Collaborative Task Offloading with Digital Twin in
Multi-Vehicle and Multi-Edge Environments

Angi Gu*, Huaming Wu*, Yixiao Wang*, Ruidong Lif and Chaogang Tang!
*Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
tInstitute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
fSchool of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
Emails: {guanqi9_, whming, wang_yixiao} @tju.edu.cn, liruidong @ieee.org, cgtang@cumt.edu.cn

Abstract—In recent years, the effective utilization of edge
servers to assist vehicles in handling compute-intensive and
latency-sensitive tasks has emerged as a pivotal concern in
Vehicular Edge Computing (VEC). In this paper, we adopt a
cooperative approach that leverages the collective capabilities of
multiple edge servers. This strategy is designed to effectively
manage tasks and alleviate the computational burden imposed
on these servers. Specifically, Graph Neural Network (GNN) is
applied to extract and classify features such as the geographical
locations and communication statuses of multiple edge servers,
enabling the selection of the most suitable servers for collab-
orative task execution. We have utilized solar energy for local
computing, effectively achieving environmental protection and
reducing the local energy burden on vehicles. Moreover, a novel
edge attraction formula is defined to refine the rationality of
clustering. In addition, Deep Reinforcement Learning (DRL)
is employed to make real-time offloading decisions. To ensure
experimental accuracy while mitigating costs, we establish a
corresponding digital twin environment to acquire experimental
data. By conducting a comparative analysis against three other
baseline methods, we effectively reduce task completion time and
thus meet the stringent demands of time-sensitive tasks.

Index Terms—Vehicular edge computing, Internet of vehicles,
Digital twin, Task offloading, Graph neural network, Deep
reinforcement learning

I. INTRODUCTION

In the Internet of Vehicles (IoV) environments, many real-
time processing challenges arise, including tasks such as
obstacle detection and fault handling [1]. On the one hand,
relying solely on the vehicle’s onboard CPU for these tasks
can be impractical in terms of timely execution. On the other
hand, cloud servers may incur high transmission latency due
to their distant locations. Therefore, the concept of offloading
tasks from vehicles to edge servers located near the road
has emerged as a promising solution [2]. Given the dynamic
nature of vehicles operating in a real-time environment, the
development of effective task-offloading strategies has become
a central focus of research.

To address this issue, Wang et al. [3] proposed a meta-
learning-based adaptive approach for task offloading decisions.
This approach allows for partial task offloading decisions
considering the task’s inherent topology to minimize the task
completion time. However, the data employed lacks sufficient
representatives of real-world scenarios. Cao et al. [4] proposed
multi-objective task offloading models for vehicles within

corresponding digital twin environments, which involves sim-
ulating vehicle movement and significantly reducing the costs
associated with practical experiments. On actual roads, relying
on a single edge server for tasks often results in high latency
when handling a large volume of vehicle tasks.

In [5], Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) was employed to make task offloading decisions
and optimize resources for vehicles with varying speed and
latency requirements, achieving commendable performance.
However, it’s worth noting that traditional Deep Reinforce-
ment Learning (DRL) lacks the inherent capability to account
for concealed or hidden features within the system. Instead,
researchers have incorporated Graph Neural Networks (GNNs)
into task offloading decisions to handle the graphical features
of the system. For instance, GNN-TSO [6] leverages GNN
to capture the inherent characteristics of task applications,
thereby enabling more precise decision-making and reduc-
ing task latency. However, this approach does not consider
the potential collaboration among edge servers. Some recent
studies [7, 8] integrated GNN to explore the system status of
MEC servers and mobile devices, resulting in more accurate
and efficient task decisions. Similarly, Wu et al. [9] combined
DRL and GNN to explore task diversity and minimize task
completion time. Unfortunately, these approaches have not
yet been expanded into the domain of vehicular network-
ing. Furthermore, they do not encompass the intricacies of
task offloading in scenarios involving multiple MEC servers.
To improve the accuracy of offloading decision-making and
multi-edge collaborative computing, extracting and classifying
features such as geographical location, communication status,
and computing power of multiple edges has become a focus.
The information of multiple edges can be abstracted into
a graph. This paper introduces an innovative approach by
utilizing GNNSs to extract and classify features of these edges,
leveraging them for multi-edge collaboration to address the
issue of insufficient edge computing power.

