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Data Optimization in Deep Learning: A Survey

Ou Wu, Rujing Yao

Abstract—Large-scale, high-quality data are considered an es-
sential factor for the successful application of many deep learning
techniques. Meanwhile, numerous real-world deep learning tasks
still have to contend with the lack of sufficient amounts of
high-quality data. Additionally, issues such as model robustness,
fairness, and trustworthiness are also closely related to training
data. Consequently, a huge number of studies in the existing
literature have focused on the data aspect in deep learning
tasks. Some typical data optimization techniques include data
augmentation, logit perturbation, sample weighting, and data
condensation. These techniques usually come from different deep
learning divisions and their theoretical inspirations or heuristic
motivations may seem unrelated to each other. This study aims to
organize a wide range of existing data optimization methodologies
for deep learning from the previous literature, and makes the
effort to construct a comprehensive taxonomy for them. The
constructed taxonomy considers the diversity of split dimensions,
and deep sub-taxonomies are constructed for each dimension.
On the basis of the taxonomy, connections among the extensive
data optimization methods for deep learning are built in terms
of five aspects. We probe into rendering several promising and
interesting future directions. The constructed taxonomy and the
revealed connections will enlighten the better understanding of
existing methods and the design of novel data optimization
techniques. Furthermore, our aspiration for this survey is to
promote data optimization as an independent subdivision of
deep learning. A curated, up-to-date list of resources related
to data optimization in deep learning is available at https:
//github.com/YaoRujing/Data-Optimization,

Index Terms—Deep learning, data optimization, data augmen-
tation, sample weighting, data perturbation.

I. INTRODUCTION

EEP learning has received increasing attention in both

the Al community and many application domains due to
its superior performance in various machine-learning tasks in
recent years. A successful application of deep learning cannot
leave the main factors, which include a properly designed deep
neural network (DNN), a set of high-quality training data, and
a well-suited learning strategy (e.g., initialization schemes for
hyper-parameters). Among the main factors, training data is
of great importance and it usually plays a decisive role in
the entire training process [1]. The concept of data-centric
Al is rising, which breaks away from the widespread model-
centric perspective [2f]. Large models like GPT-4 show signif-
icant potential in the direction of achieving general artificial
intelligence (AGI). It is widely accepted that the training for
large models requires a huge size of high-quality training data.
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Fig. 1. Nine issues around real training data. The rightmost three issues focus
on the DNN models.

However, most real applications lack ideal training data.
Real training data usually encounters one or several of the
nine common issues as shown in Fig. {1} The six issues on the
left of Fig. [l are directly related to training data:

(1) Biased distribution: This issue denotes that the distri-
bution of the training data does not conform to the
true distribution in a learning task. One typical bias is
class imbalance, in which the proportions of different
categories in the training data are not identical due to
reasons such as data collection difficulties, whereas the
proportions of different categories in test data are equaﬂ

(2) Noisy and incomplete: This issue corresponds to at least
two scenarios. The first refers to data noise that either
partial training samples or partial training labels contain
noises. As for sample noises, partial samples themselves
are corrupted by noises. Taking optical character recog-
nition (OCR) for example, some scanned images may
contain serious background noises. The second occurs in
multi-model/multi-view learning scenarios. Inconsistency
and information missing may exist [3]], [4]. For instance,
the text title for an image may be mistakenly provided,
or it may contain limited words.

(3) Small size: The training size surely impacts the train-
ing performance [5]. The larger the training data, the
better the training performance usually being attained.
Due to insufficient data collection budget or technique
limitation, the training data will be relatively small for
real use. Therefore, learning under small-size training
data is a serious concern in deep learning. This study
does not discuss the extreme cases of small size, such as
few/one/zero-shot learning.

(4) Sample redundancy: Even though large training data is
expected, it does not mean that every datum is useful.

11t should be noted that, in many imbalanced learning tasks, the distributions
of the training data are unbiased and match those of the test data. However,
the performance evaluation measures typically assume that the category
distribution in the test data is uniform. Therefore, we also categorize these
tasks under the biased distribution issue.
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There are still learning tasks that the training set contains
redundant data [6]. Two typical cases exist. First, the
training size is relatively large and exceeds the process-
ing capacity of the computing hardware. Second, some
regions of training samples may be sampled excessively,
and the deletion of such excessive samples does not affect
the training performance. In this case, sample redundancy
may occur in certain subsets of some categories.

(5) Lack of diversity: This issue refers to the fact that some
attributes for certain categories concentrate excessively in
the training corpus. Data diversity is also crucial for DNN
training [7]. The lack of diversity in some non-essential
attributes can lead to a spurious correlation between
some non-essential attributes and the category. This issue
is similar to the second case of sample redundancy.
Nevertheless, lack of diversity does not necessarily imply
the presence of redundant samples.

(6) Distribution drift: This issue denotes that the distribution
of the involved data varies over time. Indeed, distribution
drift may occur in most real learning applications, as
either the concept or the form (e.g., object appearances,
text styles) of samples varies fast or slow. Concept
drift [8]] is the research focus in distribution drift.

The above summary of data issues is not mutually exclusive,
as there are overlaps among different issues. For example,
small size may only occur in several categories, which can
also be attributed to a type of biased distribution. Besides these
data issues, there are also other (not exhaustive) model-related
issues that are significantly influenced by the training data:

(7) Model robustness: This issue concerns the resistance abil-
ity of a DNN model to adversarial attacks [9]. If models
for these applications are compromised by adversarial
attacks, serious consequences may ensue.

(8) Fairness: This issue concerns the performance differences
among different categories or attributes in a learning
task [10]]. For example, the recognition accuracy of faces
in different color groups should be at the same level.

(9) Trustworthiness. This issue has emerged in many safety-
critical Al applications [[11]]. It is closely related to robust-
ness and fairness, and mainly refers to the explainability
and calibration of DNN models.

To address the above-mentioned issues, numerous theoret-
ical explorations have been conducted and tremendous new
methodologies have been proposed in previous literature. Most
of these existing methods directly optimize the involved data
in learning rather than explore new DNN structures, which
is referred to as data optimization for deep learning in this
paper. As the listed issues belong to different machine learn-
ing divisions, the inspirations and focuses of these methods
are usually distinct and seem unrelated to each other. For
instance, the primary learning strategy for imbalanced learning
(belonging to the biased distribution issue) is sample weighting
which assigns different weights to training samples in deep
learning training epochs. The primary manipulation for the
small-size issue is to employ the data augmentation technique
such as image resize and mixup [[12] for image classification.
When dealing with label noise in deep learning, one strategy

is to identify noisy labels and then remove them during
training. In cases where training data for certain categories lack
sufficient diversity, causal learning is employed to break down
the spurious correlations among labels and some irrelevant
attributes such as certain backgrounds. Due to the apparent
lack of connection, these studies typically do not mutually
cite or discuss each other.

Our previous study [13] partially reveals that one technique,
namely, data perturbation, has been leveraged to deal with
most aforementioned issues. This observation illuminates us to
explore the data optimization methodologies for those issues in
a more broad view. In this study, a comprehensive review for a
wide range of data optimization methods is conducted. First, a
systematic data optimization taxonomy is established in terms
of eight dimensions, including pipeline, object, technical path,
and so on. Second, the intrinsic connections among some clas-
sical methods are explored from five aspects, including data
perception, application scenarios, similarity/opposition, theory,
and data types. Third, theoretical studies are summarized for
the existing data optimization techniques. Lastly, several future
directions are presented according to our analysis.

The differences between our survey and existing surveys
in relevant areas, including imbalanced learning, noisy-label
learning, data augmentation, adversarial training, and dataset
distillation, lie in two aspects. First, this survey takes a data-
centric view for studies from a wide range of distinct deep
learning realms. Therefore, our focus is merely on the data
optimization studies for the listed issues. Methods that do
not belong to data optimization for the listed issues are not
referred to in this study. Second, the split dimensions (e.g.,
data perception and theory) which facilitate the establishment
of connections among seemingly unrelated methods are con-
sidered in our taxonomy. These dimensions are usually not
referred to in the existing surveys.

The contributions of this study are summarized as follows.

« Methodologies related to data enhancement for dealing

with distinct deep learning issues are reviewed with a new
taxonomy. To our knowledge, this is the first work that
aims to construct a data-centric taxonomy focusing on
data optimization across multiple deep learning divisions.
« The connections among many seemingly unrelated meth-
ods are built according to our constructed taxonomy.
The connections can inspire researchers to design more
potential new techniques.

« Theoretical studies for data optimization are summarized

and interesting future directions are discussed.

This paper is organized as follows. Section [[I] introduces
relevant survey studies. Section [III] describes the main frame-
work of our constructed taxonomy. Sections [V} [V] [VI} and [V]|
introduce the details of our taxonomy. Section explores
the connections among different data optimization techniques.
Section presents several future directions, and conclusions
are presented in Section

II. RELATED STUDIES

The issues listed in the previous section gradually spawn
numerous independent research realms of deep learning. Sub-
sequently, there have been many survey studies conducted
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for these issues. The following introduces related surveys in
several typical research topics.

Imbalanced learning. It is a hot research area in deep learn-
ing [14]. He and Garcia [15] conducted the first comprehensive
yet deep survey study on imbalanced learning. They explored
the intrinsic characteristics of learning tasks incurred by imbal-
anced data. Recent studies have focused on the extreme case of
imbalanced learning, namely, long-tailed classification. Zhang
et al. [[16] summarized the recent developments in deep long-
tailed classification. In their constructed taxonomy, module
improvement such as a new classifier is listed as one of the
three main techniques. In this study, module improvement is
not considered, as it does not fall under data optimization.

Noisy-label learning. This is another research area gaining
tremendous attention as label noise is nearly unavoidable
in real applications. Algan and Ulisory [17] summarized
the methods in noisy-label learning for image classification.
Song et al. [18] elaborately designed taxonomy for noisy-
label learning along with three categories, including “data”,
“objective”, and “optimization”.

Learning with small data. Big data has achieved great
success in deep learning tasks. Meanwhile, many real learning
tasks still confront with the challenge of small-size training
data. Cao et al. [19] performed rigorous theoretical analysis
for the generalization error and label complexity of learning
on small data. Wang et al. [20] constructed a few-shot learning
taxonomy with three folds, including “data”, “model”, and
“algorithm”. Data-centric learning methods are also among the
primary choices for few-shot learning.

