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Abstract. Age-structured models with nonlocal diffusion arise naturally in
describing the population dynamics of biological species and the transmission dy-
namics of infectious diseases in which individuals disperse nonlocally and interact
with each other and the age structure of individuals matters. In part I of a series of
two papers, we study the principal spectral theory of age-structured models with
nonlocal diffusion of Dirichlet type. First, we provide two criteria on the existence
of principal eigenvalues by using the theory of resolvent positive operators with
their perturbations. Then we define the generalized principal eigenvalues and use
them to investigate the influence of diffusion rate on the principal eigenvalues. In
addition, we establish the strong maximum principle for age-structured nonlocal
diffusion operators. In part II [15] we will investigate the effects of principal
eigenvalues on the global dynamics of the model with monotone nonlinearity in
the birth rate and show that the principal eigenvalue being zero is critical.
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1 Introduction

In this paper, we study the existence of principal eigenvalues and the asymptotic
behavior of principal eigenvalues with respect to diffusion rate and diffusion range
of linear age-structuredmodels with nonlocal diffusion of Dirichlet type. The moti-
vation comes from investigating the following age-structured model with nonlocal
diffusion under Dirichlet boundary condition:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(∂t+∂a)u(t, a, x)=D[
∫
� J(x−y)u(t, a, y)dy−u(t, a, x)]−μ(a, x)u(t, a, x),

(t, a, x)∈ (0,∞)×(0, â)×�,
u(t, 0, x) = f (

∫ â
0 β(a, x)u(t, a, x)da), (t, x) ∈ (0,∞) ×�,

u(0, a, x) = u0(a, x), (a, x) ∈ (0, â) ×�,

where u(t, a, x) denotes the density of a population at time t, with age a and at
position x, J is a dispersal kernel and f is a monotone type nonlinearity describing
the birth rate of the population. Such equations appear naturally in describing
some ecological problems when in addition to the dispersion of the individuals in
the environment, the birth and death of these individuals are also modeled; see
Fife [21], Garcı́a-Melián and Rossi [22], Hutson et al. [23], Medlock and Kot [35],
and Murray [36]. It could be used to characterize the spatio-temporal dynamics of
biological species and transmission dynamics of infectious diseases in which the
age structure of the population is a very important factor and the dispersal is in long
distance. We mention that the nonlocal diffusion operator in (1.1) corresponds to
zero Dirichlet boundary condition, which indicates that the region outside their
habitat, RN \�, is hostile that the population cannot survive there; see Hutson et
al. [23].

Here â ∈ (0,∞] represents the maximum age and � ⊂ RN is a bounded
domain. Moreover, D > 0 is the diffusion rate and the diffusion kernel J satisfies
the following assumption.

Assumption 1.1. The kernel J ∈ C(RN) is nonnegative and supported
in B(0, r) for some r > 0, where B(0, r) ⊂ R

N is the open ball centered at 0
with radius r. In addition, J satisfies J(0) > 0 and

∫
RN J(x)dx = 1.

Next we provide assumptions on the birth rate β = β(a, x) and the death rate
μ = μ(a, x). Define

μ(a) := min
x∈�

μ(a, x), μ(a) := max
x∈�

μ(a, x),

β(a) := min
x∈�

β(a, x), β(a) := max
x∈�

β(a, x).
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Assumption 1.2. We assume that the birth rate β = β(a, x) and the death rate
μ = μ(a, x) are defined from (0, â) × R

N into [0,∞) and satisfy the following
conditions:

(i) For any x ∈ R
N , the function a → β(a, x) ∈ L∞

+ (0, â) in a, and the mapping
x → β(·, x) is continuous in x from RN to L∞(0, â). For short, we introduce
the notation β ∈ C(RN,L∞

+ (0, â)).
(ii) For any x ∈ RN , the function a → μ(a, x) ∈ L∞

loc,+(0, â) in a, and the mapping
x → μ(·, x) is continuous in x from R

N to L∞
loc(0, â). For short, we introduce

the notation μ ∈ C(RN,L∞
loc,+(0, â)).

(iii) There exists μ̃ > 0 such that μ(a) ≥ μ̃ > 0 a.e. a ∈ (0, â).
(iv) For any x ∈ RN and almost every a ∈ (0, â),

β(a) ≤ β(a, x) and μ(a, x) ≤ μ(a).

Remark 1.3. Note that from the biological modeling point of view, one
usually also assumes

∫ â
0 μ(a)da = +∞ to guarantee that the population density

reaches to zero at maximum age. To be able to consider such a situation, we only
assume (ii) for μ so that μ ∈ L∞

loc,+[0, â) and the integral can be infinite when
â < ∞. In addition, we mention that Assumption 1.2-(iv) is employed to study
the limiting properties of principal eigenvalues with respect to diffusion rate. In
fact, the existence of principal eigenvalues is only dependent on the behavior of μ
and β in�. While for the limiting properties, in particular under the kernel scaling
(see Theorem 5.7), we will use the behavior of μ and β in a larger domain, for
example in R

N .

The important tool for studying the global dynamics of (1.1) is to investigate the
spectrum set of the linearized operator of (1.1) at some equilibrium, and then use
the information of the spectrum set (for example the sign of spectral bound or the
principal eigenvalue, if exists) to study the long time behavior of (1.1). In this paper,
we are interested in the principal eigenvalue problem of the linearization of (1.1)
at zero. We will provide two criteria on the existence of principal eigenvalues by
using the theory of resolvent positive operators with their perturbations. We will
study the global dynamics of (1.1) in the second part [15].

The difficulty in establishing the existence of principal eigenvalues for (1.1)
mainly comes from the nonlocal diffusion, since as Donsker and Varadhan [13]
have already noticed that there may not exist a principal eigenvalue associated
with a positive eigenfunction for the nonlocal diffusion operator in regular function
spaces. Thus, in the following we first briefly recall the history of studying the
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principal eigenvalues of nonlocal operators; then point out the differences between
previous models and ours; and finally explain our ideas to treat the eigenvalue
problem of (1.1).

In 2010, Coville [7] employed the concept of generalized principal eigenvalues
from Berestycki et al. [4] to study the existence of principal eigenvalues of nonlo-
cal operators and gave a non-locally-integrable condition based on the generalized
Krein–Rutman theorem (Edmunds et al. [19] and Nussbaum [37]). Later Beresty-
cki et al. [3] further studied the problem in both bounded and unbounded domains,
then investigated the asymptotic behavior of generalized principal eigenvalues with
respect to the diffusion rate. Related studies along this direction include Coville
et al. [8–10], Li et al. [30], Su et al. [49], Sun et al. [51], Yang et al. [55, 56], Sun
et al [50], Brasseur [5] and the references cited therein. On the other hand, Rawal
and Shen [40], Rawal et al. [41], Shen and Xie [42, 43], and Shen and Zhang [44]
investigated the existence of principal eigenvalues for autonomous and time pe-
riodic cases respectively, where they gave sufficient and necessary conditions for
both cases by using the idea of perturbation of positive operators from Bürger [6].
Combining these two directions, recently Shen and Vo [45] and Su et al. [48] dis-
cussed the asymptotic behavior of generalized principal eigenvalues with respect
to the diffusion rate in the time-periodic case. There are also many other studies on
the analysis of principal eigenvalues for nonlocal diffusion equations in different
situations; interested readers can refer to Liang et al. [31], Smith [47], Coville and
Hamel [11], De Leenheer et al. [12], Onyido and Shen [38] and the references
cited therein.

Although it seems to be natural to follow the idea of Rawal and Shen [40]
(where they studied the time-periodic situation) to deal with our case, since there is
also a derivative term ∂a in our model (1.1), however, it is quite different from ours
because there is an initial integral condition in (1.1). We cannot directly choose
the space of functions satisfying the integral condition for a = 0 as in [40] where
the authors worked on the space of time-periodic functions, since such a function
space is unknown and heavily depends on the birth rate β. Thus it forces us to
treat the problem in a new and different way. First we define the operator A given
in (2.12) containing the integral boundary condition. Then we recall the theory
of resolvent positive operators with their perturbations to study the existence of
principal eigenvalues. The concepts of resolvent positive operators were proposed
long time ago, and then were further studied and developed by Arendt [1], Engel
and Nagel [20], Kato [28], and Thieme [53, 54]. Next observing our case, since it
contains the ∂a term, which is like a parabolic type of nonlocal operator, it does not
admit the usual L2 variational structure in the elliptic type case. This fact suggests
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us to follow the idea of Berestycki et al. [3] to define and study generalized principal
eigenvalues of (1.1) when investigating their asymptotic behavior with respect to
the diffusion rate.

We would like to mention that here we propose a kind of new method to study
the eigenvalue problem of age-structured models with nonlocal diffusion. Such
a method is different from but closely related to the ideas from both Coville [7]
and Rawal and Shen [40]. In this method, we first characterize the spectral
bounds of two related operators and then employ the theory of resolvent positive
operators with their perturbations to obtain the existence of principal eigenvalues
by comparing the two spectral bounds. We point out that such an idea is basically
similar to Bürger’s perturbation of positive semigroups [6] which Rawal and Shen
[40] employed, but they required that the operator has a dense domain and generates
a positive semigroup of contractions, which seems to be restrictive and in general
not satisfied in our case. Further, we will bridge a close link between our idea and
Coville’s [7,10]; see Remark 4.12 in Section 4. In addition, this work of combining
these two features (age structure and nonlocal diffusion) is also an extension of our
previous studies in Kang et al. [27] and Kang and Ruan [25].

The paper is organized as follows. In Section 2, we introduce our fundamental
setting including operators and function spaces. In Section 3, we present some
necessary propositions and lemmas in order to prove the main theorems later. It
includes two important propositions for characterizing the spectral bounds of two
key operators respectively. More precisely, we analyze the spectral bound s(B1+C)
ofB1+Cwhich corresponds to the age-structuredmodel without nonlocal diffusion
and the one s(A) of A defined in (2.12) which corresponds to the age-structured
modelwith nonlocal diffusion respectively, and then obtain a non-strict size relation
between them. In Section 4, we provide the main result on the existence of principal
eigenvalues based on the strict size relation between s(B1 + C) and s(A), and find
two relatively easily verifiable and sufficient conditions for s(A) being the principal
eigenvalue. Further, we show by giving a counterexample that such conditions are
sharp in the sense that if they are not satisfied, A admits no principal eigenvalue.
In Section 5, we study the effects of the diffusion rate and diffusion range on
generalized principal eigenvalues of A and discuss the continuous dependence of
principal eigenvalues on the birth and death rates β andμ. In Section 6, we give the
strong maximum principle which is of fundamental importance and independent
interest. For the readers’ convenience, we recall the theory of resolvent positive
operatorswith their perturbations in the Appendix. In addition, we mention that our
work here is different from the previous one [26]wherewe considered theNeumann
boundary condition and in particular, the limiting properties are quite different.
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Finally, we want to mention that the conditions introduced at the beginning
that J has a compact support and � is bounded can be relaxed. For the principal
spectral theory, we only need � to be bounded without requiring that J has a
compact support. However, the boundedness of � seems necessary due to the
lack of Harnack’s inequality for such parabolic problems; see Shen and Vo [45].
Moreover, in order to study the limiting properties of principal eigenvalues with
kernel scaling, J is needed to be compactly supported for Taylor expansion later.
In addition, the condition that � is bounded can be removed if one only defines
the generalized principal eigenvalues, see Berestycki [3]. Here to give a unified
presentation of the results, we assume both of them.

2 Notations

In this section we introduce our notations and some preparatory results. Denote
by X and X+ respectively the Banach space X = C(�) and its positive cone or the
Banach space X = L1(�) and its positive cone. Here � ⊂ R

N is a given bounded
domain. Recall that for both cases X+ is a normal and generating cone. In addition,
we denote by I the identity operator.

Then we define the following function spaces

X = X × L1((0, â),X), X0 = {0X} × L1((0, â),X),

endowed with the product norms and the positive cones:

X+ = X+ × L1
+((0, â),X) = X+ × {u ∈ L1((0, â),X) : u(a, ·) ∈ X+ a.e. in (0, â)},

X+
0 = X+ ∩ X0.

We also define the linear positive and bounded operator K ∈ L(X) by

(2.1) [Kϕ](·) =
∫
�

J(· − y)ϕ(y)dy, ∀ϕ ∈ X.

Note that due to Assumption 1.1 one has

(2.2) ‖K‖L(X) ≤
⎧⎨
⎩supy∈�

∫
� J(x − y)dx if X = L1(�)

supx∈�
∫
� J(x − y)dy if X = C(�)

≤
∫
RN

J(z)dz = 1.

2.1 Evolution family without diffusion. We consider the following
problem posed in X for 0 ≤ τ ≤ a < â:

(2.3)

⎧⎨
⎩∂av(a) = −μ(a, ·)v(a), τ < a < â,

v(τ) = η ∈ X.
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This problem generates an evolution family on X, denoted by 	, that is explicitly
given for 0 ≤ τ ≤ a < â and η ∈ X by

	(τ, a)η = π(τ, a, ·)η
with π(τ, a, x) := exp

(
−

∫ a

τ
μ(s, x)ds

)
for 0 ≤ τ ≤ a < â and x ∈ �.(2.4)

Observe that one has

(2.5) ‖	(τ, a)‖L(X) ≤ exp
(

−
∫ a

τ
μ(s)ds

)
≤ e−μ̃(a−τ) ≤ 1, ∀ 0 ≤ τ ≤ a < â.

We also define the following family of bounded linear operators

{Wλ}λ>−μ̃ ⊂ L(X,X0)

for (η, g) ∈ X by

(2.6)
Wλ(η, g) = (0, h)

with h(a) = e−λa	(0, a)η +
∫ a

0
e−λ(a−s)	(s, a)g(s)ds.

We will show that this provides a family of positive pseudoresolvents. To this aim,
one can make some computations to obtain

WνWλ(η, g)

=
∫ a

0
e−ν(a−s)	(s, a)e−λs	(0, s)ηds

+
∫ a

0
e−ν(a−s)	(s, a)

∫ s

0
e−λ(s−τ)	(τ, s)g(τ)dτds

=
∫ a

0
e−νae−(λ−ν)sds	(0, a)η +

∫ a

0

∫ s

0
eλτ−νae−(λ−ν)s	(τ, a)g(τ)dτds.

Hence for ν �= λ, we have

WνWλ(η, g)

=
1

ν− λ
(e−λa − e−νa)	(0, a)η

+
1

ν− λ
(e−(λ−ν)a − e−(λ−ν)τ)

∫ a

0
eλτ−νa	(τ, a)g(τ)dτ

=
1

ν− λ
(Wλ − Wν)(η, g).

Moreover, one see (for example Magal and Ruan [33, Lemma 3.8.3]) that for all
λ > −μ̃,

Wλ(η, g) = 0 only occurs if η = 0, g = 0
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and
lim
λ→∞λWλ(0, g) = (0, g), ∀(0, g) ∈ X0.

Moreover, one has

‖Wλ‖L(X,X0) ≤ 1
λ + μ̃

.

Thus, by Pazy [39, Section 1.9] there exists a unique closed Hille-Yosida operator
B̃1 : dom(B̃1) ⊂ X → X with dom(B̃1) = X0 such that

(2.7) (λI − B̃1)
−1 = Wλ for all λ > −μ̃.

Recalling (2.1) we also define a bounded linear operator B2 ∈ L(X0) by

B2(0, g) = (0,DKg(·)), ∀(0, g) ∈ X0.

2.2 Evolution family with diffusion. Consider now the following evo-
lution equation for η ∈ X and 0 ≤ τ ≤ a < â:

(2.8)

⎧⎨
⎩∂au(a) = D(K − IX)u(a) − μ(a, ·)u(a), τ < a < â,

u(τ) = η ∈ X.

Define an evolution family {U(τ, a)}0≤τ≤a<â ⊂ L(X) associated with (2.8). Using
the constant of variation formula, U becomes for all 0 ≤ τ ≤ a < â the solution of
the equation

(2.9)

⎧⎨
⎩U(τ, a) = e−D(a−τ)	(τ, a) + D

∫ a
τ e−D(a−l)	(l, a)K U(τ, l)dl,

U(τ, τ) = IX.

Here IX is the identity operator in X. Note that the right-hand side of (2.8)
is linear and bounded with respect to u, thus the existence and uniqueness of
{U(τ, a)}0≤τ≤a<â can be obtained from the general semigroup theory (seePazy [39]).
Next let us prove that {U(τ, a)}0≤τ≤a<â is exponentially bounded.

To this aim fix η ∈ X, τ ∈ [0, â) and set u(a) = U(τ, a)η. Then one has

∥∥u(a)
∥∥

X ≤ e−(D+μ̃)(a−τ)‖η‖X + D‖K‖L(X)

∫ a

τ
e−(D+μ̃)(a−l)‖u(l)‖Xdl.

Next Gronwall’s inequality yields∥∥u(a)
∥∥

X e(D+μ̃)(a−τ) ≤∥∥η∥∥X eD‖K‖L(X)(a−τ),

which implies due to (2.2) that∥∥U(τ, a)
∥∥
L(X) ≤ e−μ̃(a−τ).
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As a consequence {U(τ, a)}0≤τ≤a<â is positive and exponentially bounded in X and
satisfies

(2.10)
∥∥U(a, a + t)

∥∥
L(X) ≤ e−μ̃t, ∀t ≥ 0, 0 ≤ a < â − t.

Now we define a family of bounded linear operators {Rλ}λ>−μ̃ ⊂ L(X,X0) as
follows:

(2.11)
Rλ(η, g) = (0, h)

with h(a) = e−λaU(0, a)η +
∫ a

0
e−λ(a−s)U(s, a)g(s)ds.

Moreover, for any λ > −μ̃, one has

‖Rλ‖L(X,X0) ≤ 1
λ + μ̃

.