To address these challenges, we introduce a novel opti-
mization approach that improves decision-making for task
offloading in complex collaborative scenarios by leveraging
the strengths of GNNs and DRL. Our method effectively
reduces prolonged task processing times and high energy
consumption during vehicle operations, while alleviating the
high latency caused by resource shortages in edge computing

through the innovative concept of “edge gravity”. In addition,
we integrate clean energy into the vehicle’s local computing
power, reducing the vehicle’s energy consumption and achiev-
ing overall energy savings. The main contributions can be
summarized as follows:

o We alleviate computational stress through a novel ap-
proach to multilateral collaborative computing by design-
ing an edge attraction formula. This approach reduces
task latency by efficiently scheduling computing power
across multiple edges.

o We propose an innovative solution involving using clean
solar energy to charge vehicles and serve as a local
computing power source, significantly reducing local
computing energy consumption.

e We design a novel approach by integrating GNN with
DRL and digital twin within the domain of Vehicular
Edge Computing (VEC). Simulating in a virtual environ-
ment lowers experimentation costs and real-world risks
while offering a realistic and accurate setting for training
and testing autonomous driving algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

Fig. 1 illustrates the network scenario involving vehicle-
to-vehicle cooperation. The scenario consists of /N vehicles
and M edge servers, where each vehicle generates a task
during every time slot. The communication model employed
in this study encompasses two critical types of communica-
tion: vehicle-to-vehicle (V2V) communication and vehicle-
to-infrastructure (V2I) communication [10]. It is important
to note that communication between base stations is con-
ducted via remote channels using microwave transmission
lines, which offer low signal loss, high transmission speeds,
and strong anti-interference capabilities. Consequently, the
information transmission delay between base stations is sig-
nificantly lower than the vehicle-to-edge delay.

N
- AN

)

A Base Station

Solar energy

*‘ Edge Server — \ —
K _— . |= X Solar power
J generation
Task data w\ / device
7~ Result dat \ /
esult data \\~| }
iE=e =)
O=in =
R Vi
\ /
\ //
@ =] © "
y{—— _EIR
e
=8 ! A/
)

Fig. 1. System model

The vehicles are equipped with antennas for transmitting
and receiving data and photovoltaic panels and absorbers to
harvest energy for local task execution. These vehicles upload
task-related information to the edge servers for decision-
making, which involves determining whether the task should

be executed locally on the vehicle or offloaded to the edge
for execution. Meanwhile, Roadside Units (RSUs) can coop-
erate. If the offloaded RSU lacks the computational resources
required for task execution, it can transfer the task to other
available edge servers for processing. The decision to offload
tasks is represented by the variable x; ;, where ¢ corresponds
to each of the N vehicles. When x; ; equals 1, the task is
offloaded to the nearby j-th edge server, while a value of
0 indicates that the task is executed locally. It is crucial to
emphasize that tasks are considered indivisible by default.

1) Local Computing: In the case where we opt for local
task computation, denoted by x; ; = 0, the completion time
is solely determined by the execution time, as expressed by:

t

T
T = =, (1)

K3 fzt
where r! denotes the computational workload required for the
task of the ¢-th vehicle at time ¢, representing the number of
CPU cycles required to complete the task, and f} denotes the
computational capacity of the ¢-th vehicle, expressed in the

number of CPU cycles per second.