Concept drift. Lu et al. [8] investigated the learning
for concept drift under three components, including concept
drift detection, concept drift understanding, and concept drift
adaptation. Yuan et al. [21] divided existing studies into
two categories, namely, model parameter updating and model
structure updating in concept drift adaptation. This division
is from the viewpoint of the model. Indeed, pure data-based
strategy, such as data augmentation [22]], is also employed in
learning under concept drift.

Adversarial robustness. In many studies, model robustness
is limited to adversarial robustness. Silva and Najafirad [23] di-
vided adversarial robust learning methods into three categories,
including adversarial training, regularization, and certified
defenses. Xu et al. [24] summarized the studies for model
robustness on graphs. Goyal et al. [25]] reviewed the adversarial
defense and robustness in natural language processing.

Fairness-aware learning. It receives increasingly attention
in recent years. Mehrabi et al. [26] explored different sources
of biases that can affect the fairness of learning models.
They revealed that each of the three factors, namely, data,
learning algorithms, and involved users may result in bias.
Sample reweighting and adversarial training are two common
strategies for fair machine learning [27].

Trustworthy learning. It is the key of trustworthy Al,
which aims to ensure that an Al system is worthy of being
trusted. Trust is a complex phenomenon [28|] highly related
to fairness, explainability, reliability, etc. Kaur et al. [29]
summarized studies on trustworthy artificial intelligence in a

quite broad view. Wu et al. [30] provided an in-depth review
for studies about trustworthy learning on graphs.

There are also studies that focus on learning tasks with more
than one of the listed data issues. For example, Fang et al. [31]]
addressed noisy-label learning under the long-tailed distribu-
tions of training data. Singh et al. [32]] conducted an empirical
study concerning fairness, adversarial robustness, and concept
drift, simultaneously. To our knowledge, no survey study pays
attention to the intersection of the research areas related to the
listed issues. The unified taxonomy constructed in this survey
will enlighten the study on the intersection of multiple areas.

The most similar study to this work is the survey presented
by Wan et al. [33]], which focuses on data optimization in com-
puter vision. There are significant differences between our and
Wan et al.’s study. First, the covered technical scopes of ours
are much broader than those of Wan et al.’s study. Their study
limits the scope merely in data selection, including resampling,
subset selection, and active learning-based selection. Second,
the split dimensions of ours are quite different from those in
[33] for the overlapped methods. Lastly, additional important
parts including data perception, connections, and theoretical
investigation are introduced and discussed in this study.

The topic investigated in this study falls under data-centric
Al [34] and, more specifically, its subdivision, data-centric
deep learning [35]]. Zha et al. [36] provided a clear, high-
level summary of recent studies on data-centric Al. In their
data-centric Al taxonomy, there are three main components:
training data development, inference data development, and
data maintenance. Our study primarily focuses on training
data development. However, there are two differences be-
tween Zha et al’s summary on training data development
and this survey. First, Zha et al. categorized training data
development methods into five categories: collection, labeling,
preparation, reduction, and augmentation. In contrast, the first
three categories are not explicitly addressed, and a broader
range of data processing aspects is covered in this study.
Second, Zha et al.’s study presents a high-level overview of
data development, whereas this study provides a fine-grained
description of each data optimization technique. There are
also surveys on data-centric engineering [37]], [38]. Pan et
al. [38]] surveys data-centric studies in the context of chemical
engineering. There are two main differences between these
studies and our study. First, these data-centric engineering
surveys organize existing methodologies according to the data
processing pipeline, meaning that machine learning-related
data processing is only one part of these studies, whereas our
study primarily focuses on deep learning. Second, a significant
portion of these studies addresses specific data processing
components within their respective engineering fields, while
our study discusses more general application contexts.

Traditional shallow machine learning also heavily relies
on the quality of training data, making data optimization
a widely explored area in shallow learning. However, data
optimization for shallow learning primarily focuses on data
cleaning, resampling, and weighting. In contrast, deep learn-
ing, which requires large training datasets and is more sensitive
to computational complexity, favors data augmentation and
data pruning. Nevertheless, numerous optimization methods
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Fig. 2. The five split dimensions of our constructed taxonomy for data optimization.
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Fig. 3. The sub-taxonomy for optimization goals.

and principles from shallow learning have been adapted for
deep learning. Many resampling and weighting methods in
deep learning are directly inspired by or derived from those
used in shallow learning tasks. Classical data augmentation
techniques in shallow learning, such as SMOTE [39]], are also
adapted to deep learning tasks.

III. OVERALL OF THE PROPOSED TAXONOMY

To ensure our constructed taxonomy well organized and
comprehensive coverage on previous data optimization tech-
niques about the issues listed in Section [I|as much as possible,
the following principles for the split dimensions are adopted.

(1) The first layer of the taxonomy should consider multiple
views, with each view corresponding to a sub-taxonomy.
Most existing taxonomies for specific research realms
adopt only a single view. In this study, only a single view
is inadequate for systematically arranging studies from
various deep learning realms.

(2) The dividing dimension should be general so as to em-
brace existing data optimization studies as much as pos-
sible. Therefore, the dimensions designed in existing tax-
onomies for specific research areas should not be directly
followed. A new comprehensive taxonomy is required.

(3) The new taxonomy should be compatible with exist-
ing taxonomies. That is, inconsistency between our and
existing taxonomies is allowed. However, contradiction
between them should be avoided.

On the basis of these principles, the first layeIEI of our
taxonomy is designed as shown in Fig. [2| This layer consists
of five dimensions for data optimization as follows:

« Optimization goals. This dimension refers to the final goal of
a data optimization method used in a deep learning task. We
divide the optimization goals into five important aspectsﬂ
including generalization, robustness, fairness, trustworthy,
and efficiency.

o Application scenarios. This dimension refers to the deep
learning applications that utilize data optimization. Nine
applications are involved, including learning under biased
distribution, noisy-label learning, learning with redundant
training data, Safety-aware learning, fairness-aware learning,
learning under distribution drift, trustworthy learning, learn-
ing under insufficient data, and learning for large models.

2The fine-granularity layers are detailed in the succeeding sections.
31t should be noted that these five aspects are not exhaustive and there are
overlaps among them as revealed by the previous literature.

« Optimization pipeline. This dimension refers to the common
steps for data optimization. There are three common steps,
namely, perception, analysis, and optimizing.

o Optimization techniques. This dimension refers to the tech-
nical paths in data optimization. This study summarizes five
main technical paths. Each path contains a sub-division. This
part is the focus of this survey.

o Optimization theories. This dimension refers to the the-
oretical analysis and exploration for data optimization in
deep learning. We divided this dimension into two aspects,
namely, formalization and explanation.

Section introduces the ultimate goals and application
scenarios. Sections and [VII] introduces the optimization
pipeline, techniques, and theories, respectively.

IV. GOALS AND SCENARIOS
A. Optimization goals

Fig. [3| describes the sub-taxonomy for the dimension of op-
timization goals, including generalization, fairness, robustness,
trustworthiness, and efficiency.

Generalization is the primary optimization goal in most
data optimization techniques, as it is almost the sole goal
in most deep learning tasks. According to the generalization
theory studied in shallow learning, generalization of a category
is highly related to class margin, inter-class distance, and
class compactness [40]]. The data augmentation strategy that
injects noise to training samples is proven to increase the
generalization [41]. The implicit data augmentation method
ISDA [42] actually improves each category’s class compact-
nessﬂ Adaptive margin loss [43] also aims to improve the class
compactness by perturbing the logits. Fujii et al. [44] modified
the augmentation method mixup [12] by considering the
“between-class distance” to increase the inter-class distance.

As previously stated, fairness is also an important learning
goal in many deep learning tasks. To combat unfairness on
samples with certain attributes, techniques such as data aug-
mentation [45]), perturbation [46]], and sample weighting [47]]
have been used in previous literature.

Adversarial robustness is an essential goal in deep learning
tasks that are quite sensitive to model safety [48]. Adversarial
training is usually leveraged to improve the adversarial robust-
ness of a model. It can be attributed to a special type of data
augmentation [49]].

Trustworthiness is a goal that has recently been highly
valued. Explainability and calibration are its two crucial re-
quirements. Data optimization, such as perturbation [50] and
weighting [51]], is widely used in model calibration. Cali-
bration mainly concerns the trustworthiness of the predicted
probability of a probabilistic model [52].

4Some methods such as center loss also aim to increase the class compact-
ness. These methods are considered not data optimization.
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5. Fairness-aware learning
1. Learning under biased distribution
6. Learning under distribution drift
2. Noisy-label learning
7. Trustworthy learning

3. Learning with r data
8. Learning under insufficient data

4. Safety-aware learning

9. Learning for large models

Fig. 4. The sub-taxonomy for targeted application scenarios.

Efficiency is crucial for real applications as many learning
tasks are sensitive to both time complexity and storage.
Therefore, how to optimally reduce the redundant training data
and remain the diverse important training data deserves further
investigation [53[]. The time complexity can be significantly
reduced after data pruning.

B. Application scenarios

Fig. [ describes the sub-taxonomy for the dimension of
targeted application scenarios. The first seven scenarios have
been referred to in previous sections, so they are not further
introduced in this subsection. Here only discusses learning
under insufficient data and learning for large models.

Learning under insufficient data contains the case that the
training data are not as diverse as possible. Data diversity
affects the model generalization [7]]. Dunlap et al. [54] utilized
large vision and language models to automatically generate
visually consistent yet significantly diversified training data.
Some studies [55]] consider that data augmentation actually
increases data diversity.

Large models have made remarkable advancements recently.
The data quality is crucial for the training of a large model.
Yang et al. [56] utilized flip operation on the training corpus
to balance the two-way translation in language pairs in their
building of a large model. Liu et al. [57] applied adversarial
training in both the pre-training and fine-tuning.

Pipeline

Perception Analysis Optimizing
(Section V-A) (Section V-B) (Section V-C)

[ Statistics l

Fig. 5. Three main steps in data optimization pipeline.

V. OPTIMIZATION PIPELINE

The pipeline mainly consists of three steps, namely, percep-
tion, analysis, and optimizing, as shown in Fig. [

A. Data perception

In this study, data perception refers to all possible methods
aimed at sensing and diagnosing the training data to capture
the intrinsic data characteristics and patterns that affect learn-
ing performance. It serves as the first step in the pipeline,
and an effective data optimization method cannot work well
without accurate perception of the training data.

