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Abstract

The maximum drop size of a permutation π of [n] = {1, 2, . . . , n} is defined to
be the maximum value of i − π(i). Chung, Claesson, Dukes and Graham found
polynomials Pk(x) that can be used to determine the number of permutations of
[n] with d descents and maximum drop size at most k. Furthermore, Chung and
Graham gave combinatorial interpretations of the coefficients of Qk(x) = xkPk(x)
and Rn,k(x) = Qk(x)(1 + x + · · · + xk)n−k, and raised the question of finding a
bijective proof of the symmetry property of Rn,k(x). In this paper, we construct a
map ϕk on the set of permutations with maximum drop size at most k. We show
that ϕk is an involution and it induces a bijection in answer to the question of
Chung and Graham. The second result of this paper is a proof of a unimodality
conjecture of Hyatt concerning the type B analogue of the polynomials Pk(x).
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1 Introduction

This paper is concerned with the study of permutations of [n] = {1, 2, . . . , n} having d
descents and maximum drop size at most k. Let this number be denoted by Ek(n, d).
Chung, Claesson, Dukes and Graham [3] found polynomials Pk(x) that can be used to
determine the number Ek(n, d). They proved that the polynomials Pk(x) are unimodal.
Furthermore, Chung and Graham obtained combinatorial interpretations for the poly-
nomials Qk(x) = xkPk(x) and Rn,k(x) = Qk(x)(1 + x + · · · + xk)n−k, and asked for a
combinatorial interpretation of the symmetry property of Rn,k(x). The first result of this
paper is to present a bijection in answer to the question of Chung and Graham. The
second result of this paper is a proof of a conjecture of Hyatt [7] on the unimodality of
the type B analogue of the polynomials Pk(x).
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Let us give an overview of notation and terminology. Let Sn denote the set of per-
mutations of [n]. For a permutation π = π1π2 · · · πn in Sn, we say that a number
1 ≤ i ≤ n − 1 is a descent of π if πi > πi+1. The descent set of π ∈ Sn, denoted by
Des(π), is defined by

Des(π) = {i ∈ [n− 1] : πi > πi+1}.

Let des(π) denote the number of descents of π ∈ Sn. An excedance of π is an index i
such that πi > i and a drop of π is an index i such that i > πi. It is well-known that
the number of excedances and the number of descents are equidistributed over Sn. It is
clear that the number of excedances and the number of drops have the same distribution
over Sn. If i is a drop of a permutation π ∈ Sn, then we define the drop size to be i−πi.
The maximum drop size of π is

maxdrop(π) = max{i− πi : 1 ≤ i ≤ n}.

For example, let π = 43562187. The set of excedances of π is given by {1, 2, 3, 4, 7}, the
set of drops of π is given by {5, 6, 8}, des(π) = 4, and maxdrop(π) = 5.

Diaconis and Graham [5] studied the permutation statistic “Spearman’s disarray”,
which is related to the drop size. This statistic, called “total displacement” by Knuth
[8], is defined as

n∑
i=1

|πi − i| = 2
∑
πi>i

(πi − i) = 2
∑
i>πi

(i− πi).

Petersen and Tenner [9] introduced a permutation statistic called the depth in terms of
factorizations of the elements into products of reflections. It turns out that the depth of
a permutation is half of its total displacement.

Chung, Claesson, Dukes and Graham [3] obtained a polynomial Pk(x) that can be
used to determine the number Ek(n, d) of permutations of [n] with d descents and maxi-
mum drop size at most k. Let An,k denote the set of permutations of [n] with maximum
drop size at most k. The k-maxdrop-restricted descent polynomial is defined by

An,k(y) =
∑

π∈An,k

ydes(π) =
∑
d≥0

Ek(n, d)yd.

Clearly, for k ≥ n, we have An,k = Sn and An,k(y) becomes the Eulerian polynomial

An(y) =
∑
π∈Sn

ydes(π).

Notice that here we have adopted the definition of the Eulerian polynomial as used by
Chung et al. [3], which differs from the definition given in Stanley [10] by a factor of y.
Chung, Claesson, Dukes and Graham [3] obtained the following recurrence relation for
An,k(y).
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Theorem 1.1 (Chung, Claesson, Dukes and Graham, [3]) For n, k ≥ 0,

An+k+1,k(y) =
k+1∑
i=1

(
k + 1

i

)
(y − 1)i−1An+k+1−i,k(y),

where Ai,k(y) = Ai(y) for 0 ≤ i ≤ k.

Using the recurrence relation for An,k(y) in Theorem 1.1, Chung, Claesson, Dukes
and Graham introduced the polynomials

Pk(x) =
k∑
l=0

Ak−l(x
k+1)(xk+1 − 1)l

k∑
i=l

(
i

l

)
x−i, (1.1)

and derived the following expression for An,k(y) which can be used to determine the
number Ek(n, d).

Theorem 1.2 (Chung, Claesson, Dukes and Graham,[3]) For n, k ≥ 0,

An,k(y) =
∑
d

βk((k + 1)d)yd, (1.2)

where ∑
j

βk(j)x
j = Pk(x)

(
1− xk+1

1− x

)n−k
. (1.3)

By the definition of An,k(y), one sees from the above theorem that Ek(n, d) equals
the coefficient of x(k+1)d in

Pk(x)(1 + x+ x2 + · · ·+ xk)n−k.

We say a sequence (s1, s2, . . . , sn) is unimodal if there exists an integer 1 ≤ t ≤ n
such that s1 ≤ s2 ≤ · · · ≤ st and st ≥ st+1 ≥ · · · ≥ sn. A polynomial is said to be
unimodal if the sequence of its coefficients is unimodal. Chung, Claesson, Dukes and
Graham [3] proved that the polynomial Pk(x) is unimodal for all k.

Furthermore, Chung and Graham [4] found combinatorial interpretations of the coeffi-
cients of the polynomials Qk(x) = xkPk(x) and Rn,k(x) = Qk(x)(1+x+· · ·+xk)n−k. They

used the notation

〈
n
i

〉j
for the number of permutations π ∈ Sn such that des(π) = i

and πn = j and the notation

〈
n
i

〉j
[k]

for the number of permutations π ∈ An,k such that

des(π) = i and πn = j. In this paper, we write E(n, i; j) for

〈
n
i

〉j
and Ek(n, i; j) for〈

n
i

〉j
[k]

.
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Theorem 1.3 (Chung and Graham, [4]) For n ≥ 0,

Qn(x) =
∑

0≤i,j≤n

E(n+ 1, i; j + 1)x(n+1)i+j.

