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Abstract—The massive amounts of data generated by the
Industrial Internet of Things (IIoT) require considerable pro-
cessing power, which increases carbon emissions and energy
usage, and we need sustainable solutions to enable flexible
manufacturing. Serverless computing shows potential for meeting
this requirement by scaling idle containers to zero energy-
efficiency and cost, but this will lead to a cold start delay. Most
solutions rely on idle containers, which necessitates dynamic
request time forecasting and container execution monitoring.
Furthermore, Artificial Intelligence of Things (AIoT) can provide
autonomous and sustainable solutions by combining IIoT with
Artificial Intelligence (AI) to solve this problem. Therefore, we
develop a new testbed, CAPTAIN, to facilitate AI-based co-
simulation of scalable and flexible serverless computing in IIoT
environments. The AI module in the CAPTAIN framework
employs Random Forest (RF) and Light Gradient-Boosting
Machine (LightGBM) models to optimize cold start frequency
and prevent cold starts based on their prediction results. The
proxy module additionally monitors the client-server network
and constantly updates the AI module training dataset via
a message queue. Finally, we evaluated the proxy module’s
performance using a predictive maintenance-based real-world
IIoT application and the AI module’s performance in a realistic
serverless environment using a Microsoft Azure dataset. The AI
module of the CAPTAIN outperforms baselines in terms of cold
start frequency, computational time with 0.5 milliseconds, energy
consumption with 1161.0 joules, and CO2 emissions with 32.25e-
05 gCO2. The CAPTAIN testbed provides a co-simulation of
sustainable and scalable serverless computing environments for
AIoT-enabled predictive maintenance in Industry 4.0.

Index Terms—Serverless Computing, Cloud Computing, Ar-
tificial Intelligence, Flexible Manufacturing, Predictive Mainte-
nance, Industrial Internet of Things

I. INTRODUCTION

THE concept of Artificial Intelligence of Things (AIoT)
emerged by integrating Industrial Internet of Things

(IIoT) devices and artificial intelligence (AI) models [1].
Processing and interpreting the data collected from IIoT and
sensors using AI models provide convenience to human life
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in various fields such as military [2], civilian [3] and flexible
manufacturing [4]. Studies in which early diagnosis is made
using AI models of data collected from patients through IIoT
and sensors are good examples of these applications [5].
Industry 4.0 uses cloud and edge-based systems with high
processing power and storage capabilities to process massive
amounts of data, which increases electricity consumption and
carbon emissions [6], [7]. Increasing environmental and energy
crises have made eco-friendly technologies such as green IIoT
and cloud, which reduce electricity consumption and carbon
emissions mandatory for Industry 4.0 [8].

A. AIoT Enabled Predictive Maintenance in Industry 4.0

Currently, predictive maintenance is one of the important
challenges that must be solved to optimize asset manage-
ment performance in Industry 4.0 [4], [9]. AIoT can provide
autonomous and sustainable solutions to optimise predictive
maintenance for anticipating future challenges [4]. Therefore,
we need a scalable and sustainable computing environment
to enable flexible manufacturing in Industry 4.0 [10]. Ama-
zon’s Lambda platform introduced serverless computing [11],
[12], a new cloud computing paradigm [13], in 2014 as
an environmentally friendly solution to this issue [4]. The
word “serverless” is not because there are no servers in this
paradigm, but to show that background management is entirely
the cloud providers’ responsibility [14], [15]. It has three main
advantages [16]: (i) Clients are completely isolated from server
administration, so they can focus more on code development.
(ii) With the pay-as-you-go model it offers to customers, only
a fee is charged for the space and processing power used.
(iii) By offering dynamic scalability, it can automatically scale
resources to meet fluctuating demand spikes [6]. Besides the
advantages of serverless computing, there are still problems to
be solved, cold start latency is one of the most important of
these problems [16]. In serverless computing, each function
is assigned to a container for execution. Assignment to the
container is done in two ways [10]: (i) If the container is
ready, the function is directly assigned to the container and
executed. (ii) If there is no ready container in the environment,
a new container is created after the necessary libraries are
loaded, the environment is set up, and the codes are loaded
into the container. A particular resource is required for the
execution and creation of containers. If there is no request to
the serverless platform within a certain period, the containers
are deleted, thus avoiding wasted resources. This feature of
serverless computing is called zero scaling [17]. After the
deletion of resources, a certain amount of time will be required
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to create a new container whenever a new request arrives. This
required time causes a cold start. Likewise, if there are more
requests than the container in the environment can handle,
cold start latency will occur. It has been observed that factors
such as software language, CPU and RAM affect cold start
latency [14]. So, there is a need to address these challenges
if this promising paradigm can be utilized to enable flexible
manufacturing in Industry 4.0 [4].
B. Our Previous Works

In our previous works, we developed two different frame-
works named ATOM and MASTER, which predict cold start
occurrence for the serverless edge computing environments
[18], [19]. The ATOM framework uses the Deep Deterministic
Policy Gradient (DDPG) to predict cold starts in the healthcare
domain, while the MASTER framework employs the Extreme
Gradient Boosting (XGBoost) model to predict cold start
latency. However, none of our previous works have been able
to mitigate or prevent cold start latency, highlighting the need
for new research to address this issue and enhance predictive
maintenance performance for IIoT. Therefore, we developed a
novel testbed, CAPTAIN, utilizing the Random Forest (RF)
and LightGBM (LGBM) models, given their demonstrated
effectiveness on complex patterned and large datasets like cold
start [20]. Table I shows the main differences between our
previous works [18], [19], and the proposed CAPTAIN testbed
in terms of key parameters.