Then by the same procedure as in the case without diffusion, we can prove that
this provides a family of positive pseudoresolvents. Thus again by Pazy [39, Sec-
tion 1.9] there exists a unique closed Hille–Yosida operatorB : dom(B) ⊂ X → X

with dom(B) = X0 such that

(λI − B)−1 = Rλ for all λ > −μ̃.
Next we define the part of B in X0, denoted by B0. That is,

B0x = Bx, ∀x ∈ dom(B0), with dom(B0) := {x ∈ dom(B) : Bx ∈ X0}.
Note that B0 is the infinitesimal generator of a strongly continuous semigroup of
bounded linear operators on X0, denoted by {TB0 (t)}t≥0. Moreover, it satisfies the
following estimate:

‖TB0 (t)‖L(X0) ≤ e−μ̃t, ∀t ≥ 0.

Observe now that we have B̃1 + B2 − DI = B. From now on for the sake of
convenience, we denote B1 := B̃1 − DI.

On the other hand, we define C ∈ L(X0,X) by

C(0, h) =
(∫ â

0
β(a, ·)h(a)da, 0

)
, (0, h) ∈ X0,

and A : dom(A) ⊂ X → X by

(2.12)

⎧⎨
⎩dom(A) = dom(B) ⊂ X0,

A = B + C.

This shows that A is not densely defined in X.
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Remark 2.1. In addition, for each fixed x ∈ �, following the above proce-
dures, one can obtain the age-structured operator, denoted by Bx

1 + Cx, defined on
R × L1(0, â).

Now define a map F : X0 → X by

F(0, ψ) =
(

f
(∫ â

0
β(a, ·)ψ(a)da

)
, 0

)
.

Then by identifying U(t) = (0, u(t)), one can rewrite problem (1.1) as the following
abstract Cauchy problem:

(2.13)

⎧⎨
⎩

dU
dt = BU + F(U),

U(0) = U0,
with U0 = (0, u0) ∈ X0.

As mentioned before, we will study the principal spectral theory of the lin-
earized problem corresponding to (2.13); that is, the principal spectral theory
of A = B + f ′(0)C. For the sake of convenience, we first ignore the constant f ′(0)
before investigating the global dynamics of (1.1), which will be given in our
forthcoming paper [15].

Finally, let us introduce briefly our idea to the existence of principal eigenvalues.
Observe that if α ∈ ρ(B1 + C), then the equation

Au = (B2 + B1 + C)u = αu

has nontrivial solutions in X0 is equivalent to the equation

B2(αI − B1 − C)−1v = v

has nontrivial solutions in X. Next on one hand, we will prove that A is a positive
and compact perturbation of B1 +C (see the Appendix for precise definitions). On
the other hand, we will provide some relatively easy to verify and general sufficient
conditions for s(A) > s(B1 + C). Finally we apply the theory of resolvent positive
operators with their perturbations to study the existence of principal eigenvalues
of our problem.

Before ending this section, we would like to mention that the well-posedness
of the Cauchy problem (2.13) has been investigated in an abstract setting by the
theory of integrated semigroups; see Thieme [52, 54], and in particular Magal and
Ruan [32] in a more general framework where the operators are neither densely-
defined nor of Hille–Yosida type, for example in Lp spaces with p > 1. Here we
focus on the principal spectral theory and global dynamics.
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3 Preliminaries

In this section we present some necessary propositions and lemmas to 1) es-
tablish the existence of the spectral bounds of B1 + C and A which correspond
to the evolution families without diffusion ({	(τ, a)}0≤τ≤a<â) and with diffusion
({U(τ, a)}0≤τ≤a<â) respectively; 2) show that A is a positive and compact pertur-
bation of B1 + C. We emphasize that the following results hold for both X = C(�)
and X = L1(�) if we do not indicate what X is exactly. Moreover, we define the
intervals V and Ṽ as follows,

(3.1) V =

⎧⎨
⎩R, if â<∞

(−D−μ̃,∞), if â=∞ and Ṽ =

⎧⎨
⎩R, if â<∞,

(−Dλ0−μ̃,∞), if â=∞.

Here 0 < λ0 < 1 is the principal eigenvalue of −K + I associated with a positive
eigenfunction φ0 ∈ C(�) (see Garcı́a-Melián and Rossi [22, Theorem 2.1]).

In order to deal with the case â = +∞, we provide the following additional
assumption throughout this section.

Assumption 3.1. Denote π(a) = e− ∫ a
0 μ(s)ds. If â = ∞, we assume that there

exists a real number λ̂ ∈ V such that

R̂ :=
∫ ∞

0
β(a)e−(λ̂+D)aπ(a)da > 1.

Remark 3.2. Note that coupling the above Assumption 3.1 with Assumption
1.2-(iv) will ensure that when â = ∞ we have for all x ∈ R

N :

1 < R̂ ≤
∫ ∞

0
β(a, x)e−(λ̂+D)aπ(0, a, x)da.

This property will be used in Proposition 3.11 to construct principal eigenvectors
for any given and fixed x ∈ R

N .

Remark 3.3. Assumption 3.1 is employed to guarantee the existence of spec-
tral bound of s(B1 + C). Moreover, by setting

λ̃ := λ̂ + D − Dλ0,

Assumption 3.1 reads as follows: there exists a number λ̃ ∈ Ṽ such that

R̂ =
∫ ∞

0
β(a)e−(λ̃+Dλ0)aπ(a)da > 1.

Later, we will see that this new condition R̂ > 1 is used to obtain the existence of
spectral bound of s(A) when â = +∞.
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3.1 Characterization of s(B1 + C). We define for α ∈ V a continuous
function Gα : � → R by

(3.2) Gα(x) =
∫ â

0
β(a, x)e−(α+D)aπ(0, a, x)da, ∀x ∈ �,

where {π(τ, a, x)}0≤τ≤a<â,x∈� are the functions given in (2.4). We also consider for
α ∈ V a multiplication operator Gα ∈ L(X) given by

(3.3) [Gαg](x) = Gα(x)g(x), g ∈ X.

Then the following proposition holds.

Proposition 3.4. Under Assumption 3.1, there exists α∗∗ ∈ V satisfying the

equation

(3.4) max
x∈�

Gα∗∗(x) = max
x∈�

∫ â

0
β(a, x)e−(α∗∗+D)aπ(0, a, x)da = 1.

Moreover, B1 + C is a resolvent positive operator with s(B1 + C) = α∗∗ and

(3.5) r(Gα∗∗) = r
(∫ â

0
β(a, ·)e−(α∗∗+D)a	(0, a)da

)
= 1.

Proof. Observe that for α ∈ ρ(B1) the operator αI − B1 − C is invertible if
and only if the operator I − C(αI − B1)−1 is invertible. In that case, we have

(αI − B1 − C)−1 = (αI − B1)
−1[I − C(αI − B1)

−1]−1.

We now compute the inverse of I − C(αI − B1)−1. To this aim choose α ∈ ρ(B1)
and for some (η, ϕ), (η̂, ϕ̂) ∈ X consider

(η̂, ϕ̂) = [I − C(αI − B1)
−1](η, ϕ).

First we define

(0, φ) = (αI − B1)
−1(η, ϕ).

It follows that

ϕ̂ = ϕ and η̂ = η−
∫ â

0
β(a, ·)φ(a)da.

Next recall from (2.6) that one has

φ(a) = e−(α+D)a	(0, a)η +
∫ a

0
e−(α+D)(a−s)	(s, a)ϕ(s)ds.
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It follows that

η−
∫ â

0
β(s, ·)e−(α+D)s	(0, s)ηds

=
∫ â

0
β(s, x)

∫ s

0
e−(α+D)(s−τ)	(τ, s)ϕ̂(τ)dτds + η̂,

which is equivalent to

(3.6) (I − Gα)η =
∫ â

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)	(τ, s)ϕ̂(τ)dτds + η̂,

where Gα is defined in (3.3). Thus if 1 ∈ ρ(Gα) for α ∈ V , then

(3.7) η = (I − Gα)
−1

[∫ â

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)	(τ, s)ϕ̂(τ)dτds + η̂

]
,

which implies that

(3.8)
(η, ϕ) = [I − C(αI − B1)

−1]−1(η̂, ϕ̂)

=
(

(I − Gα)
−1

[∫ â

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)	(τ, s)ϕ̂(τ)dτds + η̂

]
, ϕ̂

)
.

It follows that α ∈ ρ(B1 +C) and thus (αI −B1 −C)−1 exists. Now we have shown
that

α ∈ ρ(B1 + C) ∩ V ⇔ α ∈ V and 1 ∈ ρ(Gα),
thus the problem is inverted into finding such α ∈ V satisfying 1 ∈ ρ(Gα).

Observe that Gα is actually a positive multiplication operator in X, thus its
spectrum is quite clear (for example see Liang et al. [31, Proposition 2.7]); that is

σ(Gα) =
[
min
x∈�

Gα(x), max
x∈�

Gα(x)
]
,

whereminx∈� Gα(x) and maxx∈� Gα(x) satisfy the following equations respectively:

min
x∈�

Gα(x) = min
x∈�

∫ â

0
β(a, x)e−(α+D)aπ(0, a, x)da

and

max
x∈�

Gα(x) = max
x∈�

∫ â

0
β(a, x)e−(α+D)aπ(0, a, x)da.

Notice that for any x ∈ �, α→ Gα(x) is decreasing with respect to α ∈ V from ∞
to 0 when â < ∞, and from limα→−D−μ̃ Gα(x) ≥ R̂ > 1 to 0 when â = ∞
respectively, due to Assumption 3.1. It follows from α ∈ ρ(B1 + C) ∩ V ⇔ α ∈ V
and 1 ∈ ρ(Gα) that (α∗∗,∞) ⊂ ρ(B1+C), whereα∗∗ satisfies the following equation:

max
x∈�

Gα∗∗(x) = max
x∈�

∫ â

0
β(a, x)e−(α∗∗+D)aπ(0, a, x)da = 1.
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Hence the result (3.4) is desired, s(B1 + C) = α∗∗ > −D − μ̃. In addition, B1 + C

is resolvent positive due to the fact that (αI − B1 − C)−1 is positive by (3.8)
and ρ(B1 + C) contains a ray (α∗∗,∞). Hence the proof is done. �

Remark 3.5. Since B1 + C is resolvent positive, we have

r((αI − B1 − C)−1) = (α− s(B1 + C))−1

for all α > s(B1 + C) by Corollary A.5. Now let (B1 + C)0 be the part of B1 + C

in X0. It generates a positive C0-semigroup {T(B1+C)0 (t)}t≥0 on X0. Since B1 + C is
resolvent positive, by Thieme [52, Proposition 2.4], we know that

s(B1 + C) = s((B1 + C)0) = ω(T(B1+C)0 )

when X = L1(�), since now X is an abstract L space, where ω(T) denotes the
growth bound of {T(t)}t≥0, see Definition A.3 in the Appendix.

3.2 Characterization of s(A). Next we will prove that A is resolvent
positive and provide a precise characterization of its spectral bound s(A). Recall
that {U(τ, a)}0≤τ≤a<â is defined in (2.9) and let us define for λ ∈ Ṽ (see (3.1) for
the definition of Ṽ) a operator Mλ ∈ L(X) by

(3.9) Mλη =
∫ â

0
β(a, ·)e−λaU(0, a)η da, ∀η ∈ X.

Then the following proposition holds.

Proposition 3.6. Under Assumption 3.1, there exists λ0 ∈ Ṽ such that

(3.10) r(Mλ0) = r
(∫ â

0
β(a, ·)e−λ0aU(0, a) da

)
= 1.

Moreover, the operator A is resolvent positive and its spectral bound satis-
fies s(A) = λ0.

Proof. Consider the resolvent equation

(0, φ) = (λI − A)−1(η, ϕ), ∀ (η, ϕ) ∈ X, λ ∈ ρ(A);

following the same procedure in Proposition 3.4, we can obtain

(3.11)

[(λI − A)−1(η, ϕ)](a)

=
(

0, e−λaU(0, a)(I − Mλ)
−1

[∫ â

0
β(s, ·)

∫ s

0
e−λ(s−τ)U(τ, s)ϕ(τ)dτds + η

]

+
∫ a

0
e−λ(a−τ)U(τ, a)ϕ(τ)dτ

)
.
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It follows that λ ∈ ρ(A) ∩ Ṽ ⇔ λ ∈ Ṽ and 1 ∈ ρ(Mλ). Now define (recalling
Assumption 3.1 and Remark 3.3)

Cλ =
∫ â

0
β(a)e−λaπ(a)eD(K−I)ada ∈ L(X).

Then we have Mλ ≥ Cλ in the positive operator sense.
Now we claim that r(Mλ) is decreasing and log-convex (and thus continuous)

with respect to the parameter λ ∈ Ṽ .

Claim 3.7. r(Mλ) is decreasing and log-convex with respect to λ ∈ Ṽ.

For now let us assume that the claim is true. On the other hand, from Theo-
rem 2.2(v) in [27] there exists a unique simple real value λ1 such that r(Cλ1) = 1
for â < ∞, and for â = ∞ due to Assumption 3.1 and Remark 3.3. Moreover, one
also has

λ1 = � − Dλ0 with
∫ â

0
β(a)e−�aπ(a)da = 1.

Therefore, by the theory of positive operators (see Marek [34]),

r(Mλ1) ≥ r(Cλ1) = 1.

Moreover, one has limλ→∞ r(Mλ) = 0. Since λ → r(Mλ) is continuous and
decreasing by Claim 3.7, there exists a real λ0 ≥ λ1 such that r(Mλ0) = 1.

Next we prove that λ0 is unique. Assume that there is λς < λμ such
that r(Mλς) = r(Mλμ) = 1. Since λ → r(Mλ) is decreasing and log-convex by
Claim 3.7, it follows that r(Mλ) = 1 for all λ ≥ λς. This contradicts the fact
that r(Mλ) → 0 as λ → ∞. Thus there is a unique λ0 ∈ R such that r(Mλ0) = 1.
This is equivalent to the uniqueness of λ0. Moreover, we have shown that the map-
ping λ → r(Mλ) is either strictly decreasing on the interval Ṽ or strictly decreasing
on some interval (−Dλ0 − μ̃, λ2) with r(Mλ) = 0 for all λ ≥ λ2. In addition,
since Mλ is positive, 1 = r(Mλ0) ∈ σ(Mλ0) �= ∅, which implies that λ0 ∈ σ(A), thus
σ(A) �= ∅.

In addition, for any λ ∈ R, when λ > λ0 we have r(Mλ) < r(Mλ0) = 1, and thus
(I − Mλ)−1 exists. It follows that λ ∈ ρ(A) when λ > λ0, which implies that ρ(A)
contains a ray (λ0,∞) and (λI − A)−1 is obviously a positive operator by (3.11)
for all λ > λ0. Thus A is a resolvent positive operator.

Finally λ0 is larger than any other real spectral value in σ(A). It follows that

λ0 = sR(A) := sup{λ ∈ R;λ ∈ σ(A)}.
Now we have known that A is a resolvent positive operator. But since X is
a Banach space with a normal and generating cone X+ defined in Section 2
and s(A) ≥ λ0 > −∞ due to λ0 ∈ σ(A), we can conclude from Theorem A.4
that s(A) = sR(A) = λ0. Hence the proof is complete. �
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Now let us prove the above claim.

Proof of Claim 3.7. We use the generalized Kingman’s theorem from
Kato [28] to show it. First claim that λ → Mλ is completely monotonic. Then,
λ → r(Mλ) is decreasingand super-convexbyThieme [53, Theorem2.5] and hence
log-convex. By the definition from Thieme [53], an infinitely often differentiable
function f : (�,∞) → Z+ is called completely monotonic if

(−1)nf (n)(λ) ∈ Z+, ∀λ > �, n ∈ N,

where Z+ is a normal and generating cone of an ordered Banach space Z and
(�,∞) is the domain of f . A family {Fλ}λ∈� of positive operators on Z is called
completely monotonic if f (λ) = Fλx is completely monotonic for every x ∈ Z+.

For our case, Mλ is indeed infinitely often differentiable with respect to λ ∈ Ṽ

and

(−1)nM(n)
λ φ =

∫ â

0
β(a, ·)ane−λaU(0, a)φda ∈ X+, λ ∈ Ṽ, n ∈ N, φ ∈ X+.

Thus, our result follows. �

Remark 3.8. (i) As Remark 3.5 has shown, for all λ > s(A) one has
r((λI − A)−1) = (λ− s(A))−1. Let A0 be the part of A in X0. Then it gener-
ates a positive C0-semigroup {TA0 (t)}t≥0 on X0. Since A is also resolvent positive,
we have s(A) = s(A0) = ω(TA0) when X = L1(�).

(ii) Note that we have s(A) ≥ s(B1+C) now. In fact,A is resolvent positive from
Proposition 3.6 and thus Theorem A.7 applies to rule out the case s(A) < s(B1+C).
But we cannot obtain the strict relation, i.e., s(A) > s(B1+C), even if e−Da	(0, a)f
is strictly smaller than U(0, a)f in L1((0, â),X) for any f ∈ X, because α∗∗ and λ0

are obtained by taking the spectral radii of the operators equal to 1, where a limit
process occurs in which the strict relation may not be preserved. However, if r(Gα)
and r(Mλ) are eigenvalues of Gα and Mλ respectively, we could obtain the strict
relation, see Marek [34, Theorem 4.3], which is the Frobenius theory for positive
operators.

