respect to d1 to proof the corollary.

m1∗

md1
= −

23nf2 log
(

�

1−�

)

(2n · d1 − 3[)2
> 0. (A.5)

1∗ is a monotonically increasing function of d1. According to Eq. (A.4) and d2 =
21
n − d1, the corollary holds.

C. COROLLARY 2

Proof. by taking (A.3) into R13~ (5rob ), we can get:

R13~ (5rob ) = RA>1 (5rob ) − R=0C (5rob )
= RA>1 (5rob , �) − R=0C (5rob , �) + RA>1 (5rob , �) − R=0C (5rob , �) + RA>1 (5rob ,�) − R=0C (5rob ,�)
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+ Pr .
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3f

}
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}

+ Pr .
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}
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√
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}
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(A.6)

The corollary holds.
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D. PROOF FOR THEOREM 2

Proof. Like the proof in Theorem 1, we can get the following equations.

RA>1 (5rob ) ∝ Pr .
(
∃



�D−1




 ≤ n · d1, S
(
D + �D−1

)
≠ +1 | ~ = +1

)

+ Pr .
(
∃



�D−1




 ≤ n · d1, S
(
D + �D−1

)
≠ −1 | ~ = −1

)

+ Pr .
(
∃



�D−2




 ≤ n · d2, S
(
D + �D−2

)
≠ −1 | ~ = −1

)

= min
|�ī−

1
|≤ |Ċ ·Ā1 |

�ī−
1
·Ċ≥0

Pr .
(
S
(
D + �D−1

)
≠ +1 | ~ = +1

)
+ min

|�ī−
1
|≤ |Ċ ·Ā1 |

�ī−
1
·Ċ≥0

Pr .
(
S

(
D + �D−1

)
≠ −1 | ~ = −1

)

+ min
|�ī−

2
|≤ |Ċ ·Ā2 |

�ī−
2
·Ċ≥0

Pr .
(
S

(
D + �D−2

)
≠ −1 | ~ = −1

)

= Pr . (S (D − n · d1) ≠ +1 | ~ = +1) + Pr . (S (D + n · d1) ≠ −1 | ~ = −1)
+ Pr . (S (D − n · d2) ≠ −1 | ~ = −1)

= Pr .

{
3∑

8=1
G8 + 1 − n · d1 < 0 | ~ = +1

}
+ Pr .

{
3∑

8=1
G8 + 1 + n · d1 > 0 | ~ = −1

}

+ Pr .
{
3∑

8=1
G8 + 1 − n · d2 > 0 | ~ = −1

}

= Pr .

{
N (0, 1) < −

√
3[
 f − 1−n ·d1√

3 f

}
+ Pr .

{
N (0, 1) < 1+n ·d1√

3 f

}
+ Pr .

{
N (0, 1) < −

√
3[

(1−2 )f + 1−n ·d2√
3 (1−2 )f

}
.

(A.7)

For ease of computation, let d2 =
(1−3 )3[+(2 −1)n ·d1+(1− )1

 n . The optimal 1∗ to minimize Rslp (5 ) is achieved at

the point that
m'slp (5 )
m1

= 0 . Then we can get the optimal 1∗ :

1∗ = −3[
2

+ 3 
2f2 log 2

3[ − 2n · d1
. (A.8)

By taking 1∗ into R=0C (5rob , �), R=0C (5rob , �), and R=0C (5rob ,�) , we can get the theorem.

R=0C (5rob , �) = Pr .

{

N (0, 1) < −
√
3[

 f
− 1∗
√
3 f

}

= Pr .

{

N (0, 1) < − log 2

Λ
−

√
3[

2 f

}

,

R=0C (5rob , �) = Pr .

{
N (0, 1) < 1∗

√
3 f

}
= Pr .

{

N (0, 1) < log 2

Λ
−

√
3[

2 f

}

,

R=0C (5rob ,�) = Pr .

{

N (0, 1) < −
√
3[

(1 − 2 )f + 1∗
√
3 (1 − 2 )f

}

= Pr .

{

N (0, 1) <  

1 − 2 
· log 2

Λ
− 3

√
3[

2(1 − 2 )f

}

,

(A.9)

where Λ =
3[−2n ·d1√

3 f
.

