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Oscillatory integral operators on manifolds and
related Kakeya and Nikodym problems

Song Dai, Liuwei Gong, Shaoming Guo, and Ruixiang Zhang

We consider Carleson-Sjölin operators on Riemannian manifolds
that arise naturally from the study of Bochner-Riesz problems on
manifolds. They are special cases of Hörmander-type oscillatory in-
tegral operators. We obtain improved Lp bounds of Carleson-Sjölin
operators in two cases: The case where the underlying manifold has
constant sectional curvature and the case where the manifold sat-
isfies Sogge’s chaotic curvature condition [Sog99].

The two results rely on very different methods: To prove the for-
mer result, we show that on a Riemannian manifold, the distance
function satisfies Bourgain’s condition in [GWZ22] if and only if
the manifold has constant sectional curvature. To obtain the second
result, we introduce the notion of “contact orders” to Hörmander-
type oscillatory integral operators, prove that if a Hörmander-type
oscillatory integral operator is of a finite contact order, then it al-
ways has better Lp bounds than “worst cases” (in spirit of Bourgain
and Guth [BG11] and Guth, Hickman and Iliopoulou [GHI19]),
and eventually verify that for Riemannian manifolds that satisfy
Sogge’s chaotic curvature condition, their distance functions al-
ways have finite contact orders.

As byproducts, we obtain new bounds for Nikodym maximal
functions on manifolds of constant sectional curvatures.
AMS 2000 subject classifications: Primary 42B25, 58J40.
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1. Introduction

We study several problems in harmonic analysis and their connections, in-
cluding Hörmander-type oscillatory integrals, Carleson-Sjölin operators on
manifolds, curved Kakeya problems and Nikodym problems on manifolds. In
the introduction, we will introduce these four problems, and give a brief re-
view of known results. Experts can skip the slightly long introduction and go
to Section 2 directly, where new results are stated. Notations are listed at the
end of the introduction.
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Oscillatory integral operators on manifolds 939

1.1. Hörmander-type oscillatory integrals

Consider Hörmander-type oscillatory integral operators

(1.1) T
(φ)
N f(x, t) :=

∫
Rn−1

eiNφ(x,t;y)a(x, t; y)f(y)dy.

Here x ∈ R
n−1, t ∈ R, y ∈ R

n−1 and N ∈ R is a large real number. To simplify
notation, we often write x = (x, t). Moreover, a(x, t; y) is a smooth function
supported in a bounded open neighborhood of the origin. On the support of
a(x, t; y), let us assume that φ is a smooth function and that

(H1) rank∇x∇yφ(x, t; y) = n− 1;
(H2) if we define

(1.2) G0(x; y) := ∂y1∇xφ(x; y) ∧ · · · ∧ ∂yn−1∇xφ(x; y),

then

(1.3) det∇2
y 〈∇xφ(x; y), G0 (x; y0)〉

∣∣
y=y0

�= 0.

The function φ(x, t; y) will be refereed to as the phase function of the operator
T

(φ)
N , and a(x, t; y) will be refereed to as its amplitude function. By saying that

the phase function φ(x, t; y) satisfies Hörmander’s non-degeneracy condition,
we mean that it satisfies (H1) and (H2) above.

We are interested in proving estimates of the form

(1.4)
∥∥T (φ)

N f
∥∥
Lp(Rn) �φ,a,p,ε N

−n
p
+ε
∥∥f∥∥

Lp(Rn−1),

for every ε > 0 and every N ≥ 1, and for a range of exponents p that is as
large as possible.

For estimates of the form (1.4), the simplest and perhaps the most inter-
esting phase function is

(1.5) φ(x, t; y) = x · y + t|y|2.

Fourier restriction conjecture. The estimate (1.4) holds for all

(1.6) p ≥ 2n
n− 1 ,

with the phase function φ(x, t; y) given by (1.5).
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940 Song Dai et al.

Hörmander [Hor73] asked whether for phase functions φ satisfying (H1)
and (H2), the estimate (1.4) could still hold for the same range of p as in (1.6).
Let us briefly review known results on (1.4).

To simplify our discussion, we will always work in a small neighborhood
of the origin, and therefore we will pick a sufficiently small εφ > 0 depending
on φ, and assume that a(x, t; y) is supported in B

n−1
εφ

×B
1
εφ
×B

n−1
εφ

.1 We often
without loss of generality assume that φ(x; y) is in its normal form at the
origin, that is,

(1.7) φ(x; y) = x · y + t〈y, Ay〉 + O(|t||y|3 + |x|2|y|2),

where A is an (n − 1) × (n − 1) non-degenerate matrix. Normal forms (1.7)
were introduced by Hörmander [Hor73] and Bourgain [Bou91] to simplify
calculations. It is elementary to see ([Bou91, page 323]) that, after simple
transformations, all phase functions φ(x, t; y) satisfying Hörmander’s non-
degeneracy condition can be written in normal form.

Theorem 1.1 (Hickman and Iliopoulou, [HI22]). Let φ be a phase function
of the form (1.7). Let s0 be the signature of the matrix A. Then (1.4) holds
for all

(1.8) p �
{

2 · s0+2(n+1)
s0+2(n−1) if n is odd,

2 · s0+2n+3
s0+2n−1 if n is even.

Hickman and Iliopoulou [HI22], by generalizing the examples constructed
earlier by Bourgain [Bou91], Wisewell [Wis05], Minicozzi and Sogge [MS97]
and Bourgain and Guth [BG11], also showed that the range of p given by (1.8)
is sharp. More precisely, there exists a phase function of the form (1.7) with
s0 being the signature of A, and the estimate (1.4) fails for p outside the
ranges given in (1.8).

Several special cases of Theorem 1.1 are particularly interesting and were
proven earlier.

Theorem 1.2 (Stein [Ste84], Bourgain and Guth [BG11]). Let φ be a phase
function of the form (1.7). Assume that A is of smallest possible signature,
that is, sgn(A) = 1 when n is even and sgn(A) = 0 when n is odd. Then (1.4)
holds for all

(1.9) p �
{

2 · n+1
n−1 if n is odd,

2 · n+2
n if n is even.

1Here and below, we refer to the notation section at the end of the introduction.
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Oscillatory integral operators on manifolds 941

Theorem 1.3 (Lee [Lee06]; Guth, Hickman, Iliopoulou, [GHI19]). Let φ
be a phase function of the form (1.7). Assume that A is positive definite.
Then (1.4) holds for all

(1.10) p �
{

2 · 3n+1
3n−3 if n is odd,

2 · 3n+2
3n−2 if n is even.

Recently, Guo, Wang and Zhang [GWZ22] imposed extra assumptions on
the phase function φ and proved (1.4) for some p that goes beyond the sharp
range given by (1.10).

Definition 1.4 (Bourgain’s condition, [Bou91], [GWZ22]). Let φ be a phase
function satisfying Hörmander’s non-degeneracy conditions. We say that it
satisfies Bourgain’s condition at (x0; y0) if(

(G0 · ∇x)2 ∇2
yφ
)

(x0; y0) is a multiple of
(
(G0 · ∇x)∇2

yφ
)
(x0; y0) .(1.11)

The constant here is allowed to depend on x0 and y0.

Theorem 1.5 (Guo, Wang and Zhang [GWZ22]). Let φ be a phase function
of the form (1.7) with A positive definite. Moreover, assume that φ satisfies
Bourgain’s condition for every (x0; y0). Then (1.4) holds for all

(1.12) p > pGWZ(n) := 2 + 2.5921
n

+ O
(
n−2) .

Bourgain’s condition is very natural when studying Hörmander-type os-
cillatory integrals. On the one hand, Bourgain [Bou91] proved that if the
phase function φ fails Bourgain’s condition at some (x0; y0), then (1.4) can
not hold for all

(1.13) p ≥ 2n
n− 1 ,

the range of the Fourier restriction conjecture (see (1.6)). More precisely, there
exists p > 2n/(n−1) depending only on the dimension n such that (1.4) fails
at this p.

On the other hand, it is conjectured in [GWZ22] that if φ satisfies Bour-
gain’s condition at every (x0; y0), then (1.4) holds for all p ≥ 2n/(n− 1).
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942 Song Dai et al.

1.2. Curved Kakeya problem

Associated to Hörmander-type oscillatory integrals, one can define Kakeya
sets. Given a phase function φ(x; y) satisfying (H1) and (H2), we pick εφ > 0
to be a sufficiently small constant depending on φ.

Definition 1.6 (Curved tubes). For y ∈ B
n−1
εφ

, x ∈ B
n
εφ

and 0 < δ < εφ,
define

(1.14)
Γ(φ)
y (x) :=

{
x′ ∈ R

n ∩ B
n
2εφ : ∇yφ(x′; y) = ∇yφ(x; y)

}
,

T δ,(φ)
y (x) :=

{
x′ ∈ R

n ∩ B
n
2εφ : |∇yφ(x′; y) −∇yφ(x; y)| < δ

}
.

If x is of the form (ω, 0), that is, the last coordinate is 0, then we often abbre-
viate Γ(φ)

y (x) and T
δ,(φ)
y (x) to Γ(φ)

y (ω) and T
δ,(φ)
y (ω). If it is clear from the con-

text which φ is involved, we will abbreviate Γ(φ)
y (x), T δ,(φ)

y (x) to Γy(x), T δ
y (x),

respectively. We will call T δ
y (ω) the δ-tube associated to the phase function

φ(x; y) with frequency y and initial location ω; Γy(ω) will be called the central
curve of T δ

y (ω).

Definition 1.7 (Curved Kakeya sets). A set E ⊂ R
n with Ln(E) = 0 is

a curved Kakeya set (associated to φ) if for all y ∈ B
n−1
εφ

there exists an
ω ∈ B

n−1
εφ

such that Γy(ω) ⊂ E.

Definition 1.8 (Curved Kakeya maximal function, [Bou91]). Given a phase
function φ(x; y) satisfying (H1) and (H2). For y ∈ B

n−1
εφ

and 0 < δ < εφ, we
define

(1.15) K(φ)
δ f(y) := sup

ω∈Bn−1
εφ

1
Ln(T δ,(φ)

y (ω))

∫
T

δ,(φ)
y (ω)

|f |.

If it is clear from the context which φ is involved, then we often abbreviate
K(φ)

δ f to Kδf .

The problems of studying the Hausdorff dimensions of curved Kakeya sets
will be referred to as curved Kakeya problems. Among all the phase functions
φ, the one that is perhaps the most interesting is given by (1.5), that is,

(1.16) φ(x, t; y) = x · y + t|y|2.

In this case, the central curve Γy(ω) becomes

(1.17) {(x, t) : x + 2ty = ω},

For the author's personal use only.
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Oscillatory integral operators on manifolds 943

which is a straight line. Kakeya sets associated to (1.16) will be referred to
as the traditional Kakeya sets, or the traditional straight line Kakeya sets.
Moreover, for this special phase function, we have

Kakeya conjecture. Let φ be given by (1.16). Then every Kakeya set associ-
ated to φ must have full Hausdorff dimension, that is, it must have Hausdorff
dimension n.

Maximal Kakeya conjecture. Let φ be given by (1.16). Take εφ = 1. Then
the associated Kakeya maximal operator Kδ satisfies

(1.18)
∥∥Kδf

∥∥
Ln(Bn−1) �n,ε δ

−ε
∥∥f∥∥

Ln(Rn),

for every ε > 0 and every δ ∈ (0, 1).

It is well-known that

Fourier restriction conjecture
=⇒ Maximal Kakeya conjecture
=⇒ Kakeya conjecture.

(1.19)

Similar to the above implications, for Hörmander-type oscillatory integrals
and curved Kakeya problems, we also have

Theorem 1.9 (Wisewell [Wis05]). Given a phase function φ(x; y) satisfying
(H1) and (H2). Let εφ > 0 be a sufficiently small constant depending on φ.

(1) Suppose that

(1.20)
∥∥T (φ)

N f
∥∥
Lp(Bn

εφ
) �φ,p,n,a N−n

p

∥∥f∥∥
Lp(Rn−1),

for some p > 1, every N ≥ 1 and every a supported in B
n−1
εφ

×B
1
εφ
×B

n−1
εφ

,
then the curved Kakeya maximal function is of restricted weak type (q, q)
with norm at most δ−2(n

q
−1) where q := (p/2)′. In particular, as p →

2n
n−1 , we see that q → n.

(2) If (1.20) holds for all p > 2n
n−1 , the largest possible range, then every

curved Kakeya set associated to φ must have Hausdorff dimension n.

Curved Kakeya problems are studied intensively in Wisewell’s thesis
[Wis03] and her paper [Wis05]. We refer interested readers to these two works
for more results she obtained.
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944 Song Dai et al.

1.3. Carleson-Sjölin operators on manifolds

Let us work with a smooth Riemannian metric {gij(x)}1≤i,j≤n defined on a
small open neighborhood of 0 ∈ R

n. The Riemannian manifold is denoted
by M. We will only study curvature properties of M near the origin. Let
εM > 0 be a small constant depending on M. Let a(x;y) : M × M → R

be a compactly supported smooth function supported on B
n
εM × B

n
εM , and

supported away from the diagonal. Define

(1.21) T
(M)
N f(x) :=

∫
M

eiNdist(x,y)a(x;y)f(y)dy,

where dist refers to the distance function on M, and call it a Carleson-Sjölin
operator on the manifold M. Our goal is to prove

(1.22)
∥∥T (M)

N f
∥∥
Lp(M) �M,p,a,ε N

−n
p
+ε
∥∥f∥∥

Lp(M),

for every ε > 0, N ≥ 1, and for a range of p that is as large as possible.

If one takes the metric g to the identity matrix at every point, then we
have

Bochner-Riesz conjecture. The estimate (1.22) holds for all

(1.23) p ≥ 2n
n− 1 ,

if M is taken to be the Euclidean space.

Moreover, Tao [Tao99] proved that

(1.24) Bochner-Riesz conjecture =⇒ Fourier restriction conjecture.

The study of Carleson-Sjölin operators on general Riemannian manifolds also
has a long history, and the operator (1.21) already appeared in Minicozzi
and Sogge [MS97] (see also Sogge [Sog17, page 290]). To prove bounds of the
form (1.22), we will follow the Carleson-Sjölin reduction (see Carleson-Sjölin
[CS72]). Let M′ be a hyperplane of Rn intersecting B

n
εM . Let a(x) be a smooth

function supported on B
n
εM satisfying

(1.25) dist
(
supp(a),M′

)
> 0.

For the author's personal use only.
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Oscillatory integral operators on manifolds 945

To prove (1.22), it suffices to prove

(1.26)
∥∥R(M,M′)

N f
∥∥
Lp(M) �M,p,a,ε N

−n
p
+ε
∥∥f∥∥

Lp(M′),

for all f supported on M′ ∩ B
n
εM , where

(1.27) R
(M,M′)
N f(x) :=

∫
M′

eiNdist(x,y)a(x)f(y)dHn−1(y),

and the implicit constant in (1.26) depends also on the distance in (1.25) but
not on each individual M′. We will call R(M,M′)

N a reduced Carleson-Sjölin
operator on the manifold M.

We will see below that the range of p for which (1.26) holds often deter-
mines curvature properties of the manifold M near the origin.

1.4. Nikodym problems on manifolds

Take the manifold M as in Subsection 1.3. Recall that εM > 0 is a small real
number that is allowed to be sufficiently small depending on M, and that we
use dist to denote its distance function. For x ∈ B

n
εM/2, we use γx to denote

the portion of a geodesic passing through x that lies in B
n
εM . Moreover, for

λ ∈ (0, 1), denote

(1.28) γx,λ−trun := {x′ ∈ γx : dist(x,x′) ≥ 1 − λ}.

Definition 1.10 (Nikodym set, Sogge [Sog99]). Let λ ∈ (0, 1). A set E ⊂ R
n

is said to be a λ-Nikodym set if

(1.29) Ln({x ∈ B
n
εM/2 : There exists γx such that γx,λ−trun ⊂ E}) > 0.

A set E is said to be Nikodym if it is λ-Nikodym for every λ < 1.2

For δ > 0, let γδx be the δ-neighborhood of γx. Similarly, we define
γδx,λ−trun.

Definition 1.11 (Nikodym maximal function, Sogge [Sog99]). Let δ ∈ (0, 1)
and λ ∈ (0, 1). For a function f defined on M and x ∈ B

n
εM/2, define

(1.30) f∗
δ (x) := sup

γx

δ−(n−1)
∫
γδ
x

|f |,

2The definition of Nikodym sets has a slightly different formulation from that in
Sogge [Sog99], but they are essentially the same.
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and call it the Nikodym maximal function. Moreover, define

(1.31) Nδ,λf(x) := sup
γx

δ−(n−1)
∫
γδ
x,λ−trun

|f |,

and call it the λ-Nikodym maximal function.

Theorem 1.12 (Sogge [Sog99], Xi [Xi17]). Assume that the manifold M with
dimension n ≥ 3 has constant sectional curvature. Then for sufficiently small
εM > 0 depending on M, it holds that

(1.32)
∥∥f∗

δ

∥∥
Lq(Bn

εM/2)
�q,p,M,ε δ

1−n
p
−ε
∥∥f∥∥

Lp(M),

for all δ ∈ (0, 1), ε > 0 and all

(1.33) 1 ≤ p ≤ n + 2
2 , q = (n− 1)p′.

Consequently, every Nikodym set in M must have Hausdorff and Minkowski
dimensions at least n+2

2 .

In Sogge [Sog99], the author, after investigating bounds for Nikodym max-
imal operators for three dimensional manifolds of constant curvatures, also
considered manifolds whose sectional curvatures are not constant. To state
Sogge’s result, let us first recall several concepts from Riemannian geome-
try.

Let M be a three-dimensional manifold as in Subsection 1.3 with Rieman-
nian metric g = {gij}1≤i,j≤3. Denote by Ric the Ricci tensor on M, which is
a (0, 2)-tensor.3 Denote

(1.34) R̄ic : TM → TM,

which satisfies

(1.35) g(R̄ic(X1), X2) := Ric(X1, X2), ∀X1, X2 ∈ TM.

Definition 1.13 (Chaotic curvature, Sogge [Sog99]).4 Let γ be a geodesic
parametrized by arclength with γ(0) = 0 ∈ M. Take a unit vector X(0) ∈

3We refer to Subsection 3.1 for these standard definitions from Riemannian ge-
ometry.

4The definition of chaotic curvature here is formulated slightly differently from
Sogge’s, see [Sog99, Definition 3.1].
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Tγ(0)M with γ̇(0) ⊥ X(0). Let X(t) ∈ Tγ(t)M be the parallel transport of
X(0) along γ. Denote

(1.36) Y (t) := R̄ic(X(t)),

and let Y ⊥(t) be the projection of Y (t) to the orthonormal complement of the
space spanned by X(t) and γ̇(t). We say that the manifold M satisfies the
chaotic curvature at the origin, if

(1.37) |Y ⊥(0)| + |∇γ̇Y
⊥(0)| �= 0,

for all geodesics γ passing through the origin, and all X(t) given above.