3.3 A special case: s(A) > s(B1 + C). Next, we give a special case where
s(A) > s(B1 + C) holds.

Proposition 3.9. Assume that μ(a, x) ≡ μ(a) and β(a, x) ≡ β(a), then one
has s(A) > s(B1 + C).
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Proof. Note that when μ(a, x) ≡ μ(a) and β(a, x) ≡ β(a), s(B1 + C) = α∗∗

and s(A) = λ0 satisfies the following equations

(3.12)
∫ â

0
β(a)e−α∗∗ae−Dae− ∫ a

0 μ(s)dsda = 1

and

(3.13) r(Mλ0) = r
(∫ â

0
β(a)e−λ0ae− ∫ a

0 μ(s)dseD(K−I)ada
)

= 1,

respectively. Further, in Kang et al. [27, Theorem 2.2 (v)] we have shown that
M�−Dλ0 has an eigenvalue associated of 1 with an eigenfunction φ0 ∈ X+ \{0} and

(3.14) r(M�−Dλ0 ) = 1,

where� is the principal eigenvalue of an age-structured operator; i.e.,� satisfies
the following characteristic equation

(3.15)
∫ â

0
β(a)e−�ae− ∫ a

0 μ(s)dsda = 1.

Now comparing (3.12) with (3.15) and (3.14) with (3.13), we have α∗∗ = � − D

while λ0 = � − Dλ0. Thanks to 0 < λ0 < 1 one has that λ0 > α
∗∗, which implies

that s(A) > s(B1 + C). �

Remark 3.10. In the above case when β and μ are independent of the spatial
variable, age structure and nonlocal diffusion are completely decoupled, thus
the spectrum becomes simpler. For instance, Gα becomes a scalar value instead
of a multiplication operator, while for Mλ by estimating the essential growth
rate of a nonlocal diffusion semigroup, one could obtain the spectral gap; i.e.,
re(Mλ) < r(Mλ), and then use the generalized Krein–Rutman theorem (Edmunds
et al. [19], Nussbaum [37], Zhang [57]) to show that r(Mλ) becomes an eigenvalue
of Mλ, the interested readers can refer to Kang et al. [27, Theorem 2.2 (v)].
Here re(A) denotes the essential spectral radius of A.

3.4 Solvability without diffusion. Next we give a key proposition on
the solvability of some equations without diffusion, which is important in studying
the effects of the diffusion rate and diffusion range on principal eigenvalues later.
Consider the problem

(3.16)

⎧⎨
⎩∂au(a, x) = −(α + D)u(a, x) − μ(a, x)u(a, x), (a, x) ∈ (0, â) ×RN,

u(0, x) =
∫ â
0 β(a, x)u(a, x)da, x ∈ R

N .
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Proposition 3.11. Let Assumption 3.1 hold. Then there exists a continuous

function x → α(x) : R
N → R such that for any x ∈ R

N, equation (3.16) with
α = α(x) has a positive solution a → u(a, x) ∈ W1,1(0, â) and

(3.17)
∫ â

0
β(a, x)e−(α(x)+D)aπ(0, a, x)da = 1, ∀x ∈ R

N .

Moreover, α(x) ≤ α∗∗ for all x ∈ �, where α∗∗ is defined in (3.4).

Proof. Solving the first equation of (3.16) explicitly, we obtain a positive
solution

u(a, ·) = e−(α+D)aπ(0, a, ·)u(0, ·)
provided u(0, x) > 0. Then plugging it into the integral initial condition we get
that ∫ â

0
β(a, x)e−(α+D)aπ(0, a, x)da = 1.

Now define

G(α, x) :=
∫ â

0
β(a, x)e−(α+D)aπ(0, a, x)da.

Observe that G : V × RN → (0,∞) is continuously differentiable with respect
to α and continuous with respect to x due to assumptions of β and μ, respectively,
where V is defined in (3.1).

Next using Assumption 3.1 and the subsequent Remark 3.2, for any x ∈ R
N ,

one has that

lim
α→−∞ G(α, x) = ∞, lim

α→∞ G(α, x) = 0, when â <∞,

lim
α→λ̂

G(α, x) > 1, lim
α→∞ G(α, x) = 0, when â = ∞.

Thus, for any x ∈ R
N , thanks to the monotonicity of G with respect to α, there

always exists a unique α(x) such that (3.17) holds. Moreover,

(3.18)
∂G(α, x)
∂α

= −
∫ â

0
β(a, x)ae−(α+D)aπ(0, a, x)da< 0, ∀x ∈ R

N .

The continuity of α comes from the implicit function theorem. In addition, one has
thatα(x) ≤ α∗∗ for x ∈ � by (3.4), sinceα∗∗ = maxx∈� α(x) due to the monotonicity
of Gα with respect to α. Thus the proposition is proved. �
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3.5 Compact perturbation. In this subsection we will show that A is a
compact and positive perturbation of B1 + C.

Proposition 3.12. For any real α > α∗∗, B2(αI − B1 − C)−1 is a compact
operator in X.

Proof. We only prove the proposition in the case X = C(�), since

L1((0, â),C(�)) ⊂ L1((0, â),L1(�)).

Let us choose a sequence {(ηn, ψn)}n∈N ⊂ X with∥∥(ηn, ψn)
∥∥
X

:=
∥∥ψn

∥∥
L1((0,â),X) +

∥∥ηn

∥∥
X ≤ 1 for any n ∈ N.

By (3.8) we have for α > α∗∗ that

B2(αI − B1 − C)−1(ηn, ψn) = (0, φn) = (0,DKg1n + DKg2n),

where

(3.19)

g1n(a) = e−(α+D)a	(0, a)(1 − Gα)
−1

×
[∫ â

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)	(τ, s)ψn(τ)dτds + ηn

]
,

g2n(a) =
∫ a

0
e−(α+D)(a−τ)	(τ, a)ψn(τ)dτ.

Note that g1n and g2n are continuous with respect to a ∈ [0, â), so is φn. We split
the proof into two parts: (a) â < ∞ and (b) â = ∞.

(a) â < ∞. Thanks to the presence of the continuous kernel J, one can obtain
that the functions {[φn(a)](x)}n∈N are equicontinuous with respect to x ∈ � for any
a ∈ [0, â]. It follows by the Arzela–Ascoli theorem that {φn(a)}n∈N is relatively
compact in C(�) for any a ∈ [0, â]. Thus, for any 0 ≤ a1 < a2 ≤ â, we have
that {∫ a2

a1
φn(a)da}n∈N is relatively compact in C(�).

Next observe that when α > α∗∗, one has

(3.20)

∥∥g(ηn, ψn)
∥∥

X

:=

∥∥∥∥(1 − Gα)
−1

[∫ â

0
β(s, ·)

∫ s

0
e−(α+D)(s−τ)	(τ, s)ψn(τ)dτds + ηn

]∥∥∥∥
X

≤ Cα

[∫ â

0
β(s)

∫ s

0
e−(α+D)(s−τ)∥∥	(τ, s)

∥∥
L(X)

∥∥ψn(τ)
∥∥

X dτds +
∥∥ηn

∥∥
X

]

≤ Cα

[
‖β‖L∞(0,â)

∫ â

0

∥∥ψn(τ)
∥∥

X dτ
∫ â

τ
e−(α+D+μ̃)(s−τ)ds +

∥∥ηn

∥∥
X

]

≤ Cα
[‖β‖L∞(0,â)

α + D + μ̃

∥∥ψn

∥∥
L1((0,â),X) +

∥∥ηn

∥∥
X

]

≤ Cα
[‖β‖L∞(0,â)

α + D + μ̃
+ 1

]
=: C̃α,
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where we used the fact that

0 ≤ (1 − Gα(y))
−1 ≤ Cα for all y ∈ �

with Cα > 0 being a constant, due to α > α∗∗. Here C̃α > 0 is another constant. It
follows that

∥∥g1n(a)
∥∥

X ≤ C̃αe
−(α+D+μ̃)a uniformly in n ∈ N,∥∥g2n(a)

∥∥
X ≤

∫ a

0
e−(α+D+μ̃)(a−τ)∥∥ψn(τ)

∥∥
X dτ, uniformly in n ∈ N.

This implies

(3.21)

∥∥φn(a)
∥∥

X ≤ DC̃αe
−(α+D+μ̃)a + D

∫ a

0
e−(α+D+μ̃)(a−τ)∥∥ψn(τ)

∥∥
X dτ

uniformly in n ∈ N.

Note that the right-hand side of the above inequality is an integrable function
in L1(0, â).

Next, let us show that g1n and g2n are equi-integrable respect to a. Observe
by (3.19) that for any n ∈ N and l > 0, one has

|g2n(a + l) − g2n(a)|
≤

∫ a+l

a
e−(α+D)(a+l−τ)π(τ, a + l, ·)ψn(τ)dτ

+
∫ a

0
[e−(α+D)(a+l−τ)π(τ, a + l, ·) − e−(α+D)(a−τ)π(τ, a, ·)]ψn(τ)dτ

≤
∫ a+l

a
e−(α+D)(a+l−τ)π(τ, a + l, ·)ψn(τ)dτ

+
∫ a

0
e−(α+D)(a−τ)π(τ, a + l, ·)[1 − e−(α+D)l]ψn(τ)dτ

+
∫ a

0
e−(α+D)(a−τ)π(τ, a, ·)[1 − π(a, a + l, ·)]ψn(τ)dτ

≤
∫ a+l

a
e−(α+D+μ̃)(a+l−τ)ψn(τ)dτ

+
∫ a

0
e−(α+D+μ̃)(a−τ)e−μ̃l[1 − e−(α+D)l]ψn(τ)dτ

+
∫ a

0
e−(α+D+μ̃)(a−τ)[1 − e−μ̃l]ψn(τ)dτ.
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It follows by setting k = α + D + μ̃ that∫ â

0

∥∥g2n(a + l) − g2n(a)
∥∥

X da

≤
∫ â

0

∫ a+l

a
e−k(a+l−τ)∥∥ψn(τ)

∥∥
X dτda

+
∫ â

0

∫ a

0
e−k(a−τ)e−μ̃l[1 − e−(α+D)l]

∥∥ψn(τ)
∥∥

X dτda

+
∫ â

0

∫ a

0
e−k(a−τ)[1 − e−μ̃l]

∥∥ψn(τ)
∥∥

X dτda

:= I1 + I2 + I3,

where

I1 :=
∫ â

0

∫ a+l

a
e−k(a+l−τ)∥∥ψn(τ)

∥∥
X dτda,

I2 :=
∫ â

0

∫ a

0
e−k(a−τ)e−μ̃l[1 − e−(α+D)l]

∥∥ψn(τ)
∥∥

X dτda,

I3 :=
∫ â

0

∫ a

0
e−k(a−τ)[1 − e−μ̃l]

∥∥ψn(τ)
∥∥

X dτda.

Via integration by parts, one has

I2 ≤ e−μ̃l[1 − e−(α+D)l]
∫ â

0

∫ â

τ
e−k(a−τ)da

∥∥ψn(τ)
∥∥

X dτ

≤ 1
k
e−μ̃l[1 − e−(α+D)l]

∥∥ψn

∥∥
L1((0,â),X)

l→0−→ 0, uniformly in n ∈ N.

Similarly, one also obtains that I3 → 0 as l → 0 uniformly in n ∈ N.
Next let us deal with I1. To this aim, we split it into two cases:

0 ≤ a ≤ τ ≤ a + l ≤ â and 0 ≤ a ≤ τ ≤ â ≤ a + l.

Case 0 ≤ a ≤ τ ≤ a + l ≤ â. Via integration by parts, one has

I1 ≤
∫ â

0

∫ τ

τ−l
e−k(a+l−τ)da

∥∥ψn(τ)
∥∥

X dτ
l→0−→ 0 uniformly in n ∈ N.

Case 0 ≤ a ≤ τ ≤ â ≤ a + l. Via integration by parts, one has

I1 ≤
∫ a+l

0

∫ a+l

a
e−k(a+l−τ)∥∥ψn(τ)

∥∥
X dτda

≤
∫ a+l

0

∫ τ

τ−l
e−k(a+l−τ)da

∥∥ψn(τ)
∥∥

X dτ
l→0−→ 0 uniformly in n ∈ N.
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In summary, we have shown that
∫ â
0

∥∥g2n(a + l) − g2n(a)
∥∥

X da → 0 as l → 0
uniformly in n ∈ N. Similarly, one can show by (3.20) that∫ â

0

∥∥g1n(a + l) − g1n(a)
∥∥

X da → 0

as l → 0 uniformly in n ∈ N. It follows that
∫ â
0

∥∥φn(a + l) − φn(a)
∥∥

X da → 0
as l → 0 uniformly in n ∈ N. Combining with (3.21), Simon’s compactness
theorem in L1((0, â),X) (see Simon [46, Theorem 1]) ensures that the sequence
{a → φn(a)}n∈N is relatively compact in L1((0, â),X). Hence there exists a limit
function φ ∈ L1((0, â),X) such that, up to a subsequence, φn → φ in L1((0, â),X)
and the linear operator B2(αI − B1 − C)−1 is compact on X.

(b) â = ∞. Define the characteristic function χ[0,n], n ∈ N, which is defined as
follows,

χ[0,n](a) = 1 if a ∈ [0, n] and χ[0,n] = 0 otherwise.

Define g : X → X as follows:

[g(η,ψ)](y) := (1 − Gα(y))
−1

∫ ∞

0
β(s, y)

∫ s

0
e−(α+D)(s−τ)π(τ, s, y)ψ(τ, y)dτds + η(y),

∀(η,ψ) ∈ X.

Note that for any α > α∗∗ one has (1−Gα(y))−1 ≤ Cα for all y ∈ �, where Cα > 0
is a constant. It follows by (3.20) and (2.2) that for any (η,ψ) ∈ X,∫ ∞

0
D‖K‖L(X)e

−(α+D)a
∥∥	(0, a)g(η,ψ)

∥∥
X [χ[0,n](a) − 1]da

≤ D
∥∥g(η,ψ)

∥∥
X

∫ ∞

0
e−(α+D+μ̃)a|χ[0,n](a) − 1|da → 0 as n → ∞

and∫ ∞

0
D‖K‖L(X)

∫ a

0
e−(α+D)(a−τ)∥∥	(τ, a)

∥∥
L(X)

∥∥ψ(τ)
∥∥

X dτ[χ[0,n](a) − 1]da

≤ D
∫ ∞

0

∥∥ψ(τ)
∥∥

X dτ
∫ ∞

τ
e−(α+D+μ̃)(a−τ)|χ[0,n](a) − 1|da

≤ D
∥∥ψ∥∥L1((0,∞),X)

∫ ∞

0
e−(α+D+μ̃)a|χ[0,n](a) − 1|da → 0 as n → ∞.

It follows that

χ[0,n]B2(αI − B1 − C)−1 → B2(αI − B1 − C)−1 as n → ∞ in L(X,X0).

Since we have known that χ[0,n]B2(αI − B1 − C)−1 is compact from the first
paragraph, it implies that B2(αI − B1 − C)−1 is also compact. Thus the proof is
complete. �
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Corollary 3.13. The operatorB2 is a compact perturbator of B1 +C and thus

the operator A = B1 + B2 + C is a compact perturbation of B1 + C.

Proof. (αI −B1 − C)−1B2(αI −B1 − C)−1 is compact for any α > s(B1 + C)
since B2(αI − B1 − C)−1 is compact by Proposition 3.12. �

4 Principal spectral theory

In this section we state and prove the main results on the existence/nonexistence
of principal eigenvalues. Recall that Assumption 3.1 is used to guarantee the
existence of s(A) and s(B1 + C) when â = ∞ in the previous section. Now we
assume that s(A) and s(B1 + C) exist for â ≤ ∞ throughout this section.

4.1 Principal eigenvalue. We first provide a sufficient condition to make
the spectral bound s(A) become the principal eigenvalue. Here we say that
λ ∈ σ(T) ∩ R is the principal eigenvalue of a linear operator T , if it is larger than
the real part of other eigenvalues of T and associated with a positive eigenfunction.

Theorem 4.1. Assume that s(A) > s(B1 + C), then s(A) is the principal

eigenvalue of A.

Proof. Denote

(4.1) Fλ = B2(λI − B1 − C)−1, λ > α∗∗.

Note that A = B1 + C + B2 is a compact perturbation of B1 + C by Corollary 3.13.
We will use Theorem A.10 in the Appendix to prove the conclusion. First, we
know that A is resolvent positive by Proposition 3.6. It follows that case (i) in
Theorem A.7 in the Appendix will be ruled out. Secondly, by the assumption that
s(A) > s(B1+C) we know that only case (iii) in TheoremA.7will happen, otherwise
s(A) = s(B1+C) which is a contradiction, if case (ii) in TheoremA.7 would happen.
Hence, there exists λ2 > λ1 > s(B1 + C) such that r(Fλ1) ≥ 1 > r(Fλ2). Now the
hypothesis in Theorem A.10 holds, so s(A) is an eigenvalue of A with a positive
eigenfunction, has finite algebraic multiplicity and is a pole of the resolvent of A.
It follows that s(A) is the principal eigenvalue of A. �

Combining the above theoremwith Proposition 3.9, one can immediately obtain
the following conclusion.

Corollary 4.2. Assume that μ(a, x) ≡ μ(a) and β(a, x) ≡ β(a), then s(A) is
the principal eigenvalue of A.
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Next, we give a sufficient and necessary condition to ensure that s(A)>s(B1+C).

Corollary 4.3. The inequality s(A) > s(B1 + C) holds if and only if there

is λ∗ > s(B1 + C) such that r(Fλ∗) ≥ 1, where Fλ is defined in (4.1).

Proof. If there exists λ∗ > s(B1 + C) such that r(Fλ∗) ≥ 1, then case (iii) in
Theorem A.7 will happen which implies that s(A) > s(B1 + C), because we can
always find ϑ large enough such that r(Fϑ) < 1 regarding to (3.19). Conversely,
if s(A) > s(B1 + C), by the same argument as in Theorem 4.1, we have the desired
result. �

Note that Theorem 4.1 is valid for both X = L1(�) and X = C(�) as long as
s(A) > s(B1 + C). Next we will show that s(A) is also algebraically simple under
the additional assumption on β. Once it is true, the eigenfunctions in X = L1(�)
and X = C(�) respectively associated with s(A) are the same, due to the fact
that C(�) ⊂ L1(�).

