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Abstract—The recent advancements in integrated sensing
and communications (ISACs) technology have introduced new
possibilities to address the quality of communication and
high-resolution positioning requirements in the next-generation
wireless communication network (6G) vehicle-to-everything
(V2X). Simultaneously providing high-accurate positioning and
high-communication capacity (CC) for the intelligent service of
the vehicle target is challenging. In this article, we propose a
reconfigurable intelligent surface (RIS)-assisted 6G V2X system
to achieve highly accurate positioning of the vehicle target with
basic communication requirements. We provide the CC and the
3-D fisher information matrix (FIM) formulations of the vehicle
target. We demonstrate the direct impact of phase modulation
in the reflector units on joint positioning accuracy and CC
performance. Meanwhile, we design a flexible deep deterministic
policy gradient (FL-DDPG) algorithm network with an ε-greedy
strategy to solve the high-dimensional nonconvex optimization
problem, achieves minimal positioning error while satisfying
various CC requirements. Simulation results demonstrate that
the FL-DDPG algorithm enhances positioning accuracy by a
minimum of 89% and improves the achievable rate of the
vehicle target by nearly 3 times, which outperforms traditional
mathematical methods. Compared with classical deep reinforce-
ment learning methods, FL-DDPG achieves better positioning
accuracy while satisfying the communication requirements. When
confronting imperfect channel, FL-DDPG enables addressing the
channel estimation errors effectively on the ISAC system.

Index Terms—6G V2X, deep reinforcement learning (DRL),
Fisher information matrix (FIM), integrated sensing and com-
munication (ISAC), reconfigurable intelligent surface (RIS).

I. INTRODUCTION

W ITH the rapid developments of intelligent transporta-
tion, autonomous driving, and vehicular network, there

is an urgent need for reliable data communication and
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high-precise positioning information to benefit the safety, effi-
ciency and comfort of driving. Combining the next-generation
wireless communication network (6G), vehicle-to-everything
(V2X) in smart transportation becomes attractive [1]. The 6G
V2X system not only facilitates the exchange of information
between vehicles, infrastructure and other roadside units, but
also achieves accuracy positioning of vehicles. Thus, 6G V2X
system becomes a necessary part for future transportation
system.

Due to the expansion of frequency bands in the 6G
network, integrated sensing and communication (ISAC)
presents new opportunities for intelligent driving in V2X
scenarios. Preliminary results indicate that implementing ISAC
not only conserves resources and reduces hardware costs [2],
but also achieves simultaneous positioning and communication
of vehicles for users [3]. However, wireless signal propa-
gation suffers severe propagation losses due to obstacles,
which may degrade positioning accuracy and communication
performance. Therefore, achieving performance enhancement
in the ISAC system with these challenging communication
conditions holds significant importance for 6G V2X design.

With the emergence of 6G communication, reconfigurable
intelligent surfaces (RISs) stands as the key breakthrough
technique for future communications. RIS is a planar struc-
ture composed of numerous low-cost passive reflecting units,
capable of independently adjusting the amplitude and phase
shift of incident signals for each unit [4], [5]. RIS can be
easily installed on the exterior surfaces of various objects
and can overcome performance degradation in ISAC systems
caused by Non-Line-of-Sight (NLoS) obstacles and propaga-
tion losses [6], [7], [8]. With the advantages of improving
spatial reuse and enhancing signal quality, RIS can be widely
applied to 6G V2X systems.

For ISAC applications, the beamforming scheme can be
constructed to ensure high-speed, reliable communication
and minimize positioning errors by estimating the Angle
of Departure (AoD), Angle of Arrival (AoA), and time of
arrival (ToA) [9], [10], and by controlling the phase shift
parameters of RIS. In this context, the Cramér–Rao lower
bound (CRLB) and Shannon capacity serve as the main
metrics for beamforming strategy design [11]. However, the
passive beamforming design of RIS is a typical nonconvex
integer programming problem, which is complicated and
hard to solve [12]. Traditional mathematical approaches are
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difficult to implement on the RIS due to the unavoidable
programming limitations, such as the selection of initial
points, high-dimension disasters, and continuous actions for
real applications. These approaches are easily getting trapped
in local optimal solutions in the real applications, degrad-
ing overall performance. Additionally, beamforming schemes
require real-time adaptation since the targets are moving and
the channel varies accordingly in the V2X scenario. Thus, an
online and fast calculating beamforming scheme is necessary.

With advancements in deep learning and reinforcement
learning, new approaches have been developed for solving the
real time optimization problems [13], [14]. Deep reinforce-
ment learning (DRL) which combines both advantages of deep
learning and reinforcement learning, has become a promising
technique for enhancing optimization performance [15]. On
one hand, DRL can rapidly adapt to changes in the com-
munication environment by continually learning and adjusting
its strategies in spatial surroundings, thereby discovering the
global optimal solution. On the other hand, the neural networks
in DRL not only autonomously learn valuable features from
high-dimensional input spaces but also effectively address
optimization problems involving continuous actions in spatial
contexts. Therefore, compared to traditional mathematical
methods, DRL is more efficient and reliable for RIS-assisted
ISAC systems.

In this article, we propose a RIS-assisted 6G V2X system
and a related passive beamforming scheme for jointly optimiz-
ing ISAC performance. The main goal is to minimize the target
positioning error while ensuring communication requirements.
To solve the objective, we develop a flexible deep deterministic
policy gradient (FL-DDPG) network for real time adaptation
of RIS passive beamforming. In addition, we analyze the
robustness of FL-DDPG with imperfect channel model. The
major contributions of this work are four folds.

1) In the 6G V2X system, we introduce the RIS as the
main component in ISAC applications to address the
performance degradation caused by signal blockage and
high-propagation loss. The proposed system is capable
of minimizing positioning error while simultaneously
satisfying diverse communication requirements.

2) We derive a generalized 3-D model for the Fisher
information matrix (FIM) and the related CRLB of the
RIS-assisted ISAC system. Then, the Shannon capacity
of the 6G V2X system with RIS is derived. The
formulations indicate the phase modulation impacts of
RIS on overall ISAC performance. Thus, we formulate
a joint objective for positioning optimization, which is
a nonconvex integer programming.

3) To solve this problem, we develop an FL-DDPG network
tailored for the RIS-assisted ISAC system. An ε-greedy
strategy is integrated into the actor network, enhancing
the system’s ability to cope with fast-fading channels
and channel changes through adaptive adjustment of ε.
This network exhibits strong adaptability to optimization
problems involving high-dimensional spaces and con-
tinuous actions, enabling it to provide globally optimal
solutions for the joint optimization problem of position
accuracy and communication capacity (CC).

4) In practical scenarios, due to the existence of channel
estimation error, quantization error and other factors,
imperfect channel can degrade the overall performance.
Therefore, we derive the FIM and the associated CRLB
under imperfect channel model condition for RIS-
assisted ISAC systems. Furthermore, we analyze the
robustness of FL-DDPG network in the presence of
imperfect channel, demonstrating its capability to han-
dle the impact of imperfect channel model on joint
optimization of system positioning accuracy and CC.

Simulation results indicate that the RIS-assisted ISAC
system proposed in our 6G V2X scenario can flexibly control
the phase shift of the RIS to minimize positioning error while
satisfying diverse communication requirements under various
imperfect channel model conditions. In particular, we evaluate
the number of RIS reflection units, the bits of RIS, signal
transmission power, and the optimization duration, which are
the main parameters for FL-DDPG. In the presence of severe
signal fading, the proposed FL-DDPG significantly improves
the position accuracy of targets by at least 89% and increases
the CC at the target by nearly 30%.