2) Edge Computing: When a vehicle is offloaded for com-
putation at the edge, the data needs to be transferred to the
edge server first, and then the computation is performed by
the edge server. The transmission time can be calculated by:
D;

, 2
R 2)
where D; refers to the size of the data that the i-th vehicle
needs to upload, and Rfrj refers to the transmission rate at
which the ¢-th vehicle transfers data from its local device
to the j-th edge server. Using Shannon’s formula [11], the
transmission rate can be calculated by:

B!, log (1 n p—ig;j) , 3)
ag

tr __
Ti; =

tr __
Ry =

where nyj represents the channel transmission bandwidth
between vehicle ¢ and the j-th edge server, while p: denotes
the transmission power of the ¢-th vehicle. The wireless gain
is indicated by g¢,j, and o corresponds to the power of
Gaussian white noise. The channel operates under a Rayleigh
fading model. We define the transmission time between the
j-th and k-th edge servers as Tj’f’;c In scenarios where the
computing power of the j-th edge server is insufficient, tasks
are offloaded to the k-th edge server. The calculation method
for this offloading time is similar to that used for Tf’;

The computation time of the i-th task on the j-th server can

be formulated as: ‘
rt

T = (4)

J

where fj’? represents the computational capacity of the j-th
server, which corresponds to its CPU speed.

Therefore, the total time required for task completion in
edge computing mode is 7.

TP = TP + Tf; + Tj. (5)

3) Local Energy Consumption: To minimize energy con-
sumption during task computation on the vehicle and adhere to
the principles of energy conservation and emission reduction,
we employ solar power generation to provide energy support
for these tasks. Solar panels and absorbers will be installed
on the vehicle to convert solar energy. The electrical energy
derived from solar energy collected by the vehicle at time ¢ is
represented as [12]:
EM" = agbscexp (

3

(1 - 22556 x 1052) 1),
(6)

where c is a constant with a value between 0 and 1, repre-
senting the efficiency of the solar absorber panel, a; denotes
the charging size, bs is the constant power intensity of the
solar beam, af"l‘" denotes the solar zenith angle at time ¢, z
denotes the height of the vehicle roof, and k£ > 0 denotes the
total amount of atmospheric sunlight.

When a task is executed locally, the associated energy
consumption is denoted as:

cos(agoler)

t

t, T
Ep© = g™,)
fi
where ¢ represents the energy consumption level of the

vehicle per second.

To achieve our energy-saving and emission-reduction ob-
jectives, the amount of solar energy collected for power
generation must equal or exceed the computational energy
consumed by the vehicle.

t, t,
B B >, 8)

which ensures that the vehicle’s computational needs are

consistently met through solar energy generation

B. Problem Formulation

To achieve task-offloading decisions from a practical per-
spective, we formulate the problem as follows:

P min Tiorar = x5 (T35 + T + Tj%) + (1 — i) (T7)

©))

s.t. Bl — B >0, (9a)
0< ff < fi, (9b)

0< fi < fme, (%)

Tij € {0, 1} s (9d)

where Eq. (9a) imposes an energy constraint, ensuring that
the energy consumption for local execution does not exceed
the amount of clean energy collected. If this threshold is
surpassed, the task must be offloaded to the edge server for
execution. This ensures that the energy used for the vehicle’s
task execution remains within the limits of the collected
clean energy, thereby achieving the objective of reducing
the vehicle’s overall energy consumption. Eqs. (9b) and (9c)
impose constraints on computational capacity, ensuring that
the computational load of each vehicle does not exceed its
maximum capacity, and similarly, that the edge servers operate

within their own capacity limits. Eq. (9d) defines the constraint
on the decision variables, where the decision variables z; in
this study are binary, taking values of either O or 1. It can be
seen that PP is a mixed-integer 0-1 programming problem, a
well-known NP-hard problem that is not easily solvable with
traditional methods.