Theorem 1.4 (Chung and Graham, [4]) For n ≥ k ≥ 0,

Rn,k(x) =
∑

0≤i≤n

∑
0≤j≤k

Ek(n+ 1, i;n+ 1− k + j)x(k+1)i+j.

Chung and Graham [4] showed that the polynomials Qn(x) and Rn,k(x) are sym-
metric. They constructed a bijection for the symmetry of Qn(x), and they raised the
question of finding a bijective proof of the symmetry of Rn,k(x). More precisely, the
symmetry property of Rn,k(x) can be described as follows. Assume that

Rn,k(x) =

(n+2)k∑
r=0

cn,k,rx
r.

The symmetry of Rn,k(x) states that for 0 ≤ r ≤ (n + 2)k and 0 ≤ r′ ≤ (n + 2)k such
that r+ r′ = (n+2)k, we have cn,k,r = cn,k,r′ . For example, for n = 4 and k = 2, we have

R4,2(x) = x2 + 3x3 + 7x4 + 10x5 + 12x6 + 10x7 + 7x8 + 3x9 + x10.

For 0 ≤ r ≤ (n + 2)k, one can uniquely express r as r = (k + 1)i + j, where 0 ≤ i ≤ n
and 0 ≤ j ≤ k. Thus Theorem 1.4 can be written as

cn,k,r = Ek(n+ 1, i;n+ 1− k + j).

Consequently, the symmetry of Rn,k(x) takes the following form.

Theorem 1.5 (Chung and Graham, [3]) For n ≥ k ≥ 0, the polynomials Rn,k(x) are
symmetric. In other words, for r = (k + 1)i + j and r′ = (k + 1)i′ + j′ such that
r + r′ = (n+ 2)k, where 0 ≤ i, i′ ≤ n, 0 ≤ j, j′ ≤ k, we have

Ek(n+ 1, i;n+ 1− k + j) = Ek(n+ 1, i′;n+ 1− k + j′).

As an example, let n = 4, k = 2, r = 4 and r′ = 8. Writing r = 3·1+1 and r′ = 3·2+2,
by Theorem 1.4, we find that c4,2,4 = E2(5, 1; 4) = 7 and c4,2,8 = E2(5, 2; 5) = 7.
Permutations enumerated by E2(5, 1; 4) and E2(5, 2; 5) are given in Table 1.1.

In Section 2, we construct a map ϕk on Γk by a recursive procedure, where Γk is the
set of permutations with maximum drop size at most k. Then, we prove that ϕk induces
a bijection for Theorem 1.5.
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π ∈ A5,2 with des(π) = 1 and π5 = 4 π ∈ A5,2 with des(π) = 2 and π5 = 5

1 2 3 5 4 3 2 1 4 5
1 2 5 3 4 4 2 1 3 5
1 3 5 2 4 2 1 4 3 5
1 5 2 3 4 3 1 4 2 5
2 5 1 3 4 1 4 3 2 5
3 5 1 2 4 4 3 1 2 5
5 1 2 3 4 4 1 3 2 5

Table 1.1: Permutations enumerated by E2(5, 1; 4) and E2(5, 2; 5).

In Section 3, we consider the unimodality of the type B analogue of the polynomials
Pk(x). As pointed out by Chung et al. [3], the maxdrop statistic is related to the bubble
sorting algorithm. Let Bn denote the type B Coxeter group of rank n, that is, the group
of signed permutations on [n]. Hyatt [7] found a natural way to extend the bubble sorting
algorithm to signed permutations. Moreover, he introduced the notion of the maximum
drop size of a signed permutation.

Recall that a signed permutation π = π1π2 · · · πn can be viewed as a permutation
of [n] for which each element may be associated with a minus sign. We shall use the
bar notation ī to signify an element i with a minus sign. The descent set of a signed
permutation π is defined to be

DesB(π) = {i ∈ [0, n− 1] : πi > πi+1},

where we assume that π0 = 0, see Brenti [1]. Let π be a signed permutation in Bn. The
number of descents of π is denoted by desB(π). Hyatt [7] defined the maximum drop size
of π as given by

maxdropB(π) = max
{

max{i− πi : πi > 0},max{i : πi < 0}
}
.

For example, let π = 43562187. Then we have desB(π) = 5 and maxdropB(π) = 6.

Let Bn,k denote the set of signed permutations of [n] with maximum drop size at most
k, and let Ek

B(n, d) denote the number of signed permutations in Bn,k with d descents.

The type B k-maxdrop-restricted descent polynomial is defined by

Bn,k(y) =
∑
π∈Bn,k

ydesB(π) =
∑
d≥0

Ek
B(n, d)yd.

When k ≥ n, Bn,k = Bn and Bn,k(y) becomes the type B Eulerian polynomial Bn(y),
which is defined by

Bn(y) =
∑
π∈Bn

ydesB(π).

Hyatt [7] showed that Bn,k(y) satisfied the following recurrence relation.
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Theorem 1.6 (Hyatt, [7]) For n, k ≥ 0,

Bn+k+1,k(y) =
k+1∑
i=1

(
k + 1

i

)
(y − 1)i−1Bn+k+1−i,k(y),

where Bi,k(y) = Bi(y) for 0 ≤ i ≤ k.

Using the above recurrence relation for Bn,k(y), Hyatt obtained the following type B
analogue of the polynomials Pk(x),

Tk(x) =
k∑
l=0

Bk−l(x
k+1)(xk+1 − 1)l

k∑
i=l

(
i

l

)
x−i, (1.4)

which determines the number Ek
B(n, d).

Theorem 1.7 (Hyatt, [7]) For n, k ≥ 0,

Bn,k(y) =
∑
d

γk((k + 1)d)yd, (1.5)

where ∑
j

γk(j)x
j = Tk(x)

(
1− xk+1

1− x

)n−k
. (1.6)

The above theorem implies that Ek
B(n, d) equals the coefficient of x(k+1)d in

Tk(x)(1 + x+ x2 + · · ·+ xk)n−k.

The following conjecture was posed by Hyatt [7].