E. COROLLARY 3

Proof. According to Eq. (A.8), we compute the partial derivatives of 1∗ with respect to d1 to proof the corollary.

m1∗

md1
=

2n3 2f2 log 2

(3[ − 2n · d1)2
> 0. (A.10)

1∗ is a monotonically increasing function of d1. According to Eq. (A.9) and d2 =
(1−3 )3[+(2 −1)n ·d1+(1− )1

 n , the

corollary holds.
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F. COROLLARY 4

Proof. by taking (A.8) into R13~ (5rob ), we can get:

R13~ (5rob ) = RA>1 (5rob ) − R=0C (5rob )
= RA>1 (5rob , �) − R=0C (5rob , �) + RA>1 (5rob , �) − R=0C (5rob , �) + RA>1 (5rob ,�) − R=0C (5rob ,�)

= Pr .

{
N (0, 1) < −

√
3[
 f − 1∗−n ·d1√

3 f

}
− Pr .

{
N (0, 1) < −

√
3[
 f − 1∗√

3 f

}

+ Pr .
{
N (0, 1) < 1∗+n ·d1√

3 f

}
− Pr .

{
N (0, 1) < 1∗√

3 f

}

+ Pr .
{
N (0, 1) < −

√
3[

(1−2 )f + 1∗−n ·d2√
3 (1−2 )f

}
− Pr .

{
N (0, 1) < −

√
3[
f + 1∗√

3f

}

= Pr .

{
N (0, 1) < − log 2

Λ
−

√
3[

2 f + n ·d1√
3 f

}
− Pr .

{
N (0, 1) < − log 2

Λ
−

√
3[

2 f

}

+ Pr .
{
N (0, 1) < log 2

Λ
−

√
3[

2 f + n ·d1√
3 f

}
− Pr .

{
N (0, 1) < log 2

Λ
−

√
3[

2 f

}

+ Pr .
{
N (0, 1) < − log 2

Λ
−

√
3[

2 f + n ·d1√
3 f

}
− Pr .

{
N (0, 1) <  

1−2 
log 2
Λ

− 3
√
3[

2(1−2 )f

}

< 2 Pr .
{
0 < N (0, 1) < n ·d1√

3 f

}
+ Pr .

{
N (0, 1) < − log 2

Λ
−

√
3[

2 f + n ·d1√
3 f

}
− Pr .

{
N (0, 1) < − log 2

Λ
− 3

√
3[

2(1−2 )f

}

< 2 Pr .
{
0 < N (0, 1) < n ·d1√

3 f

}
+ Pr .

{
− 3

√
3[

2(1−2 )f < N (0, 1) < n ·d1√
3 f

−
√
3[

2 f

}
.

(A.11)

The corollary holds.

G. PROOF FOR THEOREM 3

Proof. Like the proof in Theorem 1, we can get the following equations.

RA>1 (5rob ) ∝ % · Pr . (S (D) ≠ +1 | ~ = +1) + (1 − %) · Pr .
(
∃



�D−1




 ≤ n · d1, S
(
D + �D−1

)
≠ −1 | ~ = −1

)

+ Pr .
(
∃



�D−2




 ≤ n · d2, S
(
D + �D−2

)
≠ −1 | ~ = −1

)

= % · Pr . (S (D) ≠ +1 | ~ = +1) + (1 − %) · min
|�ī−

1
|≤ |Ċ ·Ā1 |

�ī−
1
·Ċ≥0

Pr .
(
S

(
D + �D−1

)
≠ −1 | ~ = −1

)

+ min
|�ī−

2
|≤ |Ċ ·Ā2 |

�ī−
2
·Ċ≥0

Pr .
(
S

(
D + �D−2

)
≠ −1 | ~ = −1

)

= % · Pr . (S (D) ≠ +1 | ~ = +1) + (1 − %) · Pr . (S (D + n · d1) ≠ −1 | ~ = −1)
+ Pr . (S (D − n · d2) ≠ −1 | ~ = −1)

= % · Pr .
{
3∑

8=1
G8 + 1 < 0 | ~ = +1

}
+ (1 − %) · Pr .