III. PROPOSED APPROACH

To tackle the above challenge, we decompose the problem
into two main components. One involves the extraction and
clustering of edge server features using GNN, which leads
to creating a classification scheme for mutually collaborative
servers, and the other one focuses on devising task offloading
strategies while adhering to constraints, utilizing an enhanced
DRL approach. The structure is shown in Fig. 2.

[](Sy(1)

A Edge servers’ status

Environment

Edge servers S,(0)
System status
—

Graph neural networks]

Sy(1) Edge collaboration

Edge cluster —
S0 Task offloading
‘)[Deep reinforcement Iearning} >
$ Experience playback
; A
| Experience pool | Action

Fig. 2. The framework of multilateral edge collaborative offloading algorithm

A. GNN-Assisted Edge Collaboration

GNN is primarily employed for graph processing, feature
extraction from graphs, and performing operations on them. In
this paper, we treat the M edge servers as individual nodes,
collectively forming the vertex set denoted as V. We assume
the presence of directed edges between nodes, representing
servers capable of communicating with each other. These
edges collectively constitute the edge set, denoted as E.
Moreover, we assign weights to these edges, represented as
W. This results in the formation of the graph G that requires
processing.

The node features are defined as the coordinates of
the nodes. To comprehensively account for factors such as
the communication environment, computing capabilities, and
inter-server distances, we introduce an edge attraction formula,
which enables us to calculate the edge attraction between
nodes, and these values are subsequently utilized as the
weights on the edges connecting the nodes.
_ Bix
(dis (j,%))"
where F (j, k) represents the edge attraction between the j-
th server and the k-th server, f} represents the computing
capability of the k-th edge server at time ¢, and B; j represents
the communication capability between the j-th and the k-th
servers. Moreover, dis (j, k) represents the Euclidean distance
between the j-th server and the k-th server, with a serving
as a weight hyperparameter. Eq. (10) resembles the universal

F(j.k)= [t (10)

gravitation formula. A larger fj indicates a stronger attraction
between two servers, meaning server j is more likely to
offload tasks to server £ when their communication capability
is higher, leading to positive feedback. Conversely, as the
distance between servers increases, the attraction decreases,
leading to higher transmission costs. The stronger the calcu-
lated attraction between two servers, the more likely tasks are
to be offloaded between them. These attraction values are then
used as input weights, enhancing the GNN’s ability to capture
latent information and improve clustering accuracy.

The detailed procedures for calculating edge attraction and
performing GNN clustering are outlined in Alg. 1 and Alg. 2,
respectively. In Alg. 2, the graph, node features, edges, and
computed edge attraction weights are input into a multi-layer.
This process yields learned node embeddings, which include
details such as model architecture, embedding dimensions,
and parameters for clustering. Finally, k-means clustering is
applied to the node embeddings to generate the clustering
results. We use the third-party library PyClustering to config-
ure a custom distance function for k-means clustering based
on edge gravity. Edge servers within the same cluster can
then collaborate effectively and offload tasks to one another,
enhancing synergy among the edge servers.

Algorithm 1 Edge gravity

Input: Central edge v; and neighborhood N (v;), gravitational con-
stant f}, weight coefficient o, matrix B.
Output: Score, v; and N (v;).
1: while vy € N (v;) do
2 dis (k) = (- o)’ — (-)’
. B;
3 F(].ak):flzw,
4: end while
5: Fmaz :O, Fmin :0,
6
7
8

: while v, € N (v;) do
Fraz = max (max F, Fj 1);
: Fryin = min (min F, Fj 1);
9: end while
10: while v, € N (v;) do
Fjk—Fmin
11: Gk = 715,7:1‘”71,7””;
12: end while
13: return G matrix;

Algorithm 2 Edge clustering

Input: g (v, e, w), v(Vertex set, £ edge, edge weight G, node char-
acteristics: (spatial coordinates)).
1: Create a GCN model and initialize the model network parame-
ters;
: Model=GCN model created ()
: for episode =1 to ep do

Update coefficient V- (6);

Calculate loss coefficient;