Conjecture 1.8 (Hyatt, [7]) The polynomial Tk(x) is unimodal for k ≥ 0.

The second result of this paper is a proof of the above conjecture, which will be given
in Section 3.

2 Combinatorial proof of the symmetry of Rn,k(x)

In this section, we give a combinatorial proof of Theorem 1.5. For k ≥ 0, let Γk be the
set of permutations with maximum drop size at most k. We construct a map ϕk on Γk

by a recursive procedure. We shall prove that ϕk is an involution on Γk and it induces
a bijection for Theorem 1.5.
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To describe the map ϕk, we begin with some notation. Given π ∈ Sn and 1 ≤ i ≤
n + 1, let π ← i denote the permutation µ = µ1µ2 · · ·µn+1 in Sn+1 that is obtained
from π by adding i at the end of π and increasing the elements i, i + 1, . . . , n by 1. For
example, 3421← 3 = 45213.

For n ≥ 1, let π = π1π2 · · · πn be a permutation in Γk. The permutation ϕk(π) is
recursively constructed as follows. If n = 1, define ϕk(1) = 1. We now assume that
n ≥ 2. Let i = des(π) and j = πn − n+ k. Assume that π′ is the permutation of [n− 1]
that is order isomorphic to π1π2 · · · πn−1. In other words, write π = π′ ← πn. In order
to recursively construct ϕk(π), it is necessary to verify that maxdrop(π′) ≤ k, that is,
t−π′t ≤ k for 1 ≤ t ≤ n−1. We consider two cases. If π′t = πt, then t−π′t = t−πt ≤ k. If
π′t = πt−1, by the definition of π′, we get πt > πn. Thus t−π′t = t+1−πt ≤ n−πn ≤ k.
So π′ is a permutation of length n− 1 in Γk. This enables us to define

ϕk(π) = ϕk(π
′)← (n− k + j′),

where j′ is uniquely determined by n, k, i and j, as given below

i′ =
⌊(n+ 1)k − (k + 1)i− j

k + 1

⌋
, (2.1)

j′ = (n+ 1)k − (k + 1)i− j − (k + 1)i′. (2.2)

For example, let π = 12354. It can be checked that π ∈ Γ1. So we also have π ∈ Γ2.
To demonstrate that the map ϕk is indeed dependent on k, let us compute ϕ2(π) and
ϕ1(π). To compute ϕ2(π), we have i = des(π) = 1 and j = π5 − 5 + 2 = 1. By
relations (2.1) and (2.2), we get i′ = 2 and j′ = 2. Write π = π′ ← π5 = 1234 ← 4.
By the definition of the map ϕ2, we get ϕ2(π) = ϕ2(π

′) ← 5. We now turn to ϕ2(π
′).

Repeating the above process, we obtain that π′′ = 123, π′′′ = 12 and π′′′′ = 1. It
follows that ϕ2(π

′′′′) = 1, ϕ2(π
′′′) = 21, ϕ2(π

′′) = 321 and ϕ2(π
′) = 3214. So we find

that ϕ2(π) = 32145. Similarly, we obtain that ϕ1(π) = 21534. It can be seen that
ϕ2(π) 6= ϕ1(π).

The following theorem states that for k ≥ 0, ϕk is an involution, that is, for any
π ∈ Γk, we have ϕ2

k(π) = π.

Theorem 2.1 For k ≥ 0, the map ϕk is an involution on Γk.

To prove the above theorem, we need the following property of the map ϕk. Let
Γk(n, i; j) denote the set of permutations on [n] enumerated by Ek(n, i;n− k + j), that
is, the set of permutations on [n] with maximum drop size at most k such that the
descent number equals i and the last element equals n− k + j.

Theorem 2.2 For n ≥ 1, n ≥ k ≥ 0, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ k and a permutation π in
Γk(n, i; j), we have ϕk(π) ∈ Γk(n, i′; j′), where i′ and j′ are given by relations (2.1) and
(2.2).
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Proof. We proceed by induction on n. For n = 1, we have 1 ∈ Γk(1, 0; k). By (2.1) and
(2.2), we deduce that i′ = 0 and j′ = k. Clearly, ϕk(1) ∈ Γk(1, 0; k) for any k ≥ 0. This
proves the case for n = 1. Assume that the theorem holds for n − 1, where n ≥ 2. We
aim to show that it is valid for n.

Write π = π1π2 · · · πn and assume that σ = σ1σ2 · · ·σn−1 is the permutation of
[n− 1] that is order isomorphic to π1π2 · · · πn−1, that is, π = σ ← πn. Denote ϕk(π) by
β = β1β2 · · · βn. By the recursive construction of ϕk, we have

β = ϕk(σ)← (n− k + j′), (2.3)

where j′ is given by (2.1) and (2.2).

To show that β ∈ Γk(n, i′; j′), denote ϕk(σ) by α = α1α2 · · ·αn−1. Let

s = des(σ), (2.4)

t = σn−1 − n+ 1 + k, (2.5)

s′ =
⌊nk − s(k + 1)− t

k + 1

⌋
, (2.6)

t′ = nk − s(k + 1)− t− s′(k + 1). (2.7)

In the above notation, we have σ ∈ Γk(n − 1, s; t). By the induction hypothesis, α ∈
Γk(n− 1, s′; t′). This implies that maxdrop(α) ≤ k. It can be seen from (2.3) that βn =
n−k+j′ and βi ≥ αi for 1 ≤ i ≤ n−1, so that maxdrop(β) ≤ max{maxdrop(α), k−j′}.
It follows that maxdrop(β) ≤ k.

It remains to verify that des(β) = i′. In view of (2.3), it suffices to check that
i′ = s′ + 1 when αn−1 ≥ βn and i′ = s′ when αn−1 < βn. Since βn = n − k + j′ and
αn−1 = n − 1 − k + t′, we need to show that i′ = s′ + 1 when j′ − t′ ≤ −1 and i′ = s′

when j′ − t′ > −1. To this end, we need the following four relations (2.8)-(2.11).