Theorem 1.14 (Sogge [Sog99]). Let M be a three-dimensional manifold as
in Subsection 1.3. Assume that M satisfies the chaotic curvature condition
at the origin, then every Nikodym set on M must have Minkowski dimension
≥ 7/3.

Later, Sogge, Xi and Xu [SXX18] proved that Theorem 1.14 is stable
under perturbations. Let us be slightly more precise. Let M be a manifold
satisfying Sogge’s chaotic curvature condition. If we give a “small” perturba-
tion to the metric of M, then the new metric also satisfies Sogge’s chaotic
curvature condition.

Notations. We list notations that are used in the introduction and in the
rest of the paper.

1. For ε > 0 and x ∈ Rn, we let Bn
ε (x) denote the ball of radius ε in Rn

centered at x. If ε = 1, we often abbreviate B
n
1 (x) to B

n(x); if x = 0,
then we often abbreviate B

n
ε (x) to B

n
ε .

2. For x,y ∈ R
n, their last components often play a distinct role compared

with the first n − 1 one, and therefore we often write x = (x, t),y =
(y, τ), with x, y ∈ R

n−1.
3. For a vector v ∈ R

n, we use |v| to denote its standard Euclidean length.
For a manifold M with metric tensor g, we use |v| to denote its length√

gp(v,v) for p ∈ M,v ∈ TpM.
4. We will use f̂ or (f)∧ to denote the Fourier transform of f .
5. For a set E, we will use 1E to denote its indicator function.
6. For a set E ⊂ R

n and δ > 0, we use Nδ(E) to denote the δ-neighborhood
of E.

For the author's personal use only.
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948 Song Dai et al.

7. For two non-negative real numbers a, b and a parameter p, we use a �p b
to mean that there exists a constant Cp depending only on p such that
a ≤ Cpb. For instance, let T : Lp(Rn) → Lp(Rn) be an operator. We use

(1.38)
∥∥Tf∥∥

Lp(Rn) �p

∥∥f∥∥
Lp(Rn)

to mean that there exits Cp ∈ R depending only on the Lebesgue ex-
ponent p such that

(1.39)
∥∥Tf∥∥

Lp(Rn) ≤ Cp

∥∥f∥∥
Lp(Rn),

for all functions f . If it is clear from the context which parameters p
are involved, then we often abbreviate a �p b to a � b. Similarly, we
define a �p b. Moreover, we use a �p b to mean a �p b and a �p b.

8. For a set E ⊂ R
n, we use Ln(E) to refer to its Lebesgue measure.

9. For p ∈ [1,∞], we use p′ to denote its Hölder dual, that is, 1/p+1/p′ = 1.
10. All manifolds in the current paper are assumed to be smooth.
11. For a rectangle � ⊂ R

n and r > 0, we use r� to denote the rectangle
with the same center as R, but dilated by r with respect to the center
of R.

12. We try to make sure that the same notations are not repeatedly used
within a same section, unless otherwise specified. However, if a same
notation appears in different sections, it may refer to different things.
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2. Statement of main results

The first result is about the connections among the operators introduced
above, and is well known. Roughly speaking, it says that

Hörmander-type oscillatory integrals
=⇒ reduced Carleson-Sjölin on manifolds
=⇒ λ-Nikodym maximal functions.

(2.1)

Let us be more precise. Let M be a Riemannian manifold as in Subsection 1.3
of dimension n ≥ 3, and let εM > 0 be a small constant that is allowed to
depend on M. Recall reduced Carleson-Sjölin operators defined in (1.26).

Theorem 2.1. a) Reduced Carleson-Sjölin operators satisfy Hörmander’s
non-degeneracy conditions.

b) Assume that

(2.2)
∥∥R(M,M′)

N f
∥∥
Lp(M) �M,M′,p,a N−n

p

∥∥f∥∥
Lp(M′),

for some p > 1, every N ≥ 1, every hyperplane M′ intersecting B
n
εM

and every smooth amplitude function satisfying the separation condi-
tion (1.25). Then the λ-Nikodym maximal function Nδ,λ is of restricted
weak type (q, q) with norm

(2.3) �λ,M,p δ
−2(n

q
−1),

where q := (p/2)′, for every λ < 1.

The formulation of item b) in Theorem 2.1 is taken from Wisewell’s The-
orem 1.9 in Subsection 1.2. Indeed, the proof of item b) is also essentially the
same as that of Theorem 1.9.

We should also mention that curved Kakeya maximal operators are also
closely related to λ-Nikodym maximal operators. Indeed in many interesting
cases, they are essentially the same objects. Later we will use this relation,
for instance in the proof of Theorem 2.2. However, due to purely technical
reasons, we do not have a clean way to state such relations.

In the appendix, we will explain a key difference between curved Kakeya
maximal operators and λ-Nikodym maximal operators.

Before stating the next result, let us recall the result in [GWZ22], as
stated in Theorem 1.5. In [GWZ22], the authors considered Hörmander-type
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oscillatory integrals, and showed that if the phase function φ(x; y) satisfies
Bourgain’s condition everywhere, then all the current techniques that have
been developed so far in the study of the Fourier restriction conjecture can
also be applied to Hörmander-type oscillatory integrals.

Indeed, the same principle applies also to the study of curved Kakeya
problems. Let n ≥ 3. For phase functions φ satisfying the same assumptions
as in Theorem 1.5, the associated curved Kakeya sets satisfy the same dimen-
sion bounds as what Hickman, Rogers and Zhang [HRZ22] and Zahl [Zah21]
obtained for the traditional straight line Kakeya sets. Let us be more precise.
Denote

(2.4) qHRZ(n) := 1 + min
2�k�n

max
{

2n
(n− 1)n + (k − 1)k ,

1
n− k + 1

}
,

which is the exponent that appeared in [HRZ22, Theorem 1.2]. Moreover,
denote

(2.5) pHRZ(n) := (qHRZ(n))′.

Then one can follow the same argument as in [HRZ22], use the (strong) poly-
nomial Wolff axioms for φ obtained in [GWZ22, Theorem 1.2, Theorem 6.2],
a standard equivalence argument (see for instance [Mat15, Proposition 22.6])
and obtain

(2.6)
∥∥K(φ)

δ f
∥∥
Lp(Bn−1

εφ
) �φ,ε,p δ

−εδ−(n−1− n
p′ )
∥∥f∥∥

Lp(Rn),

for every

(2.7) 1 < p ≤ pHRZ(n),

every ε > 0, δ ∈ (0, 1). In particular, for every p in the above range, the
exponent of δ on the right hand side is sharp. Moreover, it seems reasonable
to conjecture that (2.6) holds for all 1 < p ≤ n, that is, the same range of p
as in the maximal Kakeya conjecture.

As a corollary of (2.6) (see [Mat15, Theorem 22.9]), we obtain that every
curved Kakeya set associated to φ must have Hausdorff dimension at least

(2.8) n−
(
n− 1 − n

qHRZ(n)

)
pHRZ(n) =: dHRZ(n).

If we let n → ∞, then (see [HRZ22, Subsection 9.2])

(2.9) dHRZ(n) = (2 −
√

2)n + O(1).
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It is worth mentioning that the asymptotic (2.9) obtained by Hickman, Rogers
and Zhang [HRZ22] for the dimensions of the traditional Kakeya sets (for
straight lines) is the same as that of Katz and Tao [KT02]. Moreover, these
two results [HRZ22] and [KT02] together give the currently best known results
for the dimensions of the traditional Kakeya sets in high dimensions.

Let us state our next result, which involves bounds for reduced Carleson-
Sjölin operators defined in (1.26), and for λ-Nikodym maximal operators in
Definition 1.11. Let M be a Riemannian manifold as in Subsection 1.3 of
dimension n ≥ 3. let εM > 0 be a small constant that is allowed to depend
on M.

Theorem 2.2. (a) Assume that M is of constant sectional curvature. Re-
call the definition of pGWZ(n) in (1.12). Then

(2.10)
∥∥∥R(M,M′)

N f
∥∥∥
Lp(M)

�M,M′,a,p,ε N
−n

p
+ε
∥∥f∥∥

Lp(M′),

for all p ≥ pGWZ(n), ε > 0, N ≥ 1, all hyperplanes M′ intersecting
B
n
εM , and all functions a(x) satisfying the separation condition (1.25).

(b) Assume M is analytic and its sectional curvature is not constant. Then
we can find p > 2n

n−1 , a small positive εM > 0, a hyperplane M′ in-
tersecting B

n
εM , a smooth function a(x) satisfying the separation condi-

tion (1.25), such that (2.10) fails.
(c) Assume that M is of constant sectional curvature. Then

(2.11)
∥∥Nδ,λf

∥∥
Lp(Bn

εM/2)
�p,ε,λ,M δ−εδ−(n−1− n

p′ )
∥∥f∥∥

Lp(M),

for every λ < 1, ε > 0, δ ∈ (0, 1) and every

(2.12) 1 < p ≤ pHRZ(n).

Consequently, every Nikodym set must have Minkowski dimension ≥
dHRZ(n).

Recall Carleson-Sjölin operators defined in (1.21):

(2.13) T
(M)
N f(x) :=

∫
M

eiNdist(x,y)a(x;y)f(y)dy,

where a(x;y) : M × M → R is a compactly supported smooth function
supported on B

n
εM ×B

n
εM , and supported away from the diagonal. By item a)
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of Theorem 2.2 and Fubini’s theorem (Carleson-Sjölin reduction as explained
in Subsection 1.3), we obtain

Corollary 2.3. Let M be a Riemannian manifold of constant sectional cur-
vature. Let n ≥ 3 be the dimension of M. Then

(2.14)
∥∥T (M)

N f
∥∥
Lp(M) �M,p,a,ε N

−n
p
+ε
∥∥f∥∥

Lp(M),

for all

(2.15) p ≥ pGWZ(n),

all ε > 0 and N ≥ 1.

In particular, if we take M to be the standard Euclidean space, then the
bound (2.14) with the range (2.15) is precisely what Guo, Wang and Zhang
[GWZ22] obtained for the (Euclidean) Bochner-Riesz operator. Moreover, this
bound is the currently best known bound for the Bochner-Riesz conjecture
(stated in Subsection 1.3). Our bound (2.14) generalizes that of Guo, Wang
and Zhang [GWZ22] for the Euclidean distance functions to distance functions
on manifolds of constant curvatures.

Item (b) in Theorem 2.2 says that if M does not have constant sectional
curvature, then the reduced Carleson-Sjölin operator will not satisfy as good
bounds as those on manifolds of constant sectional curvature. By adapting
the argument in Sogge [Sog17, page 290], one can also show that for manifolds
whose sectional curvatures are not constant, the estimate (2.14) also fails for
some p > 2n/(n− 1).

Item (c) in Theorem 2.2 is an improvement over the result of Xi [Xi17] as
stated in Theorem 1.12. Recall that Sogge [Sog99] proved that Nikodym sets
on three dimensional manifolds of constant curvatures must have Minkowski
dimension ≥ 5/2. Xi [Xi17] generalized this result to higher dimensions, and
proved that Nikodym sets on n dimensional manifolds of constant curvatures
must have Minkowski dimension ≥ (n + 2)/2.

It is reasonable to conjecture that for manifolds of constant sectional
curvatures, the bound (2.10) holds for the largest possible range

(2.16) p ≥ 2n
n− 1 ,

the same as the range (1.6) in the Fourier restriction conjecture. It is also
reasonable to conjecture that every Nikodym set on manifolds of constant

For the author's personal use only.

For the author's personal use only.



Oscillatory integral operators on manifolds 953

sectional curvatures must have a full Hausdorff dimension. Theorem 2.2 pro-
vides some partial evidence for such conjectures.

So far we have studied the curved Kakeya problem for φ satisfying Bour-
gain’s condition, bounds for (reduced) Carleson-Sjölin operators on mani-
folds of constant sectional curvatures, and Nikodym problems on manifolds
of constant sectional curvatures. The settings in these problems are perhaps
the “best” possible in the sense that we conjecture all these problems would
eventually have the same answers to their Euclidean counterparts.

Moreover, Bourgain [Bou91], Wisewell [Wis05], Minicozzi and Sogge
[MS97], Bourgain and Guth [BG11], Sogge, Xi and Xu [SXX18], Guth, Hick-
man and Iliopoulou [GHI19] and Hickman and Iliopoulou [HI22] have con-
structed “worst” possible examples in these problems.

Our next goal is to study “intermediate” examples. We will only consider
the case n = 3.

Let φ(x, t; y) be a phase function satisfying Hörmander’s non-degeneracy
conditions. Let εφ > 0 be a small constant depending on φ. Fix (x0, t0; y0) ∈
B
n−1
εφ

× B
1
εφ
× B

n−1
εφ

. Let X0(t) be the unique solution to

(2.17) ∇yφ(X0(t) + x0, t + t0; y0) = ∇yφ(x0, t0; y0).

The existence and uniqueness of the solution are guaranteed by Hörmander’s
non-degeneracy conditions, and that εφ is chosen sufficiently small. Denote

(2.18) φ0(x, t; y) := φ(x + x0, t + t0; y + y0) − φ(x0, t0; y + y0).

Moreover, denote

(2.19) Dij(t) := ∂yi∂yjφ0(X0(t), t; 0), 1 ≤ i, j ≤ 2,

and

(2.20) D(t) := det
[
D11(t) D12(t)
D21(t) D22(t)

]
.

Take an integer k ≥ 4. We say that the phase function φ is of a contact order
≤ k at the point (x0, t0) if the matrix

(2.21)

⎡⎢⎢⎢⎣
D′(0) D′′(0) . . . D(k)(0)
D′

11(0) D′′
11(0) . . . D

(k)
11 (0)

D′
12(0) D′′

12(0) . . . D
(k)
12 (0)

D′
22(0) D′′

22(0) . . . D
(k)
22 (0)

⎤⎥⎥⎥⎦
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has rank 4. The matrix (2.21) already implicitly appeared in Bourgain’s work
[Bou91], see equation (6.160) in [Bou91, page 364].

Theorem 2.4. Let k ∈ N and k ≥ 4. Take n = 3 and φ(x, t; y) a smooth
phase function of the normal form (1.7), that is,

(2.22) φ(x; y) = x · y + t〈y, Ay〉 + O(|t||y|3 + |x|2|y|2).

Assume that A is positive definite and that the contact order of φ at the origin
x = 0, t = 0, y = 0 is ≤ k. Then there exists εφ > 0 depending on φ, and

(2.23) εk := 1
9k − 6 ,

such that

(2.24)
∥∥T (φ)

N f
∥∥
Lp(R3) �φ,a,p,ε N

− 3
p
+ε
∥∥f∥∥

Lp(R2)

holds for all

(2.25) p ≥ 10
3 − εk,

all ε > 0, N ≥ 1, and all smooth amplitude functions a supported in B2
εφ

×
B

1
εφ
× B

2
εφ

.

If we take k = 2 (which is not allowed by Theorem 2.4), then the
range (2.25) becomes p ≥ 3.25, the range of Guth [Gut16]. This is not a
coincidence, and in the proof of Theorem 2.4 we will generalize the polyno-
mial Wolff axioms in [Gut16] to Hörmander-type oscillatory integrals.

If we take k = 4, the smallest value of k that is allowed by Theorem 2.4,
then the range (2.25) becomes p ≥ 3.3, the range of Bourgain and Guth
[BG11, Theorem 2]. This seems very likely just a coincidence.

The notion of contact orders also in some sense already appeared in
Sogge’s work [Sog99].

Theorem 2.5. Let M be a smooth manifold as in Subsection 1.3 of dimension
three. Assume that M satisfies Sogge’s chaotic curvature condition at the
origin. Then there exists εM > 0 depending only on M, such that if we let

(2.26) φ(x, t; y) := dist((x, t), (y, y3)),

where y3 ∈ (0, εM), then φ has a contact order ≤ 4 at (x, t; y) = (0, 0; 0).
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As an immediate corollary of Theorem 2.5 and Theorem 2.4, we obtain

Corollary 2.6. Let M be a three dimensional manifold as in Theorem 2.5.
Then the Carleson-Sjölin operator T

(M)
N on M satisfies

(2.27)
∥∥T (M)

N f
∥∥
Lp(M) �M,p,a,ε N

− 3
p
+ε
∥∥f∥∥

Lp(M),

for all p ≥ 3.3, N ≥ 1 and ε > 0.

Let us briefly explain the geometric intuition behind chaotic curvatures.
Interested readers should read [Sog99, Section 3], especially Proposition 3.2
there, in order to have a better understanding of Sogge’s chaotic curva-
ture.

Let M be a three dimensional manifold. Assume that M satisfies Sogge’s
chaotic curvature condition. Take a coordinate patch, and express it in Fermi
coordinates (see Definition 3.1 below). Take a coordinate plane in the Fermi
coordinate. Then M satisfying chaotic curvature conditions means that no
geodesic in M can have a contact order ≥ 5 with the given coordinate plane.
In other words, if we have a geodesic that is first order tangent, second order
tangent and third order tangent to the coordinate plane, then it cannot be
fourth order tangent to it.

In the end, let us mention that Sogge’s chaotic curvature is only formu-
lated in dimension three, and Theorem 2.5 also holds only in dimension three.
It is a very interesting question to generalize the notion of chaotic curvatures
to higher dimensions.

3. Proof of Theorem 2.5

3.1. Preliminaries in Riemannian geometry

All the materials in this subsection can be found in standard Riemannian
geometry textbooks, for instance Peterson [Pet16]. Let M be a smooth Rie-
mannian manifold of dimension n. Let g be the metric tensor on M. Given
a smooth local coordinate, let {ei}ni=1 be the standard basis of the tangent
space. Denote the metric expression as

(3.1) gij := g(ei, ej).

We use (gkl)1≤k,l≤n to denote the inverse of g. Denote

(3.2) gij,k := ∇ekgij , gij,kl := ∇ek∇elgij ,
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where ∇ek means directional derivative here. Similarly, we define gij,klm. The
covariant derivative of a function f defined on M is defined to be

(3.3) ∇̄f :=
∑
ij

gij · (∇ejf)ei.

Here we add a bar on top of ∇ just to distinguish ∇̄f from ∇f ; we want
∇̄f to be a vector field ((1, 0)-tensor), while ∇f is a one-form ((0, 1)-tensor).
The covariant derivative of a vector field Y ((1, 0)-tensor) is defined to be the
(1, 1)-tensor ∇Y given by

(3.4) (∇Y )(X) := ∇XY,

where X is a vector field and in ∇XY we use the standard Levi-Civita connec-
tion, which is the unique connection ∇ that is compatible with g and torsion
free: For vector fields X, Y, Z,

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ);(3.5)
∇XY −∇YX = [X, Y ],(3.6)

where [X, Y ] denotes the Lie bracket of X, Y . More definitions can be seen
e.g. [Lee, Chapter 5].