{
3∑

8=1
G8 + 1 + n · d1 > 0 | ~ = −1

}

+ Pr .
{
3∑

8=1
G8 + 1 − n · d2 > 0 | ~ = −1

}

= % · Pr .
{
N (0, 1) < −

√
3[
f − 1√

3f

}
+ (1 − %) · Pr .

{
N (0, 1) <

√
3[
f + 1+n ·d1√

3f

}

+ Pr .
{
N (0, 1) < −

√
3[
f + 1−n ·d2√

3f

}
.

(A.12)
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For ease of computation, let d2 =
21
n . The optimal 1∗ to minimize Rslp (5 ) is achieved at the point that

m'slp (5 )
m1

= 0 .

Then we can get the optimal 1∗ :

1∗ = −3[ +
3f2 log

(
1−%
1+%

)

n · d1
− n · d1

2
. (A.13)

By taking 1∗ into R=0C (5rob , �), R=0C (5rob , �), and R=0C (5rob ,�) , we can get the theorem.

R=0C (5rob , �) = Pr .

{

N (0, 1) < −
√
3[

f
− 1∗
√
3f

}

= Pr .





N (0, 1) < −
log

(
1−%
1+%

)

Λ
+ Λ

2





,

R=0C (5rob , �) = Pr .

{

N (0, 1) <
√
3[

f
+ 1∗
√
3f

}

= Pr .





N (0, 1) <
log

(
1−%
1+%

)

Λ
− Λ

2





,

R=0C (5rob ,�) = Pr .

{

N (0, 1) < −
√
3[

f
+ 1∗
√
3f

}

= Pr .




N (0, 1) <
log

(
1−%
1+%

)

Λ
− Λ

2
− 2

√
3[

f




,

(A.14)

where Λ =
n ·d1√
3f

.

H. COROLLARY 5

Proof. According to Eq. (A.13), we compute the partial derivatives of 1∗ with respect to d1 to proof the corollary.

m1∗

md1
= −n

2
−
3f2 log

(
1−%
1+%

)

n · d12
. (A.15)

When m1∗
md1

> 0, 1∗ increases as d1 increases. We reorganize m1∗
md1

> 0 to get the following equation.

1 − %
1 + % < 4

− (Ċ ·Ā1 )2
2ĚĂ2 . (A.16)

When Eq. (A.16) holds, 1∗ is a monotonically increasing function of d1. According to Eq. (A.14) and d2 =
21
n , the

corollary holds.
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I. COROLLARY 6

Proof. by taking (A.13) into R13~ (5rob ), we can get:

R13~ (5rob ) = RA>1 (5rob ) − R=0C (5rob )
= RA>1 (5rob , �) − R=0C (5rob , �) + RA>1 (5rob , �) − R=0C (5rob , �) + RA>1 (5rob ,�) − R=0C (5rob ,�)

= Pr .

{
N (0, 1) <

√
3[
f + 1∗+n ·d1√

3f

}
− Pr .

{
N (0, 1) <

√
3[
f + 1∗√

3f

}

+ Pr .
{
N (0, 1) < −

√
3[
f + 1∗−n ·d2√

3f

}
− Pr .

{
N (0, 1) < −

√
3[
f + 1∗√

3f

}

= Pr .

{
N (0, 1) < log( 1−Č1+Č )

Λ
− Λ

2 + n ·d1√
3f

}
− Pr .

{
N (0, 1) < log( 1−Č1+Č )

Λ
− Λ

2

}

+ Pr .
{
N (0, 1) < − log( 1−Č1+Č )

Λ
+ Λ

2

}
− Pr .

{
N (0, 1) < log( 1−Č1+Č )

Λ
− Λ

2 − 2
√
3[
f

}

< Pr .
{
0 < N (0, 1) < n ·d1√

3f

}
+ Pr .

{
N (0, 1) < − log( 1−Č1+Č )

Λ
+ Λ

2

}
− Pr .

{
N (0, 1) < − log( 1−Č1+Č )

Λ
+ Λ

2 − 2
√
3[
f

}

< Pr .
{
0 < N (0, 1) < n ·d1√

3f

}
+ Pr .

{
0 < N (0, 1) < 2

√
3[
f

}
.

(A.17)

The corollary holds.

A ONLINE RESOURCES

https://github.com/ruby-yu-zhu/Subclass/tree/master/slp
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