By the definition t, we have 0 ≤ t ≤ k. Since 0 ≤ j ≤ k, we find that

− k ≤ j − t ≤ k. (2.8)

Similarly,
− k ≤ j′ − t′ ≤ k. (2.9)

By (2.2) and (2.7), we see that

i(k + 1) + j + i′(k + 1) + j′ = (n+ 1)k, (2.10)

s(k + 1) + t+ s′(k + 1) + t′ = nk. (2.11)

Since i = des(π), s = des(σ) and π = σ ← πn, we have i = s or i = s + 1. So there
are two cases.
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Case 1: i = s, so πn−1 < πn, and so j − t > −1. By (2.10) and (2.11),

(i′ − s′)(k + 1) = k − (j − t)− (j′ − t′).
If j′ − t′ ≤ −1, by (2.9), we see that k ≥ 1. By (2.8) and the assumption j − t > −1,
we deduce that −1 < j − t ≤ k. By (2.9) and the assumption j′ − t′ ≤ −1, we find that
−k ≤ j′− t′ ≤ −1. It follows that (i′− s′)(k+ 1) ∈ [1, 2k], where k ≥ 1. Hence we arrive
at the assertion that i′ = s′ + 1.

If j′ − t′ > −1, by (2.9), we find that −1 < j′ − t′ ≤ k. By (2.8) and the assumption
j − t > −1, we get −1 < j − t ≤ k. Thus, (i′ − s′)(k + 1) ∈ [−k, k]. So we deduce that
i′ = s′.

Case 2: i = s + 1, so πn−1 > πn, and so j − t ≤ −1. By (2.8) and the assumption
j − t ≤ −1, we deduce that k ≥ 1. It follows from (2.10) and (2.11) that

(i′ − s′)(k + 1) = −1− (j − t)− (j′ − t′). (2.12)

If j′ − t′ ≤ −1, we claim that k ≥ 2. Assume to the contrary that k = 1. By (2.8)
and (2.9), we obtain that j′ − t′ = −1 and j − t = −1. By (2.12), we deduce that
2(i′ − s′) = 1, a contradiction. This proves that k ≥ 2. Using (2.8) and the assumption
j − t ≤ −1, we find that −k ≤ j − t ≤ −1. Similarly, we have −k ≤ j′ − t′ ≤ −1. It
follows that (i′ − s′)(k + 1) ∈ [1, 2k − 1], where k ≥ 2. So we reach the conclusion that
i′ = s′ + 1.

If j′−t′ > −1, by (2.9), we deduce that −1 < j′−t′ ≤ k. By (2.8) and the assumption
j − t ≤ −1, we find that −k ≤ j − t ≤ −1. It follows that (i′ − s′)(k + 1) ∈ [−k, k − 1],
where k ≥ 1. This implies that i′ = s′.

Up to now, we have shown that i′ = s′ + 1 when j′ − t′ ≤ −1 and i′ = s′ when
j′ − t′ > −1. This yields that des(β) = i′, and hence the proof is complete.

We are now ready to finish the proof of Theorem 2.1.

Proof of Theorem 2.1. Let π = π1π2 · · · πn be a permutation in Γk, we aim to show that
ϕ2
k(π) = π. We proceed by induction on n. When n = 1, it is obvious that ϕ2

k(1) = 1. So
the theorem is valid for n = 1. Assume that the theorem holds for n− 1, where n ≥ 2,
that is, for any permutation σ = σ1σ2 · · ·σn−1, we have ϕ2

k(σ) = σ. Denote ϕ2
k(π) by

γ = γ1γ2 · · · γn.

To prove that γ = π, write π = σ ← πn, where σ = σ1σ2 · · ·σn−1. Let i = des(π) and
j = πn− n+ k; that is, π is a permutation in Γk(n, i, j). By Theorem 2.2, we know that
ϕk(π) = ϕk(σ ← (n− k + j)) ∈ Γk(n, i′; j′), where i′ and j′ are given by (2.1) and (2.2).
By the construction of ϕk, we have

ϕk(π) = ϕk
(
σ ← (n− k + j)

)
= ϕk(σ)← (n− k + j′). (2.13)

Let i′′ and j′′ be the integers obtained from i′ and j′ by using (2.1) and (2.2). A direct
computation indicates that i′′ = i and j′′ = j. Applying (2.13) twice yields that

γ = ϕ2
k(π) = ϕ2

k(σ)← (n− k + j).
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But the induction hypothesis says that ϕ2
k(σ) = σ, so we get

γ = σ ← (n− k + j) = π.

This completes the proof.

To conclude this section, we notice that when restricted to Γk(n, i; j) the map ϕk
serves as a combinatorial interpretation of Theorem 1.5 with n + 1 replaced by n. For
n ≥ 1, n ≥ k ≥ 0, r = (k + 1)i + j and r′ = (k + 1)i′ + j′ such that r + r′ = (n + 1)k,
0 ≤ i, i′ ≤ n−1 and 0 ≤ j, j′ ≤ k, it is easy to see that the integers i′ and j′ are uniquely
determined by n, k, i, j, as given by relations (2.1) and (2.2). Combining Theorems 2.1
and 2.2, we are led to the following bijection.

Theorem 2.3 For n ≥ 1, n ≥ k ≥ 0, r = (k + 1)i + j and r′ = (k + 1)i′ + j′ such
that r + r′ = (n + 1)k, 0 ≤ i, i′ ≤ n − 1 and 0 ≤ j, j′ ≤ k, ϕk induces a bijection from
Γk(n, i; j) to Γk(n, i′; j′).

3 The unimodality of Tk(x)

In this section, we prove a conjecture of Hyatt [7] on the unimodality of a type B analogue
of the polynomials Pk(x). Let Bn be the set of signed permutations on [n]. For π ∈ Bn,
Hyatt defined the maximum drop size of π as follows. We say π has a drop at position
i if i > π(i). If π has a drop at position i, the drop size at this position is defined to
be min{i− π(i), i}. The type B maximum drop size of π, denoted maxdropB(π), is the
maximum value of all drop sizes of π; that is,

maxdropB(π) = max
{

max{i− πi : πi > 0},max{i : πi < 0}
}
.

Based on the typeB descent number and the maximum drop size of a signed permutation,
for k ≥ 0, Hyatt introduced a type B analogue of the polynomial Pk(x), denoted Tk(x).
Recall that the type B Eulerian polynomials are associated with the type B descent
number of a signed permutation, which are given by

Bn(y) =
∑
π∈Bn

ydesB(π).

The polynomials Tk(x) are defined by

Tk(x) =
k∑
l=0

Bk−l(x
k+1)(xk+1 − 1)l

k∑
i=l

(
i

l

)
x−i.