Although here we need X, Y to be vector fields to obtain ∇XY , ∇XY at
point p only depends on the value of X at point p and the value of Y along
a curve whose tangent vector at p coincide with X at p. So, along a geodesic
γ, the definition ∇γ̇Y also make sense.

We then define the Hessian of a function f to be a (0, 2)-tensor given by

(3.7) (Hessian f)(X, Y ) := g(∇X∇̄f, Y ),

where X, Y are vector fields.

Christoffel symbols Γk
ij are defined by5

(3.8) ∇eiej =
∑
k

Γk
ijek.

In local coordinates they can be computed by

(3.9) Γk
ij = 1

2
∑
m

gkm(gmi,j + gmj,i − gij,m).

5In the literature and in textbooks, the notation Γk
ij is also often used.
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Let R : TM × TM × TM → TM be the Riemannian curvature tensor,
defined by

(3.10) R(X, Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Define R l
ijk by

(3.11) R(ei, ej)ek =
∑
l

R l
ijk el.

If we denote

(3.12) Rijkl = g(R(ei, ej)ek, el),

then we have

(3.13) Rijkl =
∑
p

R p
ijk gpl.

There are symmetry properties for the Riemannian curvature tensor.

Rijkl = −Rjikl = −Rijlk = Rklij ,

Rijkl + Riklj + Riljk = 0.
(3.14)

In local coordinates, we have

(3.15) R q
lki = −

(
∂kΓq

li − ∂lΓq
ki −

∑
p

Γq
lpΓ

p
ki +

∑
p

Γq
kpΓ

p
li

)
.

The Ricci tensor is defined by

(3.16) Ric(Y, Z) := tr(X �→ R(X, Y )Z),

where the right hand side means the trace of the map X �→ R(X, Y )Z. That
is, under any orthonormal basis {Ei}ni=1,

(3.17) Ric(Y, Z) =
n∑

i=1
g(R(Ei, Y )Z,Ei).

Definition 3.1 (Fermi coordinates). Take an n dimensional manifold M.
Let γ : [0, L] → M be an arclength parametrized geodesic. At s = 0, pick
n−1 tangent vectors E1(0), . . . , En−1(0) ∈ Tγ(0)M that form an orthonormal
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basis together with γ̇(0). Let E1(s), . . . , En−1(s) be the parallel transports of
E1(0), . . . , En−1(0) along γ(s), respectively. One then assigns Fermi coordi-
nates (x1, . . . , xn−1, t) to a point if

1. this point lies on the geodesic passing through the point γ(t) with the
unit tangent vector at this point being

(3.18) 1
|(x1, . . . , xn−1)|

(
x1E1(t) + · · · + xn−1En−1(t)

)
,

where |(x1, . . . , xn−1)| means Euclidean norm;
2. the distance from this point to γ(t) is |(x1, . . . , xn−1)|.

In Fermi coordinates, metrics satisfy

1.

(3.19)

⎡⎢⎢⎢⎣
g11(x) · · · g1n−1(x) g1n(x)

...
...

...
gn−11(x) · · · gn−1n−1(x) g2n(x)
gn1(x) · · · gnn−1(x) gnn(x)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1
...

xn−1
0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x1
...

xn−1
0

⎤⎥⎥⎥⎦ ,

with x = (x1, . . . , xn−1, t),
2.

(3.20) gij(x) = δij , whenever x1 = · · · = xn−1 = 0.

In other words, the matrix (gi,j)1≤i,j≤n is always the identity matrix
along the geodesic γ.

3.

∂

∂xi
gjk(x) = 0, i = 1, . . . , n− 1 ∀j, k, whenever x1 = · · · = xn−1 = 0.

(3.21)

Indeed, (3.21) can also be written as

(3.22) ∂

∂xi
gjk(x) = 0, ∀i, j, k, whenever x1 = · · · = xn−1 = 0.

In the three dimensional case n = 3, the above three properties (3.19)–(3.21)
can be found in [Sog99, page 5]. In higher dimensions, similar estimates hold as
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well: See [Lee, Theorem 6.38], [Lee, Proposition 5.26] and [Kli95, Proposition
1.12.1].

In the end of this subsection, we state one lemma that will be used mul-
tiple times in the rest of the paper.

Let εM > 0 be a small constant depending on M. Fix ε ∈ (0, εM). Denote

(3.23) φε(x, t; y) := dist((x, t), (y, ε)).

We always consider (x, t) in a small neighborhood of the origin, and (y, ε) in
a small neighborhood of (0, ε).

Lemma 3.2. Let n ≥ 2. Fix a point (y0, ε). Let γ be a geodesic passing
through (y0, ε) ∈ M. Then

(3.24) (∂y1φε(x; y0), . . . , ∂yn−1φε(x; y0))

stays constant when x = (x, t) moves along γ.

Proof of Lemma 3.2. We parameterize γ by an arclength parameter s such
that γ(0) = x and γ(L) = y0 := (y0, ε), where L = dist(x,y0). Pick a normal
coordinate z = (z1, z2, . . . , zn) centered at x and γ′(0) = ∂z1 at the origin
point. Then for any V =

∑
i Vi∂zi ∈ TxM, the geodesic γV starting at x

with initial velocity V is represented in normal coordinate by the radial line
segment

γV (s) = expx((sV1, sV2, . . . , sVn)).

In our case, there is γ(s) = expx((s, 0, . . . , 0)). In particular,

(3.25) y0 = expx((L, 0, . . . , 0)),

and the tangent vector

(3.26) γ′(L) = d expx |z=(L,0,...,0)∂z1 .

The Riemannian distance function can be expressed explicitly in normal co-
ordinate (see Corollary 6.12 in [Lee, page 162], which is a corollary of the
Gauss Lemma), and we have

dist(x, expx(z)) =
√

z2
1 + z2

2 + · · · + z2
n.
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Then we can compute that

∇̄ydist(x,y0) = d expx |z=(L,0,...,0)

(∑
i

zi∂zi
|z|

)
= d expx |z=(L,0,...,0)∂z1 ,

(3.27)

where ∇̄y is the covariant gradient taken in the y = (y, τ) variable. Combining
equations (3.26) and (3.27), we can get

(3.28) ∇̄ydist(x,y0) = γ′(L).

From this we see that ∇̄ydist(x,y0) stays constant when x moves along γ. In
the end, by the chain rule we observe that

∂yiφε(x; y0) =
∑
k,j

(∇̄ydist(x,y0))k(g(y0))kj
(
∂y
∂y

)
ji

∣∣∣
y=y0

,

which verifies that, once y0 is fixed, ∂yiφε(x; y0) stays constant when x moves
along γ.

3.2. Sogge’s chaotic curvature condition

In this part, we will prove Theorem 2.5.

First of all, it is elementary to see that contact orders are invariant under
changes of coordinates. We therefore without loss of generality assume that
we are in a Fermi coordinate. Let ε > 0 be a small number to be chosen; its
smallness will depend on the manifold M. Assume that our Fermi coordinate
is based on the geodesic

(3.29) γ(s) = (0, s), ∀s ∈ [0, ε].

We use e1, e2, e3 to denote the coordinate vectors. Define vector fields on γ

by6

(3.30) E3(s) := ∂

∂τ
∈ Tγ(s)M, Ei(s) := ∂

∂yi
∈ Tγ(s)M, i = 1, 2.

6Here we parametrize our manifold by using (y, τ).
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In other words, Ei(s) = ei(γ(s)), i = 1, 2, 3, and therefore {Ei(s)}3
i=1 forms

an orthonormal basis for Tγ(s)M. Denote

(3.31) φε(x, t; y) := dist((x, t), (y, ε))

and

(3.32) Φ(x, t; y, τ) := dist((x, t), (y, τ)).

Moreover, denote

(3.33) φ0,ε(x, t; y) := φε(x, t; y) − φε(0, 0; y),

and

(3.34) Φ0(x, t; y, τ) := Φ(x, t; y, τ) − Φ(0, 0; y, τ).

Here (x, t) and (y, τ) are points on M. Our goal is prove that if M satisfies
Sogge’s chaotic curvature condition at the origin, then the contact order of
φε is ≤ 4 at (x, t) = (0, 0), y = 0 if ε is chosen to be sufficiently small.

Before computing contact orders, let us first compute what Sogge’s chaotic
curvature says in the Fermi coordinate. Recall Definition 1.13. We pick the
geodesic in Definition 1.13 to be (3.29). The vector field X(s) in Defini-
tion 1.13 is the parallel transport of a unit vector X(0) ⊥ γ̇(0). Therefore, we
can write

(3.35) X(s) = c1E1(s) + c2E2(s), c21 + c22 = 1.

The vector field Y (s) in Definition 1.13 is therefore

(3.36) Y (s) = R̄ic(X(s)),

and

Y ⊥(s) = g
(
Y (s), c2E1(s) − c1E2(s)

)
(c2E1(s) − c1E2(s))

= (c1, c2)
[
Ric11(s) Ric12(s)
Ric21(s) Ric22(s)

] [
0 1
−1 0

](
c1
c2

)
(c2E1(s) − c1E2(s))

(3.37)

where

(3.38) Ricij(s) := g(R̄ic(Ei(s)), Ej(s)) = Ric(Ei(s), Ej(s)).
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Moreover,

∇γ̇(s)Y
⊥(s)

= (c1, c2)
[
∂sRic11(s) ∂sRic12(s)
∂sRic21(s) ∂sRic22(s)

] [
0 1
−1 0

](
c1
c2

)
(c2E1(s) − c1E2(s)),

(3.39)

where we used the fact that E1(s), E2(s) are parallel transports along γ(s),
which says

(3.40) ∇γ̇(s)Ej(s) = 0, j = 1, 2.

As we assume Sogge’s chaotic curvature condition, we therefore can conclude
that

|Y ⊥(0)| + |∇γ̇Y
⊥(0)|

=
∣∣∣∣(c1, c2) [Ric11(0) Ric12(0)

Ric21(0) Ric22(0)

] [
0 1
−1 0

](
c1
c2

) ∣∣∣∣
+
∣∣∣∣(c1, c2) [∂sRic11(0) ∂sRic12(0)

∂sRic21(0) ∂sRic22(0)

] [
0 1
−1 0

](
c1
c2

) ∣∣∣∣ �= 0,

(3.41)

for all c1, c2 satisfying c21 + c22 = 1.

We compute Ricij(0) and ∂sRicij(0). By the definition of Ricci tensors
in (3.16), and that we are working with an orthonormal basis, we have

(3.42)
[
Ric11(s) Ric12(s)
Ric21(s) Ric22(s)

]
=
[
R2112(s) + R3113(s) R3123(s)

R3123(s) R1221(s) + R3223(s)

]
,

where

(3.43) Rijkl(s) := g(R(Ei(s), Ej(s))Ek(s), El(s)),

and we used basic symmetries of the Riemannian curvature tensor. We con-
tinue to compute the right hand side of (3.42).

Claim 3.3. For 1 ≤ i, j ≤ 2, we have

(3.44) Ri33j(x) = −1
2g33,ij(x),

whenever x1 = x2 = 0.
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Proof of Claim 3.3. By the formula (3.15) and the property (3.21) of Fermi
coordinates, we have

Ri33j = R j
i33 = ∂iΓj

33

= 1
2∂ig

jk(g3k,3 + g3k,3 − g33,k) + 1
2g

jk(g3k,3i + g3k,3i − g33,ki)

= 1
2(2g3j,3i − g33,ji).

(3.45)

To prove the claim, it remains to show that

(3.46) g3j,3i(x) = 0, 1 ≤ i, j ≤ 2,

whenever x1 = x2 = 0.

To show this, we will differentiate both sides of (3.19), that is,

(3.47)

⎡⎣g11(x) g12(x) g13(x)
g21(x) g22(x) g23(x)
g31(x) g32(x) g33(x)

⎤⎦⎡⎣x1
x2
0

⎤⎦ =

⎡⎣x1
x2
0

⎤⎦ .

Take ∂2
x1 on both sides, we obtain

(3.48) ∂2g

∂x2
1

⎡⎣x1
x2
0

⎤⎦+ 2 ∂g

∂x1

⎡⎣1
0
0

⎤⎦ = 0.

By taking ∂3, that is, taking ∂t, we further obtain

(3.49) ∂3g

∂t∂x2
1

⎡⎣x1
x2
0

⎤⎦+ 2 ∂2g

∂t∂x1

⎡⎣1
0
0

⎤⎦ = 0,

from which we conclude that

(3.50) g13,13(x) = 0,

whenever x1 = x2 = 0. Similarly, we can prove that

(3.51) g23,23(x) = 0,
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whenever x1 = x2 = 0. To prove the rest of (3.46), we take ∂1∂2∂3 on both
sides of (3.47), and we obtain

(3.52) g23,13(x) + g13,23(x) = 0,

whenever x1 = x2 = 0. Recall the calculations in (3.45). By basic symmetries
of Riemannian curvature tensors, we have Ri33j = Rj33i, which further implies
that

(3.53) g3j,3i = g3i,3j .

This, combined with (3.52), will finish all the cases of (3.46).

We return to computing the right hand side of (3.42). There is one term
R2112(s) that is not covered by Claim 3.3. It is natural to try to follow the
same strategy of Claim 3.3 and compute it. Whenever x1 = x2 = 0, we have

−R2112 = ∂1Γ2
21 − ∂2Γ2

11

= 1
2∂1

(∑
l

g2l(g2l,1 + g1l,2 − g21,l)
)
− 1

2∂2

(
g2l(g1l,1 + g1l,1 − g11,l)

)
= 1

2
∑
l

g2l(g2l,11 + g1l,21 − g21,l1) −
1
2g

2l(g1l,11 + g1l,11 − g11,l1)

= 1
2(g22,11 − g12,12 − g12,12 + g11,22).

(3.54)

By taking derivatives on both sides of (3.47), one can further simplify (3.54)
to

(3.55) R2112 = −3
2g11,22.

This finishes computing (3.42), and we have[
Ric11(s) Ric12(s)
Ric21(s) Ric22(s)

]
= −

[
3
2g11,22(s) + 1

2g33,11(s) 1
2g33,21(s)

1
2g33,21(s) 3

2g11,22(s) + 1
2g33,22(s)

]
,

(3.56)

where

(3.57) gij,kl(s) := gij,kl(γ(s)).
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Let us go back to (3.41) and try to express it using gij,kl and their derivatives.
Direct calculations show that (3.41) is equivalent to saying that

|(c22 − c21)g33,21(0) + c1c2(g33,11(0) − g33,22(0))|
+ |(c22 − c21)g33,213(0) + c1c2(g33,113(0) − g33,223(0))| �= 0

(3.58)

for all c21 + c22 = 1. Let us point out here that the term R2112 = −3
2g11,22 does

not appear in (3.58) as it gets cancelled out in the middle of the computation.
This is what Sogge meant in his paper [Sog99] by saying that the chaotic
curvature conditions involves “off-diagonal” parts of the Ricci tensors.

So far we have finished computing the chaotic curvature. Now we start
computing the contact order of φε.

Claim 3.4. We have

(3.59) ∂

∂yi

∂

∂yj
φ0,ε

∣∣∣(x,t)=γ(s),
y=0

=
(

Hessian Φ0

)∣∣∣(x,t)=γ(s),
(y,τ)=(0,ε)

( ∂

∂yi
,
∂

∂yj

)
for every s ∈ [0, ε), 1 ≤ i, j ≤ 2. Here Hessian is the covariant Hessian in the
(y, τ) variables (see (3.7)). Moreover,

(3.60)
(

Hessian Φ0

)∣∣∣(x,t)=γ(s),
(y,τ)=(0,ε)

(
Y,

∂

∂τ

)
= 0, ∀Y ∈ T(0,ε)M,

for every s ∈ [0, ε), 1 ≤ i ≤ 2.

Proof of Claim 3.4. By definition,(
Hessian Φ0

)( ∂

∂yi
,
∂

∂yj

)
= g

(
∇ ∂

∂yi

(∇̄Φ0),
∂

∂yj

)
= ∇ ∂

∂yi

(
∇ ∂

∂yj

Φ0

)
− g

(
∇̄Φ0,∇ ∂

∂yi

∂

∂yj

)
.

(3.61)

By (3.28), we obtain

(3.62) ∇Φ0

∣∣∣ (x,t)=γ(s)
(y,τ)=(0,ε)

= 0

for every s. This finishes the proof of (3.59). The other identity (3.60) can be
proven similarly.
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Remark 3.5. The proof of Claim 3.4 does not reply on Fermi coordinate,
and Claim 3.4 holds true for distance functions in general coordinates. This
will be used later in Lemma 5.4, in particular, in (5.29).

Let us write(
Hessian Φ0

)∣∣∣(x,t)=γ(s),
(y,τ)=(0,ε)

( ∂

∂yi
,
∂

∂yj

)
= Hessian Φ0

∣∣
γ(s)

(
Ei(ε), Ej(ε)

)
=: Wij(s, ε).

(3.63)

In the middle term, we have left out the valuation (y, τ) = (0, ε), as this
information can be read from the fact that Ei(ε) ∈ Tγ(ε)M and γ(ε) = (0, ε).
Denote

(3.64) W (s, ε) :=
[
W11(s, ε) W12(s, ε)
W21(s, ε) W22(s, ε)

]
and

(3.65) W(s, ε) := detW (s, ε).

Our goal is now to compute Wij for 1 ≤ i, j ≤ 2, given on the right hand side
of (3.63), and show that the matrix

(3.66)

⎡⎢⎢⎣
∂sW(0, ε) ∂2

sW(0, ε) ∂3
sW(0, ε) ∂4

sW(0, ε)
∂sW11(0, ε) ∂2

sW11(0, ε) ∂3
sW11(0, ε) ∂4

sW11(0, ε)
∂sW12(0, ε) ∂2

sW12(0, ε) ∂3
sW12(0, ε) ∂4

sW12(0, ε)
∂sW22(0, ε) ∂2

sW22(0, ε) ∂3
sW22(0, ε) ∂4

sW22(0, ε)

⎤⎥⎥⎦
has rank 4, if ε > 0 is chosen sufficiently small.