Generally, data perception for training data quantifies the
factors related to the true distribution, training data distribu-
tion, cleanliness, diversity, etc. We construct a sub-taxonomy
for data perception in three dimensions as shown in Fig. [

@ Sample-wise
@ Class-wise

1. Granularity
® Corpus-wise
@ Distribution
Loss-based
Gradient-based
@ Cleanliness Uncertainty-based
Margin-based
Multi-training-based
Loss-based
Gradient-based
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Distance-based
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@ Uncertainty -<

Epistemic
® Diversity
® Balance

Temporal
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Spatial
Valuation
@ Static

3. Variation
@ Dynamic

Fig. 6. The sub-taxonomy for data perception.

First, in terms of quantifying granularity, there are three
levels, namely, sample-wise, category-wise, and corpus-wise.
Secondly, in terms of perception types, there are eight divi-
sions, namely, distribution, cleanliness, difficulty, uncertainty,
diversity, balance, consistency, and valuation. Thirdly, in terms
of quantifying variation, there are two divisions, namely,
static and dynamic methods. Each of the above divisions is
introduced as follows.

1) Perception on different granularity levels: There are
three granularity levels, including sample-wise, category-wise,
and corpus-wise.

o Sample-wise data perception. It denotes that the perceived
quantities reflect or influence a sample’s positive/negative
or trivial/important role in training. For example, training
loss [58] and gradient norm [59] are widely used to infer
the noisy degree of a training sample.

« Category-wise data perception. It denotes that the perceived
quantities reflect or influence a category’s positive/negative
or trivial/important role in training. In category-wise per-
ception, the learning performance [60]], the proportion, or
the compactness [61] of each category, are usually used
monitored to return feedback for the entire scheme.

o Corpus-wise data perception. It denotes that the perceived
quantities reflect or influence a training corpus’ posi-
tive/negative or trivial/important role in training. Lin et
al. [62] used the query score to measure the utility of a
training dataset.

2) Perception on different types: The eight quantifying
types are introduced as follows:

« Distribution. This type aims to quantify the true data distri-
bution for a learning task and the training data distribution.
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The true distribution is usually assumed to conform to sev-
eral some basic assumptions, such as Gaussian distribution
for each category [42]. For the training data distribution,
some studies [63] apply clustering to deduce the intrinsic
structure of the training data. Recently, researchers have
investigated local distributions of training samples. One
typical characteristic is about the neighborhood of each
training sample [[64]. Wang et al. [65] defined a label
difference index to quantify the difference between a node
and its neighborhood in a graph.

o Cleanliness. This type aims to identify the degree of noise in
each sample. This study primarily focuses on label noise, as
it garners more attention than sample noise. As illustrated in
Fig. [} there are five typical label noise measures, including
loss-based, gradient-based, uncertainty-based, margin-based,
and multi-training-based techniques. Samples with large
losses, large gradient norms, large uncertainties, or small
margins are likely to be noisy. Huang et al. [58]] conducted
multiple training procedures to identify noisy labels.

« Difficulty. This type aims to infer the degree of learning
difficulty for a training sample or a category. The accurate
measurement of learning difficulty for each training sam-
ple is of great importance because several deep learning
paradigms employ adaptive learning strategies based on
the level of learning difficulty, such as curriculum learn-
ing [66] and Focal loss [67]. As shown in Fig. @, there
are five major manners to measure learning difficulty of
samples, namely, loss-based, gradient-based, uncertainty-
based, multi-training-based, and distance-based. Obviously,
the measures for learning difficulty are quite similar to those
for cleanliness. In fact, some studies consider that noisy
samples are those quite difficult to learn and divide samples
into easy/medium/hard/noisy. Zhu et al. [|68] established a
formal definition for learning difficulty of samples inspired
by the bias-variance trade-off theorem and proposed a new
learning difficulty measures.

o Uncertainty. This type contains two sub-types, namely,
aleatory uncertainty and epistemic uncertainty [69]]. The for-
mer is also called data uncertainty and occurs when training
samples are imperfect, e.g., noisy. Therefore, the cleanliness
degree can be used as a measure of data uncertainty. Epis-
temic uncertainty is also called model uncertainty. It appears
when the learning strategy is imperfect and can be calculated
based on information entropy of the prediction [70].

« Diversity. This type aims to identify the diversity of a subset
of training samples. The subset is usually a category. The
measurement for subset diversity is useful in the design
of data augmentation strategy for the subset [71] and data
selection [72f]. Friedman and Dieng [73]] leveraged the
exponential of the Shannon entropy of the eigenvalues of a
similarity matrix, namely, vendi score to measure diversity.
Pang et al. [74] designed a novel and efficient diversity
measure, named instance Euclidean distance metric (IED),
to evaluate diversity of a training subset.

o Balance. This type aims to measure the balance be-
tween/within categories. The balance between categories
belongs to global balance, while that within a category
belongs to local balance. Global balance can be simply

measured by the proportion of the training sample of a
category. Nevertheless, our previous study [75] reveals that
other factors such as variance and distance may also result
in serious imbalance.

« Consistency. This type aims to identify the consistency of the
training dynamics of a training sample along the temporal or
spatial dimensions. In the temporal dimension, the variations
of the training dynamics between the previous and the
current epochs are recorded [76]. In the spatial dimension,
the differences in the training dynamics between a sample
and other samples such as neighbors [64] or samples within
the same category are recorded. A classical measure called
“forgetting” quantifies the number of variations in the pre-
diction between adjacent epochs. Wang et al. [[77]] provided
a comprehensive summary for sample forgetting.

o Valuation. This value is usually measured by the Shapley
value, which is a concept from the game theory [7§].
Ghorbani and Zou firstly introduced Shapley value for data
valuation [79]. Nevertheless, the calculation for the Shapley
value is NP-hard, thereby hindering its use in real applica-
tions. Jiang et al. [80] established an easy-to-use and unified
framework that facilitates researchers and practitioners to
apply and compare existing algorithms.

This study only lists commonly used measures for data per-
ception. Some other important quantities such as problematic
score [81] and data influence [82] in learning, which have
large overlaps with the aforementioned quantities, also deserve
further exploration.

3) Static and dynamic perception: Static perception de-
notes that the perceived quantities remain unchanged during
optimization, whereas dynamic perception denotes that the
quantities vary.

In imbalanced learning, category proportion is widely used
to quantify a category. It belongs to static perception because
this quantity remains unchanged. In noisy-label learning, many
studies adopt a two-stage strategy in which the noisy degree
of each training sample is measured and the degrees are used
in the second training stage [58]]. In this two-stage strategy,
the perception for label noise is static.

The impact of a training sample usually varies during
training. Therefore, compared with static perception, dynamic
perception is more prevailing in deep learning tasks. Many
studies utilize training dynamics of training samples for the
successive sample weighting or perturbation. Such training
dynamics also belong to the dynamic perception. The training
dynamics including loss, prediction, uncertainty, margin, and
neighborhood vary at each epoch. For example, self-paced
learning [83] determines the weights of each training sample
according to their losses in the previous epoch and a varied
threshold. Therefore, the weights may also vary in each epoch.

B. Analysis on perceived quantities

Analysis on perceived quantities contains two manners,
namely, statistics and modeling, as shown in Fig. 5

1) Statistical analysis: . Most studies employ this manner
for the perceived data quantities. These studies considered only
one or two quantities. For example, Toneva et al. [84] made
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a statistics for the forgetting numbers of training samples and
revealed that distinct difference exists between the distribu-
tions of clean and noisy samples. Huang et al. [58]] proposed
a new strategy that the model is trained from overfitting to
underfitting cyclically. The epoch-wise loss for each training
sample is recorded. Noisy samples have larger training losses.
Therefore, they leveraged the average loss as an indicator for
noisy labels. Zhu et al. [68] proposed a cross validation-based
training strategy. Multiple training losses are also recorded for
each training sample. They revealed that the variance of the
multiple losses for each sample is also useful in identifying
noisy labels.

2) Modeling: . This manner refers to the statistical mod-
eling on the perceived quantities for training data. Arazo
et al. [85] assumed that the training loss conforms to the
Gamma distribution. Their values are different when modeling
the clean and the noisy samples. Hu et al. [86] leveraged
the Weibull mixture distribution to model the memorization-
forgetting value of each sample, which can distinguish clean
and noisy samples.

These two divisions usually rely on appropriate prior distri-
butions about the involved quantities. If the prior distributions
are incorrect, the successive optimizing will negatively influ-
ence the model training.

C. Optimizing

The data perception and analysis act as the pre-processing
for data operation. This step is the key processing of the
entire data optimization pipeline. The successive section will
introduce current optimization techniques in detail.

VI. DATA OPTIMIZATION TECHNIQUES

This section describes the most important dimension for the
presented taxonomy, namely, data optimization techniques for
deep learning. Fig. [/| presents the sub-taxonomy along this
dimension. We summarized six sub-divisions for existing data
optimization techniques, including resampling, augmentation,
perturbation, weighting, pruning, and others. It is noteworthy
that this survey covers numerous technique/methodology divi-
sions and leaves a through comparison for them as our future
work. The reason lies in two folds. First, each division has
its own merits and defects and their effectiveness have been
verified in previous literature, so it is difficulty to judge which
one is absolutely the best in arbitrary tasks. Second, a thorough
theoretical or empirical comparison is not a trivial task.

A. Data resampling

Data resampling compiles a new training set in which train-
ing data are randomly sampled from the raw training set. It is
widely used in tasks encountering the issues, including biased
distribution [87] and redundancy. This study summarizes two
split dimensions for this division. The first dimension concerns
the size of the sampled dataset, while the second dimension
concerns the sampling rate.

In the first dimension, resampling is divided into under-
sampling and oversampling. Undersampling compiles a new
training set whose size is smaller than that of the raw
training set. Contrarily, oversampling compiles a new training

set whose size is larger than that of the raw training set.
Both manners are widely used in previous learning tasks,
including imbalanced learning, bagging, and cost-sensitive
learning. Meanwhile, tremendous theoretical studies have been
conducted to explain the effectiveness of these two manners
in both the statistics and the machine learning communities.
Nevertheless, there is currently no consensus on which manner
is more effective. Some studies concluded that undersampling
should be the primary choice when dealing with imbalanced
datasets [88]. However, some other studies hold the opposite
view [89].