Let Ek
B(n, d) be the number of signed permutations on [n] with d type B descents and

type B maximum drop size at most k. For k ≥ 0, Hyatt showed that Ek
B(n, d) equals

10



the coefficient of x(k+1)d in Tk(x)(1+x+x2 + · · ·+xk)n−k, and he conjectured that Tk(x)
is unimodal.

To prove this conjecture, we define the polynomials Hk(x) as given by

Hk(x) =
k∑
l=0

Bk−l(x
2k+2)(x2k+2 − 1)l

k∑
s=l

(
s

l

)
x2k+1−s

+
k∑
l=0

Bk−l(x
−2k−2)(x−2k−2 − 1)l

k∑
s=l

(
s

l

)
x2(k+1)2+s. (3.1)

As will be shown that the sequence of coefficients of Tk(x) is a subsequence of those of
Hk(x). Thus the unimodality of Tk(x) follows from the unimodality of Hk(x).

Let T̃k(x) = xkTk(x), that is,

T̃k(x) =
k∑
l=0

Bk−l(x
k+1)(xk+1 − 1)l

k∑
i=l

(
i

l

)
xk−i. (3.2)

k T̃k(x)

0 1

1 x+ 2x2 + x3

2 x2 + 4x3 + 6x4 + 6x5 + 4x6 + 2x7 + x8

3 x3 + 8x4 + 12x5 + 18x6 + 23x7 + 32x8 + 32x9 + 28x10+23x11

+ 8x12 + 4x13 + 2x14 + x15

Table 3.2: The polynomials T̃k(x) for 0 ≤ k ≤ 3.

For 0 ≤ k ≤ 3, the polynomials T̃k(x) are given in Table 3.2. Analogous to the array
representation of Qk(x) given by Chung and Graham [4], we define an array representa-

tion of T̃k(x). For 0 ≤ i ≤ k + 1 and 0 ≤ j ≤ k, the (i, j)-entry tk(i, j) is set to be the

coefficient of x(k+1)i+j of T̃k(x), that is,

T̃k(x) =
k+1∑
i=0

k∑
j=0

tk(i, j)x
(k+1)i+j. (3.3)

Similarly, we can arrange the coefficients of Hk(x) in a (k+2)×2(k+1) array hk so that

Hk(x) =
k+1∑
i=0

2k+1∑
j=0

hk(i, j)x
2(k+1)i+j.

In fact, for any k ≥ 0, hk can be obtained from tk as described in the following
lemma.
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Lemma 3.1 For k ≥ 0, hk can be obtained by rotating tk 180 degrees (in either direc-
tion), and adjoining the rotated array to the left side of tk.

For example, the array h2 can be obtained from the array t2 by the following opera-
tions. First, rotate the array t2 180 degrees. Then adjoin this rotated array to the left
side of t2. Table 3.3 gives the array t2 and Table 3.4 illustrates the corresponding array
h2.

0 0 1
4 6 6
4 2 1
0 0 0

Table 3.3: The array t2

0 0 0 0 0 1
1 2 4 4 6 6
6 6 4 4 2 1
1 0 0 0 0 0

Table 3.4: The array h2

To prove Lemma 3.1, we need the following property.

Lemma 3.2 For k ≥ 0, define

Fk(x) =
k∑
l=0

Bk−l(x
k+2)(xk+2 − 1)l

k∑
i=l

(
i

l

)
xk+1−i. (3.4)

Arrange the coefficients of Fk(x) in a (k + 2)× (k + 2) array fk so that

Fk(x) =
k+1∑
i=0

k+1∑
j=0

fk(i, j)x
(k+2)i+j.

Then the array fk can be obtained from tk by adjoining a column of zeros to the left of
tk.

Proof. To prove that fk can be obtained from tk by inserting a column of zeros in front
of tk, we proceed to verify that fk(i, 0) = 0 for 0 ≤ i ≤ k + 1 and fk(i, j + 1) = tk(i, j)
for 0 ≤ i ≤ k + 1 and 0 ≤ j ≤ k.

For convenience, for 0 ≤ l ≤ k, let

Ul(t) = Bk−l(t)(t− 1)l,

Vl(t) =
k∑
i=l

(
i

l

)
tk−i.

Notice that Ul(t) is a polynomial in t of degree k and Vl(t) is a polynomial in t of degree
at most k.

From the expression (3.4) of Fk(x), we see that

Fk(x) =
k∑
l=0

xUl(x
k+2)Vl(x).

12



Since Ul(x
k+2) can be seen as a polynomial in xk+2 and the degree of Vl(x) is at most k,

we deduce that the coefficient of x(k+2)i in Fk(x) equals zero for 0 ≤ i ≤ k + 1. Hence
fk(i, 0) = 0 for 0 ≤ i ≤ k + 1.

Next we prove that tk(i, j) = fk(i, j + 1) for 0 ≤ i ≤ k + 1 and 0 ≤ j ≤ k. We shall
adopt the common notation [xl] p(x) for the coefficient of xl in a polynomial p(x). It
suffices to show that

[x(k+1)i+j] T̃k(x) = [x(k+2)i+j+1]Fk(x). (3.5)

From the expression (3.2) of T̃k(x), it follows that

T̃k(x) =
k∑
l=0

Ul(x
k+1)Vl(x).

Recalling that Vl(x) is a polynomial in x of degree at most k, for 0 ≤ i ≤ k + 1 and
0 ≤ j ≤ k, it is easily checked that

[x(k+1)i+j] T̃k(x) =
k∑
l=0

(
[x(k+1)i]Ul(x

k+1)
)(

[xj]Vl(x)
)

=
k∑
l=0

(
[ti]Ul(t)

)(
[xj]Vl(x)

)
. (3.6)

Similarly, we have

[x(k+2)i+j+1]Fk(x) =
k∑
l=0

(
[x(k+2)i]Ul(x

k+2)
)(

[xj+1]xVl(x)
)

=
k∑
l=0

(
[x(k+2)i]Ul(x

k+2)
)(

[xj]Vl(x)
)

=
k∑
l=0

(
[ti]Ul(t)

)(
[xj]Vl(x)

)
. (3.7)

Hence (3.5) follows from (3.6) and (3.7). So we arrive at the conclusion that fk(i, j+1) =
tk(i, j) for 0 ≤ i ≤ k + 1 and 0 ≤ j ≤ k. This completes the proof.