Now let us discuss manifolds in general dimension n. Consider a geodesic
γ(·) parameterized by arc length. Let En(·) be the tangent vector γ̇(·). Use
parallel transport to complete the orthonormal basis {E1(·), . . . , En(·)}. Next,
consider n− 1 families of vector fields Xj(s, ·), j = 1, . . . , n− 1 satisfying the
Jacobi equation and the following boundary conditions:

∇2
γ̇(s′)Xj(s, s′) + R(Xj(s, s′), γ̇(s′))γ̇(s′) = 0,

Xj(s, s) = 0, Xj(s, ε) = Ej(ε).
(3.67)

Here R stands for the Riemannian curvature tensor, and

(3.68) ∇2
γ̇(s′)Y := ∇γ̇(s′)(∇γ̇(s′)Y )
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for a vector field Y . More background of the Jacobi equation can be seen, e.g.
[Lee, Chapter 10].

Claim 3.6. For j = 1, . . . , n− 1 and fixed s, it holds that

(3.69) Xj(s, s′) ⊥ γ̇(s′)

for all s′ ∈ [s, ε].

Proof of Claim 3.6. We need to prove that

(3.70) g
(
Xj(s, s′), γ̇(s′)

)
= 0, ∀s′ ∈ [s, ε].

Note that by the initial conditions in (3.67), we have

(3.71) g
(
Xj(s, s), γ̇(s)

)
= 0, g

(
Xj(s, ε), γ̇(ε)

)
= 0.

By the compatibility with metric (3.5), we have

∂

∂s′
g
(
Xj(s, s′), γ̇(s′)

)
= g

(
∇γ̇(s′)Xj(s, s′), γ̇(s′)

)
+ g

(
Xj(s, s′),∇γ̇(s′)γ̇(s′)

)
.

(3.72)

As γ is a geodesic, we have

(3.73) ∇γ̇(s′)γ̇(s′) = 0.

In order to use the information from Jacobi fields in (3.67), we take another
derivative on both sides of (3.72), and obtain

∂2

∂(s′)2 g
(
Xj(s, s′), γ̇(s′)

)
= g

(
∇2

γ̇(s′)Xj(s, s′), γ̇(s′)
)

= −g
(
R(Xj(s, s′), γ̇(s′))γ̇(s′), γ̇(s′)

)
= 0.

(3.74)

In the last step, we used basic symmetries of the Riemannian curvature ten-
sors. The claim follows from the initial conditions in the Jacobi equation.

To proceed, we need Remark 4.11 in Sakai [Sak96, page 110].

Lemma 3.7 (Sakai [Sak96]). Take two distinct points (x, t), (y, τ) ∈ M and
let d0 be their distance. Let γ0 : [0, d0] → M be the arc-length parametrized
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geodesic connecting these two points. Take n − 1 vectors V1, . . . , Vn−1 ∈
T(y,τ)M. Let Zj(s) be the Jacobi field along γ0 satisfying the boundary condi-
tions

(3.75) Zj(0) = 0, Zj(d0) = Vj , j = 1, . . . , n− 1.

Moreover, let

(3.76) Z⊥
j (s) := Zj(s) − g(Zj(s), γ̇0(s))γ̇0(s), j = 1, . . . , n− 1.

Then for i �= j,

(3.77)
(

Hessian Φ((x, t), (y, τ))
)(

Vi, Vj

)
= g

(
∇γ̇0(d0)Z

⊥
i (d0), Z⊥

j (d0)
)
.

Here Hessian is the covariant Hessian in the (y, τ) variables.

By Claim 3.6 and Lemma 3.7, we obtain

(3.78) Hessian Φ
∣∣
γ(s)

(
Ei(ε), Ej(ε)

)
= g

(
∇γ̇(s′)Xi(s, s′), Xj(s, s′)

)∣∣∣
s′=ε

.

Note that on the left hand side of (3.78), we have Φ but not Φ0.

In n = 2 case, we introduce a matrix

(3.79) A(s, s′) =
[
a11(s, s′) a12(s, s′)
a21(s, s′) a22(s, s′)

]
by writing

(3.80) Xj(s, s′) = aj1(s, s′)E1(s′) + aj2(s, s′)E2(s′), j = 1, 2.

Let us rewrite (3.67) using the new notation. The first equation in (3.67)
becomes

(3.81) ∂2
s′aj1(s, s′)E1(s′) + ∂2

s′aj2(s, s′)E2(s′)
+ R(aj1(s, s′)E1(s′) + aj2(s, s′)E2(s′), γ̇(s′))γ̇(s′) = 0,

which is equivalent to the following two equations

(3.82) ∂2
s′aj1(s, s′) + aj1(s, s′)g

(
R(E1(s′), γ̇(s′))γ̇(s′), E1(s′)

)
+ aj2(s, s′)g

(
R(E2(s′), γ̇(s′))γ̇(s′), E1(s′)

)
= 0,
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and

(3.83) ∂2
s′aj2(s, s′) + aj1(s, s′)g

(
R(E1(s′), γ̇(s′))γ̇(s′), E2(s′)

)
+ aj2(s, s′)g

(
R(E2(s′), γ̇(s′))γ̇(s′), E2(s′)

)
= 0.

Denote

(3.84) R(s′) :=
[
R1331(s′) R1332(s′)
R2331(s′) R2332(s′)

]
where

(3.85) Rijkl(s′) := g(R(Ei(s′), Ej(s′))Ek(s′), El(s′)).

Then (3.67) can be written as7

∂2
s′A(s, s′) + A(s, s′)R(s′) = 0,

A(s, s) = 0, A(s, ε) = I2×2.
(3.86)

Here 0 stands for 2 × 2 zero matrix, I2×2 is the 2 × 2 identity matrix. More-
over, (3.78) is equal to

g
(
∇γ̇(s′)(ai1(s, s′)E1(s′) + ai2(s, s′)E2(s′),

aj1(s, s′)E1(s′) + aj2(s, s′)E2(s′))
)∣∣∣

s′=ε

= ∂s′ai1(s, s′)aj1(s, s′) + ∂s′ai2(s, s′)aj2(s, s′)
∣∣
s′=ε

= ∂s′aij
∣∣
s′=ε

,

(3.87)

where in the last step we used the initial condition at s′ = ε.

Recall that our goal was to compute (3.63) and prove that (3.66) has rank
four. By (3.87), we obtain

(3.88) Wij(s, ε) = Hessian Φ0
∣∣
γ(s)

(
Ei(ε), Ej(ε)

)
= ∂s′aij(s, ε) − ∂s′aij(0, ε).

When computing (3.63) and proving that (3.66) has rank four, we will consider
the Taylor expansion of (3.88) at s = 0:

(3.89) W (s, ε) = s

1!∂s∂s
′A(0, ε) + s2

2! ∂
2
s∂s′A(0, ε) + · · ·

7Here derivatives are taken component-wise.
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In the following computation, it will be convenient to introduce some notation.
We will write

(3.90) R′(s′) := ∂

∂s′
R(s′),

where partial derivatives are taken component-wise. Moreover, we will write

(3.91) R0 := R(0), R′
0 := R′(0).

Claim 3.8. We have

∂s∂s′A(0, ε) = 1
ε2

(
I2×2 + R0

3 ε2 + R′
0

6 ε3 + O(ε4)
)
,

∂2
s∂s′A(0, ε) = 2!

ε3

(
I2×2 + R′

0
12 ε

3 + O(ε4)
)
,

∂3
s∂s′A(0, ε) = 3!

ε4

(
I2×2 + O(ε4)

)
,

∂4
s∂s′A(0, ε) = 4!

ε5

(
I2×2 + O(ε4)

)
.

(3.92)

The implicit constants in O(ε4) depend only on the manifold.

The proof of Claim 3.8 involves heavy calculations, and will therefore be
postponed to the end of this subsection.

We stop the Taylor expansion in (3.89) at the fifth order, and write

W (s, ε) = s

ε2

(
I2×2 + R0

3 ε2 + R′
0

6 ε3 + O(ε4)
)

+ s2

ε3

(
I2×2 + R′

0
12 ε

3 + O(ε4)
)

+ s3

ε4

(
I2×2 + O(ε4)

)
+ s4

ε5

(
I2×2 + O(ε4)

)
+ Oε(s5).

(3.93)

Here Oε(s5) means that the implicit constant there is allowed to depend on
ε. This dependence is harmless because when computing contact orders (in
the s variable), we will always fix ε and consider s → 0. Recall that we need
to prove (3.66) has rank four. To simplify notation, we will make the change
of variables s �→ εs, and consider the matrix

εW (εs, ε) = s
(
I2×2 + R0

3 ε2 + R′
0

6 ε3 + O(ε4)
)

+ s2
(
I2×2 + R′

0
12 ε

3 + O(ε4)
)

+ s3
(
I2×2 + O(ε4)

)
+ s4

(
I2×2 + O(ε4)

)
+ Oε(s5).

(3.94)
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By Claim 3.3,

(3.95) R(s) = −
[
g33,11(s)

2
g33,12(s)

2
g33,21(s)

2
g33,22(s)

2

]
,

and therefore

(3.96) R′(s) = −
[
g33,113(s)

2
g33,123(s)

2
g33,213(s)

2
g33,223(s)

2

]
,

where similarly to (3.57), we use the notation

(3.97) gij,klm(s) := gij,klm(γ(s)).

Moreover, we denote

(3.98) gij,kl := gij,kl(0), gij,klm := gij,klm(0),

which will significantly simplify the notation. Write

(3.99) εW (εs, ε) =
[
(
)11 (
)12
(
)21 (
)22

]
+ Oε(s5),

where

(
)11 := s

(
1 − 1

6g33,11ε
2 − 1

12g33,113ε
3 + O(ε4)

)(3.100)

+ s2
(

1 − 1
24g33,113ε

3 + O(ε4)
)

+ s3(1 + O(ε4)) + s4(1 + O(ε4)),

(
)22 := s

(
1 − 1

6g33,22ε
2 − 1

12g33,223ε
3 + O(ε4)

)(3.101)

+ s2
(

1 − 1
24g33,223ε

3 + O(ε4)
)

+ s3(1 + O(ε4)) + s4(1 + O(ε4)),

and

(
)12 = (
)21 := s

(
−1

6g33,12ε
2 − 1

12g33,123ε
3 + O(ε4)

)
(3.102)
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+ s2
(
− 1

24g33,123ε
3 + O(ε4)

)
+ s3O(ε4) + s4O(ε4).

We compute det(εW (εs, ε)) and obtain

(
)11(
)22 − (
)12(
)21 = (
)1s2 + (
)2s3 + (
)3s4 + Oε(s5),(3.103)

where

(
)1 := 1 − 1
6ε

2(g33,11 + g33,22) −
1
12ε

3(g33,113 + g33,223) + O(ε4),

(
)2 := 2 − 1
6ε

2(g33,11 + g33,22) −
1
8ε

2(g33,113 + g33,223) + O(ε4),

(
)3 := 3 − 1
6ε

2(g33,11 + g33,22) −
1
8ε

2(g33,113 + g33,223) + O(ε4).

(3.104)

To prove that (3.66) has rank four, it suffices to show that the matrix

(3.105)

⎡⎢⎢⎢⎣
(

)11 1 − 1

24g33,113ε
3 + O(ε4) 1 + O(ε4) 1 + O(ε4)

(

)21 1 − 1
24g33,223ε

3 + O(ε4) 1 + O(ε4) 1 + O(ε4)
(

)31 − 1

24g33,123ε
3 + O(ε4) O(ε4) O(ε4)

0 (
)1 (
)2 (
)3

⎤⎥⎥⎥⎦
with

(

)11 := 1 − 1
6g33,11ε

2 − 1
12g33,113ε

3 + O(ε4),

(

)21 := 1 − 1
6g33,22ε

2 − 1
12g33,223ε

3 + O(ε4),

(

)31 := −1
6g33,12ε

2 − 1
12g33,123ε

3 + O(ε4),

(3.106)

is non-degenerate whenever ε > 0 is picked to be small enough. We subtract
the second row from the first row, and obtain

⎡⎢⎢⎢⎣
(
 
 
)11, − 1

24(g33,113 − g33,223)ε3 + O(ε4) O(ε4) O(ε4)
(
 
 
)21 1 − 1

24g33,223ε
3 + O(ε4) 1 + O(ε4) 1 + O(ε4)

(
 
 
)31 − 1
24g33,123ε

3 + O(ε4) O(ε4) O(ε4)
0 (
)1 (
)2 (
)3

⎤⎥⎥⎥⎦ ,

(3.107)
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where

(
 
 
)11 := −1
6(g33,11 − g33,22)ε2 −

1
12(g33,113 − g33,223)ε3 + O(ε4),

(
 
 
)21 := 1 − 1
6g33,22ε

2 − 1
12g33,223ε

3 + O(ε4),

(
 
 
)31 := −1
6g33,12ε

2 − 1
12g33,123ε

3 + O(ε4).

(3.108)

It is not difficult to see that the determinant is O(ε5). We compute the coef-
ficient of ε5, and obtain

(3.109) − 1
6 ∗ 24

(
(g33,11 − g33,22)g33,123 − (g33,113 − g33,223)g33,12

)
.

Recall from (3.58) that Sogge’s chaotic curvature implies that

|(c22 − c21)g33,21 + c1c2(g33,11 − g33,22)|
+ |(c22 − c21)g33,213 + c1c2(g33,113 − g33,223)| �= 0

(3.110)

for all c21 + c22 = 1. Let us write (3.110) slightly differently, but equivalently,
as

|c1g33,21 + c2(g33,11 − g33,22)|
+ |c1g33,213 + c2(g33,113 − g33,223)| �= 0

(3.111)

for all c21 + c22 = 1. To see that (3.109) �= 0, we just pick

(3.112) c1 = c(g33,113 − g33,223), c2 = −c(g33,123),

in (3.111), for some appropriately chosen constant c; the only thing we need
to make sure is that g33,113 − g33,223 and g33,123 do not vanish simultane-
ously. However, it is elementary to see that if they do vanish simultaneously,
then (3.111) can never hold. This finishes the proof that (3.109) �= 0, thus
the item (a) of Theorem 2.5, modulo the proof of Claim 3.8.

Proof of Claim 3.8. To compute (3.89), let us first recall how the matrix A is
defined in (3.86). To study this linear systems of equations, we will introduce
two auxiliary linear systems of equations:

B′′
1 (s′) + B1(s′)R(s′) = 02×2,

B1(0) = I2×2, B′
1(0) = 02×2,

(3.113)

For the author's personal use only.

For the author's personal use only.



974 Song Dai et al.

and

B′′
2 (s′) + B2(s′)R(s′) = 02×2,

B2(0) = 02×2, B′
2(0) = I2×2,

(3.114)

where B1(s′) and B2(s′) are two 2 × 2 matrices with entries being functions
depending on s′. As all these systems of equations are linear, we know we can
find smooth matrix-valued functions C1(s) and C2(s) such that

(3.115) A(s, s′) = C1(s)B1(s′) + C2(s)B2(s′).

Before computing partial derivatives of A, let us collect some useful data. By
taking derivatives on (3.113) and (3.114), we obtain

B1(0) = I, B′
1(0) = 0, B′′

1 (0) = −R0, B′′′
1 (0) = −R′

0;

B2(0) = 0, B′
2(0) = I, B′′

2 (0) = 0, B′′′
2 (0) = −R0, B

(4)
2 (0) = −2R′

0,

(3.116)

where we abbreviate I2×2 to I. By Taylor’s expansion, we have

B1(ε) = I − R0

2! ε
2 − R′

0
3! ε

3 + O(ε4),

B2(ε) = ε
(
I − R0

3! ε
2 − 2R

′
0

4! ε
3 + O(ε4)

)
.

(3.117)

By taking inverses, we obtain

(3.118) B−1
2 (ε) = 1

ε

(
I + R0

3! ε
2 + 2R′

0
4! ε3 + O(ε4)

)
.

Direct computation shows that

B−1
2 (ε)B1(ε) = 1

ε

(
I + R0

3! ε
2 + 2R′

0
4! ε3 + O(ε4)

)(
I − R0

2! ε
2 − R′

0
3! ε

3 + O(ε4)
)

= 1
ε

(
I − R0

3 ε2 − R′
0

12 ε
3 + O(ε4)

)
.

(3.119)

Recall the initial condition in (3.86), that is, the condition that

(3.120) A(s, s) = 0, A(s, ε) = I2×2.
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By taking derivatives in s in (3.120), we obtain that

∂sA(s, s) + ∂s′A(s, s) = 0, ∂sA(s, ε) = 0,
∂2
sA(s, s) + 2∂s∂s′A(s, s) + ∂2

s′A(s, s) = 0, ∂2
sA(s, ε) = 0,

∂3
sA(s, s) + 3∂2

s∂s′A(s, s) + 3∂s∂2
s′A(s, s) + ∂3

s′A(s, s) = 0, ∂3
sA(s, ε) = 0.

(3.121)

Taking s = 0 in (3.121), we obtain

C1(0) = 0, C2(0) = B−1
2 (ε),

C ′
1(0) = −B−1

2 (ε), C ′
2(0) = B−1

2 (ε)B1(ε)B−1
2 (ε),

C ′′
1 (0) = −2C ′

2(0), C ′′
2 (0) = −C ′′

1 (0)B1(ε)B−1
2 (ε),

C ′′′
1 (0) = −3C ′′

2 (0) − 2B−1
2 (ε)R0, C ′′′

2 (0) = −C ′′′
1 (0)B1(ε)B−1

2 (ε).

(3.122)

We compute ∂s∂s′A(0, ε). Using the relation (3.115), we obtain

∂s∂s′A(0, ε) = C ′
1(0)B′

1(ε) + C ′
2(0)B′

2(ε)
= −B−1

2 (ε)B′
1(ε) + B−1

2 (ε)B1(ε)B−1
2 (ε)B′

2(ε).
(3.123)

This is further equal to(1
ε
I + R0

3! ε + 2R′
0

4! ε2 + O(ε3)
)(

R0ε + R′
0

2! ε
2 + O(ε3)

)
+ 1

ε2

(
I + R0

3! ε
2 + 2R′

0
4! ε3 + O(ε4)

)(
I − R0

2! ε
2 − R′

0
3! ε

3 + O(ε4)
)

(
I + R0

3! ε
2 + 2R′

0
4! ε3 + O(ε4)

)(
I − R0

2! ε
2 − 2R′

0
3! ε3 + O(ε4)

)
=
(
R0 + R′

0
2 ε + O(ε2)

)
+ 1

ε2

(
I − 2

3R0ε
2 − 2

3!R
′
0ε

3 + O(ε4)
)

= 1
ε2

(
I + R0

3 ε2 + R′
0

6 ε3 + O(ε4)
)
.

(3.124)

This finishes the calculation for the first identity in the claim.

We compute ∂2
s∂s′A(0, ε). First, observe that

(3.125) ∂2
s∂s′A(0, ε) = 2B−1

2 (ε)B1(ε)∂s∂s′A(0, ε).