In the second dimension, resampling is divided into the
following five folds:

o Uniform sampling. This manner is quite intuitive. It treats
samples definitely equal regardless of their distributions,
location, categories, and training performances. In nearly
all existing deep learning tasks, the batch is constructed
by uniformly sampling from the training corpus. Some
studies explore alternative sampling strategies. For example,
Loshchilov and Hutter [90] proposed a rank-based batch
selection strategy in which samples with large losses have
high probabilities to be sampled.

« Proportion-based sampling. This manner simply assigns the
total sampling rate for each category with its proportion (7.)
in the training corpus. It is mainly used in imbalanced
learning in which the minor categories are assigned with
large sampling rates [15].

o Importance-based sampling. This manner assigns sampling
probabilities according to samples’ importance. In this study,
the definition for importance sampling follows several clas-
sical studies [91]]. Given a target distribution ¢(z,y) and a
source distribution on training data p(z,y), the importance
(sampling rate) for a training sample {z,y} in importance
sampling is defined as

N 4@y)

Y by M
As the target distribution is unknown, some studies [92] uti-
lize the kernel trick to generate sampling rates. In some im-
portance sampling studies, the sampling rates are not based
on Eq. (I). For example, Atharopoulos and Fleuret [93] took
the gradient norms of each training sample as their impor-
tance. This method actually belongs to learning difficulty-
based sampling.

o Learning difficulty-based sampling. This manner assigns
sampling rates according to samples’ learning difficulties.
As summarized in Section [V-AZ] learning difficulty is
usually measured by loss or gradient norm. Johnson and
Guestrin [94] proposed the O-SGD sampling method with
the following sampling rate:

Vi, y)ll
e = 5 Vi i @
where [(x,y) is the training loss. They claimed that this
“importance sampling” can reduce the stochastic gradient’s
variance and thus accelerate the training speed. Gui et
al. [95] utilized sampling strategy for noisy-label learning.
They calculated the sampling weights based on the mean
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loss of each example along the training process. The training
samples with large mean losses are assigned low weights.

« Uncertainty-based sampling. This manner assigns sampling
rates according to samples’ uncertainties. It is widely used
in active learning, in which a subset of data is sampled
for human labeling [96], [97]. Aljuhani et al. [98] pre-
sented an uncertainty-aware sampling framework for robust
histopathology image analysis. The uncertainty is calculated
by predictive entropy.

There are also some other sampling manners. For instance,
Ting and Brochu [99] calculated the sample influence for
optimal data sampling. Li and Vasconcelos [100] proposed the
adversarial sampling to improve OOD detection performance
of an image classifier. Zhang et al. [[101] sampled training
data of the majority categories by considering the samples’
sensitivities. Sun et al. [102]] explored an automatic scheme
for effective data resampling.

B. Data augmentation

Data augmentation compiles a new training set in which
samples (or features) are generated based on the raw training
set or sometimes other relevant sets. It is a powerful tool to
improve the generalization capability and even adversarial ro-
bustness of DNNG. Illuminated by related surveys on data aug-
mentation [103]], [[104]], two split dimensions are considered,
namely, target (sample/feature) and strategy (explicit/implicit),
as shown in Fig.

1) Augmentation target: In sample augmentation, the new
training set consists of generated new samples, while in feature
augmentation, the new training set consists of generated new
features.

o Sample augmentation. This division is subject to data
types (e.g., image, text, or others). For image corpus, aug-
mentation methods adopt noise adding, color transformation,
geometric transformation, or other basic operations such
as cropping to augment new images [104]. For texts, new
samples can be generated by noise adding, paraphrasing, or
other basic operations such as word swapping [[105].

o Feature augmentation. Different from sample augmentation
which is performed directly on raw samples, this division
is performed on the extracted/transformed features from
raw samples, so learning tasks for different data types
may utilize the same or similar augmentation strategies.
Some intuitive feature augmentation methods include adding
noise, interpolating, or extrapolating, which are applicable
for general data types, including both image and text data.
Li et al. [106] revealed that the simply perturbing the
feature embedding with Gaussian noise in training leads to
comparable performance compared with the SOTA methods.
Cui et al. [107] generated samples by combining two com-
ponents, namely, class-generic and class-specific, for minor
categories. Adversarial training, is actually a feature-wise
augmentation strategy when it is run on the feature space.
Some studies augment other data targets such as label [|108]]

and gradient [109], which receives quite limited attention.

2) Augmentation strategy: Explicit augmentation directly
generates new samples/features. Meanwhile, implicit augmen-

tation conducts data augmentation only theoretically, yet it
does not generate any new samples/features actually.

o Explicit augmentation. As described in Fig. explicit
augmentation is divided into the following four folds:

— Basic operations. This technique is widely used in practi-
cal learning tasks as basic operations conform to human
intuitions. The popular deep learning platforms such as
pyTorch provide several common basic operations such
as cropping, rotation, replacement, masking, cutout, etc.
One of the most popular data augmentation method used
for shallow learning tasks, namely, SMOTE [39]] has been
utilized in deep learning tasks [110]. SMOTE generates
new samples by using a linear combination of a se-
lected sample and its neighbors. Inspired by SMOTE,
Xie et al. [111] proposed a novel instance generation
method to address imbalanced learning tasks. Among the
basic operations, mixup is a simple yet quite effective
manner [12]. The original Mixup algorithm generates
a new sample based on the linear combination of two
randomly selected training samples, similar to SMOTE.
Nevertheless, it synthesizes a new label that does not
belong to the raw label space.

— Model-based augmentation. This technique generates new
samples by leveraging independent models. There are
three main schemes:

® GAN-based scheme. The classical generative adver-
sarial network (GAN) is an unsupervised learning
method [112]. The basic idea of GAN is a two-player
zero-sum game: one player is a generative model
attempting to generate fake data that closely resembles
real data, while the other is a discriminative model
trying to distinguish between generated data and real
data. The two models can train simultaneously in a
well designed two-player min-max game. The trained
generative model can be used to generate new samples
conforming to the distribution of the training data.
Yang et al. [113] utilized the GAN-based augmentation
for time series.

@ Diffusion model-based scheme. Diffusion models are
a new class of generative models and achieve SOTA
performance in many applications [[114]. They are
deep learning generative models based on probabilistic
statistics and the principles of non-equilibrium thermo-
dynamics. Initially inspired by the molecular diffusion
process in physics, these models are primarily used to
learn the probability distribution of data and generate
new samples. Dunlap et al. [54]] utilized large vision
and language models to automatically generate natu-
ral language descriptions of a dataset’s domains and
augment the training data via language-guided image
editing.

® Bi-transformation-based scheme. This scheme usually
relies on two transformation models. The first model
transforms a training sample into a new type of data.
The second model transforms the new type of data
into a new sample. In natural language processing,
back-translation is a popular data augmentation tech-
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nique [[115]], which translates the raw text sample into
new texts in another language and back translates the
new texts into a new sample in the same language with
the raw sample.

— Loss-optimization-based augmentation. This manner gen-
erates new sample/features by minimizing or maximizing
a defined loss with heuristic or theoretical inspirations.
Adversarial training is a typical loss-optimization-based
manner. It generates a new sample for by solving the
following maximization problem:

Tagy = T + arg Tax (f(z+96),y), (3)

where § and e are the perturbation term and bound,
respectively. Zhou et al. [49] proposed anti-adversaries by
minimizing the loss. Pagliardini et al. [[116] obtained new
samples by maximizing an uncertainty-based loss.

— Automatic augmentation. This manner investigates au-
tomated data augmentation techniques based on meta
learning [[117] or reinforcement learning [118].

Implicit augmentation. Wang et al. [42] proposed the first

implicit augmentation method called ISDA. It establishes a

Gaussian distribution for each category. New samples can be

generated (i.e., sampled) from its corresponding distribution.

An upper bound of the loss with augmented samples can

then be derived when the number of generated samples

for each training sample approaches to infinity. Finally, the
upper bound of the loss is used in the training. ISDA has

some variations, such as IRDA [[119] and ICDA [120].

Explicit augmentation is the primary choice in data aug-

mentation tasks. Nevertheless, implicit augmentation is usually

more efficient than explicit augmentation as it does not actually
generate any new samples or features.

C. Data perturbation

Given a datum z (z can be the raw sample, feature, logit,
label, or others), data perturbation will generate a perturbation
Ax such that ' = x + Az can replace x or be used as a new
datum. Therefore, some data augmentation methods, such as
adversarial perturbation and masking, can also be viewed as
data perturbation. In our previous work [13]], we constructed
a taxonomy for learning with perturbation. This study follows
our previous taxonomy in [13[] with slight improvements. The
sub-taxonomy for data perturbation is presented in Fig. [/| The
following four split dimensions are considered.

1) Perturbation target: The perturbation targets can be raw
sample, feature, logit vector, label, and gradient.

o Sample perturbation. This division adds the perturbation
directly to the raw samples. The basic operations in data
augmentation can be placed into this division. For instance,
noise addition and masking used in image classification
actually exert a small perturbation on the raw image.

o Feature perturbation. This division adds the perturbation on
the hidden features. Jeddi et al. [121] perturbed the features
at each layer to increase uncertainty of the network. Their
perturbation conforms to the Gaussian distribution. Shu et
al. [122]] designed a single network layer that can generate
worst-case feature perturbations in training to improve the
robustness of DNNs.

o Logit perturbation. This division adds the perturbation on
the logit vectors in the involved DNNs. Li et al. [123]
analyzed several classical learning methods such as logit
adjustment [[124] and ISDA [42] in a unified logit pertur-
bation viewpoint. They proposed a new logit perturbation
method for multi-label learning [[125]].

o Label perturbation. This division adds the perturbation on
either the ground-truth label or the predicted label. One clas-
sical learning skill, namely, label smoothing [[126]], is a kind
of label perturbation method. Wang et al. [127]] proposed
reward perturbation for noisy reinforcement learning.

o Gradient perturbation. This division adds the perturbation
directly on gradient. Studies on gradient perturbation are
few. Orvieto et al. [[128]] proposed a gradient perturbation
method and verified its effectiveness theoretically.

There are also studies [129]] which perturb other data such
as network weights, which is not the focus of this study.

2) Perturbation direction: Data perturbation will either
increase or decrease the loss values of training samples in
the learning process. Based on whether the loss increases or
decreases, existing methods can be categorized as positive or
negative augmentations.