We are now ready to give a proof of Lemma 3.1.

Proof of Lemma 3.1. Write Hk(x) as

Hk(x) = H ′k(x) +H ′′k (x),

where

H ′k(x) =
k∑
l=0

Bk−l(x
2k+2)(x2k+2 − 1)l

k∑
s=l

(
s

l

)
x2k+1−s, (3.8)
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H ′′k (x) =
k∑
l=0

Bk−l(x
−2k−2)(x−2k−2 − 1)l

k∑
s=l

(
s

l

)
x2(k+1)2+s. (3.9)

Assume H ′k(x) has an array representation h′k such that

H ′k(x) =
k+1∑
i=0

2k+1∑
j=0

h′k(i, j)x
2(k+1)i+j,

and H ′′k (x) has an array representation h′′k such that

H ′′k (x) =
k+1∑
i=0

2k+1∑
j=0

h′′k(i, j)x
2(k+1)i+j.

Clearly, we have hk = h′k + h′′k. Using Lemma 3.2 repeatedly, we deduce that h′k can be
obtained form tk by adjoining k + 1 columns of zeros to the left side of tk. Table 3.5
gives an example of h′k for k = 2.

From the expression (3.8) of H ′k(x) and the expression (3.9) of H ′′k (x), we see that

H ′′k (x) = H ′k(x
−1)x2(k+1)(k+2)−1.

Hence, in the array representation, we deduce that h′′k can be obtained from h′k by rotating
h′k 180 degrees. For example, the array h′′2 in Table 3.6 is constructed from the array h′2
in Table 3.5.

0 0 0 0 0 1
0 0 0 4 6 6
0 0 0 4 2 1
0 0 0 0 0 0

Table 3.5: The array h′2

0 0 0 0 0 0
1 2 4 0 0 0
6 6 4 0 0 0
1 0 0 0 0 0

Table 3.6: The array h′′2

By the fact that hk = h′k + h′′k and the constructions of h′k and h′′k, we see that the
first k + 1 columns of hk can be obtained from tk by a rotation of 180 degrees and tk
remains to be the last k + 1 columns of hk. This completes the proof.

As a consequence of Lemma 3.1, we have the following property.

Corollary 3.3 For k ≥ 0, the polynomial Hk(x) is symmetric.

In the array representation, the symmetry of Hk(x) means that for 0 ≤ i ≤ k+ 1 and
0 ≤ j ≤ 2k + 1,

hk(i, j) = hk(k + 1− i, 2k + 1− j). (3.10)

It is clear from Lemma 3.1 that the coefficients of Tk(x) form a subsequence of those
of Hk(x). We shall prove that for k ≥ 0, Hk(x) is unimodal.
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Theorem 3.4 The polynomial Hk(x) is unimodal for all k ≥ 0.

To prove Theorem 3.4, we introduce the polynomials Gk(x) which will be used to
derive a recurrence relation of the coefficients of Hk(x).

Based on the definition (3.1) of Hk(x), we define

Gk(x) =
1

x

k∑
l=0

Bk−l(x
2k+4)(x2k+4 − 1)l

k∑
s=l

(
s

l

)
x2k+3−s

+
k∑
l=0

Bk−l(x
−2k−4)(x−2k−4 − 1)l

k∑
s=l

(
s

l

)
x2(k+1)(k+2)+s. (3.11)

Let gk be an array representation of Gk(x) such that

Gk(x) =
k+1∑
i=0

2k+3∑
j=0

gk(i, j)x
2(k+2)i+j.

We claim that the array gk can be obtained from hk by adding a column of zeros after the
(k + 1)-st column and adding a column of zeros after the 2(k + 1)-st column of hk. The
verification of this fact is similar to that of Lemma 3.1, hence the details are ommitted.
Table 3.7 gives the array g2.

0 0 0 0 0 0 1 0
1 2 4 0 4 6 6 0
6 6 4 0 4 2 1 0
1 0 0 0 0 0 0 0

Table 3.7: The array g2

Lemma 3.5 For k ≥ 0, we have

Hk+1(x) = Gk(x) · (x+ x2 + · · ·+ x2k+4) (3.12)

Proof. We aim to show that

(1− x) ·Hk+1(x) = xGk(x) · (1− x2k+4), (3.13)

which is equivalent to (3.12). By the definition of Hk(x) in (3.1), we see that (1 − x) ·
Hk+1(x) equals

(1− x)
k+1∑
l=0

Bk+1−l(x
2k+4)(x2k+4 − 1)l

k+1∑
s=l

(
s

l

)
x2k+3−s
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+(1− x)
k+1∑
l=0

Bk+1−l(x
−2k−4)(x−2k−4 − 1)l

k+1∑
s=l

(
s

l

)
x2(k+2)2+s

= (1− x)
k+1∑
l=1

Bk+1−l(x
2k+4)(x2k+4 − 1)l

k+1∑
s=l

(
s

l

)
x2k+3−s

+ (1− x)
k+1∑
l=1

Bk+1−l(x
−2k−4)(x−2k−4 − 1)l

k+1∑
s=l

(
s

l

)
x2(k+2)2+s

+ (1− x)Bk+1(x
2k+4)

k+1∑
s=0

x2k+3−s + (1− x)Bk+1(x
−2k−4)

k+1∑
s=0

x2(k+2)2+s

= −
k∑
l=0

Bk−l(x
2k+4)(x2k+4 − 1)l+1

k∑
s=l

(
s

l

)
x2k+3−s

+
k∑
l=0

Bk−l(x
−2k−4)(x−2k−4 − 1)l+1

k∑
s=l

(
s

l

)
x2(k+2)2+s+1

+
k∑
l=0

Bk−l(x
2k+4)(x2k+4 − 1)l+1

(
k + 1

l + 1

)
xk+2

−
k∑
l=0

Bk−l(x
−2k−4)(x−2k−4 − 1)l+1

(
k + 1

l + 1

)
x(k+2)(2k+5)

+Bk+1(x
2k+4)xk+2(1− xk+2) +Bk+1(x

−2k−4)x2(k+2)2(1− xk+2). (3.14)

On the other hand, by the definition of Gk(x) in (3.11), we find that

xGk(x) · (1− x2k+4) = −
k∑
l=0

Bk−l(x
2k+4)(x2k+4 − 1)l+1

k∑
s=l

(
s

l

)
x2k+3−s

+
k∑
l=0

Bk−l(x
−2k−4)(x−2k−4 − 1)l+1

k∑
s=l

(
s

l

)
x2(k+2)2+s+1.