We use the first identity in the claim, and see that the last display is equal
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to

2
ε3

(
I + R0

3! ε
2 + 2R′

0
4! ε3 + O(ε4)

)
(3.126)

×
(
I − R0

2! ε
2 − R′

0
3! ε

3 + O(ε4)
)(

I + R0

3 ε2 + R′
0

6 ε3 + O(ε4)
)
,

which is further equal to

2
ε3

(
I + 2R′

0
4! ε3 + O(ε4)

)
= 2

ε3
I + R′

0
3! + O(ε).(3.127)

This finishes the second identity in the claim.

Next, we compute ∂3
s∂s′A(0, ε). By (3.115), we obtain

(3.128) ∂3
s∂s′A(0, ε) = C ′′′

1 (0) ·B′
1(ε) + C ′′′

2 (0) ·B′
2(ε).

By (3.122), this is equal to

(3.129)

C ′′′
1 (0)B′

1(ε) − C ′′′
1 (0)B1(ε)B−1

2 (ε)B′
2(ε)

= C ′′′
1 (0)

(
B′

1(ε) −B1(ε)B−1
2 (ε)B′

2(ε)
)

= −
(
3C ′′

2 (0) + 2B−1
2 (ε)R(0)

) (
B′

1(ε) −B1(ε)B−1
2 (ε)B′

2(ε)
)

= −
(
6B−1

2 (ε)B1(ε)B−1
2 (ε)B1(ε)B−1

2 (ε) + 2B−1
2 (ε)R0

)
×
(
B′

1(ε) −B1(ε)B−1
2 (ε)B′

2(ε)
)
.

We compute the two factors in the last term separately. The first fact is equal
to

6
ε3

(
I − R0

3 ε2 − R′
0

12 ε
3 + O(ε4)

)(
I − R0

3 ε2 − R′
0

12 ε
3 + O(ε4)

)
×
(
I + R0

3! ε
2 + 2R′

0
4! ε3 + O(ε4)

)
+ 2

ε

(
I + R0

3! ε
2 + 2R′

0
4! ε3 + O

(
ε4
))

·R0

= 6
ε3

(
I − R0

2 ε2 − R′
0

12 ε
3 + O

(
ε4
))

+ 2
ε
·R0 + O(ε)

= 6
ε3

(
I − R0

6 ε2 − R′
0

12 ε
3 + O

(
ε4
))

.

(3.130)
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The second factor is equal to

−R0 · ε−
R′

0
2 · ε2 + O

(
ε3
)

− 1
ε

(
I − R0

2 ε2 − R′
0

6 ε3 + O
(
ε4
))(

I + R0

6 ε2 + 2R′
0

4! ε3 + O
(
ε4
))

×
(
I − R0

2 ε2 − R′
0

3 · ε3 + O(ε4)
)

= −R0ε−
R′

0
2 · ε2 + 0

(
ε3
)
− 1

ε

(
I − 5

6R0ε
2 − 5

12 ·R′
0ε

3 + O
(
ε4
))

= −1
ε

(
I + 1

6R0ε
2 + 1

12R
′
0ε

3 + O
(
ε4
))

.

(3.131)

Multiplying these two factors, we obtain the desired equation for ∂3
s∂s′A(0, ε).

The last equation involving ∂4
s∂s′A(0, ε) can be proven similarly. We leave

out the computations.

4. Proof of Theorem 2.4

Let εφ > 0 be a sufficiently small constant depending on φ. Let a(x, t; y) be
supported in B

n−1
εφ

× B
1
εφ
× B

n−1
εφ

. For N ≥ 1, x = (x, t) ∈ R
3, y ∈ R

2, denote

(4.1) φN (x; y) := Nφ(x/N ; y), aN (x; y) := a(x/N ; y).

Define an operator

(4.2) TNf(x) :=
∫

eiφ
N (x;y)aN (x; y)dy.

Note that TNf is just a rescaled version of T (φ)
N f . The goal of this section is

to prove the following theorem.

Theorem 4.1. Under the same assumptions as in Theorem 2.4, we have

(4.3)
∥∥TNf

∥∥
Lp(R3) �φ,a,p,ε N

ε
∥∥f∥∥

Lp(R2),

for all

(4.4) p ≥ 10
3 − εk,

all ε > 0 and N ≥ 1.
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To prove Theorem 4.1, we follow the idea of Guth [Gut18] and Bourgain
and Guth [BG11], and reduce it to “broad” estimates.

Let K ≥ 1. We divide B
2
εφ

into dyadic squares τ of side length K−1.
Denote fτ := f · 1τ . Fix a ball B3

K2(x0). Define

(4.5) μTNf (B3
K2(x0)) := min

τ1,...,τA0

(
max

τ �=τA′
0
,1≤A′

0≤A0

∥∥TNfτ
∥∥p
Lp(B3

K2 (x0))

)
,

where A0 is a large parameter whose choice will become clear later. For
U ⊂ R

3, define

(4.6)
∥∥TNf

∥∥
BLp

A0
(U) :=

( ∑
B

3
K2 (x0)

∣∣B3
K2(x0) ∩ U

∣∣∣∣B3
K2(x0)

∣∣ μTNf

(
B

3
K2(x0)

))1/p

,

where the sum runs over a finitely overlapping collection of balls B3
K2(x0) that

covers R
3. This is called the broad part of TNf .

Theorem 4.2. For every ε > 0, there exists A0 such that

(4.7)
∥∥TNf

∥∥
BLp

A0
(R3) �K,ε N

ε‖f‖2/p
L2 ‖f‖1−2/p

L∞ ,

for every p satisfying (4.4), every K ≥ 1, ε > 0, and N ≥ 1. Moreover, the
implicit constant depends polynomially on K.

Reducing Theorem 4.1 to Theorem 4.2 can be done via standard argu-
ments in the literature (for instance Guth, Hickman and Iliopoulou [GHI19,
Proposition 11.1]).

The rest of this section is devoted to the proof of Theorem 4.2.

4.1. Preliminaries in polynomial partitionings

We follow the notation from [GWZ22]. Take

(4.8) 1 ≤ r ≤ R = N.

The only reason of introducing the parameter R is for the forthcoming nota-
tion to be consistent with that in [GWZ22]. Take a collection Θr of dyadic
cubes of side length 9

11r
−1/2 covering the ball B2, the unit ball in R

2. We take
a smooth partition of unity (ψθ)θ∈Θr

with suppψθ ⊂ 11
10θ for the ball B2 such

that
|∂α

ξ ψθ(ξ)| �α r‖α‖/2,
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for all ξ ∈ R
2 and all multi-indices α = (α1, α2) ∈ N

2
0 with ‖α‖ := |α1|+ |α2|.

We denote by ξθ the center of θ. Given a function h, we perform a Fourier
series decomposition to the function hψθ on the region 11

9 θ and obtain

h(ξ)ψθ(ξ) · 1 11
10 θ

(ξ) =
(
r1/2

2π

)2 ∑
v∈r1/2Z2

(hψθ)∧ (v)e2πiv·ξ1 11
10 θ

(ξ).

Let ψ̃θ be a non-negative smooth cutoff function supported on 11
9 θ and equal

to 1 on 11
10θ. We can therefore write

h(ξ)ψθ(ξ) · ψ̃θ(ξ) =
(
r1/2

2π

)2 ∑
v∈r1/2Z2

(hψθ)∧ (v)e2πiv·ξψ̃θ(ξ).

If we also define

hθ,v(ξ) :=
(
r1/2

2π

)2

(hψθ)∧ (v)e2πiv·ξψ̃θ(ξ),

then we have

(4.9) h =
∑

(θ,v)∈Θr×r1/2Z2

hθ,v.

For ω ∈ B
2
εφ

and ξ ∈ B
2
εφ

, we define Φ = Φ(ω, t; ξ) by

(4.10) ∇ξφ
(
Φ(ω, t; ξ), t; ξ

)
= ω.

Let us remark here that Φ is only locally defined; the existence and uniqueness
of Φ can be guaranteed by picking εφ to be small enough. Let

(4.11) δ := εC , C large universal constant,

where ε is as in (4.3). We define curved r1/2+δ-tubes as

(4.12) Tθ,v :=
{

(x, t) :
∣∣∣ x
N

− Φ
( v

N
,
t

N
; ξθ

)∣∣∣ ≤ r1/2+δ

N
, t ∈ [0, r]

}
.

This finishes the wave packet decomposition for the ball B3
r ⊂ R

3. We use
T[B3

r] to denote the collection of the wave packets Tθ,v.

For the author's personal use only.

For the author's personal use only.



980 Song Dai et al.

Similarly, for x0 ∈ B
3
N , we can define wave packet decompositions for the

ball B3
r(x0), and use T

[
B

3
r (x0)

]
to denote the collection of the resulting wave

packets. Let us be more precise. Take x0 ∈ B
3
N and consider the ball B3

r(x0).
For h : B2

εφ
→ C integrable, define

(4.13) h̃(ξ) := e2πiφ(x0;ξ)h(ξ)

so that

(4.14) TNh(x) = T̃N h̃(x̃), x̃ := x − x0,

where T̃N is the Hörmander-type operator with the phase function

(4.15) φ̃(x; ξ) := φ(x + x0

N
; ξ) − φ(x0

N
; ξ).

If x ∈ B
3
r(x0), then x̃ ∈ B

3
r , and we can apply the wave packet decomposition

above to T̃N h̃(x̃). We have

(4.16) TNh(x) =
∑

T∈T[B3
r(x0)]

TNhT (x),

whenever |x − x0| � r.

Next, we introduce a few key notions that will appear in the forthcoming
polynomial partitioning algorithms.

Definition 4.3 (Cells). Let P : R3 → R be a non-zero polynomial. Denote

(4.17) Z(P ) := {z ∈ R
3 : P (z) = 0}.

We let cell(P ) denote the collection of all the connected components of R3 \
Z(P ). Each element in cell(P ) will be refereed to as a cell of P .

Definition 4.4 (Transverse complete intersection). Take the dimension n = 3
and 0 ≤ m ≤ 2. Let P1, . . . , Pn−m : Rn → R be polynomials. We consider the
common zero set

(4.18) Z (P1, . . . , Pn−m) := {x ∈ R
n : P1(x) = · · · = Pn−m(x) = 0} .

Suppose that for all z ∈ Z (P1, . . . , Pn−m), one has

(4.19)
n−m∧
j=1

∇Pj(z) �= 0.
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Then a connected branch of this set, or a union of connected branches of this
set, is called an m-dimensional transverse complete intersection. Given a set
Z of the form (4.18), the degree of Z is defined by

min
(

n−m∏
i=1

deg (Pi)
)
,

where the minimum is taken over all possible representations of

Z = Z (P1, . . . , Pn−m) .

Lemma 4.5 (Polynomial partitioning lemma, Guth [Gut18], Hickman and
Rogers [HR19]). Fix r � 1, d ∈ N and suppose F ∈ L1 (

R
3) is non-negative

and supported on B
3
r(x0)∩Nr1/2+δ◦ (Z) for some x0 and 0 < δ◦ � 1, where Z

is an m dimensional transverse complete intersection of degree at most d. At
least one of the following cases holds:

Cellular case. There exists a polynomial P : R3 → R of degree O(d) with the
following properties:

(1) We can find a sub-collection of cells cell′(P ) ⊂ cell(P ) with # cell′(P ) �
dm and each O′ ∈ cell′(P ) has diameter at most r/d.

(2) If we define

O :=
{
O′\Nr1/2+δ◦ (Z(P )) : O′ ∈ cell′(P )

}
,

then

(4.20)
∫
O

F � d−m

∫
Rn

F,

for all O ∈ O.

Algebraic case. There exists an (m − 1)-dimensional transverse complete in-
tersection Y of degree at most O(d) such that

(4.21)
∫
B3
r(x0)∩Nr1/2+δ◦ (Z)

F �
∫
B3
r(x0)∩Nr1/2+δ◦ (Y )

F.

Before we proceed, let us explain the role that the degree parameter d
will play in the forthcoming argument. Recall that our goal is to prove The-
orem 4.2. Once p and ε are fixed, the degree parameter d will also be fixed,
and will be picked to be sufficiently large depending on p and ε. For instance,
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we will apply Lemma 4.5 repeatedly. Each time when we apply this lemma,
we will lose an absolute constant C in (4.20) or (4.21). Note that by item (1)
in Lemma 4.5, the radius of a cell will shrink by at least a factor of 1/d. If
we start with a ball of radius N , we know that Lemma 4.5 will be applied
for at most logd N many times, and in this process, the implicit constants
will accumulate to C logd N . If we pick d to be sufficiently large, then C logd N

is much smaller compared to N ε.

4.2. Polynomial partitioning algorithms

Our goal is to prove Theorem 4.2, that is, we will prove

(4.22)
∥∥TNf

∥∥
BLp

A0
(R3) �K,ε N

ε‖f‖2/p
L2 ‖f‖1−2/p

L∞ ,

for all

(4.23) p ≥ 10
3 − εk,

all K ≥ 1, ε > 0 and N ≥ 1.

We will recycle the polynomial partitioning algorithm in [GWZ22], which
is a variant of that in Hickman and Rogers [HR19]. Let us be slightly more
precise. We will repeat precisely the polynomial partitioning algorithm in
Subsections 5.2-5.4 in [GWZ22], where Lemma 4.5 was repeatedly applied. In
this algorithm, we will fix small parameters δj , j = 0, 1, 2, 3, satisfying

(4.24) δ � δ3 � δ2 � δ1 � δ0 � ε.

For instance, one can take δj = δ10
j−1 for j = 3, 2, 1 and δ0 = ε10, δ = δ10

3 . Here
δ is the same as that in (4.11). We partition B

3
R into a finitely overlapping

collection of balls {Bι}ι, each of which is of radius R1−δ. Let us recall the
output of this algorithm in [GWZ22, page 48].

Output 1. We obtain a sequence of nodes

(4.25) n∗0, n
∗
1, . . . , n

∗
�0 .

Each node n∗� with 0 ≤ � ≤ �0 ∈ N is a collection of open sets in R
3, and

is assigned several parameters: A dimension parameter dim(n∗�) and a radius
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parameter ρ(n∗�). As we are in R
3, we have dim(n∗�) takes values in {2, 3}, and

is non-increasing in �. Let �− ∈ {0, 1, . . . , �0} be such that

(4.26) dim(n∗�) = 3, if 0 ≤ � < �−,

and dim(n∗�) = 2 otherwise. It may happen that �− = �0. However, this case
is easy to handle, and we therefore assume that we always have �− < �0.

Output 2. The node n∗�− is particularly important. Denote

(4.27) S3 := n∗0, S2 := n∗�− ,

and

(4.28) r3 := ρ(S3) = R, r2 := ρ(S2), r1 := 1.

The node n∗0 consists of only one element, B3
R. Elements in S2 are of the form

(4.29) Br2 ∩ N
r
1/2+δ2
2

(S2),

where Br2 ⊂ B
3
R is a ball of radius r2 and S2 is an algebraic variety of dimen-

sion two.8 To simplify notation, we will use S2 to refer to (4.29), whenever it
is clear from the context that we are talking about S2.

Output 3. Each open set O ∈ n∗�0 has diameter at most Rδ0 . This is the
stopping condition of the algorithm (see [GWZ22, page 41]), which says that
the algorithm terminates whenever we reach a scale ≤ Rδ0 . Each O ∈ n∗�0 is
associated with a function fι,O, which is built with a collection of tubes from
T[Bρ(n∗

�0
)], that is,

(4.30) fι,O =
∑

T∈T′[Bρ(n∗
�0

)]

fT ,

where T
′[Bρ(n∗

�0
)] is a sub-collection of tubes in T[Bρ(n∗

�0
)], and Bρ(n∗

�0
) ⊂ R

3

is the ball of radius ρ(n∗�0) that contains O.

Output 4. For each ι and each S2 ∈ S2 with S2 ∩ Bι �= ∅, there is an
associated function f∗

ι,S2
. This function is built with a collection of tubes

from T[Br2 ], where Br2 is as in (4.29). Most importantly, all the tubes in this
collection are contained in S2.

8This is why in the previous item we let dim(n∗�−) = 2.
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Output 5. In the end, we have parameters D3, D2, D1 that are integer powers
of d satisfying D3 = 1, and

(4.31) D1 ≤ r2, r1D1D2D3 ≤ R, r2D2D3 ≤ R.

See Lemma 5.10 in [GWZ22, page 50].9

Next, let us state what estimates the outputs satisfy. Denote p3 = p,
α3 = β3 = 1, β2 = α2, and α2 ∈ [0, 1] is to be determined. Let p2 be such
that

(4.32) 1
p3

= 1 − α2

2 + α2

p2
.

Then the above outputs satisfy the following properties.

Property 1. We can find Cp > 0 depending only on p and A2 ∈ N with
A2 ≤ A0 depending only on ε, such that

‖TNf‖BLp
A0

(B3
R) � RCpδ0(r2D2)

1
2 (1−β2)‖f‖1−β2

2( ∑
S2∈S2

∑
ι

∥∥TNf∗
ι,S2

∥∥p2

BLp2
A2

(
Br2

)
) β2

p2

,
(4.33)

where Br2 is the ball of radius r2 that contains S2, given as in (4.29). We
remark here that Cp will also appear below, and its precise values will not be
important and may change from line to line.

Property 2. We also have

(4.34)
∑

S2∈S2

∥∥f∗
ι,S2

∥∥2
2 � RCpδ0D2

∥∥f∥∥2
2.

Property 3. In the end, we have

(4.35) max
S2∈S2

∥∥f∗
ι,S2

∥∥2
2 � RCpδ0D−2

2
∥∥f∥∥2

2

and

(4.36) max
S2∈S2

max
�(θ)=ρ−1/2

∥∥f∗
ι,S2

∥∥2
L2

avg(θ)
� RCpδ0 max

�(θ)=ρ−1/2

∥∥f∥∥2
L2

avg(θ)

9The bound D1 ≤ r2 is not stated explicitly in Lemma 5.10 in [GWZ22, page
50], but it can proven easily via the same argument.
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for all 1 ≤ ρ ≤ r2, where the max runs over all squares θ ⊂ R
2 of side length

�(θ) = ρ−1/2, and

(4.37) ‖h‖2
L2

avg(θ) := 1
L2(θ)

∫
θ

|h|2

for a function h : R2 → R.

These three properties are taken from [GWZ22, page 51], where we set
n = 3, n′ = 2. We do not need Property 4 there because it is relevant only for
estimates in R

n with n ≥ 4.