« Positive perturbation. If the perturbed training samples have
larger losses than their raw samples, the corresponding
method belongs to positive perturbation. Obviously, ad-
versarial perturbation belongs to positive perturbation, as
it maximizes the loss with the adversarial perturbations.
ISDA [42] also belongs to positive perturbation as it adds
positive real numbers to the denominator of the Softmax.

o Negative perturbation. If the perturbed training samples have
smaller losses than their raw samples, the corresponding
method belongs to negative perturbation. Anti-adversarial
perturbation [49] belongs to negative perturbation, as it min-
imizes the training loss with the adversarial perturbations.
Bootstrapping [[130] is a typical robust loss based on label
perturbation. It also belongs to negative perturbation as its
perturbation is Ay = A(p — y), where p is the prediction
output by the current trained model.

Some methods increase the losses of some samples and
decrease those of others simultaneously. For instance, the
losses of noisy-label training samples may be reduced, while
those of clean samples may be increased in label smoothing.

3) Perturbation granularity: According to perturbation
granularity, existing methods can be divided into sample-wise,
class-wise, and corpus-wise.

o Sample-wise perturbation. In this division, each training
sample has its own perturbation and different samples usu-
ally have distinct perturbations. The aforementioned Boot-
strapping, and adversarial perturbation all belong to this
division. The random cropping and masking also belong to
this division.

o Class-wise perturbation. In this division, all the training
samples in a category share the same perturbation, and
different categories usually have distinct perturbations. Benz
et al. [131] proposed a class-wise adversarial perturbation
method. Wang et al. [[132] introduced class-wise logit per-
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turbation for semantic segmentation. Label smoothing also
belongs to this division.

o Corpus-wise perturbation. In this division, all the training
samples in the training corpus share only one perturbation.
Shafahi et al. [[133]] pursued the universal adversarial pertur-
bation for all the training samples, which has proven to be
effective in various applications [134].

4) Assignment manner: The perturbation variables should
be assigned before or during training. As presented in Fig.
there are four typical assignment manners to determine the
perturbations.

o Rule-based assignment. In this manner, the perturbation is
assigned according to pre-fixed rules. These rules are usually
based on prior knowledge or statistical inspirations. In both
label smoothing and Booststrapping loss, the label perturba-
tion is determined according to manually defined formulas.
In text classification, word replacement and random masking
also obey manually developed rules.

o Regularization-based assignment. In this manner, a regular-
izer for the perturbation is added in the total loss. Take the
logit perturbation as an example. A loss with regularization
for logit perturbation can be defined as follows:

L= US(vi + Avy), i) + AReg(Avy),  (4)

where S is thez Softmax function, v; is the logit vector for
x;, Av; is the perturbation vector for v;, and Reg(-) is the
regularizer. Zhou et al. [[135]] introduced a novel adversarial
perturbation way by leveraging smoothing regularization on
adversarial perturbations. Wei et al. [|136] proposed a sparse-
regularized perturbation for video analysis.
Loss-optimization-based assignment. This division is similar
to the loss-optimization-based augmentation introduced in
Section A new loss containing the perturbations is
defined and the they are pursued by optimizing the loss. In
the optimization procedure, only the perturbations are the
variables to be optimized.

Learning-based assignment. In this manner, the perturbation
is assigned by leveraging a learning method. Three learning
paradigms are usually applied as follows.

— Self-supervised learning. This paradigm leverages self-
supervised learning methodologies such as contrastive
learning [137] to pursue the perturbations. Naseer et
al. [[138]] constructed a self-supervised perturbation frame-
work to optimize the feature distortion for an image.

— Meta learning. This paradigm leverages meta-learning
methodologies to pursue the perturbations using an ad-
ditional meta dataset. It assumes that the perturbation Ax
(or Ay) for a training sample x (or its label y) is deter-
mined by the representation of x or factors such as training
dynamics for x, which is described by Az = g(x, n(x)),
where ¢g(-) can be a black-box neural network such as
MLP; 7n(z) represents the training dynamics for . Li et
al. [139]] applied meta learning to directly optimize the
covariant matrix used in ISDA, which is used to calculate
the logit perturbation.

— Reinforcement learning. This paradigm leverages rein-
forcement learning to pursue the perturbations without

relying on additional data. Giovanni et al. [140] leveraged
deep reinforcement learning to automatically generate
realistic attack samples that can evade detection and train
producing hardened models. Lin et al. [141] formulated
the perturbation generation as a Markov decision process
and optimized it by reinforcement learning.

Given a learning task, it is difficulty to directly judge which
assignment manner is the most appropriate without a thorough
and comprehensive understanding for the task. Each assign-
ment manner has its own merits and defects.

D. Data weighting

Data weighting assigns a weight for each sample in loss
calculation. It is among the most popular data optimization
techniques in many scenarios, including fraud detection, port-
folio selection, medical diagnosis, and fairness-aware learning.
Three dividing dimensions are considered, namely, granularity,
dependent factor, and assignment manner for weights.

1) Weighting granularity: According to the granularity of
weights, existing weighting methods can be divided into
sample-wise and category-wise. Noisy-label learning mainly
adopts sample-wise methods [[142], while imbalanced learning
mainly adopts category-wise [143]. Weighting is also widely
used in standard scenario, which is usually sample-wise.

2) Dependent factor: Dependent factor in this study de-
notes the factors that are leveraged to calculate the sam-
ple weights. Similar with the resampling introduced in Sec-
tion three factor types are usually considered, namely,
category proportion, importance, and learning difficulty. As
these concepts are introduced in Section and quite
similar procedures are adopted, these factors are not detailed in
this part. There are an increasing number of studies employ-
ing learning difficulty-based weighting. They can be further
summarized according to which samples are learned first.

As samples with larger weights than others can be consid-
ered as having priority in training, learning difficulty-based
weighting contains three basic folds, namely, easy-first, hard-
first, and complicated.

o Easy-first. Easy samples are given higher weights than
hard ones in this fold. There are two classical easy-first
learning paradigms: curriculum learning [66] and self-paced
learning [|83[]. These two paradigms assign larger weights to
easy samples during the early training stage and gradually
increase the weights of hard samples.

o Hard-first. Hard samples have higher weights than easy ones
in this fold. The classical Focal loss is a typical hard-first
strategy [67]]. Zhang et al. [[144] also assigned large weights
on hard training samples.

o Complicated. In some weighting methods, the easy-first or
the hard-first is combined with other weighting inspirations.
In Balanced CL [145], on the basis of the easy-first mode,
the selection of samples has to be balanced under certain
constraints to ensure diversity.

Besides the three general ways, Zhou et al. [146] revealed
some other priority types, including both-ends-first and varied
manners during training. There also other dependent factors
such as misclassified cost and those reflecting other concerns
such as fairness and confidence [147], [[148]].
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3) Assignment manner: Generally, there are four manners
to assign weights for training samples as shown in Fig.

o Rule-based assignment. This manner determines the sample
weights according to theoretical or heuristic rules. For exam-
ple, many methods assume that the category proportion is the
prior probability. Consequently, the inverse of the category
proportion is used as the weight based on the Bayesian
rule. Cui et al. [143] established a theoretical framework
for weight calculation based on the effective number theory
in computation geometry. The classical Focal loss [67]
heuristic defines the weight using w = (1 — p)”, where p
is the prediction on the ground-truth label and + is a hyper-
parameter. Han et al. [149] defined an uncertainty-based
weighting manner for mixup. Importance weighting [[150]
is placed in this division.

o Regularization-based assignment. This method defines a
new loss function which contains a weighted loss and a
regularizer Reg(-) on the weights as follows:

1 N
L=+ ; wil(f(2:), yi) + AReg(W), (5)

where W = {wy,--- ,wn}T is the vector of weights on the
N training samples. The classical self-paced learning, which
mimics the mechanism of human learning from easy to hard
gradually, is actually the regularization method defined as
Reg(W) = —=|W|1 (w; € {0,1}) [83].

o Adversarial optimization-based assignment. This manner
pursues the sample weights by optimizing a defined objec-
tive function, which is similar to the pursing of the adversar-
ial perturbation. For instance, Gu et al. [[I51f] adversarially
learned the weights of source domain samples to align the
source and target domain distributions by maximizing the
Wasserstein distance. Yi et al. [152] defined a maximal
expected loss and obtained a simple and interpretable closed-
form solution for samples’ weights: larger weights are given
to augmented samples with large losses.

o Learning-based assignment. Similar with that in data per-
turbation, learning-based assignment also usually applies
meta learning or reinforcement learning to infer the sample
weights. Ren et al. [[153] firstly introduced meta learning
for sample weighting in imbalanced learning and noisy-
label learning. Shu et al. [[154] utilized an MLP network to
model the relationship between samples’ characters and their
weights, and then trained the network using meta learning.
Li et al. [[155]] proposed meta learning-based weighting for
pseudo-labeled samples in unsupervised domain adaptation.
Ge et al. [156] used reinforcement learning to generate
sample weights and combined the weights to train a rec-
ommendation system.

Weights assignment can be divided into static and dynamic
methods. There are a few methods adopting static weight-
ing [143]], whereas most methods adopt dynamic weighting.

E. Data pruning

Data pruning is contrary to data augmentation. In this study,
it is divided into dataset distillation and subset selection.

1) Dataset distillation: Dataset distillation is firstly pro-
posed by Wang et al. [157] and it aims to synthesize a
small typical training set from substantial data [158]. The
synthesized dataset replaces the given dataset for efficient
and accurate data-usage for the learning task. Following the
division established by Sachdeva and McAuley [159]], existing
data distillation methods can be placed in four folds.

o Meta-model matching-based strategy. This strategy is firstly
proposed by Wang et al. [[I157]. It performs an inner-
loop optimization for a temporal optimal model based on
the synthesized set and an outer-loop optimization for a
temporal subset (i.e., the synthesized set) by turns. Loo et
al. [160] utilized the light-weight empirical neural network
Gaussian process kernel for the inner-loop optimization.

o Gradient matching-based strategy. This strategy [161[] does
not require to perform the inner-loop optimization as used
in the meta-model matching-based strategy. Therefore, it is
more efficient than the meta-model matching-based strategy.
Kim et al. [162] further utilized spatial redundancy removing
to accelerate the optimization process and gradients match-
ing on the original dataset.

o Trajectory matching-based strategy. This strategy performs
distillation by matching the training trajectories of models
trained on the original and the pursued datasets [163]. Cui
et al. [164] proposed a memory-efficient method which is
avaliable for large datasets.