Obtain node embedding for learning columns (model ar-
chitecture, embedding dimensions, parameters for constructing
clustering);

: end for

8: Use k-means clustering to cluster node embedding, with k£ = 2
and the distance metric changed to edge weight;

9: Output: Clustering results;

A ol

~

B. DRL-Assisted Edge Offloading

Considering the significant mobility and uncertainty in ve-
hicular environments, we leverage unsupervised learning with
DRL to facilitate real-time decision-making in dynamically
changing scenarios. We formulate the problem as a Markov
Decision Process (MDP), where the definitions of state, action,
and reward are as follows.

1) State: The state is defined by several key components,
including the vehicle’s current position, its communication
status with the base station, the real-time task load of the
vehicle, and the amount of energy absorbed and stored by
the vehicle. The aim is to make accurate decisions based on
the changes in task load and energy storage of the vehicle,
considering the dynamic positioning and communication status
with the base station. The system’s state space, denoted as
S(t), includes various parameters such as the computing
capacity of vehicles and Small Cell Base Station (SCBS), as
well as the positions of the vehicles.

S(t) = {f1(t), fa(t), -, fi(t), Fi(t), Fa(t), -, F;(t),
pi(t),p2(t), -+ ,pi(t) }, (11)

where f;(t), F;(t), and p;(t) denote the computing capacity
of the vehicle and MEC, and the position of the vehicle,
respectively.

2) Action: We set the action variable as the decision
variable, and the action space, denoted as A(t), comprises
decisions on whether to retain tasks for local processing or
offload them to other servers, expressed as:

A(t) = {z11(t), z12(t), - 215(1), -, @i (D)}

where ; ;(t) represents the decision for the i'" task. Specif-
ically, x; ;(t) = 0 corresponds to local processing, while
x;,;(t) =1 corresponds to offloading for MEC processing.

3) Reward: To minimize latency, the reward is defined as
the negative value of latency. This choice is based on the
principle that DRL algorithms tend to adjust in the direction
of larger rewards.

(12)

R(t) = _Ttotal~ (13)
The details of the algorithmic process are shown in Alg. 3.

C. Computational Complexity

In Alg. 1, the traversal of nodes and their neighboring nodes
entails the determination of edge attractions between each
node and its neighbors. The complexity can be expressed as
O(M?). The complexity of Alg. 2 is determined by the num-
ber of iterations ep, and it amounts to O(ep). As for Alg. 3,
it contains two loops: one in the first line and the other in the
fourth line. These loops correspond to the number of episodes
in the interaction between the agent and the environment and
the number of times the vehicles are traversed, respectively.
Thus, the complexity for Alg. 3 is O(PT).

IV. PERFORMANCE EVALUATION
A. Parameter Settings

We utilize PanoSim software to simulate the digital twin
environment. In our setup, a 200 x 200 m?2 area contains five

Algorithm 3 Policy selection algorithms based on DRL

Input: Vehicle location, task volume, edge computing resources,
vehicle computing resources.
1: for episode =1,2,--- , P do
Receive initial state S(¢);
Initialize a random process for action;
fort=1,2,---,T do
Execute actions A(t) and obtain the reward R(¢);
Obtain the action A(t), new state S’ (¢) and reward R(t);
Store (S(t), A(t), S’'(t), R(t)) in replay buffer D;
Sample a random mini-batch of samples (S5, A;, R;, S;-)
from D;
9: Update the evaluation network by minimizing the loss
function;
10: Update target network using the sampled policy gradient
at every 10 steps;
11: Update the target network parameters:
0 380+ (1—06)0
12: end for
13: end for

A A ol

vehicles, with four edge servers positioned at each corner of
the road. The vehicles are programmed to travel at a speed
of 30 km/h. The number of CPUs required for the task is
randomly distributed between 10 and 200. The computing
capacities of the local vehicle and edge server follow a random
distribution within the range of [10, 100] GHz and [500, 1000]
GHz, respectively. The coverage radius of each edge server
is 150 meters and the wireless communication parameters are
set as follows: Gaussian white noise is Ny = —100 dB, small
fading factor is -5 dB, vehicle transmission power is 100 mW,
and edge server communication bandwidth is 80 MHz [4].