Assumption 4.4. There exists no a0 such that β(a) = 0 a.e. [a0, â).

Remark 4.5. Before proceeding, let us make some comments on Assump-
tion 4.4. It is motivated by Engel and Nagel [20, Theorem 4.4] to show that the
semigroup generated by the age-structured operator is irreducible. In our situation,
we will prove a similar property, which is called conditionally strictly positive (see
Definition A.9 in the Appendix), under this assumption. Note that this assumption
is equivalent to

(4.2)
∫ â

s
e−σβ(σ)dσ > 0, ∀s ∈ [0, â).

Theorem 4.6. Let Assumption 4.4 hold and assume that s(A) > s(B1 + C),
then the principal eigenvalue of A, i.e., s(A), is algebraically simple.

Proof. We will show that all positive nonzero fixed points of Fλ are condi-
tionally strictly positive (see Definition A.9 in the Appendix), and then employ
Theorem A.10 again to conclude the result.

First observe that Fλ maps X into X0, then we introduce the restriction of Fλ
to X0 and the associated operator Lλ, λ > α∗∗, in L1((0, â),X), see (3.19):

(4.3)
[Lλψ](a, x) = D

∫
�

J(x − y)e−(λ+D)aπ(0, a, y)[(1 − Gλ)
−1g̃ψ](y)dy

+ D
∫
�

J(x − y)
∫ a

0
e−(λ+D)(a−γ)π(γ, a, y)ψ(γ, y)dγdy,
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where g̃ : L1((0, â),X) → X is given by

[g̃ψ](y) :=
∫ â

0
β(s, y)

∫ s

0
e−(λ+D)(s−γ)π(γ, s, y)ψ(γ, y)dγds.

Now we have Fλ(0, ψ) = (0,Lλψ). Observe that (a, x) → [Lλψ](a, x) is contin-
uous. Thus Lλ is strictly positive in the sense that for ψ ∈ L1

+((0, â),X) being
a fixed point of Lλ, if there exists some point (a0, x0) ∈ [0, â) × � such that
[Lλψ](a0, x0) = 0, then ψ ≡ 0 in [0, â) ×�.

In fact, [Lλψ](a0, x0) = 0 implies that

D
∫
�

J(x0 − y)e−(λ+D)a0π(0, a0, y)[(1 − Gλ)
−1g̃ψ](y)dy = 0,

which follows by the positivity of
∫
� J(x0 − y)dy and (1 − Gλ)−1, λ > α∗∗, along

with exponential functions that

(4.4)
∫ â

0
β(s, y)

∫ s

0
ψ(γ, y)dγds = 0 for all y ∈ B(x0, r).

Now denote

H(s, y) :=
∫ â

s
e−σβ(σ, y)dσ.

Note that H is well-defined. Then (4.4) can be transformed by using integration
by parts into

0 =
∫ â

0
e−sβ(s, y)

∫ s

0
ψ(γ, y)dγds

= −H(s, y)
∫ s

0
ψ(γ, y)dγ

∣∣s=â
s=0 +

∫ â

0
H(s, y)ψ(s, y)ds

=
∫ â

0
H(s, y)ψ(s, y)ds, for all y ∈ B(x0, r).

But by Assumption 4.4 and Remark 4.5, one has H(s, y) ≥ ∫ â
s e−σβ(σ)dσ > 0 for

all (s, y) ∈ [0, â) ×�. This will give us ψ ≡ 0 in [0, â) × B(x0, r).
Next, noticing that ψ is a fixed point of Lλ and considering the second term

of (4.3), we iterate Lλ n-times to obtain

0 = [Lλψ](a0, x0) = [Ln
λψ](a0, x0)

≥ Dn
∫
�

· · ·
∫
�

n∏
m=1

[
J(xm−1 − xm)

∫ am−1

0
e−(λ+D)(am−1−am)π(am, am−1, xm)dam

]

×ψ(an, xn)dxn · · · dx1.

It follows that ψ(·, x) ≡ 0 in B(x0, nr) ∩ �. Now when n is sufficiently large,
B(x0, nr) ∩� will cover �, then ψ ≡ 0 in [0, â) ×�. Thus Lλ is strictly positive.
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Now for any positive nonzero fixed point of Lλ, denoted by ψ ∈ L1
+((0, â),X),

and anyψ∗ ∈ L∞
+ ((0, â),X∗) with L∗

λψ
∗ �= 0, where X∗ denotes the dual space of X,

one has
〈ψ,ψ∗〉 = 〈Lλψ,ψ∗〉 > 0.

Here 〈 , 〉 denotes the duality paring between L1((0, â),X) and L∞((0, â),X∗). It
follows that all positive nonzerofixed points of Lλ are conditionally strictly positive
and so is Fλ. �

4.2 Criteria. Since the condition s(A) > s(B1 + C) turns out to be hard to
check, we now provide relatively easily verifiable and general sufficient conditions
ensuring that s(A) is the principal eigenvalue of A for the sake of applications.
This leads to our main theorems on the existence of principal eigenvalues of A in
this section.

4.2.1 Criterion I Before giving the first criterion, we first provide a lower
bound for (αI − B1 − C)−1 with α > α∗∗.

Proposition 4.7. Assume thatμmax := supa∈(0,â)μ(a) <∞. For any α > α∗∗,
any ψ ∈ X+ and any θ > 0, the inverse (αI − B1 − C)−1 : X → X0 satisfies the

following estimate:

[(αI − B1 − C)−1(0, e−θ·ψ)](a, x) ≥ M(α,D, θ)
1 − Gα(x)

(0,e−(α+D+μmax)aψ(x))

a.e. (a, x) ∈ (0, â) ×�,

where M(α,D, θ) > 0 is a constant that will be determined in the proof.

Proof. First note that e−θ·ψ ∈ L1
+((0, â),X) for any ψ ∈ X+ and then define

I1(α,D, θ, x) :=
∫ â

0
β(a, x)

∫ a

0
e−(α+D)(a−γ)π(γ, a, x)e−θγdγda,

I2(α,D, a, x) := e−(α+D)aπ(0, a, x).

Also notice that minx∈� I1(α,D, θ, x) <∞ for â ≤ ∞ due to α > α∗∗ > −D − μ̃.
Next observe that

I2(α,D, a, x) ≥ e−(α+D+μmax)a and min
x∈�

I2(α,D, ·, x) ∈ L1(0, â)

for â ≤ ∞ again due to α > α∗∗ > −D − μ̃. It follows from (3.19) that

[(αI − B1 − C)−1(0, e−θ·ψ)](a, x) ≥
(
0,

I1(α,D, θ, x)
1 − Gα(x)

e−(α+D+μmax)aψ(x)
)

in X0
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for any θ > 0 and ψ ∈ X+. Thus M(α,D, θ) is given by

M(α,D, θ) := min
�

I1(α,D, θ, ·) ≥
∫ â

0
β(a)

∫ a

0
e−(α+D)(a−γ)−∫ a

γ μ(s)ds−θγdγda.

Then the result follows. �

Theorem 4.8 (Existence of principal eigenvalues—I). Assume that

μmax := sup
a∈(0,â)

μ(a) < ∞

and

(4.5) x → 1
1 − Gα∗∗(x)

/∈ L1
loc(�),

then s(A) is the principal eigenvalue of A, where Gα(x) is defined in (3.2).

Proof. The idea of the proof below traced back to Coville [7] (see also Shen
and Vo [45]). For the completeness and reader’s convenience, we include the
necessary modifications and provide a detailed proof.

In the following proof, we only show the result in the case X = C(�) and put
the case X = L1(�) in the the Appendix. By contradiction, assume that s(A) is not
the principal eigenvalue of A; by the contrapositive statement of Theorem 4.1 and
Remark 3.8, we have s(A) = s(B1 + C). It follows from Corollary 4.3 that

(4.6) r(Fα) = r(B2(αI − B1 − C)−1) < 1, ∀α > s(B1 + C) = α∗∗.

Now we choose θ = α + D + μmax. Then Proposition 4.7 implies that

[(αI − B1 − C)−1(0, e−θ·)](a, x) ≥
(
0,

M(α,D, θ)
1 − Gα(x)

e−θa
)

≥ (0, 0),

(a, x) ∈ (0, â) ×�.

Applying B2 to both sides of the above estimates, we find for (a, x) ∈ (0, â) ×�

that

(4.7)

[B2(αI − B1 − C)−1(0, e−θ·)](a, x)

= D
∫
�

J(x − y)[(αI − B1 − C)−1(0, e−θ·)](a, y)dy,

≥
(

0, e−θa
∫
�

J(x − y)
DM(α,D, θ)
1 − Gα(y)

dy
)
.
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By (4.7) and Proposition 4.7, we find for (a, x) ∈ (0, â) ×� that

(4.8)

((αI − B1 − C)−1B2(αI − B1 − C)−1(0, e−θ·))(a, x)

≥
(

(αI − B1 − C)−1
(

0, e−θ·
∫
�

J(· − y)
DM(α,D, θ)
1 − Gα(y)

dy
))

(a, x),

≥
(

0, e−θa M(α,D, θ)
1 − Gα(x)

∫
�

J(x − y)
DM(α,D, θ)
1 − Gα(y)

dy
)
.

Applying B2 to both sides of the above estimates, we have

(4.9)
((B2(αI − B1 − C)−1)2(0, e−θ·))(a, x)

≥
(

0, e−θa
∫
�

J(x − y)
DM(α,D, θ)
1 − Gα(y)

∫
�

J(y − z)
DM(α,D, θ)
1 − Gα(z)

dzdy
)
.

Repeating the above arguments, we find for (a, x0) ∈ (0, â) × � and n ≥ 1 the
following estimate:

((B2(αI−B1 − C)−1)n(0, e−θ·))(a, x0)

≥
(

0, e−θa
∫
�

· · ·
∫
�

n∏
m=1

[
J(xm−1 − xm)

DM(α,D, θ)
1 − Gα(xm)

]
dxn · · · dx1

)
.

As a result,

(4.10)

‖(B2(αI−B1 − C)−1)n‖

≥ max
x0∈�

∫
�

· · ·
∫
�

n∏
m=1

[
J(xm−1 − xm)

DM(α,D, θ)
1 − Gα(xm)

]
dxn · · · dx1,

which implies that for any x0 ∈ � and δ > 0,

(4.11)

∥∥∥(B2(αI − B1 − C)−1)n
∥∥∥

≥
∫
�∩B(x0,δ)

· · ·
∫
�∩B(x0,δ)

n∏
m=1

[
J(xm−1 − xm)

DM(α,D, θ)
1 − Gα(xm)

]
dxn · · · dx1

≥
[

inf
x∈�∩B(x0,δ)

∫
�∩B(x0,δ)

J(x − y)
DM(α,D, θ)
1 − Gα(y)

dy
]n

,

where B(x0, δ) is the open ball in RN centered at x0 with radius δ. We can use (4.6)
and Gelfand’s formula for the spectral radius of a bounded linear operator to find
that

(4.12) 1 ≥ inf
x∈�∩B(x0,δ)

∫
�∩B(x0,δ)

J(x − y)
DM(α,D, θ)
1 − Gα(y)

dy := I(x0, δ, α,D)

for all x0 ∈ � and δ > 0.
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Since J is continuous and J(0) > 0, there exist r > 0 and c0 > 0 such that
J ≥ c0 on B(0, r), the open ball in R

N centered at 0 with radius r. Hence,

(4.13)

I(x0, δ, α,D) ≥ inf
x∈�∩B(x0,δ)

∫
�∩B(x0,δ)∩B(x,r)

J(x − y)
DM(α,D, θ)
1 − Gα(y)

dy

≥ c0 inf
x∈�∩B(x0,δ)

∫
�∩B(x0,δ)∩B(x,r)

DM(α,D, θ)
1 − Gα(y)

dy

= c0

∫
�∩B(x0,δ)

DM(α,D, θ)
1 − Gα(y)

dy

provided 2δ ≤ r so that B(x0, δ) ⊂ B(x, r) whenever x ∈ B(x0, δ). In particular, for
any x0 ∈ �,

I(x0, r/2, α,D) ≥ c0

∫
�∩B(x0,r/2)

DM(α,D, θ)
1 − Gα(y)

dy.

Since 1
1−Gα∗∗ /∈ L1

loc(�), there exists x∗ ∈ � such that

1
1 − Gα∗∗

/∈ L1(� ∩ B(x∗, r/2)),

which implies the existence of some ε > 0 small enough such that

c0

∫
�∩B(x∗,r/2)

DM(α,D, θ)
1 − Gα∗∗+ε(y)

dy ≥ 2.

In particular, I(x∗, r/2, α∗∗ + ε,D) ≥ 2, which contradicts (4.12). �

4.2.2 Criterion II. In this subsection, we give the second non-locally-
integrable condition similar as in (4.5) to check the existence of the principal
eigenvalue of A. Before proceeding, we first provide an assumption on β to
make sure that the principal eigenfunction φ can attain its positive maximum and
minimum in [0, a2] ×� for some a2 ∈ (0, â).

Assumption 4.9. There exists a2 ∈ (0, â) such that β(a) = 0 for a ∈ [a2, â)
or equivalently β(a, x) = 0 for (a, x) ∈ [a2, â) ×�.

We would like to mention that the above assumption is somehow reasonable
for applications. It means that the birth rate becomes zero when the age of the
individuals approaches the maximal age â.

Now, let us rewrite the function space X as follows:

X = X × L1((0, â),X) = X × (L1((0, a2),X) × L1((a2, â),X))

with a function ψ ∈ L1((0, â),X) identified to

(ψ|(0,a2), ψ|(a2,â)) ∈ L1((0, a2),X) × L1((a2, â),X).
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Define the operator B̂ in X × L1((0, a2),X) by

B̂(0, ψ) = (−ψ(0),−∂aψ+D[K − I]ψ(a) − μ(a, ·)ψ(a)),

for (0, ψ) ∈ {0} × W1,1((0, a2),X).

Note that B̂ is a closed operator under Assumption 4.9. Moreover, define the
bounded operator Ĉ as follows:

Ĉ(0, h) =
(∫ a2

0
β(a, ·)h(a)da, 0

)
for (0, h) ∈ {0} × L1((0, a2),X),

so that Ĉ ∈ L({0}×L1((0, a2),X),X×{0L1}). Define the operator Â by Â := B̂+ Ĉ

with dom(Â) = {0} × W1,1((0, a2),X).
Next recalling that Ṽ is the interval defined in (3.1), let us show that

σ(Â) ∩ Ṽ = σ(A) ∩ Ṽ.

To do so, it suffices to show ρ(Â) ∩ Ṽ = ρ(A) ∩ Ṽ . Recalling the argument in
Proposition 3.6, it says that

λ ∈ ρ(A) ∩ Ṽ ⇔ λ ∈ Ṽ and 1 ∈ ρ(Mλ).

Similarly, Proposition 3.6 with â = a2 applied to Â gives that

λ ∈ ρ(Â) ∩ Ṽ ⇔ λ ∈ Ṽ and 1 ∈ ρ(M̂λ),

where M̂λ ∈ L(X) is defined for λ ∈ Ṽ by

M̂λη =
∫ a2

0
β(a, ·)e−λaU(0, a)η da, ∀η ∈ X.

But under Assumption 4.9, we have Mλ = M̂λ for all λ ∈ Ṽ . It follows that
σ(Â) ∩ Ṽ = σ(A) ∩ Ṽ , thus we can study the principal spectral theory of Â instead
of A in the following, provided Assumption 4.9 holds. Further, in order to not
introduce too many notations, we still denote A and B under Assumption 4.9.

Remark 4.10. Under Assumption 4.9, the eigenvalue problem is inverted
from infinite maximum age â = ∞ or finite maximum age â < ∞, with possibly
unbounded death rate μ, into finite maximum age a2 < ∞ with bounded death
rate μ. Hence we have that

(i) Assumption 3.1 is for â = ∞, while here we replace â by a2 < ∞. Thus
s(A) and s(B1 + C) always exist now.

(ii) Assumption 4.4 can be modified as follows: there exists no a0 such that
β(a) = 0 a.e. [a0, a2], if needed; see Section 6. Further, it is equivalent
to

∫ a2

a β(l)dl > 0 for any a ∈ [0, a2).
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Observe now that the principal eigenfunction v, if it exists, satisfies v > 0 in
[0, a2] × � due to μ ∈ C(�,L∞

+ (0, a2)). Hence we will indicate the auxiliary
eigenvalue problem corresponding to Â instead of A in the following context, as
long as we use the fact that v > 0 in [0, a2] ×�.

Now we provide the second criteria under Assumption 4.9.

Theorem 4.11 (Existence of principal eigenvalues—II). Let Assumption 4.9

hold. Assume that

(4.14) x → 1
α∗∗ − α(x)

/∈ L1
loc(�)

and that for each x ∈ �, the operator Bx
1 + Cx possesses a positive eigenvector

φ ∈ W1,1(0, a2) corresponding to α(x), then s(A) is the principal eigenvalue of A.
Here α(x) is defined in Proposition 3.11 and Bx

1 + Cx is defined in Remark 2.1

in (0, a2).

Proof. The idea of the proof below comes from Liang et al. [31, Lemma 3.8]
or Bao and Shen [2, Proposition 3.1].

First step. By assumption, for any x ∈ �, φ(·, x) := [φ(x)](·) as a principal
eigenfunction of Bx

1 + Cx is belonging to W1,1(0, a2). Further, we can normalize
the family {φ(·, x)}x∈� such that ‖φ(·, x)‖L1(0,a2) = 1 for any x ∈ �. Now we will
prove that the eigenfunction φ(·, x) is continuous for all x ∈ �.

To this aim, let us first write down the equation that φ satisfies,

(4.15)

⎧⎨
⎩∂aφ(a, x) = −(D + μ(a, x))φ(a, x) − α(x)φ(a, x), a ∈ (0, a2),

φ(0, x) =
∫ a2

0 β(a, x)φ(a, x)da.