The remainder of this article is structured as follows.
Section II introduces related works; Section III presents
the system model; Section IV derives the position error
bound (PEB); Section V presents the problem formula-
tion; Section VI presents the proposed FL-DDPG algorithm;
Section VII derives the PEB under imperfect channel model;
Section VIII illustrates the simulation results; and Section IX
concludes this article.

II. RELATED WORK

A. ISAC in V2X

In recent years, the development of ISAC technology
within V2X scenarios has introduced new possibilities for
reliable and secure autonomous driving, garnering widespread
attention [16]. Many technologies equipped with ISAC func-
tions have been proposed. Chiriyath et al. [17] proposed
a joint signal model and the derivation for perception and
communication. They defined a radar velocity estimation
criterion based on the CRLB, and introduced a theoreti-
cal evaluation criterion for joint estimation of perception
and communication. González-Prelcic et al. [18] conducted
beam alignment experiments in the vehicle-to-infrastructure
(V2I) scenario, confirming that perceptual information can
be utilized to assist communication. Nartasilpa et al. [19]
analyzed the interference of perceptual information on com-
munication systems. Huang et al. [20] proposed an ISAC
scheme that integrated frequency and spatial agility, ensur-
ing that the communication performance had no impact
on perceptual performance. Liu et al. [2] designed a
multiple input–multiple output (MIMO) beamforming method
that enhanced the system’s positioning and communication
performance in the V2X scenario. Wang et al. [21] developed a
method for multivehicle tracking and identification association
using ISAC signals, enhancing the system’s communica-
tion performance by associating identification information
from different vehicles. Zhang et al. [22] proposed a robust
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transceiver design for ISAC systems with bounded channel
estimation errors, which maximizes the minimum perceptual
performance of multiple objectives while satisfying com-
munication requirements. Liu et al. [23] demonstrated a
generalized point-to-point ISAC model for addressing the joint
optimization problem of perception and communication in
imperfect channel. Zhang et al. [24] introduced a method for
coverting ISAC systems with imperfect channel model, which
ensures both communication performance and stealthiness
while balancing multiple radar objectives. The aforementioned
methods are able to effectively enhance ISAC performance
in scenarios with direct channels. However, in actual V2X
scenarios, obstacles lead to a degradation in both perceptual
and communication performance.

B. RIS of ISAC

RIS can effectively address the degradation of positioning
and communication performance in the context of ISAC
systems caused by blocked channels. In NLoS propagation
scenarios, Han et al. [25] validated that RIS had the capability
to enhance communication performance. Basar et al. [26]
established a mathematical framework for RIS-assisted point-
to-point communication and analyzed the communication
performance of the ISAC system. He et al. [27] investigated the
potential performance improvement of a single RIS assisting
the ISAC system in position in NLoS scenarios. Alegría and
Rusek [28] also investigated the potential improvement of RIS-
assisted position in NLoS scenarios and conducted theoretical
analysis on the localization estimation using the CRLB. Wang
and Zhang [29] proposed a RIS-assisted joint beamforming
method, which improved the system’s position accuracy to
the centimeter level. Ammous and Valaee [30] proposed a
RIS-assisted target position method based on Kalman filtering.
He et al. [31] proposed an adaptive phase shifter design
based on hierarchical codebooks and feedback from the
mobile station to enhance the position accuracy of targets.
Decarli et al. [32] derived the bounds of near-field position-
ing and assessed the role of RIS in V2X sidelink position
accuracy. Basar et al. [33] demonstrated that the increase in
the user signal-to-noise ratio (SNR) is directly proportional
to the square of the number of RIS reflection elements in a
single-input single-output (SISO) system. Huang et al. [34]
proposed a two-step transmission protocol aimed at improving
communication and perceptual performance through RIS-
assisted channel estimation. Meng et al. [35] introduced
an ISAC scheme in the V2X scenario, enhancing position
and communication performance by integrating RIS on the
vehicle surface. Liu et al. [36] proposed a RIS-assisted MIMO
beamforming design for target localization and multiuser com-
munication in traffic scenarios. Li et al. [37] proposed the first
worst-case robust beamforming design problem in the RIS-
assisted multiuser multiple input–single output (MU-MISO)
system considering the imperfect channel model condition.
Luan et al. [38] proposed a conditional value-at-risk (CVaR)
method to address the chance constraints caused by imper-
fect channel in RIS-assisted ISAC systems. Hu et al. [39]
demonstrated a multistrategy alternate optimization (MSAO)

algorithm that optimizes beamforming vectors, sensor auto-
correlation matrices, and RIS phase-shift matrices to mitigate
the impact of imperfect channel on ISAC. However, the main
challenge of the RIS assisted ISAC is that the coupling effect
of SNR, power, positioning accuracy, CRLB, and other data
together for phase shift optimization calculation. The phase
shift design for the RIS should not only consider the joint
optimization problem but also real time adaptation with low
complexity.

C. DRL of ISAC

DRL, owing to its distinctive capabilities in addressing com-
plex nonconvex problems, has been employed in optimizing
phase-shift design of RIS. As demonstrated in [40] and [41],
DRL models have been effective applied in addressing non-
convex optimization problems in the high-dimensional space
of RIS-assisted ISAC systems. Faisal et al. [42] proposed
an optimization algorithm framework based on DRL in the
RIS-assisted wireless transmission system, achieving the upper
limit of the received SNR at a relatively low-time cost.
Xu et al. [43] proposed a RIS-assisted ISAC system for
reducing the interference signals on high-speed rail com-
munication performance, which utilized the DRL to solve
the optimization problem of continuous phase shift changes
in RIS. Zhong et al. [44] proposed a DRL algorithm that
addressed the joint optimization problem of RIS phase shift
and power allocation, while maintaining low complexity.
Yang et al. [45] utilized DRL to address long-term stochastic
optimization problems related to phase shifts. Lin et al. [46]
introduced a learning algorithm based on deep Q-network
for optimizing pilot interval and pilot power, obtaining the
optimal estimation performance while reducing the system
costs. Tang et al. [47] and Lei et al. [48] proposed a double
Q-network-based DRL method for V2X edge computing.
Although the above works are similar to ours, our proposed
FL-DDPG mainly focuses on the optimization of the minimum
CRLB with communication constraints in 6G V2X instead
of just improving the communication quality. In addition,
we employ specific strategy in FL-DDPG for rapid channel
variations especially in the 6G V2X scenario.

III. SYSTEM MODEL

We consider a RIS-assisted 6G V2X system as illustrated in
Fig. 1. The system contains a base station (BS), a passive RIS,
and several vehicles equipped with multiple antennas, which
are considered targets. In addition, the system is implemented
in the urban area, which has buildings as obstacles for signal
propagation.

The BS is equipped with a uniform linear array (ULA) of
Nb antennas, and each target is equipped with Nt antennas.
Due to potential obstacles between the BS and the targets,
which cause significant signal fading during transmission,
RIS is employed to establish a virtual link. The RIS is a
Nx × Ny uniform planar array (UPA) equipped with Nr

reflective elements.
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Fig. 1. RIS-assisted 6G V2X system framework. In the 6G V2X scenario,
the BS is a multiantenna signal transmitter, communicating and positioning
vehicle targets in the scene through wireless signals. The wireless signals from
the BS can directly reach the vehicle targets and indirectly via RIS. The RIS
is a planar array controlled by a central controller to improve the positioning
and communication performance of the ISAC system by adjusting the phase
shift and amplitude of the reflective units.