In Property 1, we connect the scale r3 = ρ(n∗0) with the scale r2 = ρ(n∗�−).
Now we state a few estimates that connect the scale r3 = ρ(n∗0) with the
smallest scale ρ(n∗�0). More precisely, we have

‖TNf‖BLp
A0

(B3
R) � RCpδ0(r2D2)

1
2 (1−β2)D

β2
p2
1 D

β2
p2
2
∥∥f∥∥ 2

p3
2 max

O∈n∗
�0

∥∥fι,O∥∥1− 2
p3

2 ,

(4.38)

where ι refers to the unique Bι ⊂ B
3
R of radius R1−δ containing O. This esti-

mate is precisely from equations (9.1)–(9.2) in [GWZ22, page 86]. Moreover,

(4.39) max
O∈n∗

�0

‖fι,O‖2
2 � RCpδ0r

− 1
2

2 D−1
1 max

S2∈S2

∥∥f∗
ι,S2

∥∥2
2 ,

which is equation (9.3) in [GWZ22, page 87], with n = 3, n′ = 2. This finishes
recalling the outputs of the algorithm in [GWZ22] and the properties of the
outputs.

Before we proceed, let us first see how to prove (4.22) for the smaller
range p ≥ 10/3. We combine (4.38), (4.39), (4.35) and obtain

‖TNf‖BLp
A0

(B3
R)(4.40)

� RCpδ0(r2D2)
1
2 (1−β2)D

β2
p2
1 D

β2
p2
2 r

− 1
2 ( 1

2−
1
p
)

2 D
−( 1

2−
1
p
)

1 D
−2( 1

2−
1
p
)

2
∥∥f∥∥2

� RCpδ0(r2D2)
1
2 (1−β2)D

β2
2 −2( 1

2−
1
p
)

1 r
− 1

2 ( 1
2−

1
p
)

2 D
β2
2 −3( 1

2−
1
p
)

2
∥∥f∥∥2,
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where in the second inequality we used (4.32). Recall the relations in (4.31),
and that β2 is a free parameter to choose. We impose the constraint that

(4.41) β2

2 − 2
(

1
2 − 1

p

)
≥ 0,

and obtain that the last term in (4.40) can be further bounded by

RCpδ0(r2D2)
1
2 (1−β2)r

β2
2 −2( 1

2−
1
p
)

2 r
− 1

2 ( 1
2−

1
p
)

2 D
β2
2 −3( 1

2−
1
p
)

2
∥∥f∥∥2

� RCpδ0r
1
2−

5
2 ( 1

2−
1
p
)

2 D
1
2−3( 1

2−
1
p
)

2
∥∥f∥∥2.

(4.42)

Note that the exponent of D2 is always negative as p > 3. Moreover, by letting
the exponent of r2 be negative, we see the exponent p ≥ 10/3.

4.3. Polynomial Wolff axioms

Now let us focus on the improved range (4.23). This will rely on polynomial
Wolff axioms. Recall the definition of the function Φ in (4.10). For κ ∈ (0, 1),
we use θ to denote a dyadic square on R

2 of side length κ. Moreover, we use
ξθ to denote the center of θ. For v ∈ R

2 with |v| ≤ 1, define

(4.43) Tξθ ,v,Φ(κ, 1) := {(x, t) ∈ R
2 × R : |x− Φ(v, t; ξθ)| ≤ κ, |t| ≤ 1}.

In Tξθ,v,Φ(κ, 1), we use 1 to indicate that it is a (curved) tube of length one;
it is a rescaled version of the tubes defined in (4.12). The main reason of
rescaling the curved tubes is for our notation to be consistent with that in
[GWZ22, Section 3]; our Tξθ ,v,Φ(κ, 1) is precisely Tξθ,v,Φ(δ, 1) in equation (3.2)
in [GWZ22], and we are not using δ because it was used previously.

For a collection T of tubes {Tξθ ,v,Φ(κ, 1)}, we say that the tubes in T point
in different direction if no any two tubes share the same ξθ.

Theorem 4.6. Let S ⊂ B
3 be a semi-algebraic set of complexity ≤ E. Let

T = {Tξθ ,v,Φ(κ, 1)} be a collection of tubes pointing in different directions.
Then

(4.44) #{T ∈ T : T ⊂ S} �φ,E,ε′ L3(S)κ−2−ε′ ,

for every ε′ > 0.
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Proof of Theorem 4.6. We will apply [GWZ22, Theorem 3.1]. To apply this
theorem, it suffices to show that there exists εφ > 0 such that

(4.45)
∫
|t|≤εφ

|det (∇vΦ(v, t; ξ) ·M + ∇ξΦ(v, t; ξ))| dt �φ 1,

for all |v| ≤ εφ, |ξ| ≤ εφ and 2 × 2 matrices M . In particular, the implicit
constant is not allowed to depend on v, ξ,M . This is the step where we will
use the assumption that φ is of contact order ≤ k at the origin.

To prove (4.45), let us first prove that the notion of contact orders is stable
under perturbations. To be more precise, we claim that the phase function
φ is of contact order ≤ k at (x0, t0; ξ0) whenever |x0| ≤ εφ, |t0| ≤ εφ and
|ξ0| ≤ εφ. Denote

(4.46) φ0(x, t; ξ) := φ(x + x0, t + t0; ξ + ξ0) − φ(x0, t0; ξ + ξ0).

Moreover, denote

(4.47) Dij(t;x0, t0; ξ0) := ∂ξi∂ξjφ0(X0(t), t; 0), 1 ≤ i, j ≤ 2,

and

(4.48) D(t;x0, t0; ξ0) := det
[
D11(t;x0, t0; ξ0) D12(t;x0, t0; ξ0)
D21(t;x0, t0; ξ0) D22(t;x0, t0; ξ0)

]
.

Recall that our assumption is that φ is of contact order ≤ k at x0 = 0, t0 =
0, ξ0 = 0, that is, the matrix

(4.49)

⎡⎢⎢⎢⎣
D′(0; 0, 0; 0) D′′(0; 0, 0; 0) . . . D(k)(0; 0, 0; 0)
D′

11(0; 0, 0; 0) D′′
11(0; 0, 0; 0) . . . D

(k)
11 (0; 0, 0; 0)

D′
12(0; 0, 0; 0) D′′

12(0; 0, 0; 0) . . . D
(k)
12 (0; 0, 0; 0)

D′
22(0; 0, 0; 0) D′′

22(0; 0, 0; 0) . . . D
(k)
22 (0; 0, 0; 0)

⎤⎥⎥⎥⎦
has rank 4, and therefore we can find a minor of order 4× 4 whose rank is 4.
The claim follows from continuity.

Now let us prove (4.45). Recall the definition of Φ from (4.10) that

(4.50) ∇ξφ
(
Φ(v, t; ξ), t; ξ

)
= v.
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Taking derivatives in v on both sides, we obtain

(4.51) ∇x∇ξφ
(
Φ(v, t; ξ), t; ξ

)
∇vΦ(v, t; ξ) = I2×2.

Taking derivatives in ξ on both sides of (4.50), we obtain

(4.52) ∇x∇ξφ
(
Φ(v, t; ξ), t; ξ

)
∇ξΦ(v, t; ξ) + ∇2

ξφ
(
Φ(v, t; ξ), t; ξ

)
= 0.

Therefore (4.45) amounts to proving that

(4.53)
∫
|t|≤εφ

∣∣∣det
(
M + ∇2

ξφ
(
Φ(v, t; ξ), t; ξ

))∣∣∣ dt �φ 1,

uniformly in v, ξ and M . Write

det
(
M + ∇2

ξφ
(
Φ(v, t; ξ), t; ξ

))
= det

(
M̃ + ∇2

ξφ
(
Φ(v, t; ξ), t; ξ

)
−∇2

ξφ
(
Φ(v, 0; ξ), 0; ξ

))
,

(4.54)

for some new 2 × 2 matrix

(4.55) M̃ =
[
m̃11 m̃12
m̃21 m̃22

]
.

We take t0 = 0 in (4.47), x0 in (4.47) satisfying

(4.56) ∇ξφ(x0, 0; ξ) = v,

and obtain

(4.54) = D(t;x0, 0; ξ) + m̃11D22(t;x0, 0; ξ) + m̃22D11(t;x0, 0; ξ)

− (m̃12 + m̃21)D12(t;x0, 0; ξ) + det(M̃).
(4.57)

Let us write

det
(
M + ∇2

ξφ
(
Φ(v, t; ξ), t; ξ

))
= c0 +

k∑
k′=1

ck′tk
′ + higher order terms,

(4.58)
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where ck′ are constants that depend on the choice of v, ξ and M . From (4.49)
and continuity (on the parameters x0 and ξ), we know that

(4.59)
k∑

k′=1

|ck′ | �φ 1 + ‖(m̃11, m̃22, m̃12 + m̃21)‖1,

where

(4.60) ‖(m1,m2,m3)‖1 := |m1| + |m2| + |m3|,

for m1,m2,m3 ∈ R. Moreover, note that the right hand side of (4.57) depends
linearly on m̃11, m̃22 and m̃12 + m̃21, and therefore the higher order terms on
the right hand side of (4.58) are

(4.61) (1 + ‖(m1,m2,m3)‖1)Oφ,k(tk+1),

where the implicit constant in Oφ,k depends only on φ and k. By dividing
the coefficients in (4.58) by a constant, we see that the desired bound (4.53)
follows from

Claim 4.7. Let k ≥ 1 be an integer. Let W : R → R be a smooth function of
the form

(4.62) c0 +
k∑

k′=1

ck′tk
′ + Oφ,k(tk+1)

satisfying

(4.63)
k∑

k′=1

|ck′ | �φ,k 1,

where the implicit constant in (4.62) depends on φ and k. Then

(4.64)
∫
|t|≤εφ

|W (t)|dt �φ,k 1.

Proof of Claim 4.7. The proof is almost immediate. From (4.63) we can con-
clude that there exist εφ,k and k′′ ∈ {0, 1, . . . , k} such that

(4.65) |W (k′′)(t)| �φ,k 1,
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for all |t| ≤ εφ,k, which implies that |W (t)| can not stay close to 0 for too long
time, and further implies the desired lower bound (4.64).

Claim 4.7 implies the lower bound (4.53), and we have therefore finished
the proof of Theorem 4.6.

Let us state a corollary of Theorem 4.6. Recall the outputs of the poly-
nomial partitioning algorithm. In particular, recall that r2 = ρ(S2), that
elements in S2 are of the form

(4.66) Br2 ∩N
r
1/2+δ2
2

(S2),

where Br2 ⊂ B
3
R is a ball of radius r2 and S2 is an algebraic variety of

dimension two, and that the function f∗
ι,S2

is built with a collection of tubes
from T[Br2 ] that are contained in (4.66).

Corollary 4.8. Assume that r2 = R. Then for every S2, it holds that

(4.67)
∥∥f∗

ι,S2

∥∥2
2 �φ,ε r

−1/2+δ0
2

∥∥f∥∥2
∞.

Here the relation for δ2, δ0, ε are given in (4.24), and the implicit constant
depends on ε.

Proof of Corollary 4.8. The argument is a minor variant of the one intro-
duced by Guth [Gut16]. Write h := f∗

ι,S2
. Let us write h using the wave

packet decomposition in Subsection 4.1,

(4.68) h =
∑
θ

hθ, hθ :=
∑
v

hθ,v,

where θ denotes a frequency square of side length r
−1/2
2 . By the orthogonality

estimate in (4.36),

(4.69)
∥∥h∥∥2

2 �
∑
θ

∥∥hθ

∥∥2
2 � r−1

2

∑
θ

∥∥f∥∥2
L2

avg(θ)
,

where the factor r−1
2 comes from taking averaged integral over θ. By Theo-

rem 4.6, the number of θ that contributes to the above sum is �ε r
1/2+δ0
2 .

This, combined with (4.69), implies the desired bound.

Before we proceed to polynomial Wolff axioms at general scales (general
r2 instead of r2 = R), let us first see why (4.67) is more favorable compared
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with previously used estimates in (4.40). In (4.40), we combined (4.39), (4.35),
and obtained

(4.70) max
O∈n∗

�0

‖fι,O‖2
2 � RCpδ0r

− 1
2

2 D−1
1 D−2

2
∥∥f∥∥2

2.

Now we replace (4.35) by (4.67), and obtain

max
O∈n∗

�0

‖fι,O‖2
2 � RCpδ0r

− 1
2

2 D−1
1 max

S2∈S2

∥∥f∗
ι,S2

∥∥2
2

� RCpδ0r
− 1

2
2 D−1

1 r
− 1

2
2

∥∥f∥∥2
∞.

(4.71)

Recall the relation r2D2 ≤ R in (4.31). In other words, if r2 � R, then
D2 � 1. In this case, the bound (4.71) is much better than the bound (4.70);
the trade-off is that

∥∥f∥∥2 in (4.70) is replaced by
∥∥f∥∥∞, which we can afford.

Next, let us try to understand rescaled versions of the above polynomial
Wolff axioms. More precisely, we will prove an analog of Corollary 4.8 for
general r2 ≤ R.

Proposition 4.9. For every S2 ∈ S2 and r2 = ρ(S2), it holds that

(4.72)
∥∥f∗

ι,S2

∥∥2
2 �φ,ε min

{(N
r2

)k−2
r
−1/2
2 ,

(
r
−1/2
2 + r2

N

)}
(r2)δ0

∥∥f∥∥2
∞.

Here δ0 and ε are the same as in Corollary 4.8.

Proof of Proposition 4.9. To simplify notation, let us without loss of general-
ity assume that S2 is contained in the ball B3

r2 ⊂ B
3
R, that is, the ball of radius

r2 centered at the origin. In this case, wave packets are defined in (4.12), that
is

(4.73) Tθ,v :=
{

(x, t) :
∣∣∣ x
N

− Φ
( v

N
,
t

N
; ξθ

)∣∣∣ ≤ r
1/2+δ
2
N

, t ∈ [0, r]
}
.

Note that Tθ,v is a curved tube of length r2. Let us rescale it by a factor of
r2, and consider everything at the unit scale:

(4.74) T ◦
θ,v :=

{
(x, t) :

∣∣∣r2x

N
− Φ

(r2v

N
,
rt

N
; ξθ

)∣∣∣ ≤ r
1/2+δ
2
N

, t ∈ [0, 1]
}
.

Rewrite the defining equation for T ◦
θ,v in (4.74) as

(4.75)
∣∣∣x−N2Φ

( v

N2
,
t

N2
; ξθ

)∣∣∣ ≤ r
1/2+δ
2
r2

,
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where N2 := N/r2. Denote

(4.76) ΦN2(v, t; ξ) := N2Φ
( v

N2
,
t

N2
; ξ
)
.

Recall that Φ satisfies equation (4.50), that is,

(4.77) ∇ξφ
(
Φ(v, t; ξ), t; ξ

)
= v,

which be written as

(4.78) v

N2
= ∇ξφ

( 1
N2

ΦN2(v, t; ξ),
t

N2
; ξ
)

= ∇ξφN2(ΦN2(v, t; ξ), t; ξ),

with

(4.79) φN2(x, t; ξ) := N2φ
( x

N2
,
t

N2
; ξ
)
.

Denote

(4.80) Tξθ,v,ΦN2
(κ, 1) := {(x, t) ∈ R

2 × R : |x− ΦN2(v, t; ξθ)| ≤ κ, |t| ≤ 1}.

Similarly to Theorem 4.6, we have

Claim 4.10. Let S ⊂ B
3 be a semi-algebraic set of complexity ≤ E. Let

T = {Tξθ ,v,ΦN2
(κ, 1)} be a collection of tubes pointing in different directions.

Then

(4.81) #{T ∈ T : T ⊂ S} �φ,E,ε min{L3(S)(N2)k−2,L3(SN−1
2

)}κ−2−ε′ ,

for every ε′ > 0, where k is the contact order of φ and SN−1
2

denotes the N−1
2

neighborhood of S.

Proof of Claim 4.10. The proof of the upper bound

(4.82) #{T ∈ T : T ⊂ S} �φ,E,ε L3(S)(N2)k−2κ−2−ε′

is essentially the same as that of Theorem 4.6. The key difference is that (4.45)
is no longer true anymore, and instead we have

(4.83)
∫
|t|≤εφ

|det (∇vΦN2(v, t; ξ) ·M + ∇ξΦN2(v, t; ξ))| dt �φ (N2)−k+2,
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uniformly in v, ξ and 2× 2 matrices M . With (4.83) in hand, one can repeat
the proof of Theorem 3.1 in [GWZ22], and obtain Claim 4.10.

To prove (4.82), it remains to prove (4.83). Let us first write it using φN2 .
By (4.78) and (4.79), it is equivalent to prove that

(4.84)
∫
|t|≤εφ

∣∣∣det
(
M + ∇2

ξφN2

(
ΦN2(v, t; ξ), t; ξ

))∣∣∣ dt �φ (N2)−k+2,

uniformly in v, ξ and 2 × 2 matrices M . By using the stability phenomenon
that we observed in (4.49), we can without loss of generality assume that we
are working with v = 0, ξ = 0. Under this simplification, we have

(4.85) ΦN2(0, t; 0) = 0, ∀t,

as φ is of a normal form, and therefore (4.84) becomes

(4.86)
∫
|t|≤εφ

∣∣det
(
M + ∇2

ξφN2(0, t; 0)
)∣∣ dt �φ (N2)−k+2,

which follows from Claim 4.7.

Let us turn to the other upper bound. We without loss of generality
assume that

(4.87) φ(x; ξ) = 〈x, ξ〉 + 1
2 t|ξ|

2 + ψ(x; ξ), x = (x, t),

where

(4.88) ψ(x; ξ) = O(|t||ξ|3 + |x|2|ξ|2).

Under this form, we have

(4.89) φN2(x; ξ) = 〈x, ξ〉 + 1
2t|ξ|

2 + N2ψ

(
x

N2
,
t

N2
; ξ
)
.

Let us write

(4.90) ψ(x; ξ) = tQ3(ξ) + ψ2(x; ξ),

with

(4.91) Q3(ξ) = O(|ξ|3), ψ2(x; ξ) = O(|x|2|ξ|2).
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We have

(4.92) φN2(x; ξ) = 〈x, ξ〉 + 1
2t|ξ|

2 + tQ3(ξ) + N2ψ2

(
x

N2
,
t

N2
; ξ
)
.

The tube Tξθ,v,ΦN2
(κ, 1) is given by the κ neighborhood of the curve

(4.93) {(x, t) : ∇ξφN2(x, t; ξθ) = v}.

Define

(4.94) φ̃N2(x; ξ) = 〈x, ξ〉 + 1
2t|ξ|

2 + tQ3(ξ).

Define the tube T̃ξθ ,v,ΦN2
(κ, 1) to be the κ neighborhood of the curve

(4.95) {(x, t) : ∇ξφ̃N2(x, t; ξθ) = v}.

Take a point (x, t) from the curve (4.93) and a point (x′, t) from the curve
(4.95). By adding a zero, we obtain

∇ξφN2(x, t; ξθ) −∇ξφN2(x′, t; ξθ) + ∇ξφN2(x′, t; ξθ) −∇ξφ̃N2(x′, t; ξθ) = 0.