Fix x0 ∈ � and let us choose a sequence {xn}n≥1 ⊂ � satisfying xn → x0 as
n → ∞. Consider the sequence φ(·, xn). Observing the first equation of (4.15),
one has ∥∥∂aφ(·, xn)

∥∥
L1(0,a2)

≤ C,

where C > 0 denotes some constant that may vary from line to line but is indepen-
dent of n ≥ 0. It follows that the sequence {φ(·, xn)}n≥0 is bounded in W1,1(0, a2)
which is continuously embedded into L∞(0, a2) so that

∥∥φ(·, xn)
∥∥

L∞(0,a2)
≤ C.

Again by the first equation of (4.15), one has∥∥∂aφ(·, xn)
∥∥

L∞(0,a2)
≤ C.

Thus we have
∥∥φ(·, xn)

∥∥
W1,∞(0,a2)

≤ C. By the compact Sobolev embedding, we

can find a limit, denoted by φ̂(·) ∈ C([0, a2]), up to a subsequence such that

φ(·, xn) → φ̂(·) uniformly on [0, a2].
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Since x → μ(, x) ∈ C(�,L∞(0, a2)), one hasμ(·, xn) → μ(·, x0) in L∞(0, a2), and
thus

μ(·, xn)φ(·, xn) → μ(·, x0)φ̂(·) in L∞(0, a2).

Applying the same argument to β and then passing to the limit on (4.15), one
obtains

(4.16)

⎧⎨
⎩∂aφ̂(a) = −(D + μ(a, x0))φ̂(a) − α(x0)φ̂(a), a ∈ (0, a2),

φ̂(0) =
∫ a2

0 β(a, x0)φ̂(a)da

with ‖φ̂‖L1(0,a2) = 1 and φ̂ ≥ 0. Hence φ̂ is the principal eigenfunction of
the operator Bx0

1 + Cx0 corresponding to α(x0). Next thanks to the simplic-
ity of the principal eigenvalue, we have φ̂(a) = φ(a, x0). Thus the function
x → φ(·, x) is continuous from x ∈ � to C([0, a2]). Then we normalize φ such that
max(a,x)∈[0,a2 ]×� φ(a, x) = 1.

Second step. We will prove the main conclusion. According to Assump-
tion 1.1 on the kernel J, there exist r > 0 and c0 > 0 such that J(x − y) > c0 for
all x, y ∈ � with |x − y| < r.

Next let

c1 = min
(a,x)∈[0,a2 ]×�

φ(a, x).

Due to Assumption 4.9, c1 > 0 holds. Since (α∗∗ − α)−1 /∈ L1
loc(�), we can

choose ζ > α∗∗, some δ > 0 and x1 ∈ � such that B(x1, δ) ⊂ B(x1, 2δ) ⊂ �,∫
B(x1,δ)

1
ζ − α(x)

dx ≥ 2(Dc0c1)
−1,

and 3δ < r, where B(x, r) is the ball centered at x with radius r. Let p : � → R be
a continuous function on � such that

(4.17) p(x) =

⎧⎨
⎩1, x ∈ B(x1, δ),

0, x ∈ � \ B(x1, 2δ)

with 0 ≤ p(x) ≤ 1 for all x ∈ � and

φ̃(a, x) = [φ̃(x)](a) := p(x)φ(a, x), ∀(a, x) ∈ [0, a2] ×�.

It then follows that for any (a, x) ∈ [0, a2] × (� \ B(x1, 2δ)), we have∫
�

J(x − y)
dy

ζ − α(y)
φ̃(a, y) ≥ 0.
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For any (a, x) ∈ (0, a2) × B(x1, 2δ), we see that∫
�

J(x − y)
dy

ζ − α(y)
φ̃(a, y) ≥

∫
B(x1,δ)

J(x − y)
dy

ζ − α(y)
φ(a, y)

≥ 2c0c1(Dc0c1)
−1 ≥ 2D−1φ̃(a, x).

Note that for all x ∈ �, one has

(4.18)
(ζI − B1 − C)−1(0, φ̃) = (0, ψ) with

(0, ψ(·, x)) = [(ζI − Bx
1 − Cx)−1(0, φ̃(x))](·) = [(ζ − α(x))−1(0, φ̃(x))](·).

Recalling (4.1), it then follows that

(4.19) Fζ(0, φ̃) = B2(ζI − B1 − C)−1(0, φ̃) ≥ 2(0, φ̃) > (0, φ̃).

Thus, there exists ζ > s(B1 + C) such that r(Fζ) > 1. Then by Corollary 4.3, it
follows that s(A) > s(B1 + C) which implies the desired result by Theorem 4.1. �

Remark 4.12. Observe that the critera for the existence of principal eigenval-
ues we provided in (4.5) and (4.14) are reasonable and comparable with the ones
obtained for nonlocal problems; for instance, see Coville [7] who employed the
generalized Krein–Rutman Theorem (see Edmunds et al. [19], Nussbaum [37]) to
obtain analogue conditions for the existence of principal eigenvalues of a nonlocal
diffusion operator. In fact in our case, (4.5) and (4.14) imply that s(A) > s(B1 +C).
It follows by Remarks 3.8-(i) and 3.5 that (λ − s(A))−1, the spectral radius of
(λI−A)−1, tends to ∞ and (λ−s(B1+C))−1, the spectral radius of (λI−B1−C)−1,
remains bounded as λ ↓ s(A). On the other hand, since B2 is a compact pertur-
bator of B1 + C (which implies that Fλ defined in (4.1) is compact), it follows that
for λ > s(A),

re((λI − A)−1) = re

(
(λI − B1 − C)−1

( ∞∑
j=0

F
j
λ

))

= re((λI − B1 − C)−1) ≤ r((λI − B1 − C)−1).

Hence (λI −A)−1 is essentially compact if λ is sufficiently close to s(A). Then the
generalized Krein–Rutman theorem can be applied to conclude that (λ− s(A))−1

is the principal eigenvalue of (λI − A)−1. It follows that s(A) is the principal
eigenvalue of A by the spectral mapping theorem. The above argument is just the
idea of obtaining the existence of principal eigenvalues combining the theory of
resolvent positive operatorswith their perturbations and generalized Krein-Rutman
Theorem; see Thieme [53].
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Let us look at the essential compactness in another way. Observing again from
Remark 3.5 and Remark 3.8-(i) that if X = L1(�), then

ω(TA0) = s(A) > s(B1 + C) = ω(T(B1+C)0 ),

it follows together with Corollary 3.13 that {TA0 (t)}t≥0 is an essentially compact
semigroup by Theorem A.6 in the Appendix.

4.3 Relation between Mλ and A.

Proposition 4.13. Under Assumption 4.9, let λ ∈ C and m ∈ N \ {0}.
Then λ ∈ σp(A) with geometric multiplicity m if and only if 1 ∈ σp(Mλ) with

geometric multiplicity m, where σp(A) denotes the point spectrum of A.

Proof. Let λ ∈ C. Suppose that λ ∈ σp(A) has geometric multiplicity m so
that there are m linearly independent elements

(0, φ1), . . . , (0, φm) ∈ dom(A) with (λI − A)(0, φj) = (0, 0) for j = 1, . . . ,m.

Then by solving the above eigenvalue problem explicitly, we get

φj(a) = e−λaU(0, a)φj(0) with φj(0) = Mλφj(0).

Hence, φ1(0), . . . , φm(0) are necessarily linearly independent eigenvectors of Mλ

corresponding to the eigenvalue 1.
Now suppose that 1 ∈ σp(Mλ) has geometric multiplicity m so that there are

linearly independent ψ1, . . . , ψm ∈ X with Mλψj = ψj for j = 1, . . . ,m. Put
(0, φj) = (0, e−λaU(0, a)ψj) ∈ X0 and note that for j = 1, . . . ,m, we have

∂aφj + λφj − D[K − I]φj + μφj = 0,
∫ a2

0
β(a, ·)φj(a)da = Mλψj = ψj = φj(0),

which is equivalent to

A(0, φj) = λ(0, φj) and (0, φj) ∈ dom(A).

Thus λ ∈ σp(A). If α1, . . . , αm are any scalars, the unique solvability of the Cauchy
problem

∂aφ + λφ− D[K − I]φ + μφ = 0, φ(0, x) =
m∑
j=1

αjψj

ensures that (0, φ1), . . . , (0, φm) are linearly independent. Hence, the result
follows. �
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4.4 A counterexample that A admits no principal eigenvalue. In
this subsection we construct an example of kernel J and functions β(a, x), μ(a, x)
for which the operator A admits no eigenvalue with a positive eigenfunction in
dom(A) when (4.5) is not satisfied. In particular,A admits no principal eigenvalue.
This implies that our criterion is sharp in the sense that if they are not satisfied, A
may not have a principal eigenvalue.

Let β(a, x) ≡ β(x), μ(a, x) ≡ μ and the maximum age â = ∞, where β ∈ C(�)
and μ > 0 obviously satisfy the assumptions in the Introduction. Let us suppose
that A admits an eigenvalue of λ1 with a positive eigenfunction (0, φ) ∈ dom(A);
that is,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂aφ(a, x) =

∫
� J(x − y)φ(a, y)dy − φ(a, x) − μφ(a, x) − λ1φ(a, x),

(a, x) ∈ (0, â) ×�,

φ(0, x) =
∫ ∞
0 β(x)φ(a, x)da, x ∈ �.

Integrating the above equation from 0 to â=∞ and using the condition φ(∞, x)≡0,
we obtain

−φ(0, x) =
∫
�

J(x − y)
∫ ∞

0
φ(a, y)dady −

∫ ∞

0
φ(a, x)da −μ

∫ ∞

0
φ(a, x)da

− λ1

∫ ∞

0
φ(a, x)da.

Now denote ψ(x) =
∫ ∞
0 φ(a, x)da, we then have∫

�
J(x − y)ψ(y)dy − ψ(x) + (β(x) − μ)ψ(x) − λ1ψ(x) = 0.

Thus by Coville’s criterion [7, Theorem 5.1], we have the following theorem.

Theorem 4.14. Let J ≡ ρ on �, where ρ > 0 is a constant, and set

βmax = max
x∈�

β(x).

If

ρ

∫
�

1
βmax − β(x)

dx < 1,

thenA admits no eigenvalue with a positive eigenfunction in dom(A). In particular,
A admits no principal eigenvalue.

Remark 4.15. In this example, the function Gα reads as

Gα(x) = β(x)
∫ ∞

0
e−(α+1+μ)ada for α > −μ− 1.
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Note that the function

α→
∫ ∞

0
e−(α+1+μ)ada

is continuously decreasing from ∞ to 0 on (−μ − 1,∞). Thus, we can choose
α∗∗ > −μ− 1 such that ∫ ∞

0
e−(α∗∗+1+μ)ada = 1/βmax.

Now for any α < α∗∗,

ρ/βmax

∫
�

1
1 − Gα(x)

dx < 1 ⇒ ρ

∫
�

1
βmax − β(x)

dx < 1.

Hence, the criterion for the existence of principal eigenvalues that we gave in (4.5)
is reasonable and comparable with the one for nonlocal problems; see Coville [7]
and Shen and Vo [45].

5 Limiting properties

In this section we will study the effects of the diffusion rate on the spectral bound
s(A) of A. Recalling that in the previous section, we have shown that under As-
sumption 4.9, the eigenvalue problem to A on [0, â) is equivalent to the one on
[0, a2] with bounded death rate μ and further the principal eigenfunction associ-
ated with s(A) is positive in [0, a2]. Thus in the following context, we will let
Assumption 4.9 hold throughout this section. Before proceeding, let us first clarify
the strict positivity in X.

f > 0 in X = C(�) means that f (x) > 0 for all x ∈ �,
f > 0 in X = L1(�) means that

∫
�

f ∗(x)f (x)dx > 0

for any f ∗ ∈ L∞
+ (�) \ {0}.

Now following Berestycki et al. [3, 4], we introduce the following definition.

Definition 5.1. Define the generalized principal eigenvalues by

(5.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λp(A) := sup{λ ∈ R :∃φ ∈ W1,1((0, a2),X)

s.t. φ>0 and (−A + λ)(0, φ)≤ (0, 0) in [0, a2]},
λ′

p(A) := inf{λ ∈ R :∃φ ∈ W1,1((0, a2),X)

s.t. φ>0 and (−A + λ)(0, φ)≥ (0, 0) in [0, a2]}.
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Note that the sets in Definition 5.1 are nonempty, see the proof of Theorem 5.3
in the following. As mentioned before, such ideas are widely used to prove the
existence and asymptotic behavior of principal eigenvalueswith respect to diffusion
rate, see Coville [7], Li et al. [30] and Su et al. [49] for nonlocal diffusion equations,
Shen and Vo [45] and Su et al. [48] for time periodic nonlocal diffusion equations.
As Shen and Vo [45] highlighted for the time periodic case, we remark that our
parabolic-type operator A containing ∂a is not self-adjoint, and thus we lack the
usual L2(�) variational formula for the principal eigenvalue s(A). The generalized
principal eigenvalues λp(A) and λ′

p(A) defined in (5.1) remedy the situation and
play crucial roles in the following text.

5.1 Without kernel scaling. In this subsectionfirst we study the diffusion
without kernel scaling and have the following result.

Proposition 5.2. Let Assumption 4.9 hold and, in addition, assume that λ1(A)
is the eigenvalue of A associated with (0, φ1) ∈ dom(A) with φ1 > 0 in [0, a2],
then one has λ1(A) = λp(A) = λ′

p(A).

Proof. Denote λ1(A) by λ1. First, we prove that λ1 = λp. Since λ1 is the
eigenvalue of A associated with (0, φ1) ∈ dom(A) with φ1 > 0 in [0, a2]; that is,

(5.2) A(0, φ1) − λ1(0, φ1) = (0, 0) in [0, a2],

and since φ1 > 0 in [0, a2], we have λ1 ≤ λp. Suppose by contradiction that
λ1 < λp. From the definition of λp, there are λ ∈ (λ1, λp) and (0, φ) ∈ dom(A)
with φ > 0 in [0, a2] such that

−A(0, φ) + λ(0, φ) ≤ (0, 0) in [0, a2];

that is, for 0 ≤ a ≤ a2

(5.3)

⎧⎨
⎩∂aφ(a) − D[K − I]φ(a) + μ(a, ·)φ + λφ ≤ 0,

φ(0) − ∫ a2

0 β(a, ·)φ(a)da ≤ 0.

Now solving the first inequality in (5.3), we obtain

φ(a) ≤ e−λaU(0, a)φ(0).

Plugging it into the second inequality in (5.3), we have

(5.4) φ(0) ≤
∫ a2

0
β(a, ·)e−λaU(0, a)φ(0)da.
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It follows that Mλφ(0) ≥ φ(0), which implies that r(Mλ) ≥ 1. But we know
that λ1 is the eigenvalue of A, then by Proposition 4.13 we have r(Mλ1) = 1. Since
λ → r(Mλ) is decreasing by the arguments in Proposition 3.6, one has λ1 ≥ λ.
This contradiction leads to λ1 = λp.

Next, we prove λ1 = λ′
p. Obviously, λ1 ≥ λ′

p. Assume by contradiction that
λ1 > λ′

p. Then there are λ̃ ∈ (λ′
p, λ1) and (0, φ̃) ∈ dom(A) with φ̃ > 0 in [0, a2]

such that −A(0, φ̃)+ λ̃(0, φ̃) ≥ (0, 0). By reversing the above inequalities, we have
the desired conclusion via a similar argument as above. �

Now we give the main theorem in this section about the effects of diffusion rate
on s(A). In the next result, we write sD(A) for s(A) to highlight the dependence
on D.

Theorem 5.3. Let Assumption 4.9 hold and, in addition, assume that sD(A)
is the principal eigenvalue of A, then the function D → sD(A) is continuous on
(0,∞) and satisfies

(5.5) sD(A) →
⎧⎨
⎩s(B1 + C) as D → 0+,

−∞ as D → ∞,

where B1 is defined as follows:

B1(0, f ) := (−f (0, ·),−∂af − μf ), f ∈ W1,1((0, a2),X).

Proof. Since sD(A) is a simple eigenvalue, the continuity of D → sD(A)
follows from the similar argument in Theorem4.11 or see Kato [29, Section IV. 3.5]
for the classical perturbation theory.

For the limits, we first claim that for every ε > 0, there exists Dε > 0 such that

(5.6) sD(A) ≤ s(B1 + C) + ε, ∀D ∈ (0,Dε).

Denote ϑ = s(B1 + C). Consider equation (4.15) with D = 0 which is written as
follows:

(5.7)

⎧⎨
⎩∂aφ(a, x) = −(α(x) + μ(a, x))φ(a, x), (a, x) ∈ (0, a2] ×�,

φ(0, x) =
∫ a2

0 β(a, x)φ(a, x)da, x ∈ �.

By Proposition 3.11 (D = 0), we know that for each x ∈ �, (5.7) has a positive
solution φ ∈ W1,1(0, a2) given by

φ(a, x) = e−α(x)aπ(0, a, x)φ(0, x).
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Moreover, by the argument in Theorem 4.11, φ(·, x) is continuous in x ∈ �

and thus φ ∈ C(�,W1,1(0, a2)). Next from the first equation of (5.7), one
has φ ∈ W1,1((0, a2),C(�)). Thus we now have φ > 0 in [0, a2] × � with
(0, φ) ∈ dom(A) = {0} × W1,1((0, a2),X). Further, it is easy to check that
for (a, x) ∈ [0, a2] ×�

[−A(0, φ) + (ϑ + ε)(0, φ)](a, x)

=
(
φ(0, x) −

∫ a2

0
β(a, x)φ(a, x)da,

∂aφ(a, x) − D
[∫
�

J(x − y)φ(a, y)dy − φ(a, x)
]

+ μ(a, x)φ + (ϑ + ε)φ
)
.