A. Downlink Transmit Signal

In the downlink, BS transmits data through Mb

orthogonal frequency-division multiplexing (OFDM) sub-
carriers. The transmit data on nth subcarrier is x[n] =
[x1[n], x2[n], . . . , xMb [n]]T ∈ C

Mb×1,which follows the com-
plex Gaussian distribution with zero mean and unit variance,
i.e., E[x[n]x[n]H] = 1. Let W = [W1,W2, . . . ,WMb ] ∈
C

Nb×Mb represent the beamforming matrix, with Wi denoting
the unit-norm transmitting vector. Then the downlink transmit
signal vector is Wx[n]. Thus, the BS transmit power is given
by E||Wx[n]||2 = ||W2||. This signal is transmitted to the
target through both a direct channel and an indirect channel
using the RIS.

B. Channel Model

We denote the channel matrix from BS to the RIS as Hbr ∈
C

Nr×Nb :

Hbr = abr
(
ϕa

br, ϕ
e
br

)
aH

br(ψbr) (1)

where abr(ψbr) and abr(ϕ
a
br, ϕ

e
br) are the transmitter and

receiver antenna response vectors from the BS to RIS, respec-
tively; here, ψbr is the transmission angle of the signal at the
BS; ϕa

br is the azimuth AOA; and ϕe
br is the elevation AOA.

And the channel between RIS and target is Hrt ∈ C
Nt×Nr :

Hrt = art(ψrt)aH
rt

(
ϕa

rt, ϕ
e
rt

)
(2)

where art(ϕ
a
rt, ϕ

e
rt) and art(ψrt) are the transmitter and receiver

antenna response vectors from the RIS to target, respectively;
ϕa

rt and ϕe
rt are the azimuth AOD and elevation AOD at the

RIS-target link; and ψrt is the AOA on the target side.
The direct channel from the BS to the target is denoted as

Hbt ∈ C
Nt×Nr

Hbt = abt,in(ψtb)aH
bt,out(ψbt) (3)

where atb,out(ψtb) and abt,in(ψbt) are the transmitter and
receiver antenna response vectors. Angles ψtb and ψbt are the

AOA and AOD of the signal from the BS to the target. These
array response vectors is expressed as

a(ψ) = 1√
Nant

[
1, ej 2π

λ
d sinψ, . . . , ej 2π

λ (Nant−1)) sinψ
]T

(4)

where Nant is the number of antennas, and λ and d denoted
the signal wavelength and antenna spacing, respectively. In
addition, we have

a
(
ϕa, ϕe) = 1

√
N

2
[1, ej 2π

λ dr[m sinϕa sinϕe + n cosϕe, . . .

ej 2π
λ dr

[
(Nx − 1) sinϕa sinϕe + (

Ny − 1
)
) cosϕe]T

(5)

where dr be the interval of RIS reflect elements, and Nx and
Ny represent the number of rows and columns of the RIS.
Without loss of generality, we set d = dr = (λ/2).

Then, channel H[n] is comprised of two distinct compo-
nents, namely, the LoS channel and the NLoS channel, which
is given by

H[n] = HLoS[n]+HNLoS[n] (6)

where HLoS[n] represents the direct channel between BS and
target, while HNLoS[n] corresponds to indirect channel, where
signals depart from BS and pass through RIS before being
transmitted to the target

HLoS[n] = γlhlHbte
j2πB n

N τl (7)

where γl = √([NbNt]/ρl); ρl is the path loss of the direct
reflecting channel; hl is the small-scale fading propagation pro-
cess; and τl is the corresponding transmission delay between
BS and target.

The indirect link HNLoS[n] is expressed as follows:

HNLoS[n] = γnlhnlHrt�Hbrej2πB n
N τnl (8)

where γnl = √([NbNr]/ρnl), with ρnl is the path loss of
the indirect channel, hnl is the small-scale fading propagation
process, and τnl is the corresponding transmission delay
between BS-RIS-target link.

The � = diag(u) ∈ C
Nr×Nr indicates the diagonal complex

matrix of the RIS reflection parameter, and u is given by:

u = [
ρrejθ1 , ρrejθ2 , . . . , ρrejθNr

]T ∈ C
Nr×1 (9)

where ρrejθi represent the RIS reflection parameter of ith
element, and ρr and θ represents the reflectivity coefficient
and phase shift, respectively. Without loss of generality, we
set ρr = 1. In practical applications, constraints related
to costs and hardware limitations necessitate that the phase
shift of each reflective unit can only be discretely selected
from a limited set of values. Thus, we set θi ∈ A =
[0,�δ, 2�δ, . . . , (2Bit − 1)�δ], where �δ is the uniformly
distributed phase shift interval and Bit is the number of bits
of RIS.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 10,2024 at 05:39:08 UTC from IEEE Xplore.  Restrictions apply. 



39838 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 24, 15 DECEMBER 2024

Fig. 2. System geometric model. It simplifies the 6G V2X ISAC system
model and demonstrates the geometric relationship between BS, RIS, and the
target in 3-D space.

C. Receiver Signal

The BS transmits signals to the target via both direct and
indirect links. The received signal at the target is represented
as

y[n] = √
Pb(HLoS[n]+HNLoS[n])Wx[n]+ nc[n] (10)

where Pb is the BS transmitter power and nc ∼ N (0, σ 2
c INt)

is the additive white Gaussian noise. Therefore, the receive
SNR of the target is expressed as

γc = Pb|(HLoS[n]+HNLoS[n])W|2
σ 2

c
. (11)

IV. POSITION ERROR BOUND

We construct the 6G V2X scenario as a generic 3-D
spatial model. Utilizing the geometric information among the
BS, RIS, and the target, we systematically derive analytical
expressions for the FIM and CRLB for RIS-assisted ISAC
system.

A. Geometric Model

We simplify the scene in Fig. 1 and use geometric
information to represent the spatial relationships among the
BS, RIS, and target, which is illustrated in Fig. 2. The central
position of the BS is pb = [xb, yb, zb]T ∈ R

3, the coordinates
of the RIS are given by pr = [xr, yr, zr]T ∈ R

3, and the
position of the target is represented as pt = [xt, yt, 0] ∈ R

3,
where the z-coordinate of pt is 0 due to the target being located
on the plane. Then, L1, L2, and L3 are the Euclidean distances
between the pairs of BS, RIS, and target, respectively. In
addition, L′1, L′2, and L′3 are the projections of L1, L2, and L3
on the X-Y plane.

According to Fig. 2, we derive the analytical expressions
for the Euclidean distances L1, L2, and L3, as well as the
computational equations for L′1, L′2, and L′3. Leveraging the
geometric relationships among BS, RIS, and the target, we
also derive analytical expressions for parameters, such as τl,
τnl, ψbr, ϕa

br, ϕe
br, ψrt, ϕa

rt, ϕ
e
rt, ψbt, and ψtb, which are detailed

in Appendix A.

B. CRLB

We define ζ̂ as the estimation of the general channel
parameters ζ which is a complex parameter vector related
to the channel in the geometric space. Since the coordinates

of BS and RIS are fixed, it is not necessary to consider
the influence of ψbr, ϕa

br, and ϕe
br on CRLB derivation. The

specific expression is as follows:

ζ = [
τl, τnl, ψrt, ϕ

a
rt, ϕ

e
rt, ψbt, ψtb

]
. (12)

The mean squared error matrix of ζ is satisfied by the
following inequality:

E

{(
ζ̂ − ζ

)(
ζ̂ − ζ

)H
}
≥ J−1

ζ (13)

where Jζ ∈ C
7×7 is the FIM for channel parameters. The

entries of Jζ can be expressed as follow:

[
Jζ

]
i,j =

2Pb

σ 2
s

N∑

n=1

�e

{
∂μH

∂ζi

∂μ

∂ζj

}
(14)

where μ = H[n]Wx[n] and ζ i is the ith entry of ζ , since
it is an OFDM system. The solution procedure is shown in
Appendix B.