Comparing the above expression for xGk(x) · (1− x2k+4) and the the first two sum-
mations in (3.14), to prove (3.13), it suffices to show that

Bk+1(x
2k+4)x2k+4 −Bk+1(x

−2k−4)x2(k+2)2

=
k+1∑
l=0

Bk+1−l(x
2k+4)(x2k+4 − 1)l

(
k + 1

l

)
xk+2

−
k+1∑
l=0

Bk+1−l(x
−2k−4)(x−2k−4 − 1)l

(
k + 1

l

)
x(k+2)(2k+5). (3.15)
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It is known that the type B Eulerian polynomial Bn(t) is a symmetric polynomial of
degree n, that is,

Bn(t) = Bn(t−1)tn,

see Brenti [1]. Hence we have

Bk+1(x
2k+4)x2k+4 −Bk+1(x

−2k−4)x2(k+2)2 = 0.

Thus (3.15) is equivalent to the following relation

k+1∑
l=0

Bk+1−l(x
2k+4)(x2k+4 − 1)l

(
k + 1

l

)

=
k+1∑
l=0

Bk+1−l(x
−2k−4)(x−2k−4 − 1)l

(
k + 1

l

)
x2(k+2)2 . (3.16)

Setting t = x2k+4 and n = k + 1, (3.16) can be rewritten as

n∑
l=0

Bn−l(t)(t− 1)l
(
n

l

)
=

n∑
l=0

Bn−l(t
−1)(t−1 − 1)l

(
n

l

)
tn+1. (3.17)

To prove (3.17), we need the following formula∑
n≥0

Bn(t)
xn

n!
=

(1− t)ex(1−t)

1− te2x(1−t)
, (3.18)

which was obtained by Chow and Gessel [2]. Using (3.18), we get

∑
n>1

n∑
j=0

Bn−j(t)(t− 1)j
(
n

j

)
xn

n!

=
(∑
n≥0

Bn(t)
xn

n!

)(∑
n≥0

(t− 1)n
xn

n!

)
− 1

=
te2x(1−t) − t
1− te2x(1−t)

. (3.19)

Similarly, using (3.18) we find that

∑
n>1

n∑
j=0

Bn−j(t
−1)(t−1 − 1)j

(
n

j

)
tn+1x

n

n!

= t
(∑
n≥0

Bn(t−1)
xn

n!

)(∑
n≥0

(t− 1)n
(tx)n

n!

)
− t

=
te2x(1−t) − t
1− te2x(1−t)

. (3.20)
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Combining (3.19) and (3.20), we arrive at (3.17). This completes the proof.

Based on Lemma 3.5 and the relationship between the array representation of Hk(x)
and the array representation of Gk(x), we establish the following recurrence relations for
the array representation of Hk(x).

Corollary 3.6 For 0 ≤ i ≤ k + 1 and 0 ≤ j ≤ k, we have

hk(i, j) = hk−1(i, 0) + hk−1(i, 1) + · · ·+ hk−1(i, j − 1)

+hk−1(i− 1, j) + hk−1(i− 1, j + 1) + · · ·+ hk−1(i− 1, 2k − 1), (3.21)

and for 0 ≤ i ≤ k + 1 and k + 1 ≤ j ≤ 2k + 1, we have

hk(i, j) = hk−1(i, 0) + hk−1(i, 1) + · · ·+ hk−1(i, j − 2)

+hk−1(i− 1, j − 1) + hk−1(i− 1, j) + · · ·+ hk−1(i− 1, 2k − 1), (3.22)

where we assume that hk(i, j) = 0 when i < 0.

We are now in a position to complete the proof of Theorem 3.4.

Proof of Theorem 3.4. We proceed by induction on k. For k = 0, by the expression (3.1)
of Hk(x), we get H0(x) = x+ x2, which is unimodal. Assume that Hk−1(x) is unimodal,
where k ≥ 1. We aim to prove that Hk(x) is unimodal.

Assume that k ≥ 1. Let (a0, a1, · · · , a2k2+2k−1) denote the sequence of coefficients of
Hk−1(x). By the symmetry of Hk−1(x) as given in Corollary 3.3, we have ai = a2k2+2k−1−i.
Hence, by the induction hypothesis, we have

a0 ≤ a1 ≤ · · · ≤ ak2+k−1. (3.23)

Assume that (b0, b1, · · · , b2k2+6k+3) is the sequence of coefficients of Hk(x). By the sym-
metry of Hk(x), to prove that Hk(x) is unimodal, it suffices to prove that

b0 ≤ b1 ≤ · · · ≤ bk2+3k+1. (3.24)

Indeed, we can restate the above inequalities in terms of the array representation hk of
Hk(x). Recall that

Hk(x) =
k+1∑
i=0

2k+1∑
j=0

hk(i, j)x
2(k+1)i+j.

Clearly, hk(i, j) = b2(k+1)i+j for 0 ≤ i ≤ k+ 1 and 0 ≤ j ≤ 2k+ 1. When k is odd, (3.24)
can be restated as follows,

(i) hk(i, j + 1)− hk(i, j) ≥ 0 for 0 ≤ i ≤ bk+2
2
c − 1 and 0 ≤ j ≤ 2k;

(ii) hk(i, j + 1)− hk(i, j) ≥ 0 for i = bk+2
2
c and 0 ≤ j ≤ k − 1;
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(iii) hk(i, 0)− hk(i− 1, 2k + 1) ≥ 0 for 1 ≤ i ≤ bk+2
2
c.

Similarly, when k is even, (3.24) can be recast into the following assertions:

(iv) hk(i, j + 1)− hk(i, j) ≥ 0 for 0 ≤ i ≤ k
2

and 0 ≤ j ≤ 2k;

(v) hk(i, 0)− hk(i− 1, 2k + 1) ≥ 0 for 1 ≤ i ≤ k
2
.