« Distribution matching-based strategy. This strategy performs
the distillation by directly matching the distribution of the
original dataset and the pursued dataset. Wang et al. [[165]
constructed a bilevel optimization strategy to jointly opti-
mize a single encoder and summarize data.

There are some solutions which take alternative technical
strategies, such as reinforcement learning [[166], to solve the
bi-level optimization in data distillation.

2) Subset selection: Subset selection aims to select the most
useful samples from the original training set [33[]. It does not
generate any new samples. In Fig. [/] there are two divisions,
including greedy search-based and mathematics-based.

In the greedy search-based strategy, the utility of each
training sample is measured, and the subset is searched based
on the utility rankings. According to the employed measures,
existing methods can be divided into four categories, including
difficulty-based, influence-based, value-based, and confidence-
based. Meding et al. [[167] utilized the misclassified rate by
multiple classifiers as the learning difficulty to select samples.
Feldman and Zhang [168]] defined an influence score and a
memorization score to measure each training sample. Birodkar
et al. [6]] employed clustering to select most valuable samples
which are close to the cluster centers. Northcutt et al. [[169]
leveraged the confidence score to prune training samples.

Different from the greedy search strategy, some methods
seek a global optimal subset according to a mathematical
approach. Yang et al. [[170] proposed a scalable framework
to extract multiple mini-batch coresets from larger random
subsets of training data by solving a submodular cover prob-
lem. Mirzasoleiman et al. [[171] defined a monotonic function
for coreset selection and proposed a generic algorithm with
approximately linear complexity.
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F. Other typical techniques

This study lists two representative techniques, including
pure mathematical optimization and the combination of more
than one aforementioned methods described in Section

1) Pure mathematical optimization: This division refers to
the manners that perform data optimization via pure mathe-
matical optimization in the above-mentioned divisions.

The first typical scenario for pure mathematical optimization
is the construction of a small-size yet high-quality dataset
from the original training set. The tasks involving batch
construction, meta data compiling in meta learning, or dataset
distillation usually adopt mathematical optimization. Liu et
al. [[172] constructed a set variance diversity-based objective
function for data augmentation and pursued the selection
for a set of augmented samples via the maximization of
the objective function in batch construction. Su et al. [[72]]
established an objective function for meta data compiling and
minimized it via submodular optimization. As introduced in
Section [VI-E] data pruning is usually performed based on pure
mathematical optimization.

The second typical scenario is the regularized sample
weighting or perturbation. The details are described in Sections
[VI=C4] and [VI-D3] For instance, Li et al. [173] devised a new
objective function for the label perturbation strength, which
can also reduce the Bayes error rate during training. Meister
et al. [[174] constructed a general form of regularization that
can derive a series of label perturbation methods.

The third typical scenario is the constrained optimization,
which embeds prior knowledge into the constraints for weight-
ing, perturbation, or pruning. For instance, Chai et al. [[175]]
defined an optimization objective function with the constraints
that each demographic group should have equal total weights
in fairness-aware learning. The adversarial perturbation of
multi-label learning is usually attained by solving constrained
optimization problems [176].

2) Technique combination: Indeed, many learning algo-
rithms do not employ a single data optimization technique.
Instead, they combine different data optimization techniques.
The following lists a few combination examples.

In data augmentation, many methods choose to generate
samples in the first step and resample or reweight the samples
in the second step. For instance, Cao et al. [[177] dealt
with grammatical error correction by using data weighting to
balance the importance of each kind of augmented samples.

In data perturbation, different directions/granularity levels
are usually combined in the same method. For example,
adversarial perturbation belongs to the positive direction, while
anti-adversarial perturbation belongs to the negative one. Zhao
et al. [[I78]] used both category-wise and sample-wise factors
to infer the logit perturbation in imbalanced learning. Zhou
et al. [49] combined adversarial and anti-adversarial perturba-
tions and theoretically revealed the superiority of such strategy.

In data weighting, numerous methods combine it with
data augmentation. Han et al. [[149] combined uncertainty-
based weighting and the augmentation method mixup. Chen et
al. [119] combined effective number-based weighting and logit
perturbation for imbalanced learning. Some other methods [67]
combine different granularity levels or priority models.

G. Advantages and disadvantages of different techniques

This subsection attempts to provide a brief qualitative
discussion of the advantages and disadvantages of our sum-
marized optimization techniques.

Both data resampling and weighting have relatively low
computational complexity. Different augmentation methods
exhibit distinct computational complexities. For example, tra-
ditional image augmentation operations such as rotation and
cropping have low complexity. However, model-based and
loss-optimization-based explicit image augmentation methods
generally have high computational complexity. The same
applies to the perturbation technique. Methods such as label
perturbation (e.g., label smoothing) are quite simple, whereas
meta/reinforcement learning-based perturbation methods are
typically complex. Data pruning has relatively high com-
putational complexity, as most methods require solving an
optimization problem.

Both data augmentation and perturbation can generate new
data, whereas resampling and weighting cannot. Recent studies
demonstrate that a moderate amount of synthetic data can
help with model training [[179]. Therefore, augmentation and
perturbation seem to have more potential in the era of large
models than resampling and weighting. However, not all
augmented data are beneficial for large model training [180].
Thus, resampling and weighting have their own merits. Com-
pared with augmentation, perturbation generally has lower
computational complexity on average, as most perturbation
methods do not actually generate new data. Of the two main
technical strategies in pruning, dataset distillation is better for
privacy preservation than subset selection [[158]. Hu et al. [[181]
indicated that distillation outperforms subset selection in their
empirical comparison.

The optimization goals and application scenarios of the
five typical techniques differ. For example, data pruning aims
to achieve the goal of ’efficiency’, whereas data augmenta-
tion diverges from this goal. Most methods aim to improve
model generalization, while adversarial perturbation primarily
focuses on robustness, though it can enhance generalization in
some image classification tasks.

It is important to note that the above comparative conclusion
is not universally applicable to all learning tasks. There is
no theoretical, universally established comparative conclusion
for nearly any technique pair listed in Fig. [/] in the current
literature.

VII. DATA OPTIMIZATION THEORIES

There are a large amount of studies focusing on the the-
oretical aspects of data optimization. It is quite challenging
to arrange existing theoretical studies into a clear roadmap.
This study summarizes existing studies in the following two
dimensions, including formalization and explanation.

A. Formalization

In order to theoretically analyze and understand the data
optimization methods, it is essential to establish mathematical
formulations. Statistical modeling is the primary tool for their
formalization [182]. Basic assumptions are usually relied on.
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The most widely used assumptions for the statistical modeling

include the following.

o Independent and identically distributed (I.I.D.)/Non-L.LD.
assumption. Most studies assume that each training sample
is L.I.D. However, some studies focus on non-I.I.D. data.
For example, Zheng et al. [[183] theoretically investigated
generative data augmentation in the non-L.1D. setting.

o Gaussian distribution assumption. Many studies assume that
data in each category conforms to a Gaussian distribution,
which simplifies inference compared to other complicated
distributions [111]].

o Equal class CPD assumption. In many learning studies [184]
excepting those for distribution drift, the class-conditional
probability densities (CPD) of the training and testing sets
are assumed to be identical.

o Uniform distribution assumption. In many studies, the dis-
tribution over categories in the testing set is assumed to
be uniform. Some studies implicitly use this assumption
by using modified losses such as the balanced accuracy or
balanced test error [[185], even if the category proportions
in the test corpus are not identical.

o Linear boundary assumption. In many studies [186]], [[187],
the decision boundary of the involved classifier is assumed
to be linear. The decision boundary between two categories
under the cross-entropy loss is linear.

Based on these assumptions, the data optimization problems
are usually formalized into probabilistic, constrained opti-
mization, or regularization-based problems. For example, Xu
et al. [[188]] investigated importance weighting for covariate-
shift generalization based on probabilistic analysis. Chen et
al. [189] defined the classification accuracy based on poste-
rior probability for zero-shot learning. Qraitem et al. [190]
formalized a constrained linear program problem to investigate
the effect of data resampling. Roh et al. [191]] formulated
a combinatorial optimization problem for the unbiased se-
lection of samples in the presence of data corruption. In
classical weighting paradigm such as SPL, data weighting is
directly formalized in the optimization object consisting of the
weighted loss and a regularizer. Zhang et al. [|[192] defined a
re-weighted score function consisting of weighted loss and a
sparsity regularization for causal discovery.

Jiang et al. [[193]] proposed a new adversarial perturbation
generation method by adding a diversity-based regularization
which measures the diversity of candidates. Hounie et al. [[194]]
proposed a constrained learning problem for automatic data
augmentation by combining conventional training loss and risk
constraints.

B. Explanation

Most theoretical studies on data optimization aim to explain
why the existing methods are effective or ineffective.

In data perception, researchers usually conducted theoretical
analysis on the role of one typical data measure or leveraged
the measure to understand the training process of DNNs. Doan
et al. [195]] conducted a theoretical analysis of catastrophic for-
getting in continuous learning. Chatterjee et al. [196] utilized
the perception on gradients to explain the generalization of
deep learning.

In data resampling, existing theoretical studies focus on
importance sampling for deep learning. Katharopoulos and
Fleuret [93]] derived an estimator of the variance reduction
achieved with importance sampling in deep learning. Wang et
al. [[197] proposed an unweighted data sub-sampling method,
and proved that the subset-model acquired through the method
outperforms the full-set-model.

In data augmentation, more and more theoretical studies
are performed. Dao et al. [198] established a theoretical
framework for data augmentation and revealed that data aug-
mentation can be approximated by first-order feature averaging
and second-order variance regularization. Wu and He [199]
investigated the theoretical issues for adversarial perturbations
for multi-source domain adaptation.

In data perturbation, most theoretical studies focus on the
adversarial perturbation. Yi et al. [200] investigated the models
trained by adversarial training on OOD data. Some studies
delved into the theoretical justification for label and logit per-
turbation. Li et al. [125] theoretically analyzed the usefulness
of logit adjustment in dealing with the class imbalance.

In data weighting, Byrd and Lipton [91] investigated the role
of importance in deep learning. Fang et al. [201] discussed the
limitations of importance weighting and found that it suffers
from a circular dependency. Weinshall et al. [202]] proved that
the convergence rate of an ideal curriculum learning method is
monotonically increasing with the samples’ learning difficulty.