The FIM for PEB can be obtained by means of the 2 × 7
transformation matrix T, which is expressed as

J = TJζTH (15)

where the transformation matrix T is expressed as

T =
[
∂τl
∂px

∂τnl
∂px

∂ψrt
∂px

∂ϕa
rt

∂px

∂ϕe
rt

∂px

∂ψbt
∂px

∂ψtb
∂px

∂τl
∂py

∂τnl
∂py

∂ψrt
∂py

∂ϕa
rt

∂py

∂ϕe
rt

∂py

∂ψbt
∂py

∂ψtb
∂py

]

(16)

where the parameters in the matrix T are derived in
Appendix B.

Finally, a generalized analytical expression for the CRLB is
the inverse matrix of Jζ , and the PEB is defined as the trace
of CRLB

PEB =
√

tr
(
J−1

)
. (17)

V. PROBLEM FORMULATION

The main objective of the RIS-assisted ISAC 6G V2X
system is to minimize the target positioning errors while
meeting various communication requirements. The varies com-
munication requirements are measured according to the CC

Rc = B log2(1+ γc). (18)

Then, we employ the PEB as the positioning error metric. In
order to minimize the PEB while considering the constraints
on communication achievable rate, we formulate the following
optimization problem:

(P1): PEB = arg min
√

tr
(
J−1

)

s.t. Rc > Rmin

� = diag
(
ejθ1 , . . . , ejθNr

)

θi ∈ A, i = 1, 2, . . . ,Nr

(19)

where Rmin represents the minimum achievable capacity con-
straint that the target can accept in the communication process.
For multiple targets, the objective is changed into the minimum
sum of CRLBs with the total communication constraints.
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Fig. 3. MDP. At time tm, the agent executes action atm in the environment
and then updates the action atm+1 for the next time step based on the state
stm and reward rtm .

Meanwhile, we can also consider the balanced performance
among multiple targets, e.g., achieving the minimum of the
maximum CRLB or the averaged CRLB, which is beyond the
scope of this work.

VI. DEEP REINFORCEMENT LEARNING ALGORITHM

A. Deep Reinforcement Learning

DRL combines deep learning and reinforcement learning
based on Markov decision process (MDP), and contains 4
components, which are agent, action, reward, and a deep neural
network (DNN). Agent is a decision-making entity with the
goal of learning, through interactions with the environment, to
maximize the cumulative reward in a series of decisions. State
not only represents the environmental information perceived
by the agent and the changes induced by its own behavior,
but also serves as the foundation for the agent’s decision-
making and the estimation of its long-term rewards. Action
refers to the behaviors or operations that the agent can choose
in a given state. DNN is typically employed for the policy
function, determining the probabilities of actions chosen by
the agent in a given state. It involves learning and extracting
complex relationships among states, actions, and rewards from
experience.

B. Markov Decision Process

As illustrated in Fig. 3, the MDP includes an agent, a
collection of environment states stm , a set of actions atm , and
a reward function rtm . Within the framework, the downlink
signal is transmitted from the BS to the RIS. The control
unit embedded within the RIS executes action while in state
according to a specific strategy. Subsequently, the reward
mechanism computes the cumulative discounted reward asso-
ciated with the state subsequent to the execution of the
aforementioned action.

Agent: Here, we designate the RIS as the agent of the
ISAC system. The decision-making strategy is implemented to
solve the objective, which is to flexibly manipulate the phase-
shifting matrix � to minimize the PEB while considering the
constraints of the communication achievable rate.

State: During system optimization, phase shift will be
adjusted in the each time period. Therefore, a reasonable state
space design can not only improve the positioning accuracy
of the system but also ensure the communication require-
ments of targets. Here, we define that the state space stm =
(�tm ,Rctm

,Htm) in tm time period which is composed of phase
shift information �tm , CC Rctm

, and channel information Htm .

It should be noted that due to the inherent limitations of
the neural network architecture employed in DRL, it is unable
to process complex numbers as inputs. Hence, during the
process of state construction, the complex number presented
in the system is decomposed into distinct real and imaginary
components, e.g., the channel from BS to target Hbt =
Re{Hbt} + Im{Hbt}.

Action: In (19), the RIS calculates PEB and the CC
simultaneously. The variation in the RIS phase shift can impact
the performance of communication and localization in the
ISAC system. Therefore, the action space stm includes the
values of �tm . At time tm, the agent takes action atm according
to the policy � .

Reward: When the agent executes an action based on the
policy, it obtains a new state stm+1. The reward is then used to
assess whether the obtained state stm+1 satisfies (19). Positive
rewards signify the optimization framework’s goal, which is
to continuously enhance positioning accuracy. Since higher
positioning accuracy corresponds to smaller PEB values and
larger (1/PEB), we define the penalty function as

rt =
{ 1

PEB ∗ � if Con = Un
1

PEB otherwise
(20)

where � ∈ (0, 1) represents a reward factor Con = Un to
indicate that the constraints outlined in (19) are not satisfied.
This serves to reduce the impact on the positioning accuracy
of the system and ensures satisfaction with the communication
requirements of the system.

C. FL-DDPG

According to the framework of MDP, we design a FL-
DDPG algorithm, which not only improves the system’s
capability to adapt to fast-fading channels and channel estima-
tion errors but also tends to favor selecting the currently known
optimal action during each action choice by incorporating an
ε-greedy policy. The regulation of RIS phase shifts needs
to comprehensively consider multiple factors, such as the
positioning errors of multiple targets, CC, and the mutual
interference between target users, among other complex con-
ditions. As illustrated in Fig. 4, the FL-DDPG neural network
contains the actor network, the critic network, the actor target
network, the critic target network, and the replay buffer.

Actor Network: The actor network, also called the policy
network with parameter θ� , is dedicated to learning the
decision parameter strategy of the entire algorithm. At time tm,
with the environmental state stm , the actor network executes
the corresponding action a′tm based on the policy �

atm = μtm

(
stm |ω�

)
. (21)

To address the impact of rapid channel variations on system
performance, we design a greedy strategy to balance the rela-
tionship between exploration and exploitation. This enhances
the randomness and coverage of the learning process, thereby
improving the system’s generalization and robustness. Here,
we define atmε

atmε = μtm

(
stm |ω�

)+ ε ∗ ne (22)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 10,2024 at 05:39:08 UTC from IEEE Xplore.  Restrictions apply. 



39840 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 24, 15 DECEMBER 2024

Fig. 4. FL-DDPG Network Framework. The FL-DDPG algorithm consists of an agent, a replay buffer, and four DNN networks. The controller within the RIS
controls the operation of the entire FL-DDPG algorithm. The controller first initializes the DNN networks of the FL-DDPG algorithm and the replay buffer.
Then, during the interaction between the RIS and the environment, the controller regulates the reflection coefficient of RIS based on the actions generated by
the actor network. Meanwhile, the data from each interaction is stored in the replay buffer and small batches of data are regularly sampled from the replay
buffer. The DNNs network parameters are updated by the FL-DDPG algorithm. Finally, based on the updated network, the phase of each reflection unit on
the RIS is adjusted again.

where ε denotes the exploration rate in the greedy strategy;
ne denotes the exploration noise; and ω� is the set of the
parameters of actor online network μtm(·). Then, utilizing the
ε-greedy strategy, an appropriate action is chosen between atm
and atmε as the new atm .