Since min(a,x)∈[0,a2 ]×� φ(a, x) > 0 and max(a,x)∈[0,a2]×� φ(a, x) < ∞, it is straight-
forward to check that for each ε > 0, there exists Dε > 0 such that for each
D ∈ (0,Dε), there holds

∂aφ(a, x) − D
[∫
�

J(x − y)φ(a, y)dy − φ(a, x)
]

+ μ(a, x)φ + (ϑ + ε)φ

= −D
[∫

�
J(x − y)φ(a, y)dy − φ(a, x)

]
+ (ϑ− α(x))φ + εφ

≥ −D
[∫
�

J(x − y)φ(a, y)dy − φ(a, x)
]

+ εφ

≥ 0 in [0, a2] ×�,

where we used ϑ ≥ α(x) from Proposition 3.11 where D = 0. It then follows that

−A(0, φ) + (ϑ + ε)(0, φ) ≥ (0, 0)

which, by the definition of λ′
p(A), implies that sD(A) = λ′

p(A) ≤ s(B1 + C) + ε.
Next from Remark 3.8, we have

s(B1 + C) − D = s(B1 + C) ≤ sD(A).

Setting D → 0+, we find that

s(B1 + C) ≤ lim inf
D→0+

sD(A) ≤ lim sup
D→0+

sD(A) ≤ s(B1 + C) + ε, ∀ε > 0,

which leads to sD(A) → s(B1 + C) as D → 0+.
Finally, to show that sD(A) → −∞ as D → ∞, we consider the operator K− I.

It is known from Shen and Xie [42, Theorem 2.1 and Proposition 3.4] that the
principal eigenvalue of −K + I exists and is positive. Let λ0 > 0 be the principal
eigenvalue of −K + I and �0 ∈ C(�) be an associated positive eigenfunction.
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Let (λ1,�1(a)) be the principal eigenpair of the age-structured operator; that is,
they satisfy the following equation,⎧⎨

⎩∂a�
1(a) = −(λ1 + μ(a))�1(a),

�1(0) =
∫ a2

0 β(a)�1(a)da,

where λ1 satisfies ∫ a2

0
β(a)e−λ1ae− ∫ a

0 μ(s)dsda = 1.

Note that�1(a) is positive. Now let λD = −Dλ0+λ1 and�(a, x) = �0(x)�1(a). We
have that � > 0 in [0, a2] ×�, (0,�) ∈ dom(A) and that for (a, x) ∈ [0, a2] ×�

[−A(0,�) + λD(0,�)](a, x)

=
(
�(0, x) −

∫ a2

0
β(a, x)�(a, x)da,

∂a�(a, x) − D
[∫
�

J(x − y)�(a, y)dy −�(a, x)
]

+ μ(a, x)�+λD�

)
:= (I1(x), I2(a, x)).

Next we have

I2(a, x) = ∂a�
1(a)�0(x) − D

[∫
�

J(x − y)�0(y)dy −�0(x)
]
�1(a)

+ μ(a, x)�1(a)�0(x) + (−Dλ0 + λ1)�0(x)�1(a)

≥ (∂a�
1(a) + μ(a)�1(a) + λ1�1(a))�0(x) + Dλ0�0(x)�1(a)

− Dλ0�0(x)�1(a)

= 0, in (0, a2] ×�

and

I1(x) =
∫ a2

0
β(a)�1(a)da�0(x) −

∫ a2

0
β(a, x)�1(a)�0(x)da ≥ 0, in �.

Thus, (λD, (0,�)) is a test pair for λ′
p(A). It follows that sD(A) = λ′

p(A) ≤ λD.
Setting D → ∞, we reach at sD(A) → −∞ as D → ∞. �

Remark 5.4. FromProposition 3.4, we know that s(B1+C) equals the valueα1

which satisfies

max
x∈�

∫ a2

0
β(a, x)e−α1aπ(0, a, x)da = 1.
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Theorem5.5. Let Assumption 4.9 hold and assume thatμ(a, x)=μ1(a)+μ2(x),
β(a, x) ≡ β(a), where β,μ1 ∈ L∞

+ (0, a2) and μ2 ∈ C+(�). In addition, assume
that J is symmetric, i.e., J(x) = J(−x), and that the operator

v → D
[∫
�

J(· − y)v(y) − v

]
− μ2(·)v : C(�) → C(�)

admits a principal eigenvalue. Then the function D → sD(A) is decreasing.

Proof. We define L : C(�) → C(�) and

T : {0} × W1,1(0, a2) ⊂ {0} × L1(0, a2) → {0} × L1(0, a2)

respectively as follows,

Lv = D
[∫
�

J(· − y)v(y)dy − v

]
− μ2(·)v, v ∈ C(�),

T(0, φ) =
(

−φ(0) +
∫ a2

0
β(a)φ(a)da, ∂aφ− μ1φ

)
, φ ∈ W1,1(0, a2).

Let (λD
1 (L), v1) be the principal eigenpair of −L. Then by the same argument

as in Shen and Vo [45, Theorem C(2)], we know that D → λD
1 (L) is increas-

ing. Now let (λ1(T), (0, φ1)) be the principal eigenpair of T. It follows that
sD(A) = −λD

1 (L) + λ1(T) is the principal eigenvalue of A with the principal eigen-
function (0, v1φ1). As D → λD

1 (L) is increasing, so D → sD(A) is decreasing. �

5.2 With kernel scaling. In this subsection we study the effects of the
diffusion rate and diffusion range on the principal eigenvalue. Define Kγ,� as
follows:

(5.8) [Kγ,�f ](·) =
∫
�

Jγ(· − y)f (y)dy, f ∈ X.

Here the kernel Jγ satisfies the scaling Jγ(x) = 1
γN J( x

γ
) for x ∈ R

N , where γ > 0
represents the diffusion range. Then we introduce the nonlocal diffusion operator
D
γm [Kγ,� − I], where m ≥ 0 denotes the cost parameter.

Write Aγ,m,� = Bγ,m,� + C for A = B + C to highlight the dependence on γ,m
and � and further denote B

μ
γ,m,�, C

β for B, C to represent the dependence on μ
and β respectively. We mainly employ the idea from Shen and Vo [45, Theorem D]
to prove the following results.

Proposition 5.6. Let Assumption 4.9 hold and let m ≥ 0, γ > 0. We have the
following statements.



AGE-STRUCTURED MODELS. I 43

(i) s(Bγ,m,� + Cβ) is non-decreasing with respect to β and s(Bμγ,m,� + C) is non-

increasing with respect to μ.
(ii) Let the assumptions in Theorem4.8 or Theorem4.11 hold,whereD is changed

into D
γm , then s(Aγ,m,�) is the principal eigenvalue of Aγ,m,�. Assume that

λ1(Aγ,m,�) is the eigenvalue of Aγ,m,� associated with (0, φ) ∈ dom(Aγ,m,�)
satisfying φ > 0 in [0, a2], then

λ1(Aγ,m,�) = λp(Aγ,m,�) = λ′
p(Aγ,m,�).

(iii) Additionally, λp(B
μ
γ,m,� + C) is Lipschitz continuous with respect to μ in

C(�,L∞
+ (0, a2)). More precisely, we have

|λp(B
μ1
γ,m,� + C) − λp(B

μ2
γ,m,� + C)| ≤∥∥μ1 − μ2

∥∥
C(�,L∞

+ (0,a2))

for any μ1, μ2 ∈ C(�,L∞
+ (0, a2)).

(iv) If �1 ⊂ �2, then λ′
p(Aγ,m,�1 ) ≤ λ′

p(Aγ,m,�2 ). Assume that in addition

X = C(�), s(Aγ,m,�1 ) and s(Aγ,m,�2 ) are principal eigenvalues of Aγ,m,�1

and Aγ,m,�2 respectively, then we have

|λ′
p(Aγ,m,�1 ) − λ′

p(Aγ,m,�2 )| ≤ C0|�2 \�1|,

where C0 > 0 depends on a, γ,m, Jγ and �2.
(v) Assume that s(Aγ,m,�) is the principal eigenvalue of Aγ,m,�, then the function

γ → s(Aγ,m,�) is continuous.

Proof. For (i), if β1 ≥ β2, it follows that Mλ(β1) ≥ Mλ(β2) in the positive op-
erator sense which implies that r(Mλ(β1)) ≥ r(Mλ(β2)). Thus by Proposition 3.6,
we have s(Bγ,m,� + Cβ1 ) ≥ s(Bγ,m,� + Cβ2) by the monotonicity of r(Mλ) with
respect to λ.

Similarly, when μ1 ≥ μ2, since Uμ1 (0, a) and Uμ2 (0, a) are positive in C(�),
we have Uμ1 (0, a) ≤ Uμ2 (0, a) in the positive operator sense, which implies
that Mλ(μ1) ≤ Mλ(μ2). Then it follows that r(Mλ(μ1)) ≤ r(Mλ(μ2)), hence
s(Bμ1

γ,m,� + C) ≤ s(Bμ2
γ,m,� + C) by the above argument.

For (ii), it follows from Theorem 4.8 or Theorem 4.11 and Proposition 5.2.

For the proof of (iii), fix λ < λp(B
μ1
γ,m,� + C). By Definition 5.1, there exists

(0, φ) ∈ dom(Aγ,m,�) with φ > 0 in [0, a2] such that

−B
μ1
γ,m,�(0, φ) − C(0, φ) + λ(0, φ) ≤ (0, 0) in [0, a2].
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Clearly, we have

(0, 0) ≥ −B
μ1
γ,m,�(0, φ) − C(0, φ) + λ(0, φ)

=
(
φ(0) −

∫ a2

0
β(a, ·)φ(a)da, ∂aφ− D

γm
[Kγ,� − I]φ + μ1φ + λφ

)

=
(
φ(0) −

∫ a2

0
β(a, ·)φ(a)da,

∂aφ− D
γm

[Kγ,� − I]φ + [μ2 + μ1 − μ2]φ + λφ
)

≥
(
φ(0) −

∫ a2

0
β(a, ·)φ(a)da,

∂aφ− D
γm

[Kγ,� − I]φ + μ2φ + λ−∥∥μ1 − μ2
∥∥

C(�,L∞
+ (0,a2))

φ

)
.

Again by Definition 5.1, we get

λ−∥∥μ1 − μ2
∥∥

C(�,L∞
+ (0,a2))

≤ λp(B
μ2
γ,m,� + C).

Since this holds for any λ < λp(B
μ1
γ,m,� + C), we arrive at

λp(B
μ1
γ,m,� + C) − λp(B

μ2
γ,m,� + C) ≤∥∥μ1 −μ2

∥∥
C(�,L∞

+ (0,a2))
.

Switching the roles of μ1 and μ2, we find that

λp(B
μ2
γ,m,� + C) − λp(B

μ1
γ,m,� + C) ≤∥∥μ1 −μ2

∥∥
C(�,L∞

+ (0,a2))
.

Thus the result follows.
For (iv), let (λ,ψ) be a pair for λ′

p(Aγ,m,�2 ). Then ψ ∈ W1,1((0, a2),C(�2))
satisfies ψ > 0 in [0, a2] ×�. Define

[ψ�1
(a)](x) = [ψ(a)](x), (a, x) ∈ [0, a2] ×�1 ⊂ [0, a2] ×�2.

Then ψ�1
> 0 in [0, a2] and belongs into W1,1((0, a2),C(�1)). Moreover, for any

(a, x) ∈ [0, a2] ×�1, one has

(5.9)

(−Aγ,m,�1 + λ)(0, ψ�1
)

=
(
ψ�1

(0) −
∫ a2

0
β(a, ·)ψ�1

(a)da,

∂aψ�1
− D
γm

[Kγ,�1 − I]ψ�1
+ μ(a, ·)ψ�1

+ λψ�1

)

≥
(
ψ(0) −

∫ a2

0
β(a, ·)ψ(a)da, ∂aψ− D

γm
[Kγ,�2 − I]ψ + μ(a, ·)ψ + λψ

)
= (−Aγ,m,�2 + λ)(0, ψ)

≥ (0, 0).
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That is, (λ,ψ�1
) is a test pair for λ′

p(Aγ,m,�1 ) and hence, λ ≥ λ′
p(Aγ,m,�1 ). Taking

the infimum over all such λ, we arrive at

(5.10) λ′
p(Aγ,m,�2 ) ≥ λ′

p(Aγ,m,�1 ).

Note that here we obtain (5.10) which is reversed compared with [45, Proposi-
tion 6.1-(iv)] since we are using λ′

p instead of their relation on λp.

To prove the second statement, first note that

W1,1((0, a2),C(�)) ⊂ C([0, a2] ×�);

it follows thatψ>0 in [0, a2]×�. Thuswe can choose an eigenpair (λ′
p(Aγ,m,�2 ), ψ)

of Aγ,m,�2 with normalization max(a,x)∈[0,a2]×�2
ψ = 1. Direct calculations yield

(5.11)

(−Aγ,m,�1 + λ′
p(Aγ,m,�2 )(0, ψ)

=
(
ψ(0) −

∫ a2

0
β(a, ·)ψ(a)da,

∂aψ− D
γm

[Kγ,�1 − I]ψ + μ(a, ·)ψ + λ′
p(Aγ,m,�2 )ψ

)

=
(

0,
D
γm

∫
�2\�1

Jγ(· − y)[ψ(a)](y)dy
)

≤
(
0,

D
∥∥Jγ∥∥∞
γm

|�2 \�1|
)

≤
(
0,

D
∥∥Jγ∥∥∞

γm min�1
ψ

|�2 \�1|ψ
)
.

That is,

−Aγ,m,�1 (0, ψ) + [λ′
p(Aγ,m,�2 ) − C0|�2 \�1|](0, ψ) ≤ (0, 0) in [0, a2],

where C0 = D‖Jγ‖∞
γm min�1

ψ
. By (ii), one has

λ′
p(Aγ,m,�1 ) = λp(Aγ,m,�1 ) ≥ λ′

p(Aγ,m,�2 ) − C0|�2 \�1|.

This together with (5.10) leads to the result.

For (v), we can use the same argument in proving the continuity of D → sD(A)
in Theorem 5.3 combining with the argument in Shen and Vo [45, Proposi-
tion 6.1(5)], and omit it here. �

Theorem5.7. Let Assumption 4.9 hold. Assume that s(Aγ,m,�) is the principal
eigenvalue of Aγ,m,�, then:
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(i) As γ → ∞, there holds

(5.12) s(Aγ,m,�) →
⎧⎨
⎩s(B1 + C) − D, m = 0,

s(B1 + C), m > 0,

where

B1(0, f ) = (−f (0, ·),−∂af − μf ), f ∈ W1,1((0, a2),X).

(ii) If, in addition, J is symmetric, i.e., J(x) = J(−x), μ ∈ C2(RN,L∞
+ (0, a2)) and

β ∈ C2(RN,L∞
+ (0, a2)). Then, as γ → 0+, there holds

s(Aγ,m,�) → s(B1 + C), ∀m ∈ [0, 2).

(iii) In the case m = 0, if � contains the origin and μ(a, x) is radially symmetric
and radially non-decreasing with respect to x; namely, μ(a, x) = μ(a, y)
if |x| = |y| and μ(a, x) ≥ μ(a, y) if |x| ≥ |y| for all a ∈ [0, â), then
γ → s(Aγ,0,�) is non-increasing.

Proof. (i) We first prove the result in the case m > 0. By Remark 3.8, we find
that

s(Aγ,m,�) ≥ s(B1 + C) = s(B1 + C) − D
γm
.

It follows that

(5.13) lim inf
γ→∞ s(Aγ,m,�) ≥ s(B1 + C).

Let us continue to consider equation (5.7) associated with a positive
solution φ ∈ C(�,W1,1(0, a2)). As before, one has φ ∈ W1,1((0, a2),C(�)). Set
ϑ = s(B1 + C) again. For any ε > 0, we see that for (a, x) ∈ [0, a2] ×�,

[−Aγ,m,�(0, φ) + (ϑ + ε)(0, φ)](a, x)

=
(
φ(0, x) −

∫ a2

0
β(a, x)φ(a, x)da,

∂aφ(a, x) − D
γm

[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ μ(a, x)φ + (ϑ + ε)φ
)

and

(5.14)

∂aφ(a, x) − D
γm

[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ μ(a, x)φ + (ϑ + ε)φ

= − D
γm

[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ εφ + (ϑ− α(x))φ

≥ − D
γm

[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ εφ.
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Since min(a,x)∈[0,a2 ]×� φ(a, x) > 0 and∥∥∥∥ D
γm

[∫
�

Jγ(· − y)φ(a, y)dy − φ(a, ·)
]∥∥∥∥

C(�)
→ 0 as γ → ∞

there is γε > 0 such that (5.14)≥ 0 in [0, a2] × � for all γ ≥ γε. It then follows
that

−Aγ,m,�(0, φ) + (ϑ + ε)(0, φ) ≥ (0, 0) in [0, a2] ×�,

which by the definition of λ′
p(Aγ,m,�) implies that

s(Aγ,m,�) = λ′
p(Aγ,m,�) ≤ s(B1 + C) + ε.

The arbitrariness of ε then yields (i) with (5.13) for m > 0.
Now we prove the result in the cases m = 0. Remark 3.8 ensures that

s(Aγ,m,�) ≥ s(B1 + C) = s(B1 + C) − D.

It remains to show that

(5.15) lim sup
γ→∞

s(Aγ,m,�) ≤ s(B1 + C) − D.

Let φ be a solution of (5.7) as above. For any ε > 0, we have for (a, x) ∈ [0, a2]×�
that

[−Aγ,0,�(0, φ) + (ϑ + ε)(0, φ)](a, x)

=
(
φ(0, x) −

∫ a2

0
β(a, x)φ(a, x)da,

∂aφ(a, x) − D
[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ μ(a, x)φ + (ϑ + ε)φ
)
.