Fig. 3. The constructed vehicular digital twin environment

The established digital twin environment, as shown in Fig.
3, offers real-time information about vehicle positions and
their distances to the VEC server. Data collected from sensors
and road test units is mapped into this digital twin, where
it interacts with the proposed algorithms to determine opti-
mal offloading decisions. Throughout this process, the digital
twin provides precise inputs and environmental perception
capabilities for intelligent driving algorithms by continuously
collecting real-time sensor data and updating models. By
simulating the vehicle’s operating environment, the digital twin
generates real-time data that serves as input for the algorithms
and is displayed in graphical form, allowing users to monitor
the vehicle’s status in real time. This setup creates a realistic
and accurate environment for algorithm training and testing.

B. Baselines

To compare the performance of our approach, we implement

the following three baseline algorithms:

e One Edge Computing (OEC): This approach involves
task computation using a single server, without employing
collaborative methods, and makes offloading decisions
solely through reinforcement learning.

e Full Local Computing (FLC): Tasks are processed
entirely using local resources without offloading to edge
servers.

o Greedy-based Scheme (GBS): This approach uses the
original greedy method for task offloading without any
additional enhancements.

C. Convergence Performance

-40

-60

Average Reward

-100

L L L L
0 100 200 300 400 500

Episode

Fig. 4. Training rewards

As depicted in Fig. 4, a clear convergence trend becomes
evident after 200 rounds. Notably, setting the learning rate
to 0.1 results in faster convergence with reduced fluctuations.
Hence, it is vital to carefully choose an appropriate learning
rate, as excessively large or small values are undesirable.

D. Impact of Numbers of Vehicles
35

—=— Our algorithm
—e— GBS
—— OEC
—+—FLC

30

Average delay(ms)

—_ —_ [} N

(=] W (=] W
T

w

5 10 15 20 25

0 L

Vehicle number

Fig. 5. Comparison of different schemes with varying numbers of vehicles

In Fig. 5, we can observe the performance differences
among the three baselines and the proposed approach at
varying numbers of vehicles. As the number of vehicles
increases, the latency of all approaches also increases. This is
because, with the increase in the number of vehicles, a higher
volume of tasks is generated, resulting in a collective increase
in the total time required to complete these tasks. With the
growing number of vehicles, the waiting time for tasks on the
edge server also increases significantly in the OEC scheme.
This increase in waiting time contributes to a more substantial

performance gap when compared to the approach proposed in
this paper. In the FLC scheme, all tasks are executed locally,
and even with limited local computing capacity, it still takes
more time to complete tasks than our proposed approach.

E. Impact of Numbers of MEC Servers

15

—=— Qur algorithm
—e— GBS
—+—OEC
—v—FLC

o

—

[
T

Average delay(ms)

MEC number

Fig. 6. Comparing different schemes with varying numbers of MEC servers.

In Fig. 6, the performance comparison of all approaches
under different numbers of servers is illustrated. As the number
of servers increases, the total latency of OEC and FLC remains
constant. This is because a single server’s local computation
and task computation are independent of the number of
servers. However, an increase in the number of servers means
more coordinated server resources, resulting in a decrease in
task completion latency and an increased gap compared to
the OEC and FLC schemes. With an increasing number of
servers, the proposed strategy can efficiently schedule more
server resources, resulting in a more significant performance
gap when compared to the GBS scheme.