Critic Network: The critic network is a Q-network based on
parameter θQ, which primarily assesses the strategy � in the
actor network and updates the actor network parameters. At
time tm, the input of the critic network is the current state stm
and action a′tm , and the output is the corresponding Q-function
value Q(stm ,�(stm |a′tm)|θQtm

).
Target Actor Network: The target actor network generates

the target actions to be executed in the next state. At time tm+1,
with the environmental state stm+1 , the target actor network
executes the corresponding action a′tm+1

based on the policy
� . Subsequently, the parameters of the actor network are
slowly transferred to the target actor network using a soft
update strategy. The soft update of the parameter θ� (tm+1) is
expressed as

θ� ′tm+1
= τ� θ�tm

+ (1− τ� )θ� ′tm+1
(23)

where 0 < τ� 	 1 represents the soft updating factors.
Target Critic Network: Target critic network is also

a Q-network. At time tm+1, the input of the critic
network is the next state stm+1 and generated action
a′tm+1, and the output is the corresponding Q-function value
Q(stm+1,�(stm+1|a′tm+1)|θQ′tm+1

). Similar to the target actor
network, parameters θQ(tm) are also slowly updated from the
critic network parameters using a soft update strategy. The
parameter updates can be expressed as follows:

θQ′tm+1
= τQθQtm

+ (
1− τQ

)
θQ′tm+1

(24)

where 0 < τQ 	 1 represents the soft updating
factors.

At each training slot tm, the agent observes the RIS-assisted
positioning accuracy and communication performance, result-
ing in the acquisition of an environmental state stm This state is
then input into the actor network, which subsequently produces
the corresponding action atm . At each time tm step, atm is
chosen based on the ε-greedy strategy, and the phase shift
of the RIS is updated in real-time. To adapt more flexibly to
the dynamic changes in the system, ε varies during different
training epochs. In the early stages of training, more emphasis
is placed on exploration, and ε is initially set to a larger value.
As the learning progresses, ε gradually decreases to increase
the utilization of known information. Subsequently, the agent
carries out the action, and the critic network computes the
corresponding reward, allowing the agent to acquire a new
state stm+1. With each updated state, the agent accumulates a
series of experience tuples, referred to as (stm , atm , rtm , stm+1).
Each of these experience tuples is stored in the replay memory
D to facilitate the training of the neural network. Ultimately,
through the continuous adjustment of the parameters in both
the actor and critic networks, the optimal strategy is deter-
mined. This optimal strategy ensures that the highest level of
positioning accuracy is achieved while also satisfy the target’s
requirements for communication performance.

During the training process, a minibatch of �-size will be
randomly sampled from the replay memory D. The parameters
of the critic network are then updated using the temporal
difference error as a reference. The loss function is defined as
follows:

L
(
θQ

) = 1

�

[
Q′tm+1 − Q

(
stm ,�(stm |a′tm)|θQtm

)]2 (25)
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Algorithm 1 Training Process of FL-DDPG Algorithm
1: Initialize experience replay memory D;
2: Initialize the training critic network θQ and the training

actor θ� network separately, random weighs, and bias;
2: Initialize ISAC system
3: Input: Channel information;
4: Output: PEB, Achievable rate;
5: for each episode e = 1,. . . , Emax do:
6: Initialize state space as s0 and reset RIS-assisted

location system;
7: for tm = 0, 1, 2,. . . , Tmax do:
8: Update ε exploration rate in the greedy strategy.
9: The agent choose action atm according to current

policy � ;
10: atmε = μtm(stm |ω�)+ ε ∗ ne

11: ε-greedy strategy choice atm
12: Execute action atm , observe reward rtm , and stm

evolves into next state stm+1;
13: Save (stm , atm , rtm , stm+1) into D;
14: Soft update the target networks of central trainer

according to (22);
15: if stored tuples ≥ (1/3)|D| then
16: Randomly sample � transitions form D;
17: Update the critic network by minimizing the loss

in (25);
18: Update the actor network by maximizing the

policy gradient in (27);
19: end if
20: end if
21: end if

where Q′tm+1 is the target value of the state-value function,
which is calculated by the Bellman equation

Q′tm+1 = rtm + γb max Q
(

stm+1,�(stm+1|a′tm+1)|θQ′tm+1

)
.

(26)

The critic network parameters is updated by minimizing the
loss function (25)

θQ ←− θQ − τtc �θQ L
(
θQ

)
. (27)

The optimization objective of the actor network is to
maximize the state-action function Q. Given that Q is differ-
entiable and the action space is continuous, the actor network
can be updated using the policy gradient with an ascent factor,
as demonstrated below

�θQ J(θ� ) = 1

�

�∑

i=1

�sQ(s, a)|

×θQ|s(i),a(i) � θ��(s|θ� )|s(i) (28)

where s = stm and a = �(stm).
The complete algorithm flow described above is depicted

in Algorithm 1, which can intuitively observe the FL-DDPG
training process.

The controller within the RIS controls the operation of the
entire FL-DDPG algorithm. The controller first initializes the
DNN networks of the FL-DDPG algorithm and the replay

buffer. Then, during the interaction between the RIS and the
environment, the controller regulates the reflection coefficient
of RIS based on the actions generated by the actor network.
Meanwhile, the data from each interaction is stored in the
replay buffer, and small batches of data are regularly sampled
from the replay buffer. The DNNs network parameters are
updated by the FL-DDPG algorithm. Finally, based on the
updated network, the phase of each reflection unit on the RIS
is adjusted again.

D. Complexity Analysis

In the four DNNs of FL-DDPGD, the actor network is
composed of an input layer, three hidden layers, and an output
layer, with each ith network having lai neurons. Rectified
linear unit activation functions are applied to the hidden layers
and the output layer, while the output layer uses a sigmoid
activation function. Similarly, the critic network consists of
the same five-layer architecture, with the number of neurons
in the ith layer denoted as lci .

During the training process, both actor network and critical
network participate in the training, and the parameters are
updated and iterated through backward propagation. In addi-
tion, the training process also involves the prediction results of
the target actor network and the target critical network. Then,
the algorithm complexity for all single backward propagation
training steps is O(∑3

i=0 2lai lai+1 +
∑3

i=0 2lci lci+1).
During the online application process, data only needs

to pass through the actor network. For any V2X traffic
environment state stm , the trained actor network will output
the corresponding action atm . Based on the principles of
connection and computation in DNNs, the computational
complexity can be determined as O(∑3

i=0 lci lci+1).
Throughout the entire algorithm execution, the agent

initiates subsequent actions only when the number of
tuples stored in replay memory D exceeds ≥ (1/3)|D|.
Therefore, the overall complexity of the proposed FL-DDPG
algorithm in this article is denoted as O((EmaxTmax −
(1/3)|D|)�(∑3

i=0 2lai lai+1 +
∑3

i=0 2lci lci+1 +
∑3

i=0 lci lci+1) +
(1/3)|D|(∑3

i=0 lai lai+1)).
After offline training, FL-DDPG can quickly provide cor-

responding actions based on the current state in real-time
communication and control systems by simply propagating
forward through the actor network.

VII. IMPERFECT CHANNEL

Here, we also consider the imperfect channel model for the
whole system. We denote the imperfect channel between the
BS and the RIS as Ĥbr

Ĥbr = Hbr +�Hbr (29)

where �Hbr is the random channel error and ||�Hbr||F ≤ jbr,
where jbr represents the radius of the uncertain region where
the BS is known. The imperfect channel model characterizes
that channel quantization errors naturally belong to a bounded
region.
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The imperfect channel between the RIS and the target is
represented by Ĥrt

Ĥrt = Hrt +�Hrt (30)

where �Hrt is the random channel error and ||�Hrt||F ≤ jrt,
where jrt also represents the radius of the uncertain region
where the BS is known.