In data pruning, theoretical studies are relatively limited.
Zhu et al. [203]] revealed that distilled data lead to networks
that are not calibratable. Dong et al. [204] theoretically re-
vealed the connection between dataset distillation and differ-
ential privacy.

There are also studies which aim to reveal the intrinsic
connections between two different technical paths. For in-
stance, regularization is a widely used technique in deep learn-
ing [205], and several typical data optimization techniques
are revealed to be a regularization method [42], [206], [207].
Therefore, intrinsic connections among these techniques can
be established, which enlightens a better understanding of the
involved technical paths and can envision novel methods.

VIII. CONNECTIONS AMONG DIFFERENT TECHNIQUES

Five aspects, namely, perception, application scenarios, sim-
ilarity/opposition, theories, and data types, connect different
methods within a technical path or across different paths.

A. Connections via data perception

Data perception is the first (explicit or implicit) step in the
data optimization pipeline. Methods along different techni-
cal paths introduced in Sections may choose the
same or similar quantities in perception. Therefore, quantities
for data perception connect different methods. For example,
many data optimization methods are on the basis of train-
ing loss in resampling [95]], augmentation [49], perturba-
tion [[123]], weighting [83]], and subset selection [167]]. Gradient
is widely used in resampling [93]], augmentation [224]], per-
turbation [49]], weighting [59], and dataset distillation [161]].
Other quantities including margin and uncertainty are also
used in different optimization techniques.
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TABLE I
SOME DATA OPTIMIZATION METHODS IN NOISY-LABEL LEARNING.
Datasets Resampling Augmentation Perturbation Weighting Dataset pruning
CIFARIT0 [95]1, 1197}, 1208]] | 1209, [210], [211], [212] | [126]], [130] | 1830, [213]], 12141, [215] | [216], [217], [218] |
CIFAR100 [95]1, 1197}, [208]] | 1209, [210], [211], [212] | [126]], [130] | 183], (214, 2151 | 12175, 218] |
ClothingIM | [197] | 2091, 2107, 212] | [126], [130] | 183], [215] | [218]
Web Vision 53] 212], [210] | 164] | [213], [214], [215] [217]
TABLE II
SOME DATA OPTIMIZATION METHODS IN IMBALANCED LEARNING.

Datasets Resampling Augmentation Perturbation Weighting Dataset pruning
CIFARI0-LT [219] [219], [220] | 1124], 1139] | 167], [143] | 172], 1221]
CIFARI00-LT | [222] [T19], [220] | 1124], [139] | 167], [143] | 172], 1221]

iNaturallist [222] [T19], 1220] | 1124], 1139] 1670, 1143] 172l
ImageNet-LT [222] [T19], [220] | 1124], 1139] | 167], [143] 172], 1223]
The utilization of the same or similar perception quantities Adding
demonstrates that these methods have the same or similar generated data Data

heuristic observations or theoretical inspirations.

B. Connections via application scenarios

Most data optimization methods can be leveraged for the
application scenarios discussed in Section [[V-B]

One of the most focused scenarios of data optimization
methods is noisy-label learning. Many classical methods are
from resampling, augmentation, weighting, or perturbation.
These are also dataset distillation studies for noisy-label
datasets [225]. Table I shows some representative data opti-
mization methods for noisy-label learning on five benchmark
datasets CIFAR10 [226], CIFAR100 [226], ClothingIM [227]],
and WebVision [228].

Imbalanced learning is also among the most focused sce-
narios. Nearly all the listed data optimization techniques
have been used in imbalanced learning. Table II shows
some representative methods for imbalanced learning on four
benchmark datasets CIFAR10-LT [143]], CIFAR100-LT [[143]],
iNaturalist [229], and ImageNet-LT [230]. There are some
studies employing more than one type of data optimization
techniques such as ReMix [219], which combines resampling
and augmentation, in Table II.

Robust learning for adversarial attacks is another typical
scenario. Karimireddy and Jaggi [231] employed resampling
to design robust models. Data weighting [[144] and dataset
distillation [232] are also used in robust learning.

C. Connections via similarity/opposition

The similar and opposite relationships existing among the
five technical paths are introduced in Section

Data resampling and weighting are closely related tech-
niques, as their key steps are nearly the same. Therefore, in
many studies on noisy-label learning and imbalanced learning,
these two techniques are often considered as a single strategy.

Although data pruning and augmentation are opposite to
each other, they have consistent ultimate goals in learning
tasks. They are overlapped in terms of employed methodolo-
gies as shown in Fig. [§] It is believable that more intrinsic
connections can be explored for them.

In the data resampling, weighting, and perturbation, the
assignment manners for the sampling rate, weighting score,
and perturbation variable are quite similar. In addition to
the classical importance score, both meta learning [233[] and

augmentation

Replacing by
generated data B
Data
pruning

Training
data

Deleting
raw data

Fig. 8. Connection between augmentation and pruning.

adversarial strategy [100] have also been used in data re-
sampling. Regularization-based manner is used in nearly all
the data optimization paths except resampling. Due to space
constraints, methods with different assignment manners are
not summarized in a table as those in Section [VIII-Bl

There are other opposite relationships, such as undersam-
pling vs. oversampling, easy-first weighting vs. hard-first
weighting, positive perturbation vs. negative perturbation, and
explicit augmentation vs. implicit augmentation. Both method-
ologies in these opposite relationships have been demonstrated
to be effective in previous literature, aligning with the proverb
“All roads lead to Rome”.

D. Connections via theory

There are some common theoretical issues, analyses, and
conclusions heavily influencing most data optimization tech-
niques. They are the natural connections among different
techniques. Several examples are listed as follows:

o Theoretical issues in data perception. A solid theoretical
basis for data perception in data optimization is lacking,
even though most data optimization methods implicitly
or explicitly rely on the perception for the training data.
For instance, many methods from resampling, weighting,
and perturbation are based on dividing samples into easy
and hard. Nevertheless, there is not yet a widely accepted
learning difficulty measure in the literature.

« Probabilistic density (ratio) estimation. Many data optimiza-
tion methods, especially resampling and weighting, heavily
rely on the probabilistic density (ratio) estimation. The
most representative method is the importance sampling. In
learning difficulty-based weighting, the probabilistic density
ratio, in terms of learning difficulty, is revealed to determine
the priority mode [146]], namely, easy/medium/hard-first.

o Regularization-based explanation. Many data optimization
methods are considered as a type of regularization, including
data augmentation and perturbation. In these methods, data
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optimization performs implicit model regularization other
than explicit regularization that directly works on model
parameters. Regularization is not always beneficial as over-
regularization may occur. Li et al. [234] pointed out that
large amount of augmented noisy data could lead to over-
regularization and proposed a new augmentation method.

o Generalization bound for data optimization. Many studies
choose to deduce a mathematical bound in terms of the
variables related to data optimization. This manner can
theoretically explain the utility of data optimization. Xiao
et al. [235] derived stability-based generalization bounds
for SGD on the loss with adversarial perturbations. Xu et
al. [[187]] established a new generalization bound that reflects
how importance weighting leads to the interplay between the
empirical risk and the distribution deviation.

The progress in each of the above theoretical aspects will
promote the advancement of many data optimization methods
in different technical paths.

E. Connections via data types

The data types of the datasets listed in Tables I and II
are images. Other common data types include text, time
series, graphs, and tabular data. Theoretically, most existing
data optimization techniques can be applied to these data
types with adaptations based on their specific characteristics.
Researchers from various fields, including computer vision,
natural language processing, graph neural networks, and time
series analysis, have contributed to data optimization method-
ologies. Generally, resampling methods for images, text, time
series, and tabular data are nearly the same, as they are
independent of the specific data types. Resampling on graphs
should adopt special strategies, as nodes are interconnected.
Data augmentation methods for different data types usually
vary significantly in their implementation details, as they are
heavily dependent on the specific data types. The differences
among data perturbation methods for different data types
depend on the perturbation targets. Label, logit, feature, and
gradient perturbation strategies for different data types are
usually identical or quite similar, whereas sample perturbation
strategies for different data types may vary significantly.
Weighting methods across different data types vary slightly.
Dataset distillation-based pruning for different data types also
varies significantly, as it requires generating new samples.

Although many methods in an optimization technique can
be applied indiscriminately to different data types, each data
type has specific preferences for certain methods. For example,
sample augmentation with adversarial learning achieves good
performance on images, whereas it may fail on text.

IX. FUTURE DIRECTIONS
A. Principles of data optimization

Up till now, there has been no consensus theoretical
framework that is suitable for all or most technical paths.
There are some studies aiming to establish the connection
between two different technical paths, such as resampling vs.
weighting [236]. Many open problems or controversies remain
unsolved. For example, there is no ideal answer for which

resampling strategy should be employed first: oversampling or
undersampling? Megahed et al. [88] suggested that undersam-
pling should be used firstly, whereas Xie et al. [[111] demon-
strated that oversampling is effective. Likewise, although Zhou
et al. [[146] provided an initial answer for the choice of easy-
first and hard-first weighting strategies, a solid theoretical
framework is still lacking in their study.

Moreover, even for a single data optimization method,
multiple explanations from different views may exist. The
explanation for label smoothing is a typical example. At least
four studies provide empirical or theoretical explanations for
it [[174], [237]-[239]. Regarding the effectiveness of adversar-
ial samples, some researchers have pointed out that adversarial
samples are useful features [240], while some other researchers
investigated it in terms of gradient regularization [241].

Consequently, the construction of the data optimization prin-
ciples is of great importance, as it can promote the establishing
of a unified and solid theoretical framework which can be used
to analyze and understand of each data optimization technical.
There have been studies on the first principle for the design of
DNNss [242]. To explore the principles for data optimization, a
unified mathematical formalization is required and large-scale
empirical studies (e.g., [243]]) will be helpful.

B. Interpretable data optimization

Interpretable data optimization refers to the explanation for
the involved data optimization techniques in terms of how
and which aspects they affect the training process of DNNs.
Although interpretable deep learning receives much attention
in recent years [244], it focuses on DNN models other than the
training processing in which data optimization techniques are
involved. Interpretable data optimization is an under-explored
research topic and there are limited studies on this topic [245],
[246]. The well explanation of how and which aspects of a
data optimization method affects a specific training process
is significant beneficial for the design or selecting of more
effective optimization methods.