(4.96)

By Hörmander’s non-degeneracy condition, we know that

(4.97) |∇ξφN2(x, t; ξθ) −∇ξφN2(x′, t; ξθ)| � |x− x′|.

Moreover,

(4.98) |∇ξφN2(x′, t; ξθ) −∇ξφ̃N2(x′, t; ξθ)| � N−1
2 .

As a consequence, we know that the tube Tξθ ,v,ΦN2
(κ, 1) is in the N−1

2 neigh-
borhood of the tube T̃ξθ ,v,ΦN2

(κ, 1).

Claim 4.11. Let S ⊂ B
3 be a semi-algebraic set of complexity ≤ E. Let

T̃ = {T̃ξθ ,v,ΦN2
(κ, 1)} be a collection of tubes pointing in different directions.

Then

(4.99) #{T̃ ∈ T̃ : T̃ ⊂ S} �φ,E,ε L3(S)κ−2−ε′ ,

for every ε′ > 0.
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Proof of Claim 4.11. The proof of Claim 4.11 is the same as that of Theo-
rem 4.6. Let us give a very brief sketch here. The Hessian of φ̃N2 in the ξ
variables is

(4.100)
[
t + t∂ξ1∂ξ1Q3(ξ) t∂ξ1∂ξ2Q3(ξ)
t∂ξ2∂ξ1Q3(ξ) t + t∂ξ2∂ξ2Q3(ξ)

]
.

From this, one can check easily that an analogue of (4.53) holds, that is,

(4.101)
∫
|t|≤εφ

∣∣∣det
(
M + ∇2

ξ φ̃N2(0, t; ξ)
)∣∣∣ dt �φ 1,

uniformly in M and ξ. Here in the argument of φ̃N2 we simply set x = 0
because the Hessian of φ̃N2 in ξ is constant in x anyway. This finishes the
proof of Claim 4.11.

As a consequence of (4.98) and Claim 4.11, we obtain that

(4.102) #{T ∈ T : T ⊂ S} �φ,E,ε L3(SN−1
2

)κ−2−ε′ ,

for every ε′ > 0, where SN−1
2

denotes the N−1
2 neighborhood of S. This finishes

the proof of Claim 4.10.

Once we prove Claim 4.10, the desired estimate in the proposition is
immediate, and the argument is exactly the same as in the proof of Corol-
lary 4.8. We apply Claim 4.10 with κ = r

−1/2
2 and L3(S) � κ, and see that

wave packets that are contained in S2 point in at most

(4.103) min
{

(N2)k−2r
−1/2
2 ,

(
r
−1/2
2 + r2

N

)}
(r2)1+δ0

many different directions; here we applied [YC04, Corollary 5.7] to bound the
Lebesgue measure term on right hand side of (4.102). This finishes the proof
of the proposition.

Now we have all the tools to finish the proof of Theorem 4.2. The starting
point is again to apply (4.38) and (4.39), which we write down again:

‖TNf‖BLp
A0

(B3
R) � RCpδ0(r2D2)

1
2 (1−β2)D

β2
p2
1 D

β2
p2
2
∥∥f∥∥ 2

p3
2 max

O∈n∗
�0

∥∥fι,O∥∥1− 2
p3

2

� RCpδ0(r2D2)
1
2 (1−β2)D

β2
p2
1 D

β2
p2
2
∥∥f∥∥ 2

p3
2 r

− 1
2 ( 1

2−
1
p3

)
2 D

−( 1
2−

1
p3

)
1 max

S2∈S2

∥∥f∗
ι,S2

∥∥1− 2
p3

2 .

(4.104)
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To control the right hand side, recall that in (4.35), we already proved

(4.105) max
S2∈S2

∥∥f∗
ι,S2

∥∥2
2 � RCpδ0D−2

2
∥∥f∥∥2

2 � RCpδ0D−2
2
∥∥f∥∥2

∞,

where in the last step we used Hölder’s inequality. Moreover, Proposition 4.9
says that

(4.106)
∥∥f∗

ι,S2

∥∥2
2 � min

{(N
r2

)k−2
r
−1/2
2 ,

(
r
−1/2
2 + r2

N

)}
rδ02

∥∥f∥∥2
∞,

uniformly in S2. Before we continue, let us simplify the right hand side
of (4.106). We discuss two cases

(4.107) r2 ≤ N2/3, or r2 ≥ N2/3.

In the former case, we have

(4.108)
∥∥f∗

ι,S2

∥∥2
2 � r

−1/2
2 rδ02

∥∥f∥∥2
∞.

In the latter case, we have

(4.109)
∥∥f∗

ι,S2

∥∥2
2 � min

{(N
r2

)k−2
r
−1/2
2 ,

r2

N

}
rδ02

∥∥f∥∥2
∞ � r

− 1
2(k−1)+δ0

2
∥∥f∥∥2

∞.

Therefore, we always have

(4.110)
∥∥f∗

ι,S2

∥∥2
2 � r

− 1
2(k−1)+δ0

2
∥∥f∥∥2

∞.

Let γ ∈ [0, 1] to be determined. We take a geometric average of (4.105)
and (4.110), and obtain

(4.111) max
S2∈S2

∥∥f∗
ι,S2

∥∥2
2 � RCpδ0r

− 1
2(k−1) (1−γ)

2 D−2γ
2

∥∥f∥∥2
∞.

We combine (4.104) and (4.111), and obtain

‖TNf‖BLp
A0

(B3
R) � RCpδ0(r2D2)

1
2 (1−β2)D

β2
p2
1 D

β2
p2
2 r

− 1
2 ( 1

2−
1
p
)

2 D
−( 1

2−
1
p
)

1

× r
− 1

2(k−1) (1−γ)( 1
2−

1
p
)

2 D
−2γ( 1

2−
1
p
)

2
∥∥f∥∥ 2

p

2
∥∥f∥∥1− 2

p

∞ .

(4.112)
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Here we unify the notation N = R, p3 = p. We simplify coefficient on the the
right hand side of (4.112), and write it as

RCpδ0(r2D2)
1
2 (1−β2)D

β2
p2
1 D

β2
p2
2 r

− 1
2 ( 1

2−
1
p
)

2 D
−( 1

2−
1
p
)

1

× r
− 1

2(k−1) (1−γ)( 1
2−

1
p
)

2 D
−2γ( 1

2−
1
p
)

2

� RCpδ0(r2D2)
1
2 (1−β2)D

β2
2 −2( 1

2−
1
p
)

1 D
β2
2 −(1+2γ)( 1

2−
1
p
)

2 r
−( k

2(k−1)−
γ

2(k−1) )(
1
2−

1
p
)

2

� RCpδ0(r2)
1
2 (1−β2)D

β2
2 −2( 1

2−
1
p
)

1 D
1
2−(1+2γ)( 1

2−
1
p
)

2 r
−( k

2(k−1)−
γ

2(k−1) )(
1
2−

1
p
)

2 .

(4.113)

Recall that β2 ∈ [0, 1] is a free parameter we can choose. We give it the
constraint that

(4.114) β2

2 − 2
(

1
2 − 1

p

)
≥ 0.

Under this constraint, we apply (4.31) and obtain

(4.113) ≤ RCpδ0r
1
2−2( 1

2−
1
p
)

2 D
1
2−(1+2γ)( 1

2−
1
p
)

2 r
−( k

2(k−1)−
γ

2(k−1) )(
1
2−

1
p
)

2 .(4.115)

By letting the exponents of r2 and D2 be zero, we obtain

(4.116) p = 3 + k − 1
3k − 2 , γ = 3k − 2

4k − 3 .

This finishes the proof of Theorem 4.2.

5. Proofs of Theorem 2.1 and Theorem 2.2

In this section, we will prove Theorem 2.1 and Theorem 2.2.

5.1. Preliminaries in Riemannian geometry II

Let εM > 0 be a small constant depending on M. Fix ε ∈ (0, εM). In Sec-
tion 3.2, we studied the distance function

(5.1) φε(x, t; y) := dist((x, t), (y, ε)).

We always consider (x, t) in a small neighborhood of the origin, and (y, ε) in
a small neighborhood of (0, ε). As a preparation for the proofs of Theorem 2.1
and Theorem 2.2, we will collect more properties of this function.
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For given x0 = (x0, t0) and y0, we let γ̃ : [0, L̃] → M be the arc-length
parametrized geodesic satisfying γ̃(0) = (x0, t0) and γ̃(L̃) = (y0, ε). Define

(5.2) �V (x0, t0; y0) := d

ds
γ̃(0).

Lemma 5.1. It holds that

�V (x0, t0; y0)⊥(∂x1∂yiφε(x0, t0; y0), . . . , ∂xn−1∂yiφε(x0, t0; y0), ∂t∂yiφε(x0, t0; y0))
(5.3)

for every i = 1, . . . , n − 1. Here ⊥ means perpendicular under the Euclidean
inner product.

Proof of Lemma 5.1. This is a corollary of Lemma 3.2, from which we know
that ∂yiφε(x, t; y0) stays constant when (x, t) moves along γ̃.

Lemma 5.2. For smooth functions f : M → C, it holds that

(5.4) (�V · ∇x)f
∣∣∣x=(x0,t0)

y=y0

= d

ds
(f(γ̃(s)))

∣∣
s=0

and

(5.5) (�V · ∇x)2f
∣∣∣x=(x0,t0)

y=y0

= d2

ds2 (f(γ̃(s)))
∣∣
s=0,

where if we write

(5.6) �V (x, t; y) = (V1(x, t; y), . . . , Vn(x, t; y)),

then

(5.7) �V · ∇x := V1(x, t; y)∂x1 + · · · + Vn−1(x, t; y)∂xn−1 + Vn(x, t; y)∂t,

and

(5.8) (�V · ∇x)2 :=
∑
i,j

ViVj∂i∂j +
∑
i,j

Vj(∂jVi)∂i.

In the last equation, we used the convention that

(5.9) ∂i = ∂xi , i = 1, . . . , n− 1; ∂n = ∂t,

the same as previously used, say in (3.30).
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Proof of Lemma 5.2. We only prove (5.5). The right hand side of (5.5) equals

(5.10) d

ds

( d

ds
(f(γ̃(s)))

)∣∣∣
s=0

= d

ds

(∑
i

∂if
dγ̃i(s)
ds

)∣∣∣
s=0

,

where

(5.11) γ̃(s) = (γ̃1(s), . . . , γ̃n(s)).

By (5.2), we have

(5.12) (5.10) = d

ds

(∑
i

(∂if)(γ̃(s))Vi(γ̃(s); y0)
)∣∣∣

s=0
,

which, by the chain rule, equals the left side of (5.5). This finishes the proof
of the claim.

Before we proceed, let us state a corollary of Lemma 5.2. Recall from
Definition 1.4 that the phase function φε(x, t; y) is said to satisfy Bourgain’s
condition at (x0, t0; y0) if

(
(G0 · ∇x)2 ∇2

yφε

)
(x0; y0) is a multiple of

(
(G0 · ∇x)∇2

yφε

)
(x0; y0) ,

(5.13)

where

(5.14) G0(x; y) := ∂y1∇xφε(x; y) ∧ · · · ∧ ∂yn−1∇xφε(x; y),

and ∇2
y is the standard Euclidean Hessian. By Lemma 2.3 in [GWZ22], Bour-

gain’s condition is invariant under multiplying G0 by a non-zero scalar func-
tion which is allowed to depend on x0, y0. This, combined with Lemma 5.2,
gives the following equivalent form of Bourgain’s condition for the specific
phases under consideration.

Corollary 5.3. Bourgain’s condition holds for the phase φε at the point
(x0, t0; y0) if and only if

(5.15) d2

ds2 (∂yi∂yjφε(γ̃(s); y0))
∣∣
s=0 = C(x0; y0)

d

ds
(∂yi∂yjφε(γ̃(s); y0))

∣∣
s=0,

where C(x0; y0) ∈ R is allowed to depend on x0 and y0, but not on 1 ≤ i, j ≤
n− 1.
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Proof of Corollary 5.3. According to Lemma 5.1, we know that the vector
field �V satisfies the definition (5.14) in Bourgain’s condition. So, we can use
(5.13) and both (5.4) and (5.5) to get the conclusion (5.15).

5.2. Relation between Carleson-Sjölin on manifolds and
Hörmander’s problems

In this subsection, we will prove item a) of Theorem 2.1. This is well-known.
Moreover, we also know that Carleson-Sjölin on manifolds is elliptic, in the
sense that it satisfies (H1) (H2), and if we write the relevant phase function
in the normal form as in (1.7), then the matrix A is always positive definite.

The proof is very short, and therefore we will include the proof here.
Recall that a reduced Carleson-Sjölin operator is given by

(5.16) R
(M,M′)
N f(x) =

∫
M′

eiNdist(x,y)a(x)f(y)dHn−1(y),

where M′ is a submanifold of M. Let us without loss of generality assume
that M′ is given by {(y, ε) : y ∈ R

n−1} for some ε �= 0, and that the smooth
amplitude function a(x) is supported in a small neighborhood of the origin.
Our oscillatory integral becomes

(5.17)
∫
Rn−1

eiNφε(x,t;y)a(x)f(y)dy,

where x = (x, t) and

(5.18) φε(x, t; y) := dist((x, t), (y, ε)).

We need to show that

(5.19) rank∇x∇yφε(x0, t0; y0) = n− 1,

and that

(5.20) det∇2
y 〈∇xφε(x0; y), G0 (x; y0)〉

∣∣
y=y0

�= 0,

for all (x0, t0) near (0, 0) and y0 near 0, where G0 is defined in (5.14). This
follows immediately from continuity and the fact that (5.19) and (5.20) hold
for the Euclidean distance function.
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We remark here that by applying the tools from Riemannian geometry
we introduced above, one can avoid the continuity argument and make the
choice of ε more explicit. To keep our presentation short, we will not pursue
this direction.

5.3. Relation between Carleson-Sjölin on manifolds and Nikodym
on manifolds

The goal of this subsection is to prove item b) of Theorem 2.1. As men-
tioned below Theorem 2.1, the proof is essentially the same as the proof of
Theorem 1.9; the only extra input is Lemma 3.2.

Let us be more precise. We continue to use the notation

(5.21) φε(x, t; y) := dist((x, t), (y, ε)).

For the given phase function φε, recall from Definition 1.6 that curved tubes
in the curved Kakeya problem associated to φε are given by

(5.22) T δ,(φε)
y (x) :=

{
x′ ∈ B

n
2εφε : |∇yφε(x′; y) −∇yφε(x; y)| < δ

}
.

However, Lemma 3.2, together with Hörmander’s non-degeneracy conditions
(H1) and (H2) at the very beginning of the paper, says precisely that this is
the δ-neighborhood of a geodesic passing through (y, ε). The Nikodym max-
imal function Nδ,λf(y, ε) is essentially the curved Kakeya maximal function
K(φε)

δ f(y). Here we need to assume that λ < 1 just to avoid the singularities
of the distance function along the diagonals. We refer the rest of the details
to Wisewell’s thesis [Wis03, page 26].

Before finishing this subsection, let us make a remark that the Nikodym
maximal function bound we can deduce here is stronger than what we need
for Nδ,λ. More precisely, the Nikodym maximal function bound concerns the
Lp norm on B

n
εM/2, which is an integral over an n-dimensional object. However,

the bound we can deduce from the argument above concerns the Lp norm on
each hyperplane M′, which is of course much stronger because of Fubini’s
theorem. This also explains one key difference between Nikodym maximal
operators and curved Kakeya maximal operators.

5.4. Proof of Theorem 2.2: Part a)

Let us without loss of generality assume that x is near 0 ∈ R
n and y is near

(0, ε) where 0 ∈ R
n−1 and ε > 0 is a fixed small number. What we need to
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prove is

(5.23)
∥∥∥∫

Rn−1
eiNφε(x,t;y)a(x; y)g(y)dy

∥∥∥
Lp(Rn)

�M,a,ε′ N
−n

p
+ε′
∥∥g∥∥

Lp(Rn−1),

for every ε′ > 0, where

(5.24) φε(x, t; y) := dist((x, t), (y, ε)),

and a(x; y) is a smooth bump function with x = (x, t) supported near 0 ∈ R
n

and y supported near 0 ∈ R
n−1. To prove (5.23), by [GWZ22, Theorem 1.3],

it suffices to prove

Lemma 5.4. The phase function φε(x, t; y) satisfies Bourgain’s condition ev-
erywhere if M has constant sectional curvature.

Proof of Lemma 5.4. Take two points x0 = (x0, t0) and (y0, ε) on the man-
ifold, and we would like to check Bourgain’s condition. By Corollary 5.3, it
suffices to prove that

(5.25) d2

ds2 (∂yi∂yjφε(γ̃(s); y0))
∣∣
s=0 = C(x0; y0)

d

ds
(∂yi∂yjφε(γ̃(s); y0))

∣∣
s=0,

where γ̃ is the arc-length parametrized geodesic connecting (x0, t0) and (y0, ε),
and C(x0; y0) ∈ R is allowed to depend on x0 and y0, but not on 1 ≤ i, j ≤
n− 1.

Denote

(5.26) Φ(x, t; y, τ) := dist((x, t), (y, τ)).

We would like to connect ∂yi∂yjφε with the covariant Hessian of Φ. Without
loss of generality, assume that (x0, t0) = (0, 0) and y0 = 0. Note that in
[GWZ22, Corollary 2.2], it is proved that Bourgain’s condition is independent
of the choice of coordinates. Therefore, we can for the sake of simplicity
assume that we are in the same setting as in Subsection 3.2, that is, we are
in the Fermi coordinate based on the geodesic

(5.27) γ(s) = (0, s), ∀s ∈ [0, ε],

and if we define

(5.28) Ei(s) := ∂

∂yi
∈ Tγ(s)M, i = 1, . . . , n− 1, En(s) := ∂

∂τ
∈ Tγ(s)M,

For the author's personal use only.

For the author's personal use only.