V. CONCLUSION

This paper proposes a multi-edge coordinated task offload-
ing scheme in a digital twin environment, introducing an edge
attraction formula to calculate the attraction between different
edge servers. It utilizes GNN to extract and integrate informa-
tion from multiple edges, enabling the exploration of latent in-
formation, and then applies DRL to obtain real-time offloading
decisions, ultimately reducing task latency. Additionally, using
clean energy helps reduce the cost of local computing and
contributes to environmental sustainability. The digital twin
environment ensures the practical applicability of the model.
Simulation results highlight the superior performance of this
scheme compared to other comparative approaches. Future
research will focus on expanding collaborative scenarios for
vehicular edges, considering additional constraint conditions,
and further enhancing optimization performance.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (No. 62071327) and the Tianjin Science
and Technology Planning Project (No. 22ZYYYJC00020).
Huaming Wu is the corresponding author.

REFERENCES

[1] R. Zhang, L. Wu, S. Cao, D. Wu, and J. Li, “A vehic-
ular task offloading method with eliminating redundant
tasks in 5g hetnets,” IEEE Transactions on Network and
Service Management, vol. 20, no. 1, pp. 456-470, 2023.

[2] G. Perin, M. Berno, T. Erseghe, and M. Rossi, “To-
wards sustainable edge computing through renewable
energy resources and online, distributed and predictive
scheduling,” IEEE Transactions on Network and Service
Management, vol. 19, no. 1, pp. 306-321, 2022.

[3] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas,
“Fast adaptive task offloading in edge computing based
on meta reinforcement learning,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 1, pp. 242—
253, 2021.

[4] B. Cao, Z. Li, X. Liu, Z. Lv, and H. He, “Mobility-
aware multiobjective task offloading for vehicular edge
computing in digital twin environment,” IEEE Journal
on Selected Areas in Communications, vol. 41, no. 10,
pp- 3046-3055, 2023.

[5] X. Huang, L. He, and W. Zhang, “Vehicle speed aware
computing task offloading and resource allocation based
on multi-agent reinforcement learning in a vehicular
edge computing network,” in 2020 IEEE International
Conference on Edge Computing (EDGE), 2020, pp. 1-8.

[6] Y. Bian, Y. Sun, M. Zhai, W. Wu, Z. Wang, and
J. Zeng, “Dependency-aware task scheduling and of-
floading scheme based on graph neural network for
mec-assisted network,” in 2023 IEEE/CIC International
Conference on Communications in China, 2023, pp. 1-6.

[71 Z. Sun, Y. Mo, and C. Yu, “Graph-reinforcement-
learning-based task offloading for multiaccess edge com-
puting,” IEEE Internet of Things Journal, vol. 10, no. 4,
pp- 3138-3150, 2023.

[8] T. Pamuklu, A. Syed, W. S. Kennedy, and M. Erol-
Kantarci, “Heterogeneous gnn-rl-based task offloading
for vav-aided smart agriculture,” IEEE Networking Let-
ters, vol. 5, no. 4, pp. 213-217, 2023.

[9] T. Wu, W. Jing, X. Wen, Z. Lu, and S. Zhao, “A scalable
computation offloading scheme for mec based on graph
neural networks,” in 2021 IEEE Globecom Workshops
(GC Wkshps), 2021, pp. 1-6.

[10] M. S. Bute, P. Fan, G. Liu, F. Abbas, and Z. Ding, “A
cluster-based cooperative computation offloading scheme
for c-v2x networks,” Ad Hoc Networks, vol. 132, p.
102862, 2022.

[11] Y. Chen, FE. Zhao, X. Chen, and Y. Wu, “Efficient multi-
vehicle task offloading for mobile edge computing in 6g
networks,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 5, pp. 4584-4595, 2022.

[12] K. Li, W. Ni, X. Yuan, A. Noor, and A. Jamalipour,
“Deep-graph-based reinforcement learning for joint
cruise control and task offloading for aerial edge internet
of things (edgeiot),” IEEE Internet of Things Journal,
vol. 9, no. 21, pp. 21 676-21 686, 2022.