We now proceed to prove the above assertions. It follows from (3.21) that for 0 ≤
i ≤ k + 1 and 0 ≤ j ≤ k − 1,

hk(i, j + 1)− hk(i, j) = hk−1(i, j)− hk−1(i− 1, j). (3.25)

Using (3.22), we find that for 0 ≤ i ≤ k + 1 and k + 1 ≤ j ≤ 2k,

hk(i, j + 1)− hk(i, j) = hk−1(i, j − 1)− hk−1(i− 1, j − 1). (3.26)

Moreover, by (3.21) and (3.22), it is easy to check that for 0 ≤ i ≤ k + 1,

hk(i, k) = hk(i, k + 1), (3.27)

hk(i, 0) = hk(i− 1, 2k + 1). (3.28)

We first consider the case when k is odd. To prove (i), we assume that 0 ≤ i ≤
bk+2

2
c − 1 and 0 ≤ j ≤ 2k. Here are three subcases. When 0 ≤ j ≤ k − 1, we claim that

hk(i, j + 1)− hk(i, j) ≥ 0. From (3.25) we see that

hk(i, j + 1)− hk(i, j) = a2ki+j − a2ki−2k+j.

Since 0 ≤ i ≤ bk+2
2
c − 1 and 0 ≤ j ≤ k − 1, noting 2bk+2

2
c = k + 1, we find that

2ki+ j ≤ 2k
(⌊k + 2

2

⌋
− 1
)

+ k − 1 = k2 − 1.

Clearly, we have 2ki + j ≥ 2ki− 2k + j. Thus we may use the induction hypothesis to
deduce that a2ki+j − a2ki−2k+j ≥ 0, which is equivalent to the claim.

When k + 1 ≤ j ≤ 2k, we claim that hk(i, j + 1)− hk(i, j) ≥ 0. By (3.26), we get

hk(i, j + 1)− hk(i, j) = a2ki+j−1 − a2ki−2k+j−1.

Using the same argument as in the case when 0 ≤ j ≤ k − 1, we deduce that

2ki+ j − 1 ≤ 2k
(⌊k + 2

2

⌋
− 1
)

+ 2k − 1 = k2 + k − 1.

Similarly, we have 2ki + j − 1 ≥ 2ki − 2k + j − 1. Hence we may use the induction
hypothesis to deduce that a2ki+j−1 − a2ki−2k+j−1 ≥ 0, as claimed.
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Recall that hk(i, k + 1) = hk(i, k) for 0 ≤ i ≤ k + 1 as given in (3.27). On the
other hand, when j = k, assertion (i) becomes the relation hk(i, k+ 1)− hk(i, k) ≥ 0 for
0 ≤ i ≤ bk+2

2
c − 1, which is valid since the equality holds. Combining the above three

cases, assertion (i) is proved.

To prove (ii), we assume that i = bk+2
2
c and 0 ≤ j ≤ k − 1. We claim that hk(i, j +

1)− hk(i, j) ≥ 0. By (3.25) and the symmetry relation (3.10), we find that

hk(i, j + 1)− hk(i, j) = hk−1(i, j)− hk−1(i− 1, j)

= hk−1(k − i, 2k − 1− j)− hk−1(i− 1, j)

= a2k(k−i)+2k−1−j − a2k(i−1)+j.

Since i = bk+2
2
c and 0 ≤ j ≤ k − 1, we see that

2k(k − i) + 2k − 1− j ≤ 2k
(
k −

⌊k + 2

2

⌋)
+ 2k − 1 = k2 + k − 1,

and
2k(k − i) + 2k − 1− j ≥ 2k(i− 1) + j.

Hence we may use the induction hypothesis to deduce that a2k(k−i)+2k−1−j−a2k(i−1)+j ≥ 0.
This proves the claim, and hence assertion (ii) holds.

Note that by (3.28), we have hk(i, 0) = hk(i − 1, 2k + 1) for 1 ≤ i ≤ bk+2
2
c. This

proves assertion (iii).

Next we turn to the case when k is even.

To prove (iv), we assume that 0 ≤ i ≤ k
2

and 0 ≤ j ≤ 2k. When 0 ≤ i ≤ k
2

and
0 ≤ j ≤ k − 1, we claim that hk(i, j + 1)− hk(i, j) ≥ 0. By (3.25), we see that

hk(i, j + 1)− hk(i, j) = a2ki+j − a2ki−2k+j.

By the assumptions 0 ≤ i ≤ k
2

and 0 ≤ j ≤ k − 1, we see that

2ki+ j ≤ k2 + k − 1.

So we may use the induction hypothesis to deduce that a2ki+j − a2ki−2k+j ≥ 0. This
proves the claim.

When 0 ≤ i ≤ k
2
− 1 and k + 1 ≤ j ≤ 2k, we claim that hk(i, j + 1) − hk(i, j) ≥ 0.

By (3.26), we find that

hk(i, j + 1)− hk(i, j) = a2ki+j−1 − a2ki−2k+j−1.

By the assumptions 0 ≤ i ≤ k
2
− 1 and k + 1 ≤ j ≤ 2k, we see that

2ki+ j − 1 ≤ k2 − 1.
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Hence the induction hypothesis can be used to get a2ki+j−1 − a2ki−2k+j−1 ≥ 0, which is
equivalent to the claim.

When i = k
2

and k + 1 ≤ j ≤ 2k, we claim that hk(i, j + 1)− hk(i, j) ≥ 0. By (3.26)
and the symmetry relation (3.10), we find that

hk(i, j + 1)− hk(i, j) = hk−1(i, j − 1)− hk−1(i− 1, j − 1)

= hk−1(k − i, 2k − j)− hk−1(i− 1, j − 1)

= a2k(k−i)+2k−j − a2k(i−1)+j−1

Using the assumptions i = k
2

and k + 1 ≤ j ≤ 2k, we get

2k(k − i) + 2k − j ≤ k2 + k − 1,

and
2k(k − i) + 2k − j ≥ 2k(i− 1) + j − 1.

By the induction hypothesis, we obtain that a2k(k−i)+2k−j−a2k(i−1)+j−1 ≥ 0. This proves
the claim.

Using the fact hk(i, k) = hk(i, k + 1) for 0 ≤ i ≤ k + 1 as given in (3.27), it can be
easily checked that assertion (iv) is true for j = k. So we proved assertion (iv) for all
the cases of j. Clearly, by (3.28), we have hk(i, 0) = hk(i− 1, 2k+ 1) for 1 ≤ i ≤ k

2
. This

confirms assertion (v), and so the proof is complete.
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