The imperfect channel between the BS and the target is Ĥbt

Ĥbt = Hbt +�Hbt (31)

where �Hbt is the random channel estimate error and
||�Hbt||F ≤ jbt, where jbt also represents the radius of the
uncertain region where the BS is known.

We derive the FIM with imperfect channel model. In this
case, (10) can be rewritten as

ŷ[n] = √
Pb

(
Ĥbr[n]+ Ĥrt[n]�Ĥbr[n]

)
Wx[n]+ n̂c[n] (32)

where n̂c ∼ N (0, (σ 2
c + σ 2

e )INt) is the additive white Gaussian
noise, σ 2

e is the error increment.
Similarly, (14) can be rewritten as

[
Ĵζ

]

i,j
= 2Pb

σ 2
s

N∑

n=1

�e

{
∂μ̂

H

∂ζi

∂μ̂

∂ζj

}

(33)

where μ̂ = (Ĥbr[n] + Ĥrt[n]�Ĥbr[n])Wx[n]. The solution
procedure is shown in Appendix C.

With imperfect channel, Ĵ for ˆPEB is represented as follows:

Ĵ = TĴζTH . (34)

Finally, the CRLB is as follows:

ˆPEB =
√

tr
(

Ĵ−1
)
. (35)

VIII. SIMULATION

A. Simulation Parameters

The proposed FL-DDPG is evaluated via extensive RIS
assisted 6G V2X simulations. We simulate a 1000 m×1000 m
V2X area. We set that BS is located at (900, 100, 20) and
the target is located at (500, 500, 0). The RIS is located
at (200, 300, 40). The numbers of transmitter and receiver
antennas are Nb = 4 and Nt = 4, respectively. The number of
reflecting elements at the RIS is set as Nr= 64. The carrier
frequency is fc = 28 GHz and the number of subcarriers is
Ns = 10. The bandwidth is B = 20 MHz. The path loss expo-
nent of the direct channel is αl = 3.2, the path loss exponent
of the RIS is αnl = 2.2, and shadow fading parameters of the
direct path and reflecting path are, respectively, σl = 3 and
σnl = 4. The hyperparameters description FL-DDPG in the
algorithm are shown in Table I.

B. Hyperparameter Evaluation

We evaluated the impact of different hyperparameters on
the convergence performance of the FL-DDPG algorithm
training. An over small replay buffer size increases the risk of
overfitting, while an over large size increases computation and
sampling overhead. After extensive experiments, we set the

TABLE I
FR-DDPG SUPER PARAMETERS

Fig. 5. Evaluation of hyperparameters on FL-DDPG convergence
performance. When the replay buffer size is 10 000, μt = 0.001, and � = 0.95,
the FL-DDPG network training can achieve stable and rapid convergence.

replay buffer size to 10 000 for simulation experiments, with
the learning rate μt = μtc = μta = τtc = τta. As illustrated
in Fig. 5, when μt = 0.01, the training converges quickly but
unstable and prone to divergence. When μt = 0.0001, the
training process is stable, but the convergence speed is very
slow. Appropriately increasing the value of the discount factor
γb can enhance the training performance. However, if the value
of γb is too large, it can decrease the convergence speed. In
summary, when the replay buffer size is 10 000, μt = 0.001,
and γb = 0.95, the FL-DDPG network training can achieve
stable and rapid convergence.

C. Convergence Evaluation

We evaluate the convergence performance of the FL-DDPG
system framework with the ε-greedy strategy. As depicted in
Fig. 6, the CC requirement (CCR) is set to 60 bit/s/Hz. In the
early stages of training, the noise interference during the action
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Fig. 6. RIS-assisted 6G V2X system framework. The convergence
performance of FL-DDPG and DDPG in terms of positioning accuracy and
communication capacity, with a CCR of 60 bit/s/Hz.

selection process of FL-DDPG and the randomness of the replay
buffer will cause fluctuations in positioning accuracy and CC.
After 300 training cycles, the PEB converges from 9.43 m to
0.51 m, and the CC increases from 58.43 to 72.43 bit/s/Hz.
With the same settings, DDPG without the ε-greedy strategy in
the actor network converges to a PEB of 1.37 m and a channel
capacity of 68.993 bit/s/Hz. Thus, the FL-DDPG network adapts
better to rapid channel variations and enhances the system’s
robustness in 6G V2X scenario.

D. Imperfect Channel Model

We set the number of reflecting elements in the RIS to
64, with a transmission power of 25 dBm, and a CCR of 60
bit/s/Hz. By adjusting the error increment σ 2

e , we investigate
the impact of the imperfect channel model on RIS-assisted
ISAC systems. As illustrated in Fig. 7, when �Hbr 
= 0,
�Hrt 
= 0 and �Hbt 
= 0, the PEB increases from 2.03 m to
4.24 m, and the CC decreases from 67.02 to 60.39 bit/s/Hz
with the increasing error variance σ 2

e . Additionally, we indi-
vidually consider the impact of channel errors �Hbt, �Hrt,
and �Hbr on system robustness. The PEB increases to 3.01 m,
3.34 m, and 3.91 m, respectively, while the CC decreases
to 63.57, 63.02, and 61.47 bit/s/Hz. It is observed that as
the increases of σ 2

e , the CC of the ISAC system decreases.
However, all results satisfy the CCR of 60 bit/s/Hz, with the
worst PEB being 3.91 m, which is within an acceptable range.
This demonstrates that the FL-DDPG network is capable of
handling the impact of channel estimation errors on ISAC
systems, ensuring the normal operation of ISAC systems.

E. Position Accuracy

We compare the FL-DDPG with heuristic particle swarm
optimization (PSO), and genetic algorithm (GA) to assess its
positioning and communication performance in various scenar-
ios. First, as illustrated in Fig. 8, with different CCR constraint
settings, the positioning accuracy using FL-DDPG outper-
forms PSO and GA. The positioning accuracy is enhanced
by a minimum of 89% when compared to the positioning

Fig. 7. Imperfect channel model condition. The impact of imperfect channel
model on the robustness of RIS-assisted ISAC system, CCR 60 bit/s/Hz, and
error increment σ 2

e .

system without RIS. Then, the CC estimation obtained through
FL-DDPG outperforms PSO and GA. Regardless of whether
the CCR is set at 60, 65, or 70 bit/s/Hz, the final estimated
CC is higher than the CCR, meeting the communication
requirements of targets. Compared with the system without
RIS, the CC is improved by nearly 3 times. With an increase
in the number of RIS reflection units, both the positioning
accuracy and CC of the system rise. This indicates that the
number of RIS reflective units is a dominant factor that affects
the positioning accuracy and communication performance.

F. Time Consumption

Here, we compare the time consumptions of using FL-
DDPG, PSO, and GA to assess the efficiency. As depicted
in Fig. 9, FL-DDPG exhibits lower execution times compared
to the PSO and GA. It is worth noticing that the runtime of
all three optimization algorithms gradually increases as the
number of RIS reflection units changes. This phenomenon is
attributed to the relationship between the estimation matrix of
the FIM and the number of RIS reflection units. Thus, FL-
DDPG outperforms others in terms of efficiency, making it
more suitable for the flexible adjustment of communication
and perceptual positioning functions.