Oscillatory integral operators on manifolds 1003

then {Ei(s)}ni=1 forms an orthonormal basis for Tγ(s)M.
Recall the notation from (3.31)–(3.34). We apply Claim 3.4 and obtain

(5.29) ∂

∂yi

∂

∂yj
φ0,ε

∣∣∣(x,t)=γ(s),
y=0

=
(

Hessian Φ0

)∣∣∣(x,t)=γ(s),
(y,τ)=(0,ε)

( ∂

∂yi
,
∂

∂yj

)
for every s ∈ [0, ε), 1 ≤ i, j ≤ n − 1. Here Hessian is the covariant Hessian
in the (y, τ) variables. In (5.29), we connected ∂yi∂yjφ0,ε with the covariant
Hessian of Φ0, but not ∂yi∂yjφε with the covariant Hessian of Φ. However, by
taking derivatives ∇γ̇ on both sides of (5.29), we immediately obtain

(5.30) ∂ι

∂sι
∂

∂yi

∂

∂yj
φε(γ(s); 0) = ∂ι

∂sι

(
Hessian Φ(γ(s); (0, ε))

)( ∂

∂yi
,
∂

∂yj

)
for every ι ∈ N, ι ≥ 1 and every 1 ≤ i, j ≤ n − 1, s ∈ [0, ε). Therefore, to
check Bourgain’s condition, it is equivalent to check that

∂2

∂s2

(
Hessian Φ(γ(s); (0, ε))

)( ∂

∂yi
,
∂

∂yj

)∣∣∣
s=0

= C
∂

∂s

(
Hessian Φ(γ(s); (0, ε))

)( ∂

∂yi
,
∂

∂yj

)∣∣∣
s=0

,

(5.31)

for every 1 ≤ i, j ≤ n− 1. Recall the second equation in Claim 3.4 that

(5.32)
(

Hessian Φ0

)∣∣∣(x,t)=γ(s),
(y,τ)=(0,ε)

(
Y,

∂

∂τ

)
= 0, ∀Y ∈ T(0,ε)M,

for every s ∈ [0, ε), 1 ≤ i ≤ n − 1. If we identify ∂/∂yn with ∂/∂τ , then
Bourgain’s condition is equivalent to saying that (5.31) holds for 1 ≤ i, j ≤ n.
Moreover, because {Ei(s)}ni=1 is a parallel orthonormal frame, we can say
that Bourgain’s condition is equivalent to

(5.33) ∇2
γ̇ Hessian Φ

∣∣(x,t)=(0,0)
(y,τ)=(0,ε)

= C ∇γ̇ Hessian Φ
∣∣(x,t)=(0,0)
(y,τ)=(0,ε)

for some C ∈ R.

To prove this, the first few steps are the same as in those in Subsection 3.2.
Define Jacobi fields (previously defined in (3.67))

∇2
γ̇(s′)Xj(s, s′) + R(Xj(s, s′), γ̇(s′))γ̇(s′) = 0,

Xj(s, s) = 0, Xj(s, ε) = Ej(ε).
(5.34)
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By Claim 3.6 and Lemma 3.7, we obtain (see (3.78))

(5.35) Hessian Φ
∣∣
γ(s)

(
Ei(ε), Ej(ε)

)
= g

(
∇γ̇(s′)Xi(s, s′), Xj(s, s′)

)∣∣∣
s′=ε

.

Define aji(s, s′) by

(5.36) Xj(s, s′) =
n−1∑
i=1

aji(s, s′)Ei(s′), j = 1, . . . , n− 1.

Denote

(5.37) A(s, s′) = [aij(s, s′)]1≤i,j≤n−1.

Then the Jacobi fields (5.34) can be written as

∂2
s′A(s, s′) + A(s, s′)R(s′) = 0,

A(s, s) = 0, A(s, ε) = I(n−1)×(n−1),
(5.38)

where

(5.39) R(s′) := [Rinnj(s′)]1≤i,j≤n−1

and

(5.40) Rijkl(s′) := g(R(Ei(s′), Ej(s′))Ek(s′), El(s′)).

Moreover, as calculated in (3.87), we have

(5.41) (5.35) = ∂s′aij
∣∣
s′=ε

.

Recall that Bourgain’s condition is equivalent to (5.31), and now it is further
equivalent to

(5.42) ∂2
s∂s′A

∣∣
s=0,s′=ε

= C ∂s∂s′A
∣∣
s=0,s′=ε

,

for some C ∈ R.

Let κ ∈ R be the sectional curvature of M. As the sectional curvature of
M is constant, we have (see for instance [Pet16, page 84])

(5.43) R(w, v)v = κ(w − g(w, v)v),
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where g(v, v) = 1. Therefore R(s′) = κI(n−1)×(n−1). We solve (5.38) explicitly,
and obtain

(5.44) A(s, s′) = A−1
0 (ε− s)A0(s′ − s),

where

(5.45) A0(r) :=

⎧⎪⎨⎪⎩
sin

√
κr√
κ

I(n−1)×(n−1) if κ > 0,
rI(n−1)×(n−1) if κ = 0,
sinh

√
−κr√

−κ
I(n−1)×(n−1) if κ < 0.

Compute

(5.46) ∂s′A
∣∣
s′=ε

=

⎧⎪⎪⎨⎪⎪⎩
√
κ cos(

√
κ(ε−s))

sin(
√
κ(ε−s)) I(n−1)×(n−1) if κ > 0,

1
ε−sI(n−1)×(n−1) if κ = 0,√
−κ cosh(

√
−κ(ε−s))

sinh(
√
−κ(ε−s)) I(n−1)×(n−1) if κ < 0.

From this, one can see that (5.42) holds. This finishes the proof of the lemma.

5.5. Proof of Theorem 2.2: Part b)

By [GWZ22, Theorem 1.1], it suffices to prove that Bourgain’s condition fails
at least at one point, if the sectional curvature of M is not constant. We
will argue by contradiction, assume that Bourgain’s condition holds at every
point, and then derive that the sectional curvature must be constant.

Before we start the proof, let us mention that in the subsection we will
need Claim 3.8 for manifolds of a general dimension n; however in the proof
of this claim, the dimension parameter actually does not appear explicitly,
and the same argument works for all dimensions n.

Recall the Jacobi fields (5.38), and that Bourgain’s condition is equivalent
to (see (5.42))

(5.47) ∂2
s∂s′A

∣∣
s=0,s′=ε

= C ∂s∂s′A
∣∣
s=0,s′=ε

,

for some C ∈ R. To study (5.38), we follow the strategy in the proof of
Claim 3.8, and introduce the following two systems of equations (see (3.113)
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and (3.114))

B′′
1 (s′) + B1(s′)R(s′) = 0(n−1)×(n−1),

B1(0) = I(n−1)×(n−1), B′
1(0) = 0(n−1)×(n−1),

(5.48)

and

B′′
2 (s′) + B2(s′)R(s′) = 0(n−1)×(n−1),

B2(0) = 0(n−1)×(n−1), B′
2(0) = I(n−1)×(n−1).

(5.49)

Below we abbreviate 0(n−1)×(n−1) to 0, and I(n−1)×(n−1) to I. Recall that
in (3.125), we obtained that

(5.50) ∂2
s∂s′A(0, ε) = 2B−1

2 (ε)B1(ε)∂s∂s′A(0, ε).

As we assume that Bourgain’s condition holds everywhere, we can find a
scalar function C(ε) such that

(5.51) B1(ε) = C(ε)B2(ε).

By taking the second order derivative in (5.51), we obtain

(5.52) B′′
1 (ε) = C ′′(ε)B2(ε) + 2C ′(ε)B′

2(ε) + C(ε)B′′
2 (ε).

This, combined with the first equation in (5.48), implies that

(5.53) C ′′(ε)B2(ε) + 2C ′(ε)B′
2(ε) = 0.

By taking a further derivative in ε, we obtain

(5.54) C ′′′(ε)B2(ε) + 3C ′′(ε)B′
2(ε) + 2C ′(ε)B′′

2 (ε) = 0.

By (5.53) and the first equation in (5.49), we obtain

(5.55) C ′(ε)C ′′′(ε)B2(ε) −
3
2(C ′′(ε))2B2(ε) − 2(C ′(ε))2R(ε)B2(ε) = 0.

Because of the initial condition in (5.49), we see that B2(ε) is always invertible,
whenever ε > 0 is taken to be small enough. Consequently, (5.55) is equivalent
to

(5.56) C ′(ε)C ′′′(ε)I − 3
2(C ′′(ε))2I − 2(C ′(ε))2R(ε) = 0.
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Recall in (3.119), we obtained

B−1
2 (ε)B1(ε) = 1

ε

(
I − R0

3 ε2 − R′
0

12 ε
3 + O(ε4)

)
,(5.57)

where R0 := R(0), R′
0 := R′(0) and the implicit constant in O(ε) depends only

on the manifild. This, combined with the definition of C(ε) in (5.51), implies
that C ′(ε) �= 0 whenever ε �= 0 is taken small enough. Therefore, (5.55) can
be further written as

(5.58) R(ε) =
(C ′′′(ε)

2C ′(ε) − 3(C ′′(ε))2

4(C ′(ε))2
)
I =: κ(ε)I.

For two given tangent vectors Ei(ε), En(ε) with 1 ≤ i ≤ n − 1, the sectional
curvature at γ(ε) associated to these two tangent vectors is

(5.59) R(Ei(ε), En(ε), En(ε), Ei(ε)) = κ(ε),

which is independent of 1 ≤ i ≤ n− 1.

Recall that {Ei(ε)}ni=1 forms an orthonormal basis for Tγ(ε)M. So far we
have proven that the sectional curvature at γ(ε) associated to the pair of
vectors Ei(ε), En(ε) with 1 ≤ i ≤ n − 1 is independent of i. Let us write it
as κ(γ(ε), n). The index n plays a special role here because the geodesic γ is
chosen such that γ̇(ε) = En(ε). Now we consider all possible geodesics passing
through the point γ(ε). Similarly, we will obtain that

(5.60) R(Ei(ε), En′(ε), En′(ε), Ei(ε)) = κ(γ(ε), n′),

where κ(γ(ε), n′) ∈ R is some constant that is independent of i �= n′. By basic
symmetries of Riemannian tensors, we can conclude that

(5.61) R(Ei(ε), Ej(ε), Ej(ε), Ei(ε))

is the same for all choices of i �= j. By Schur’s lemma, this constant must also
be independent of the choice of the point γ(ε), that is, M must have constant
sectional curvature.

5.6. Proof of Theorem 2.2: Part c)

To prove the λ-Nikodym maximal function bound in part c) of Theorem 2.2,
one just need to repeat the argument in Hickman, Roger and Zhang [HRZ22],
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similarly to how one proves the bound (2.6) for curved Kakeya maximal func-
tions associated to phase functions satisfying Bourgain’s condition. Lemma 5.4
guarantees that the relevant phase functions satisfy Bourgain’s condition,
which further guarantees that we have (strong) polynomial Wolff axioms as
required by [HRZ22], and Subsection 5.3 explains the connection between
Nikodym maximal functions and curved Kakeya maximal functions.

The Minkowski dimension bound in part c) of Theorem 2.2 follows from
standard argument connecting Nikodym maximal function bounds and Min-
kowski dimensions of Nikodym sets, see for instance [Sog99, Corollary 2.2].

Appendix A. More connections between curved Kakeya
problems and Nikodym problems on manifolds

In this section, we will show that not every curved Kakeya problem can be
viewed as a Nikodym problem on manifolds. Let us be more precise. We will
find a phase function φ(x, t; ξ) : R2 × R × R

2 → R satisfying Hörmander’s
non-degeneracy condition, and show that no matter how we pick Riemannian
metric tensor {gij(x, t)}1≤i,j≤3 on R

2 × R, the curves

(A.1) {(x, t) : ∇ξφ(x, t; ξ) = ω},

where ξ, ω are parameters, are never geodesics.

Let us take a phase function φ(x, t; ξ) satisfying Hörmander’s nondegene-
racy condition that will be picked later. Let us assume that we can find a
Riemannian metric tensor {gij(x, t)}1≤i,j≤3 such that

(A.2) {(x, t) ∈ B
3
2εφ : ∇ξφ(x, t; ξ) = ω}

is a geodesic for every ξ ∈ B
2
εφ

and ω ∈ B
2
εφ

. Here εφ > 0 is a small real
number that depends on φ.

Fix (x0, t0). We write a geodesic passing through this point as (Xξ(t), t)
where

(A.3) (∇ξφ)(Xξ(t), t; ξ) = (∇ξφ)(x0, t0; ξ), Xξ(t0) = x0.

We compute ∂
∂tXξ(t), and obtain the tangent vector at the starting point. To

do so, we take the derivative of (A.3) in t, and obtain

(A.4) ∇x∇ξφ(Xξ(t), t; ξ) ·
∂

∂t
Xξ(t) + ∂t∇ξφ(Xξ(t), t; ξ) = 0.
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Therefore,

(A.5) ∂Xξ(t)
∂t

= (∇x∇ξφ)−1 · ∂t∇ξφ,

and the tangent vector of the geodesic (A.3) is parallel to

(A.6)
[
(∇x∇ξφ)−1 · ∂t∇ξφ

1

]
.

We take a further derivative in t on both sides of (A.4), and obtain

∇x∇ξφ · ∂2

∂t2
Xξ(t) +

( ∂

∂t
Xξ(t)

)T
· ∇2

x∇ξφ · ∂

∂t
Xξ(t)

+ 2∂t∇x∇ξφ · ∂

∂t
Xξ(t) + ∂2

t∇ξφ = 0.
(A.7)

By moving terms, we obtain

∂2

∂t2
Xξ(t) = 2(∇x∇ξφ)−1∂t∇x∇ξφ · (∇x∇ξφ)−1∂t∇ξφ + (∇x∇ξφ)−1∂2

t∇ξφ

+ (∇x∇ξφ)−1 ·
(( ∂

∂t
Xξ(t)

)T
· ∇2

x∂ξιφ · ∂

∂t
Xξ(t)

)T

1≤ι≤n−1
.

(A.8)

To simplify notations, we will write x = (x1, x2) and treat t as the third
spatial variable; we will use Γμ

αβ , 1 ≤ α, β, μ ≤ 3 for Christoffel symbols. If
we parametrize geodesics by using the third spatial variable t, that is, if

(A.9) (x1(t), x2(t), x3(t))

is a geodesic with x3(t) = t, then

(A.10) d2xμ

dt2
= −

∑
α,β

Γμ
αβ

dxα

dt

dxβ

dt
+
∑
α,β

Γ3
αβ

dxα

dt

dxβ

dt

dxμ

dt
,

where μ = 1, 2, 3. We therefore have

[
∂2Xξ(t)

∂t2

0

]
+

⎡⎢⎢⎣
((

∂Xξ(t)
∂t

)T
, 1
)
· [Γ1

bc]1≤b,c≤3 ·
((

∂Xξ(t)
∂t

)T
, 1
)T((

∂Xξ(t)
∂t

)T
, 1
)
· [Γ2

bc]1≤b,c≤3 ·
((

∂Xξ(t)
∂t

)T
, 1
)T

0

⎤⎥⎥⎦
(A.11)
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−
((∂Xξ(t)

∂t

)T
, 1
)
· [Γ3

bc]1≤b,c≤3 ·
((∂Xξ(t)

∂t

)T
, 1
)T

[
∂Xξ(t)

∂t

0

]
= 0, ∀t.

Recall how to pass from metrics to Christoffel symbols:

(A.12) ∂igjk =
∑
l

Γl
ijglk +

∑
l

Γl
ikgjl,

or

(A.13) Γi
kl = 1

2
∑
m

gim
(
∂gmk

∂xl
+ ∂gml

∂xk
− ∂gkl

∂xm

)
.

The first identity (A.12) can be written as

(A.14) ∂ig =

⎡⎢⎣Γ1
i1 Γ2

i1 Γ3
i1

Γ1
i2 Γ2

i2 Γ3
i2

Γ1
i3 Γ2

i3 Γ3
i3

⎤⎥⎦ · g + g ·

⎡⎢⎣Γ1
i1 Γ1

i2 Γ1
i3

Γ2
i1 Γ2

i2 Γ2
i3

Γ3
i1 Γ3

i2 Γ3
i3

⎤⎥⎦ ,

where

(A.15) g := (gij)1≤i,j≤3.

We now start constructing the phase function φ. We start with the phase
function

(A.16) φ0(x, t; ξ) = 〈x, ξ〉 + tξ1ξ2 + 1
2 t

2ξ2
1 ,

which was constructed by Bourgain [Bou91]. Let us take a point (z1, z2, τ)
and compute the Christoffel symbols at this point.

We first compute all the geodesics passing through this point. Suppose

x1 + tξ2 + t2ξ1 = w1,

x2 + tξ1 = w2.
(A.17)

Then we see that

X1(t) = z1 + τξ2 + τ 2ξ1 − tξ2 − t2ξ1,

X2(t) = z2 + τξ1 − tξ1.
(A.18)

All geodesics passing through (z1, z2, τ) can be written as

(A.19) (X1(t), X2(t), t).
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By the equation (A.10), we obtain

−2ξ1 = −(−ξ2 − 2τξ1,−ξ1, 1)(Γ1
αβ)1≤α,β≤3(−ξ2 − 2τξ1,−ξ1, 1)T

+ (−ξ2 − 2τξ1)(−ξ2 − 2τξ1,−ξ1, 1)(Γ3
αβ)1≤α,β≤3(−ξ2 − 2τξ1,−ξ1, 1)T ,

(A.20)

and

0 = −(−ξ2 − 2τξ1,−ξ1, 1)(Γ2
αβ)1≤α,β≤3(−ξ2 − 2τξ1,−ξ1, 1)T

+ (−ξ1)(−ξ2 − 2τξ1,−ξ1, 1)(Γ3
αβ)1≤α,β≤3(−ξ2 − 2τξ1,−ξ1, 1)T .

(A.21)

Christoffel symbols are not unique. If we take

(Γ1
αβ)1≤α,β≤3 =

⎡⎣0 0 0
0 0 −1
0 −1 0

⎤⎦ ,

(Γ2
αβ)1≤α,β≤3 =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ , (Γ3
αβ)1≤α,β≤3 =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ ,

(A.22)

then (A.20) and (A.21) are satisfied. Eventually, one can check directly that
under the metric

(A.23) g(x1, x2, t) =

⎡⎣ 1 −t −x2
−t t2 + 1 x2t
−x2 x2t x2

2 + 1

⎤⎦ ,

the curve (A.19) is a geodesic for all (z1, z2, τ) and ξ.

Next, let us modify Bourgain’s example and show that metrics may not
always exist. Take

(A.24) φ(x, t; ξ) = 〈x, ξ〉 + tξ1ξ2 + t2P (ξ1),

where P (ξ1) = O(|ξ1|2) is to be chosen. Consider all the curves determined
by φ passing through the origin. They can be written as

X1(t) = −tξ2 − t2P ′(ξ1),(A.25)
X2(t) = −tξ1.(A.26)
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Recall that if metric tensor exists, then we always have (A.10). We check this
equation at the origin. Note that dxα

dt stays the same as in Bourgain’s example.
However, the left hand side of (A.10) changes dramatically. More precisely,

(A.27) dx1

dt

∣∣∣
t=0

= −ξ2,
dx2

dt

∣∣∣
t=0

= −ξ1,
dx3

dt

∣∣∣
t=0

= 1.

Therefore, the right hand side of (A.10) at the origin is (at most) cubic in ξ.
However, the left hand side of (A.10) is

(A.28) (−2P ′(ξ1), 0, 0)T .

If for instance we take P (ξ1) = ξ5
1 , then there does not exist any metric tensor

to make (A.10) hold for every ξ.
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