C. Human-in-the-loop data optimization

Recently, human-in-the-loop (HITL) deep learning receives
increasing attention in the Al community [247]. With out
human’s participants, high-quality samples are not intractable
to obtain. Naturally, HITL data optimization can also be bene-
ficial for deep learning. Collins et al. [248]] investigated HITL
mixup and indicated that collating humans’ perceptions on
augmented samples could impact model performance. Wallace
et al. [249] proposed HITL adversarial generation, where
human authors are guided to break models. Overall, research
on HITL data optimization is in the early stage.

D. Data optimization for new challenges

New challenges are constantly emerging in deep learning
applications. We take the following challenges as examples to
illustrate the future direction of data optimization:

o Open-world learning. This learning scenario confronts the
challenge of out-of-distribution (OOD) samples. Wu et
al. [250] investigated the learning issue when both OOD and
noisy samples exist. Some other studies investigate ODD
under imbalanced learning [251]].
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o Large-model training. Large models especially the large
language models have achieved great success in recent years.
Data optimization can also take effect in large models’
training. Wei et al. [252] investigated the condensation of
prompts and promising results are obtained.

e Multi-modal learning. Multi-modal data are avaliable in
more and more real tasks [253]]. Consequently, many learn-
ing tasks are actually multi-modal learning. As each sample
consists of raw data/features from different modalities, the
data perception for multi-modal samples should be different
from that for single-modal samples. The data optimization
methods are likewise different from conventional methods.

E. Data optimization for Al security

With the increasing impact of Al technology on society,
Al security, such as adversarial robustness, model trustwor-
thiness, and data privacy, is becoming increasingly important.
Data optimization has also been used to address Al security
issues. Adversarial perturbation has proven to be an effective
technique for improving the adversarial robustness of DNN
models. It can also be used to implant backdoors into Al
systems [254]]. Data is crucial for trustworthy Al. Liang et
al. [255] pointed out that data critically affects the trustworthi-
ness of a model, while the design and sculpting of data used
to develop Al often rely on bespoke manual work. In terms
of data privacy and copyright issues, dataset distillation is a
promising technique, as it generates new training data [256].
Yu et al. [257] revealed that the privacy risk of models trained
with data augmentation could be largely underestimated. Li
et al. [258] evaluated several data augmentation methods in
terms of privacy attack and suggested that some methods are
effective in reducing the vulnerability to such privacy attacks.

As Al security is a major concern for Al applications, data
optimization for Al security will present additional challenges
and create research opportunities for the entire community.

X. CONCLUSIONS

This paper aims to summarize a wide range of learning
methods within an independent deep learning realm, namely,
data optimization. A taxonomy for data optimization, as well
as fine-granularity sub-taxonomies, is established for existing
studies on data optimization. Connections among different
methods are discussed, and potential future directions are
presented. It is noteworthy that many classical methods, such
as dropout, are essentially data optimization methods. In our
future work, we will explore a more fundamental and unified
viewpoint on data optimization, and develop a more compre-
hensive taxonomy to incorporate more classical methods.
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I. THE SUB-TAXONOMY FOR DATA OPTIMIZATION
TECHNIQUES WITH METHODS IN EACH CATEGORY

To facilitate interesting readers to better understand our
proposed sub-taxonomy for data optimization techniques, the
structure of our proposed sub-taxonomy as well as several
methods in each category is shown in Fig. |1} The methods (i.e.,
their corresponding references) with the red color are directly
from the paper and the ones (i.e., their corresponding refer-
ences) [1]]-[43]] with the green color only appear in this file.
There methods were published in the past two years.

II. MORE DETAILS FOR SOME METHODS IN SECTION VI

Section VI in the paper introduces a number of typical (not
exhaustive) methods in each technical path for data optimiza-
tion. Details for some methods are presented in this section
due to lack of space for the paper.

RISDA [44]: This method is an improved version of
ISDA [45]]. When application ISDA, the calculation of mean
vectors covariance matrix of some categories with small
numbers of samples may be unreliable. Therefore, RISDA
enriches the mean vectors and covariance matrices of these
categories by introducing the covariance matrices of their
similar categories.

Label smoothing [46[]. It is a kind of label perturbation
method. Let C' be the number of categories and A be a hyper-
parameter. Label smoothing perturbs the label y (one-hot type)
with the following perturbation Ay = A(Z — y), where I is
a C-dimensional vector and its each element is 1.

Universal adversarial perturbation [47]]: Most adversarial
perturbation methods yield different perturbations for different
samples. Nevertheless, Shafahi et al. [47]] simplified the
optimization approach by restricting that all the involved
samples share the same perturbation, which is called uni-
versal adversarial perturbation (UAP). Extensive experiments
indicate that such a simple strategy is useful as the whole
time consumption is significantly reduced while UAP is also
beneficial for robust training.

Class-wise adversarial perturbation [48]]: Different from
UAP requiring that all training samples share the identical
perturbation, class-wise adversarial perturbation requires that
training samples in a category share the same perturbation.
This relaxation is also beneficial for the entire training.

Class-wise logit perturbation [49]: This method is designed
to balance feature distribution. It defines category-wise logit
perturbation for samples in each category with the manner that
head categories are assigned with smaller perturbation while
tail ones are assigned with larger perturbation.

Sparse-regularized perturbation [50]: Wei et al. [50] inves-
tigated the adversarial attach for videos. The found that not

all frames in a video requires extra perturbations as there are
temporal interactions among frames. Therefore, they designed
an [2,1-norm based optimization algorithm to compute the
sparse adversarial perturbations for videos.

Self-supervised perturbation [51]: Convectional adversarial
perturbation relies on the supervised labels. Naseer et al. [51]
investigated the pursue of the adversarial perturbation without
requiring labels. Their method is based on maximization of
feature distortion for each training sample.

Curriculum learning [52]: It is an independent learning
paradigm proposed by Bengio et al. [52]. It mimics the human
learning procedure, advocating for models to start learning
from easy samples and gradually progress to hard samples.
This paradigm can improve the generalization ability and
convergence rate of various DNN models in various learning
tasks in computer vision and natural language processing.

Self-paced learning [53]: This strategy can be seen as in
concrete implementation of curriculum learning. It takes the
training loss as the indicator of the learning difficulty of
samples. Samples with losses smaller than a threshold are
considered easy. In an epoch, only easy samples are allowed to
take participant in training and the threshold grows gradually
at each epoch.

Importance weighting [54]: This procedure assign large
weights to the training samples that are more likely to appear
in the test data and small weights to those that are less
likely. The weighted training loss can thus be minimized by
conventional learning algorithms, resulting in a simple and
general scheme to deal with learning tasks with distribution
shift.

Meta learning-based weighting: Ren et al. [55] initially
introduced meta learning into the pursuing of sample weights
in deep learning. This line of technique takes the sample
weights as parameters to learn. A meta dataset (or validation
dataset) is utilize to learn the weights in each training epoch.
Therefore, there are two optimization procedures in each
training epoch and thus the entire time consumption is higher
than many other weighting methods.

III. ANOTHER FUTURE DIRECTION: DATA OPTIMIZATION
AGENT

Given a concrete learning task, a selection dilemma occurs
for the tremendous data optimization techniques. There have
been studies on the automatic data optimization such as auto-
matic data augmentation [56[]. Nevertheless, existing automatic
data optimization methods still focus on a particular type of
technical path rather than the types across different technical
paths [57]], [58]. A more general data optimization agent can
be trained by iteratively training on a large number of deep
learning tasks via reinforcement learning.
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Undersampling —[88], [3], [4]

Oversampling ——[89], [1], [2]

Uniform ——[90]

Proportion-based —[15]

@ Sampling rate Importance-based ——[91], [92], [93], [5], [6], [7]
Learning difficulty-based ——[94], [95], [8]
Uncertainty-based ——[96], [97], [98], [9], [10]

@ Sampling size —<

1. Resampling

@ Target _<Sample augmentation —[104], [105], [11], [12]
arge Feature augmentation ——[106], [107], [13], [14]
Basic operations ——[39], [110], [111], [12]
GAN-based —[112], [113], [15]
. . Model-based Diffusion model-based —[114], [54], [16]
Explicit augmentation . .
Bi-transformation-based ——[115]

2. Augmentation

Loss-optimization-based ——[49], [116], [17]
Automatic —[117], [118], [18]
Implicit augmentation —[42], [119], [120], [19], [20]

Sample —[21]

Feature —[121], [122], [22]

@ Target Logit——[123], [124], [42], [125]
Label —[126], [127]
Gradient——[128], [23], [24], [25]

Positive —[42]
Direction
@ < Negative —[49], [130]

Sample-wise —[49], [130]
® Granularity{ Class-wise —[131], [132]
Corpus-wise —[133], [134]
Rule-based —[126], [130]
Regularization-based —[135], [136]
@ Assignment manner Loss-optimization-based —[49], [116]
Self-supervised learning——[137], [138]
Learning-based { Meta learning ——[139], [26], [27]

Reinforcement learning ——[140], [141]

3. Perturbation

Data optimization
technologies

Sample-wise ——[142], [28], [29]
Weighti larit

@ Weighting granulari y<Category-wise —[143], [30]

Proportion-based ——[31]

Importance-based ——[32], [33]
@ Dependent factor

— Easy-first ——[66], [83]
4. Weighting . e 3
Learning difficulty-based {Hard-ﬁrst —167], [144]
Complicated —[145]
Rule-based ——[143], [67], [149], [150]
Regularization-based —[83]
Adversarial optimization-based —[151], [152], [34]
Learning-based —[153], [154], [155], [156], [35]
Meta-model matching-based ——[157], [160], [36]
Gradient matching-based —[161], [162], [37]
Trajectory matching-based ——[163], [164], [38]
Distribution matching-based ——[165], [39]
Difficulty-based —[167], [40]
Influence-based —[168], [41]
Value-based —[6], [42]
2 Subset selection Confidence-based —[169], [43]
Mathematics-based —[170], [171]

@ Assignment manner

(D Dataset distillation

Greedy search-based

Small-size yet high-quality dataset —[172], [72]

(@ Pure mathematical optimization {Regularized sample weighting or perturbation —[173], [174]
Constrained optimization —[175], [176]

@ Technique combination ——[177], [178], [49], [149], [119], [67]

Fig. 1. The sub-taxonomy of data optimization techniques with categorized methods.
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