G. Deep Reinforcement Learning Comparison

We compare FL-DDPG with the state-of-art DRL meth-
ods, including proximal policy optimization (PPO), twin
delayed deep deterministic policy gradient (TD3), and soft
actor-critic (SAC), to assess its positioning and communica-
tion performance. As illustrated in Fig. 10, CCR is set to
65 bit/s/Hz. After 300 training cycles, PEB of FL-DDPG and
TD3 converges to 0.97 m and 1.433 m, respectively, which is
superior to SAC and PPO. Among them, due to the introduc-
tion of the ε-greedy strategy, FL-DDPG can better deal with
the performance impact caused by the rapid change of channel
and channel estimation error, so the positioning accuracy
performance of FL-DDPG is better than TD3. Meanwhile, the
final CCs of the four DRL methods exceeds 70 bit/s/Hz, which
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(a) (b) (c)

Fig. 8. Positioning and communication performance. When CCR= 60, 65, and 70 bit/s/Hz, the convergence performance of positioning accuracy and
communication capacity of FL-DDPG is compared with PSO,GA and No RIS. (a) CCR = 60 bit/s/Hz. (b) CCR = 65 bit/s/Hz. (c) CCR = 70 bit/s/Hz.

Fig. 9. Time consumption with different number of RIS. The time
consumption of FL-DDPG, PSO, and GA algorithms under different numbers
of RIS units.

meets the minimum CC requirements. This analysis indicates
that FL-DDPG can achieve better positioning accuracy while
meeting the communication requirements compared to other
DRL methods.

H. RIS Bits

The performance of the RIS reflection unit is influenced
by the number of bits during phase modulation. Thus, we

evaluate the impact of the number of bits on the performance
of communication and positioning. As depicted in Fig. 11,
regardless of the number of bits, the positioning accuracy of
the FL-DDPG is consistently higher than others. Then, with
an increased number of bits, the positioning accuracy of FL-
DDPG shows improvement. However, this improvement is
limited. This analysis indicates that the bits are not the primary
parameter in the RIS assisted 6G V2X system.

I. Transmitted Power Value

To evaluate the impact of transmitted power of BS, we
gradually increase the power from 5 dBm to 30 dBm, and
the results are presented in Fig. 12. FL-DDPG consistently
outperforms TD3, SAC, PPO, PSO, and GA in terms of
positioning accuracy, while its CC is slightly lower than that of
TD3. Meanwhile, as the BS transmission power increases, both
positioning accuracy and CC are improved using FL-DDPG.
In addition, such improvements are gradually converged with
the increase of power level.

IX. CONCLUSION

In this article, we propose the FL-DDPG algorithm to
optimize ISAC performance for the RIS-assisted 6G V2X
system. We derive the generalized FIM and construct non-
convex optimization problem of high-dimensional phase shift
control actions for RIS. We also analyze the robustness of
the FL-DDPG algorithm with imperfect channel. Simulation

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 10,2024 at 05:39:08 UTC from IEEE Xplore.  Restrictions apply. 



LONG et al.: DEEP REINFORCEMENT LEARNING FOR INTEGRATED SENSING AND COMMUNICATION 39845

(a)

(b)

Fig. 10. DRL analysis.The convergence performance of positioning accuracy
and CC of FL-DDPG is compared with classic DRL algorithms TD3, SAC,
and PPO, with a CCR of 65 bit/s/Hz. (a) Position accuracy. (b) CC.

results indicate that the proposed ISAC system can flexibly
adjust the phase shift, enabling it to minimize positioning
accuracy while satisfying various communication require-
ments. Compared to other methods, the FL-DDPG method
exhibits higher positioning accuracy and CC. Additionally,
when compared to scenarios without RIS, our proposed system
improves positioning accuracy by at least 89% and enhances
the CC at the receiver end by nearly 3 times. In future work,
we will apply our algorithm to actual hardware devices. By
incorporating a feedback mechanism, we will continuously
update and adjust the algorithm using real measurement data,
aiming to enhance the performance of the hardware system.
Subsequently, the approximated CRLB derived from the val-
idated real-world system will serve as a benchmark, guiding
the design and optimization of other positioning algorithms.

Fig. 11. PEB with different number of bits. Comparative analysis of the
PEB of FL-DDPG, TD3, SAC, PPO, PSO, GA, and No RIS under different
number of bits.

APPENDIX A
GEOMETRICAL PARAMETER

Based on the next-generation wireless communication
network (6G) vehicle-to-everything (V2X) geometric model
depicted in Fig. 2, it is observed that the spatial positions of
the BS and RIS remain constant. These positions are denoted
by coordinates pb = [xb, yb, zb]T and pr = [xr, yr, zr]T ,
respectively. Additionally, the target’s spatial coordinates are
represented by pt = [xt, yt, 0]T . We can estimate the Euclidean
distances L1, L2 and L3 of BS to RIS, RIS to target, and BS
to target, which is expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L1 =
√
(xb − xr)

2 + (yb − yr)
2 + (zb − zr)

2

L2 =
√
(xr − xt)

2 + (yr − yt)
2 + (zr)

2

L3 =
√
(xb − xt)

2 + (yb − yt)
2 + (zb)

2.

(36)

Then, L′1, L′2, and L′3 are the projections of L1, L2, and L3 on
the X-Y plane, respectively, which is expressed as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L′1 =
√
(xb − xr)

2 + (yb − yr)
2

L′2 =
√
(xr − xt)

2 + (yr − yt)
2

L′3 =
√
(xb − xt)

2 + (yb − yt)
2.

(37)

In the 6G V2X system, the presence of both line-of-sight
links and NLoS links necessitates the signal delays. The
downlink signal delays are denoted as τl and τnl

{
τl = L3

c
τnl = L1

c + L2
c .

(38)

The AoD of the downlink signal sent from BS to RIS is
ψbr, and the azimuth angle and elevation angle in the RIS
response angles are ϕa

br and ϕe
br

⎧
⎪⎨

⎪⎩

ψbr = arcsin zb−zr
L1

ϕa
br = arcsin xb−xr

L′1
ϕe

br = arccos zb−zr
L1

.

(39)
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(a)

(b)

Fig. 12. Transit power value. The convergence performance of positioning
accuracy and CC of TD3, SAC, PPO, PSO, and GA under different BS
transmission power. (a) Position accuracy. (b) CC.

Then, ϕa
rt and ϕe

rt are the azimuth AOD and elevation AOD at
the RIS-target link, respectively, and ψrt is the AoA of at the
target

⎧
⎪⎨

⎪⎩

ψrt = arcsin zr
L2

ϕa
rt = arccos yr−yt

L′2
ϕe

rt = arccos zr
L2
.

(40)

In addition, ψbt and ψtb are the transmitting and receiving
angles in the BS-target link, respectively

{
ψbt = arccos zb

L3

ψtb = arcsin zb
L3
.

(41)

APPENDIX B
CRLB DERIVATION

The estimated parameter in our system is ζ =
[τl, τnl, ψrt, ϕ

a
rt, ϕ

e
rt, ψbt, ψtb]T . And the FIM J is obtained by

transformation matrix T and Jζ

J = TJζTH (42)

where the transformation matrix T is

T =
[
∂τl
∂pxt

∂τnl
∂pxt

∂ψrt
∂pxt

∂ϕa
rt

∂pxt

∂ϕe
rt

∂pxt

∂ψbt
∂pxt

∂ψtb
∂pxt

∂τl
∂pyt

∂τnl
∂pyt

∂ψrt
∂pyt

∂ϕa
rt

∂pyt

∂ϕe
rt

∂pyt

∂ψbt
∂pyt

∂ψtb
∂pyt

]

and the elements of the matrix T are calculated by (43), shown
at the bottom of the page.