Next we have

(5.16)

∂aφ(a, x) − D
[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ μ(a, x)φ + (ϑ + ε)φ

= −D
[∫

�
Jγ(x − y)φ(a, y)dy − φ(a, x)

]
+ εφ + (ϑ− α(x))φ

≥ −D
[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ εφ.

Hence for ε > 0, there holds

−Aγ,0,�(0, φ) + (ϑ + ε− D)(0, φ) ≥
(

0,−D
∫
�

Jγ(x − y)φ(a, y)dy + εφ
)
,

in [0, a2] ×�.

As ‖ ∫
� Jγ(· − y)φ(a, y)dy‖C(�) → 0 uniformly in [0, a2] when γ → ∞, we can

follow the arguments in the case m > 0 to conclude (5.15).



48 A. DUCROT, H. KANG AND S. RUAN

(ii) Let φ = φ(a, x) > 0 be the solution of (3.16) with D = 0 which is defined
for x ∈ R

N with normalization∫ a2

0
β(a, x)φ(a, x)da = 1, ∀x ∈ R

N .

Next we claim that the map x → ((0, φ(·, x)), α(x)) is of class C2 from RN into
{0} × C([0, a2]) × R. The proof is given in the Appendix, see Lemma A.11.

For any ε > 0, a similar argument as in (5.14) leads to

∂aφ(a, x) − D
γm

[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ μ(a, x)φ + (ϑ + ε)φ

≥ − D
γm

[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ εφ

≥ − D
γm

[∫
RN

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ εφ

= − D
γm

[∫
RN

J(z)φ(a, x + γz)dz − φ(a, x)
]

+ εφ in [0, a2] ×�.

Then by Taylor expansion we have

D
γm

[∫
RN

J(z)φ(a, x + γz)dz − φ(a, x)
]

= Dγ2−m
∑
|ν|=2

∫
RN

Rν(a, x, z)J(z)zνdz,

where ν = (ν1, . . . , νN) is the usual multiple index, and

Rν(a, x, z) =
2
ν!

∫ 1

0
(1 − s)∂νφ(a, x + sγz)ds,

and we used the symmetry of J with respect to each component.
Since φ ∈ C2(RN,C([0, a2])) and J is compactly supported, there holds the

boundedness of the function x → ∑
|ν|=2

∫
RN Rν(a, x, z)J(z)zνdz on � uniformly in

0 ≤ a ≤ a2 and 0 ≤ γ ≤ 1. It follows from the assumption m ∈ [0, 2) that

∂aφ(a, x) − D
γm

[∫
�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+ μ(a, x)φ + (ϑ + ε)φ ≥ 0

in [0, a2] ×� for sufficiently small γ. This implies that

−Aγ,m,�(0, φ) + (ϑ + ε)(0, φ) ≥ (0, 0) in [0, a2] ×�, 0 < γ � 1,

from which it follows that

lim sup
γ→0+

s(Aγ,m,�) = lim sup
γ→0+

λ′
p(Aγ,m,�) ≤ s(B1 + C).
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Now we show the reverse inequality, i.e.,

(5.17) lim inf
γ→0+

s(Aγ,m,�) ≥ s(B1 + C).

For any ε > 0 sufficiently small, there exists an open ball Bδ of radius δ = δ(ε)
such that α(x) + ε ≥ s(B1 + C) =: ϑ in Bδ ∩�, where α(x) is from Proposition 3.11
for D = 0. In fact, if δ > ε, we can reduce the ball to Bε such that α(x) + ε ≥ ϑ in
Bε ∩�. Thus without loss of generality, we assume δ ≤ ε.

Next let φ̃ε ∈ C2(RN,C([0, a2])) ∩ W1,1((0, a2),C(RN)) be nonnegative and
satisfy

φ̃ε =

⎧⎨
⎩φ in [0, a2] × (Bδ ∩�),

0 in [0, a2] × (RN \ (B2δ ∩�))
and sup

[0,a2]×RN

φ̃ε ≤ sup
[0,a2]×RN

φ,

where φ ∈ C2(RN,C([0, a2])) ∩ W1,1((0, a2),C(RN)) is the solution of (3.16) with
D = 0 provided by Lemma A.11. Then we have for (a, x) ∈ [0, a2]× (Bδ ∩�) that

−Aγ,m,Bδ∩�(0, φ) +
(
ϑ− ε− 1

| ln ε|
)
(0, φ) := (I3, I4),

where for any (a, x) ∈ [0, a2] × (Bδ ∩�) one has

I3(x) = φ(0, x) −
∫ a2

0
β(a, x)φ(a, x)da = 0

and

I4(a, x)

= ∂aφ(a, x) − D
γm

[∫
Bδ∩�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+
[
μ(a, x) + ϑ− ε− 1

| ln ε|
]
φ(a, x)

= − D
γm

[∫
Bδ∩�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

+
[
−α(x) + ϑ− ε− 1

| ln ε|
]
φ(a, x)

≤ − D
γm

[∫
Bδ∩�

Jγ(x − y)φ(a, y)dy − φ(a, x)
]

− φ(a, x)
| ln ε|

= − D
γm

[∫
RN

Jγ(x − y)φ̃ε(a, y)dy − φ̃ε(a, x) −
∫

(B2δ\Bδ)∩�
Jγ(x − y)φ̃ε(a, y)dy

]

− φ(a, x)
| ln ε| .
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We are still based on a Taylor expansion deal with the estimate of

D
γm

[∫
RN

Jγ(x − y)φ̃ε(a, y)dy − φ̃ε(a, x) −
∫

(B2δ\Bδ)∩�
Jγ(x − y)φ̃ε(a, y)dy

]
+
φ(a, x)
| ln ε|

= Dγ2−m
∫
RN

J(z)
∑
|ν|=2

2
ν!

∫ 1

0
(1 − s)1∂νφ̃ε(a, x + sγz)dszνdz

− D
γm+N

∫
(B2δ\Bδ)∩�

J
(x − y

γ

)
φ̃ε(a, y)dy +

φ(a, x)
| ln ε|

:= I1
ε,γ(a, x) + I2

ε,γ(a, x) + I3
ε(a, x).

Now note that min[0,a2]×(Bδ∩�) φ(a, x) ≥ min[0,a2]×� φ(a, x) > 0 for all 0 < ε � 1.
Choosing ε = γk with k = m+2N

N , we then have for all 0 < γ � 1 that

sup
[0,a2]×RN

|I1
ε,γ| ≤ C1γ

2−m, sup
[0,a2]×RN

|I2
ε,γ| ≤ C2γ

N, inf
[0,a2]×RN

|I3
ε | ≥ C3

| ln(γk)| ,

where Ci > 0 are constants independent of γ for 1 ≤ i ≤ 3. As

lim
γ→0+

γβ| ln γ| = 0

for any β > 0, the term I3
ε dominates I1

ε,γ and I2
ε,γ for small γ. Thus we have

−Aγ,m,Bδ∩�(0, φ)+
(
ϑ−ε− 1

| ln ε|
)
(0, φ) ≤ (0, 0) in [0, a2]×(Bδ∩�), 0<γ�1.

It then follows from the generalized principal eigenvalues and Proposition 5.2 that

s(Aγ,m,Bδ∩�) = λp(Aγ,m,Bδ∩�) ≥ s(B1 + C) − γk − 1
| ln γk| , 0 < γ � 1.

By Proposition 5.6-(iv), we have s(Aγ,m,�) ≥ s(Aγ,m,Bδ∩�), which yields that

s(Aγ,m,�) ≥ s(B1 + C) − γk − 1
| ln γk| , 0 < γ � 1.

Letting γ → 0, we have (5.17). Thus the result is desired.
(iii) Recall that μ is a radially non-decreasing function of x. For γ1 ≥ γ2, we

show that s(Aγ1,0,�) ≤ s(Aγ2,0,�). It is equivalent to showing that

λ′
p(Aγ1,0,�) ≤ λ′

p(Aγ2,0,�).

To this aim, set �γ = 1
γ
� and μγ(a, x) = μ(a, γx) for a ∈ [0, a2] and x ∈ �γ.

Clearly, λ′
p(Aγ,0,�) = λ′

p(B
μγ
1,0,�γ + C). Therefore, we need to show that

λ′
p(B

μγ1
1,0,�γ1

+ C) ≤ λ′
p(B

μγ2
1,0,�γ2

+ C).

It suffices to prove the inequality λ′
p(B

μγ1
1,0,�γ1

+C) ≤ λ for any λ > λ′
p(B

μγ2
1,0,�γ2

+C).
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Fix such a λ. By Proposition 5.6, there exists a function φ ∈ W1,1((0, a2),Xγ2 )
with Xγ2 = C(�γ2 ) or Xγ2 = L1(�γ2 ) satisfying φ > 0 in [0, a2] such that

(−B
μγ2
1,0,�γ2

− C)(0, φ) + λ(0, φ) ≥ (0, 0) in [0, a2].

Since � contains the origin, there holds �γ1 ⊂ �γ2 . Moreover,

μγ1 (a, x) ≥ μγ2 (a, x) a.e. in (0, a2) ×�γ1 .

Direct computations yields

(−B
μγ1
1,0,�γ1

− C)(0, φ) + λ(0, φ) ≥ (−B
μγ2
1,0,�γ2

− C)(0, φ) + λ(0,φ) ≥ (0, 0)

in [0, a2] ×�γ1 .

This implies λ′
p(B

μγ1
1,0,�γ1

+ C) ≤ λ. Thus the proof is complete. �

Remark 5.8. (i) Note that when β(a, x) ≡ β(a) and μ(a, x) ≡ μ(a), the age-
structure and nonlocal diffusion can be decoupled, then the spectrum of A is quite
clear; see Kang et al. [27]. Thus the limiting properties of principal eigenvalues
of A are fully clear and are only determined by the one of nonlocal diffusion.
Hence we omit the case.

(ii) Note that we did not discuss the case when m = 2 and γ → 0. We
conjecture that the principal eigenvalues for age-structured models with nonlocal
diffusion converge to the one for age-structured models with Laplace diffusion.
Actually, without age-structure, the autonomous nonlocal diffusion operator has
aL2 variational structurewhich can be used to show the convergence; seeBerestycki
et al. [3] and Su et al. [49]. While for the time-periodic nonlocal diffusion operators,
Shen and Xie [42,43] used the idea of a solution mapping to show the convergence,
where they employed the spectral mapping theorem which is not valid in our
case either, since we have a first order differential operator ∂a that is unbounded.
However, when we add a nonlocal boundary condition to the birth rate β, it can
be proved that the semigroup generated by solutions is eventually compact where
the spectral mapping theorem holds. Thus we can use it to show the desired
convergence; see Kang and Ruan [24].

6 Strong maximum principle

In this section via the sign of principal eigenvalues we establish the strong maxi-
mum principle for the operator A defined in (2.12) without kernel scaling, which
is of fundamental importance and independent interest. We let Assumptions 4.4
and 4.9 hold, which are rewritten as follows.
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Assumption 6.1. There exists a2 ∈ (0, â) such that β ≡ 0 on [a2, â) × �

and
∫ a2

a β(l)dl > 0,∀a ∈ [0, a2).

Definition 6.2 (StrongMaximumPrinciple). We say thatA admits the strong
maximum principle if for any function u ∈ W1,1((0, a2),C(�)) satisfying

(6.1) A(0, u) ≤ (0, 0) in [0, a2] ×�,

there must hold u > 0 in [0, a2] ×� unless u ≡ 0 in [0, a2] ×�.

Theorem 6.3. Let Assumption 6.1 hold. Assume that A possesses a princi-

pal eigenvalue λ1(A), then A admits the strong maximum principle if and only
if λ1(A) < 0.

Proof. If λ1(A) is the principal eigenvalue of A associated with an eigenfunc-
tion (0, φ) with φ ∈ W1,1((0, a2),C(�)) satisfying φ > 0, then

A(0, φ) − λ1(A)(0, φ) = (0, 0);

that is

(6.2)

⎧⎨
⎩−∂aφ + D[

∫
� J(x − y)φ(a, y)dy − φ(a, x)] − μ(a, x)φ− λ1(A)φ = 0,

φ(0, x) − ∫ a2

0 β(a, x)φ(a, x)da = 0.

For the sufficiency, that is λ1(A) < 0 implies the strong maximum principle, let
u ∈ W1,1((0, a2),C(�)) be nonzero and satisfy (6.1). Assume by contradiction
that there exists (a0, x0) ∈ [0, a2]×� such that u(a0, x0) = min[0,a2]×� u ≤ 0. Then
consider the set

� := {ε ∈ R : u + εφ ≥ 0 in [0, a2] ×�}.
Denote ε0 = min� and ψ = u + ε0φ. It is clear that ε0 ≥ 0 by the assumption of
u(a0, x0) ≤ 0 and that ψ ≥ 0.

Now if ε0 > 0, by simple computations, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂aψ− D[

∫
� J(x − y)ψ(a, y)dy − ψ(a, x)] + μ(a, x)ψ ≥ −ε0λ1(A)φ > 0,

(a, x) ∈ (0, a2) ×�,

ψ(0, x) ≥ ∫ a2

0 β(a, x)ψ(a, x)da, x ∈ �.
That is,

(6.3)

⎧⎨
⎩∂aψ>D[

∫
� J(x − y)ψ(a, y)dy − ψ(a, x)]−μ(a, x)ψ, (a, x)∈ (0, a2) ×�,

ψ(0, x)≥∫ a2

0 β(a, x)ψ(a, x)da, x∈�.
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It follows from the first inequality in (6.3) that ψ(a, ·) > U(0, a)ψ(0, ·) ≥ 0 for
(a, x) ∈ (0, a2] ×�. Plugging it into the second inequality, we have ψ(0, ·) > 0,
which by the comparison principle implies that ψ is strictly positive in [0, a2]×�.
This contradicts the fact that ε0 is the infimum of �.

If ε0 = 0, it follows that u ≥ 0 and thus u(a0, x0) = 0. Then if a0 > 0, recalling
again the constant of variation formula (2.9), one has

(6.4) u(a, x) ≥ e−Daπ(0, a, x)u(0, x) + D
∫ a

0
e−D(a−l)π(l, a, x)[Ku](l, x)dl.

Considering the above inequality at (a0, x0), it follows that for any l ∈ [0, a0], one
has [Ku](l, x0) = 0 and thus u(l, x1) = 0 for all x1 ∈ B(x0, r). Next consider (6.4)
at (l, x1), one has u(l, x2) = 0 for all x2 ∈ B(x1, r). Then continue this process as
we did in the proof of Theorem 4.6, we can get u(l, ·) ≡ 0 in � ∩ B(x0, nr) with
some n ∈ N large enough for all l ∈ [0, a0]. On the other hand, by the nonlocal
equation, the solution starting at u(a0, ·) ≡ 0 will be zero; i.e., u(l, ·) ≡ 0 when
l > a0, which implies u ≡ 0. This contradicts the fact that u is nonzero.

If a0 = 0, that is, u(0, x0) = 0, then the integral boundary condition implies that∫ a2

0
β(a, x0)u(a, x0)da ≤ u(0, x0) = 0,

which shows that u(·, x0) = 0 somewhere in [0, a2]. By Assumption 6.1, we can
choose a point ã ∈ [0, a2] and ã �= 0 such that u(ã, x0) = 0. Considering the
equation (6.4) at (ã, x0), we have the same contradiction as above. Hence u > 0 in
[0, a2] ×�, which concludes the desired result.

For the necessity, that is, the strong maximum principle implies λ1(A) < 0, the
proof is almost identical to that of Shen and Vo [45, Theorem F] once noting the
boundary condition is kept invariant, i.e.,

∫ a2

0 β(a, ·)φ(a)da = φ(0), thus is omitted
here. �

7 Discussions

Age-structured models with nonlocal diffusion could be used to characterize the
spatio-temporal dynamics of biological species and transmission dynamics of in-
fectious diseases in which the age structure of the population is a very important
factor and the dispersal is in long distance. There are very few theoretical studies on
the dynamics of such equations. In this paper, we studied the spectrum theory for
age-structured models with nonlocal diffusion under Dirichlet boundary condition.
First we gave sufficient conditions on the existence of principal eigenvalues and
presented a counterexample in which the principal eigenvalue does not exist. Then
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we used the generalized principal eigenvalues to characterize principal eigenvalues
and applied them to discuss the effects of the diffusion rate on principal eigenval-
ues. Finally we established the strong maximum principle for such age-structured
models with nonlocal diffusion. In our forthcoming paper [15] we will investigate
the existence, uniqueness and stability of such equations with monotone type of
nonlinearity on the birth rate.

We expect that the results on principal eigenvalues and the construction of
sub- and super-solutions can be applied to study traveling or pulsating wave solu-
tions and spreading speeds of age-structured models with nonlocal diffusion (see
Ducrot [14], Ducrot et al. [16–18] with random diffusion) and leave this for future
consideration.

Appendix A

A.1 Resolvent Positive Operators Theory. In this Appendix we recall
the theory of resolvent positive operators; the readers can refer to Thieme [53, 54]
for details. A linear operator A : Z1 → Z, defined on a linear subspace Z1 of Z, is
called positive if Ax ∈ Z+ for all x ∈ Z1∩Z+ and A is not the 0 operator, where Z+ is
a closed convex cone that is normal and generating, i.e. Z = Z+ −Z+,Z∗ = Z∗

+ −Z∗
+.

Definition A.1. A closed operator A in Z is called resolvent positive if the
resolvent set of A, ρ(A), contains a ray (ω,∞) and (λI −A)−1 is a positive operator
(i.e., maps Z+ into Z+) for all λ > ω.

Definition A.2. We define the spectral bound of a closed operator A by

s(A) = sup{Reλ ∈ R;λ ∈ σ(A)}

and the real spectral bound of A by

sR(A) = sup{λ ∈ R;λ ∈ σ(A)}.

Moreover, if A is a bounded linear operator, its spectral radius r(A) is given by

r(A) = sup{|λ| ∈ R;λ ∈ σ(A)}.

DefinitionA.3. Asemigroup {S(t)}t≥0 is said to be essentially compact if its
essential growth bound ω1(S) is strictly smaller than its growth bound ω(S),
where the growth bound and essential growth bound are defined respectively by

(A.1) ω(S) := lim
t→∞

log
∥∥S(t)

∥∥
t

, ω1(S) := lim
t→∞

logα[S(t)]
t

,
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and α denotes the measure of noncompactness, which is defined by

α[L] = inf{ε > 0,L(B) can be covered by a finite number of balls of radius ≤ ε},
where L is a closed and bounded linear operator in Z and B is the unit ball of Z.

By the formulas

re(S(t)) = eω1(S)t, r(S(t)) = eω(S)t,

we can see that equivalently re(S(t)) (the essential spectral radius of S(t)) is strictly
smaller than r(S(t)) (the spectral radius of S(t)) for one (actually for all) t > 0.

Denote the part of A in dom(A) by A0 and the part of B in dom(B) by B0, respec-
tively. Let A0 and B0 generate positive C0-semigroups {SA0 (t)}t≥0 and {TB0 (t)}t≥0,
respectively. If Z is an abstract L space (that is, a Banach lattice for which the
norm is additive on the positive cone Z+) and A and B are resolvent positive, then
by [52, Proposition 2.4] we have

s(A) = s(A0) = ω(S), s(B) = s(B0) = ω(T).

If B is a resolvent positive operator and C : dom(B) → Z is a positive linear
operator, then A = B + C is called a positive perturbation of B. If B + C is a
positive perturbation of B and λ > s(B), then C(λI−B)−1 is automatically bounded
(without C being necessarily closed). This is a consequence of Z+ being normal
and generating.

Theorem A.4 (Thieme [53, Theorem 3.5]). Let the cone Z+ be normal and

generating and A be a resolvent positive operator in Z. Then s(A) = sR(A) < ∞
and s(A) ∈ σ(A) whenever s(A) > −∞; further there is a constant c > 0 such that

‖(λI − A)−1‖ ≤ c‖(ReλI − A)−1‖ whenever Reλ > s(A).

Corollary A.5 (Thieme [53, Corollary 3.6]). Let the cone Z+ be normal and

generating and A be a resolvent positive operator in Z with λ > s(A). Then

r((λI − A)−1) = (λ− s(A))−1.

Theorem A.6 (Thieme [52, Theorems 3.4 and 4.9]). If C is a compact per-
turbator of B, SA0 (t) − TB0 (t) is a compact operator for t ≥ 0. Moreover, if

ω(T) < ω(S), then {SA0 (t)}t≥0 is an essentially compact semigroup.

Now define a positive resolvent output family for B by

(A.2) Fλ = C(λI − B)−1, λ > s(B).
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Theorem A.7 (Thieme [54, Theorem3.6]). Let Z be an orderedBanach space

with normal and generating cone Z+ and let A = B + C be a positive perturbation
of B. Then r(Fλ) is a decreasing convex function of λ > s(B), and exactly one of

the following three cases holds:
(i) if r(Fλ) ≥ 1 for all λ > s(B), then A is not resolvent positive;

(ii) if r(Fλ) < 1 for all λ > s(B), then A is resolvent positive and s(A) = s(B);
(iii) if there exists ν > λ > s(B) such that r(Fν) < 1 ≤ r(Fλ), then A is resolvent-

positive and s(B) < s(A) < ∞; further s = s(A) is characterized by r(Fs) = 1.

Definition A.8. The operator C : dom(B) → Z is called a compact pertur-
bator of B and A = B + C a compact perturbation of B if

(λI − B)−1Fλ : dom(B) → dom(B) is compact for some λ > s(B)

and
(λI − B)−1(Fλ)

2 : Z → Z is compact for some λ > s(B).

C is called an essentially compact perturbator of B and A = B + C an
essentially compact perturbation of B if there is some n ∈ N such that
(λI − B)−1(Fλ)n is compact for all λ > s(B).

Definition A.9. Let Fλ be a positive resolvent output family for B. A vector
x ∈ X+ is called conditionally strictly positive if the following holds:

If x∗ ∈ Z∗
+ and F∗

λx
∗ �= 0 for some (and then for all) λ > s(B), then 〈x, x∗〉 > 0.

Similarly a functional x∗ ∈ Z∗
+ is said to be conditionally strictly positive if the

following holds:

If x ∈ Z+ and Fλx �= 0 for some (and then for all) λ > s(B), then 〈x, x∗〉 > 0.

Theorem A.10 (Thieme [53, Theorems 4.7 and 4.9]). Assume that C is

an essentially compact perturbator of B. Moreover assume that there exists
λ2 > λ1 > s(B) such that r(Fλ1) ≥ 1 > r(Fλ2 ). Then s(B) < s(A) < ∞ and

the following hold:

(i) s(A) is an eigenvalue of A associated with positive eigenvectors of A and A∗,
has finite algebraic multiplicity, and is a pole of the resolvent of A.

If C is a compact perturbator of B, then all spectral values λ of A with
Reλ ∈ (s(B), s(A)] are poles of the resolvent of A and eigenvalues of A with

finite algebraic multiplicity.
(ii) 1 is an eigenvalue of Fs(A) and is associated with an eigenvector w ∈ Z of

Fs(A) such that (λI − B)−1w ∈ Z+ and with an eigenvector v ∗ ∈ Z∗
+ of F∗

s(A).
Actually s(A) is the largest λ ∈ R for which 1 is an eigenvalue of Fλ.
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Moreover, if Z is a Banach lattice and there exists a fixed point of F∗
s in Z∗

+ that is

conditionally strictly positive, then the following hold:
(iii) s = s(A) is associated with a positive eigenvector v of A such that

w = (s(A)I − B)v is a positive fixed point of Fs(A).
(iv) s is the only eigenvalue of A associated with a positive eigenvector.

Finally, assume in addition that all positive nonzero fixed points of Fs are condi-
tionally strictly positive. Then the following hold:

(v) s = s(A) is a first order pole of the resolvent of A.
(vi) The eigenspace of A associated with s(A) is one-dimensional and spanned by

a positive eigenvector v of A. The eigenspace of A∗ associated with s(A) is
also spanned by a positive eigenvector v ∗.

A.2 Theorem 4.8 when X = L1(�).

Proof. Note that in the proof of Theorem 4.8, the arguments are still valid
before (4.10). Thus we only show the latter part after (4.10). We denote the area
of � by |�|.

As a result,

‖(B2(αI − B1 − C)−1)n‖

≥ 1
|�|

∫
�

· · ·
∫
�

n∏
m=1

[
J(xm−1 − xm)

DM(α,D, θ)
1 − Gα(xm)

]
dxn · · · dx0,

which implies that for any x0 ∈ � and δ > 0,

(A.3)

‖(B2(αI − B1 − C)−1)n‖
≥ 1

|�|
×
∫
�

∫
�∩B(x0,δ)

· · ·
∫
�∩B(x0,δ)

n∏
m=1

[
J(xm−1 − xm)

DM(α,D, θ)
1 − Gα(xm)

]
dxn· · · dx1dx0

≥ 1
|�|

∫
�

[
inf

x∈�∩B(x0,δ)

∫
�∩B(x0,δ)

J(x − y)
DM(α,D, θ)
1 − Gα(y)

dy
]n

dx0,

where B(x0, δ) is the open ball in R
N centered at x0 with radius δ. We can use (4.6)

and Gelfand’s formula for the spectral radius of a bounded linear operator to find
that

(A.4)
|�| ≥

∫
�

inf
x∈�∩B(x0,δ)

∫
�∩B(x0,δ)

J(x − y)
DM(α,D, θ)
1 − Gα(y)

dydx0

:=
∫
�

I(x0, δ, α,D)dx0
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for all δ > 0. Note that x0 → I(x0, δ, α,D) is continuous since the integrand is
continuous.

Since J is continuous and J(0) > 0, there exist r > 0 and c0 > 0 such that
J ≥ c0 on B(0, r), the open ball in R

N centered at 0 with radius r. Hence,

(A.5)

I(x0, δ, α,D) ≥ inf
x∈�∩B(x0,δ)

∫
�∩B(x0,δ)∩B(x,r)

J(x − y)
DM(α,D, θ)
1 − Gα(y)

dy

≥ c0 inf
x∈�∩B(x0,δ)

∫
�∩B(x0,δ)∩B(x,r)

DM(α,D, θ)
1 − Gα(y)

dy

= c0

∫
�∩B(x0,δ)

DM(α,D, θ)
1 − Gα(y)

dy

provided 2δ ≤ r so that B(x0, δ) ⊂ B(x, r) whenever x ∈ B(x0, δ). In particular, for
any x0 ∈ �,

I(x0, r/2, α,D) ≥ c0

∫
�∩B(x0,r/2)

DM(α,D, θ)
1 − Gα(y)

dy.

Now we fix this δ. Since 1
1−Gα∗∗ /∈ L1

loc(�), there exists x∗ ∈ � such that

1
1 − Gα∗∗

/∈ L1(� ∩ B(x∗, r/2)),

which implies the existence of some ε > 0 small enough, such that

(A.6) c0

∫
�∩B(x∗,r/2)

DM(α∗∗ + ε,D, θ)
1 − Gα∗∗+ε(y)

dy ≥ 2|�|
|� ∩ B(0, δ)| .

It follows from (A.5) that∫
�

I(x, δ, α∗∗ + ε,D)dx ≥ c0

∫
�∩B(x∗,r)

∫
�∩B(x,δ)

DM(α∗∗ + ε,D, θ)
1 − Gα∗∗+ε(y)

dydx

= c0

∫
�∩B(x∗,r)

∫
�∩B(0,δ)

DM(α∗∗ + ε,D, θ)
1 − Gα∗∗+ε(y + x)

dydx

= c0

∫
�∩B(0,δ)

∫
�∩B(x∗,r)

DM(α∗∗ + ε,D, θ)
1 − Gα∗∗+ε(y + x)

dxdy.

Next define � : (� ∩ B(x∗, r)) × (� ∩ B(0, δ)) → R2N by

�(x, y) = (x + y, y) := (u, v).

It follows that the Jacobian determinant | ∂(u,v)
∂(x,y) | = 1. Since 2δ ≤ r, one has

(� ∩ B(x∗, r/2)) × (� ∩ B(0, δ)) ⊂ �((�∩ B(x∗, r)) × (� ∩ B(0, δ))).
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Thus by the change of variable formula for double integrals and (A.6) we have

c0

∫
�∩B(0,δ)

∫
�∩B(x∗,r)

DM(α∗∗ + ε,D, θ)
1 − Gα∗∗+ε(y + x)

dxdy

≥ c0

∫
�∩B(0,δ)

∫
�∩B(x∗,r/2)

DM(α∗∗ + ε,D, θ)
1 − Gα∗∗+ε(u)

dudv

≥ 2|�|.
But this contradicts (A.4). Thus our proof is complete. �

A.3 Ck Regularity of Eigenfunctions. For any x ∈ RN , we define two
operators

A(x) : {0} × W1,1(0, a2) → R × L1(0, a2)

and
F(x) : {0} × C([0, a2]) → R × C([0, a2])

respectively as follows:

A(x)(0, u) := (−u(0),−∂au − μ(a, x)u), F(x)(0, u) :=
(∫ a2

0
β(a, x)u(a)da, 0

)
.

Next we denote the principal eigenfunction of A(x)+F(x) associated with principal
eigenvalue α(x) for x ∈ R

N by (0, φ(·, x)) with normalization as follows:

(A.7)
∫ a2

0
β(a, x)φ(a, x)da = 1, ∀x ∈ R

N .

Now for x ∈ RN define a map

H : {0} × C([0, a2]) × (α∗∗ + D,∞) × R
N → {0} × C([0, a2]) × R

by

(A.8) H((0, u), α, x) =
(

(αI−A(x))−1F(x)(0, u)−(0, u),
∫ a2

0
β(a, x)u(a)da−1

)
,

where α∗∗ is from Proposition 3.4 with D = 0. In this subsection, we prove the
following lemma.

Lemma A.11. Assume that μ,β ∈ Ck(RN,L∞
+ (0, a2)) with k ≥ 0, then the

map x → ((0, φ(·, x)), α(x)) is of Ck from R
N to {0} × C([0, a2]) × R.

Proof. To prove the above result, first note by Proposition 3.11 with D = 0
that one has

H((0, φ(·, x)), α(x), x) = ((0, 0), 0), ∀x ∈ R
N.

Hence the smoothness of φ and α will follow from the implicit function theorem
applied to the map H.
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To that aim we fix x0 ∈ R
N and set

α0 = α(x0) and φ0(a) = φ(a, x0).

Since H is Ck-smooth, to apply the implicit function theorem and to prove the
smooth dependence with respect to x, it suffices to show that

D((0,u),α)H((0, φ0), α0, x0)((0, v), η)

=
(

(α0I − A(x0))
−1F(x0)(0, v) − (0, v) − η(α0I − A(x0))

−2F(x0)(0, φ0),∫ a2

0
β(a, x0)v(a)da

)

is invertible as a linear mapping from {0}×C([0, a2])×R into {0}×C([0, a2])×R.

To this end, given ((0, f ), ψ) ∈ {0} × C([0, a2]) × R, we need to prove the
existence and uniqueness of ((0, v), η) ∈ {0} × C([0, a2]) × R such that
(A.9)⎧⎨

⎩(α0I−A(x0))−1F(x0)(0, v)−(0, v)−η(α0I−A(x0))−2F(x0)(0, φ0)=(0, f ),∫ a2

0 β(a, x0)v(a)da = ψ.

Note that F(x0) has a finite rank and thus is a compact operator. It follows that the
operator (α0I −A(x0))−1F(x0) is compact from {0}×C([0, a2]) to {0}×C([0, a2]).
Hence, (α(x0)I − A(x0))−1F(x0) − I is a Fredholm operator with index 0.

Next we compute the adjoint operator of T := (α0I − A(x0))−1F(x0), which
is denoted by T∗. Let us first clarify the dual space of C([0, a2]), denoted by
C∗([0, a2]), which collects all the Radon measures in [0, a2], with the dual product
given as follows:

〈w∗, w〉 :=
∫ a2

0
w(s)w∗(ds), ∀w∗ ∈ C∗([0, a2]), w ∈ C([0, a2]).

Now by definition, for any w ∈ C([0, a2]) and w∗ ∈ C∗[0, a2], we have
〈(0, w∗),T(0, w)〉 = 〈T∗(0, w∗), (0, w)〉; that is,∫ a2

0
e−α0aπ(0, a, x0)

∫ a2

0
β(s, x0)w(s)dsw∗(da)

=
∫ a2

0
w(s)β(s, x0)

∫ a2

0
e−α0aπ(0, a, x0)w

∗(da)ds.

It follows that

T∗(0, w∗) =
(

0, β(·, x0)
∫ a2

0
e−α0aπ(0, a, x0)w

∗(da)
)
, ∀w∗ ∈ C∗([0, a2]).
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Now by the Fredholm Alternative Theorem, the first equation of (A.9) has a unique
solution (0, v1) ∈ {0} × C([0, a2]) if and only if

(0, f ) + η(α0I − A(x0))
−2F(x0)(0, φ0) ∈ N(I − T∗)⊥

with

N(I − T∗)⊥ :=
{

(0, h) ∈ {0} × C([0, a2]) :
∫ a2

0
h(a)w∗(da) = 0,

∀(0, w∗) ∈ N(I − T∗)
}
,

where N(T) denotes the kernel of T . Moreover, from the relation

T∗(0, w∗) = (0, w∗),

one obtains

(A.10) N(I − T∗) = span{a → β(a, x0)da} ⊂ C∗([0, a2]).

On the other hand, by some computations and (A.7), one obtains

(α0I − A(x0))
−1F(x0)(0, v) =

(
0, e−α0aπ(0, a, x0)

∫ a2

0
β(s, x0)v(s)ds

)
,

(α0I − A(x0))
−2F(x0)(0, φ0) = (0, ae−α0aπ(0, a, x0)).

It follows from (A.10) that

(A.11)
∫ a2

0
β(a, x0)f (a)da + η

∫ a2

0
β(a, x0)ae−α0aπ(0, a, x0)da = 0.

Observe that η can be uniquely solved from the above equation as follows:

η = −
∫ a2

0 β(a, x0)f (a)da∫ a2

0 β(a, x0)ae−α0aπ(0, a, x0)da
.

Now observe that

{0} × C([0, a2]) = span{(0, φ0)} ⊕ Range(I − T) = span{(0, φ0)} ⊕ N(I − T∗)⊥.

Then the Fredholm Alternative Theorem will give us a unique solution (0, v1)
of (A.9), which is in N(I − T∗)⊥. Finally, let us show the complete solution
of (A.9) in {0} × C([0, a2]). If v ∈ {0} × C([0, a2]), it can be decomposed as
v = ϑφ0 + v1, where v1 ∈ N(I − T∗)⊥ can be solved as above. From the second
equation of (A.9) we can figure out ϑ. Once it is done, the complete solution
of (A.9) exists and is unique. Indeed, one has from (A.9) and (A.7) that

ψ =
∫ a2

0
β(a, x0)v(a)da = ϑ

∫ a2

0
β(a, x0)φ0(a)da +

∫ a2

0
β(a, x0)v1(a)da

= ϑ +
∫ a2

0
β(a, x0)v1(a)da,

which implies that ϑ = ψ− ∫ a2

0 β(a, x0)v1(a)da.
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Finally, bounded inverse theorem applies to the linear map

D((0,u),α)H((0, φ(·, x0)), α(x0), x0)

and concludes that its inverse is also linear and bounded, and thus we can use im-
plicit function theorem to conclude the Ck−smoothness of the principal eigenpair
as stated in the result. �
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