Then, Jζ is a 7× 7 matrix, which is express as

[
Jζ

]
i,j =

2Pb

σ 2
s

N∑

n=1

�e

{
∂μH

∂ζi

∂μ

∂ζj

}
(44)

where μ = (HLoS[n]+HNLoS[n])Wx[n], Pb is the transmitting
power, σs is the variance, and ζi is the ith entry of ζ .

The elements of the matrix ([∂μ]/ζi), where ζi ∈
[τl, τnl, ψrt, ϕ

a
rt, ϕ

e
rt, ψbt, ψtb]T , is formulated in (45), shown at

the top of the next page.
In (45), A1, A2, A3, A4 are the complex coefficients obtained

in the derivation calculation, which is
⎧
⎪⎪⎨

⎪⎪⎩

A1 = γlhlj2πB n
N ej2πB n

N τl

A2 = γnlhnlj2πBej2πB n
N τnl

A3 = γnlhnlej2πB n
N τnl

A4 = γlhlej2πB n
N τl .

(47)

And Art, Abt, and Atb are all diagonal matrices obtained in
the derivation calculation

⎧
⎨

⎩

art = j 2π
λ

cos(ψrt)diag(0, 1, . . . , (Nt − 1))
abt = j 2π

λ
cos(ψbt)diag(0, 1, . . . , (Nb − 1))

atb = j 2π
λ

cos(ψbt)diag(0, 1, . . . , (Nt − 1))
(48)

where λ is the wavelength, and Nb and Nt are the number of
antennas equipped by BS and target, respectively. In addition,
aa

rt(Nx,Ny)
and ae

rt(Nx,Ny)
are represented as

⎧
⎪⎨

⎪⎩

aa
rt(Nx,Ny)

= j 2π
λ

dr((Nx − 1) cos(ϕa
rt) sin(ϕe

rt))

ae
rt(Nx,Ny)

= j 2π
λ

dr((Nx − 1)

sin(ϕa
rt) cos(ϕe

rt)− (Ny − 1) sin(ϕe
rt))

(49)

T =

⎡

⎢
⎢⎢⎢⎢
⎣

(xt−xb)
cL3

(xt−xr)
cL2

zr(xt−xr)

L3
2

√

1− z2
r

L2
2

(yr−yt)(xr−xt)

L3
2

√
1− (yr−yt)2

L2
2

zr(xr−xt)

L3
2

√

1− z2
r

L2
2

zb(xt−xb)

L3
3

√
1−L2

3

zb(xt−xb)

L3
3

√
1−L2

3

(yt−yb)
cL3

(yt−yr)
cL2

zr(yt−yr)

L3
2

√

1− z2
r

L2
2

L′2
2+(yr−yt)(xr−x(t))

L3
2

√
1− (yr−yt)2

L2
2

zr(yr−yt)

L3
2

√

1− z2
r

L2
2

zb(yt−yb)

L3
3

√
1−L2

3

zb(yt−yb)

L3
3

√
1−L2

3

⎤

⎥
⎥⎥⎥⎥
⎦

(43)
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⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

∂μ[n]
∂τl
∂μ[n]
∂τnl
∂μ[n]
∂ψrt
∂μ[n]
∂ϕa

rt
∂μ[n]
∂ϕe

rt
∂μ[n]
∂ψbt
∂μ[n]
∂ψtb

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

A1abt,in(ψbt)aH
bt,out(ψtb)Wx[n]

A2art(ψrt)aH
rt

(
ϕa

rt, ϕ
e
rt

)
�abr

(
ϕa

br, ϕ
e
br

)
aH

br(ψbr)Wx[n]
A3artart(ψrt)aH

rt

(
ϕa

rt, ϕ
e
rt

)
�abr

(
ϕa

br, ϕ
e
br

)
aH

br(ψbr)Wx[n]
A3art(ψrt)aH

rt

(
ϕa

rt, ϕ
e
rt

)
diag

(
aa

rt

)
�abr

(
ϕa

br, ϕ
e
br

)
aH

br(ψbr)Wx[n]
A3art(ψrt)aH

rt

(
ϕa

rt, ϕ
e
rt

)
diag

(
ae

rt

)
�abr

(
ϕa

br, ϕ
e
br

)
aH

br(ψbr)Wx[n]
A4atb,in(ψbt)aH

bt,outa
H
bt(ψtb)Wx[n]

A4atbabt,in(ψbt)aH
bt,out(ψtb)Wx[n]

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(45)

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

∂μ̂[n]
∂τl
∂μ̂[n]
∂τnl
∂μ̂[n]
∂ψrt
∂μ̂[n]
∂ϕa

rt
∂μ̂[n]
∂ϕe

rt
∂μ̂[n]
∂ψbt
∂μ̂[n]
∂ψtb

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

A1

(
abt,in(ψbt)aH

bt,out(ψtb)+�Hbt

)
Wx[n]

A2
(
art(ψrt)aH

rt (ϕ
a
rt, ϕ

e
rt)+�Hrt

)
�

(
abr(ϕ

a
br, ϕ

e
br)a

H
br(ψbr)+�Hbr

)
Wx[n]

A3art
(
art(ψrt)aH

rt (ϕ
a
rt, ϕ

e
rt)�abr(ϕ

a
br, ϕ

e
br)a

H
br(ψbr)+ art(ψrt)aH

rt (ϕ
a
rt, ϕ

e
rt)�(�Hbr)

)
Wx[n]

A3
(
art(ψrt)aH

rt (ϕ
a
rt, ϕ

e
rt)diag(aa

rt)�abr(ϕ
a
br, ϕ

e
br)a

H
br(ψbr)+ art(ψrt)aH

rt (ϕ
a
rt, ϕ

e
rt)diag(aa

rt)�(�Hbr)
)
Wx[n]

A3
(
art(ψrt)aH

rt (ϕ
a
rt, ϕ

e
rt)diag(ae

rt)�abr(ϕ
a
br, ϕ

e
br)a

H
br(ψbr)+ art(ψrt)aH

rt (ϕ
a
rt, ϕ

e
rt)diag(ae

rt)�(�Hbr)
)
Wx[n]

A4atb,in(ψbt)aH
bt,outa

H
bt(ψtb)Wx[n]

A4atbabt,in(ψbt)aH
bt,out(ψtb)Wx[n]

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

(46)

where dr represents the gap between RIS reflection units, Nx

denotes the horizontal coordinate of the RIS reflection plane,
and Nx signifies the vertical coordinate of the RIS reflection
plane.

APPENDIX C
CRLB DERIVATION WITH IMPERFECT CHANNEL MODEL

Under imperfect channel model condition, the FIM Ĵ is
obtained by transformation matrix T and Ĵζ

Ĵ = TĴζTH (50)

the elements of the matrix T are obtained from (43) on bottom
of the previous page.

Then, Ĵζ is a 7× 7 matrix, which is express as

[
Ĵζ

]

i,j
= 2Pb

σ 2
s

N∑

n=1

�e

{
∂μ̂

H

∂ζi

∂μ̂

∂ζj

}

(51)

where μ̂ = (Ĥbr[n]+Ĥrt[n]�Ĥbr[n])Wx[n] is the transmitting
power, σs is the variance, and ζi is the ith entry of ζ .

The elements of the matrix ([∂μ̂]/ζi), where ζi ∈
[τl, τnl, ψrt, ϕ

a
rt, ϕ

e
rt, ψbt, ψtb]T , is formulated in (46), shown at

the top of the page.
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