TABLE I: Comparison of our previous works with the pro-
posed CAPTAIN framework

Works AI Models Environment Dataset Objective IIoT Co-
Simulation

ATOM
[18]

DDPG Serverless
Edge

Healthcare Cold Start
Prediction

No No

MASTER
[19]

XGBoost Serverless
Edge

Predictive
Maintenance

Cold Start
Prediction

Yes No

CAPTAIN
Testbed

RF +
LGBM

Serverless Predictive
Maintenance &
Microsft Azure

Cold Start
Prediction &
Prevention

Yes Yes

C. Motivation and Our Contributions

AIoT/IIoT applications for smart manufacturing that require
high processing power and energy consumption can use server-
less computing, an environmentally friendly paradigm [21].
However, serverless releases idle resources (scales to zero) to
prevent resource wasting, causing a cold start problem that
leads to undesirable delays in time-sensitive AIoT scenarios
such as healthcare [17] and predictive maintenance-based real-
world IIoT applications [9]. The literature [10] reported that
there are solutions that cause resource waste, such as (i)
keeping containers warm, where containers are kept warm for
a certain period of time after the execution of functions is
completed, and (ii) container pools, where containers are kept
working and called when needed. The cold start problem in
serverless computing should be solved because it has negative
effects on (i) user experience, (ii) cost, and (iii) time-sensitive
applications [22]. In most of the solutions offered (such as
keeping the container warm), resources are wasted because
the containers are kept running even in cases where a cold
start does not occur. Although ATOM [18] and MASTER
[19] can predict cold start latency, they did not solve the
cold start problem, which requires solutions to reduce the

frequency of cold starts and prevent cold start occurrence.
AI-based time-series models can be used to fill this gap by
allocating serverless resources in advance and predicting future
demands by monitoring latency and request patterns for IIoT
applications. Therefore, we propose the CAPTAIN, an AI-
based serverless computing framework for IIoT applications
that reduces the frequency of cold starts. CAPTAIN consists
of the AI module to ping the server to prevent a cold start,
and the Proxy module to update the dataset to train the AI
module continuously. The Proxy Module constantly monitors
the communication between the server and client to keep
the dataset updated with a message queue protocol. In the
AI module, we used RF and LightGBM, which have higher
prediction performance than other time-series models [23].
We selected these two models due to their utilization of the
tree-based ensemble method, which offers several advantages
[24]: (i) parallel processing, which increases the prediction
performance in complex and large datasets such as cold start,
and (ii) being resistant to overfitting situations by creating a
more general model by combining more than one learner. The
main contributions of this work are:

• Present a new framework, CAPTAIN, for scalable and
sustainable serverless computing in IIoT environments for
flexible manufacturing.

• Propose a time series model (LGBM and RF)-based
approach for the optimization of cold start frequency by
predicting the cold start latency in advance.

• Utilize predictive maintenance-based IIoT application and
Microsoft Azure datasets for performance evaluation.

• Evaluate the performance of CAPTAIN using a Google
Cloud Platform (GCP)-based realistic environment and
compare it with three baselines (which used Autoregres-
sive Integrated Moving Average (ARIMA) [25], Seasonal
Auto-Regressive Integrated Moving Average (SARIMA)
[26] and Long Short-Term Memory (LSTM) [27]).

D. Lightweight Testbed for Co-Simulation

We developed a coupled-simulation (co-simulation) frame-
work known as CAPTAIN to build an experimental testbed
that simulates scalable serverless computing environments
effectively. We used a real-world IIoT application based on
predictive maintenance and Microsoft Azure datasets to test in
realistic serverless computing environments using GCP. This
can be used by future researchers to design and test a wide
range of new models with unpredictable configurations. The
main features of the CAPTAIN testbed are:

• Prevents wasted resources on the server side and reduces
resource waste by pinging the server to start containers
only when necessary.

• Minimizes the external latency and system resource load
that may occur by using the GO Land software language
and Rabbit Message Queue (Rabbit MQ) protocols.

• Continuously updates the training dataset using an online
Machine Learning (ML)-based system to increase the
time series prediction success rate.

• Outperforms in terms of cold start frequency, computa-
tional time, energy consumption, and CO2 emissions as
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TABLE II: Comparison of CAPTAIN Framework with existing studies

Studies Platform Method Adaptability External Resource Load Online ML AIoT Environment IIoT (Predictive Maintenance) Co-Simulation

Cold Start Objective: Latency

[28] AWS Function Fusion ✗ ✗ ✗ ✗ Serverless ✗ ✗
[29] OpenWhisk Container Scheduling ✗ ✗ ✗ ✗ Serverless ✗ ✗
[30] Knative Pod Migration ✗ ✗ ✗ ✗ Serverless ✗ ✗
[31] AWS Application-level Optimization ✓ ✗ ✗ ✗ Serverless ✗ ✗

Cold Start Objective: Frequency

[14] Kubeless Q-Learning ✓ ✗ ✗ ✗ Serverless ✗ ✗

[27] AWS Azure Openfaas
Openwhisk DNN, LSTM ✓ ✗ ✗ ✗ Serverless ✗ ✗

[26] Kubeless SARIMA ✓ ✗ ✗ ✗ Serverless ✗ ✗
[9] FogWorkflowsim GA ✗ ✗ ✗ ✗ Fog ✓ ✗
[4] An industrial case LSTM ✗ ✗ ✗ ✗ ✗ ✓ ✗

CAPTAIN Testbed GCP LGBM and RF ✓ ✓ ✓ ✓ Serverless ✓ ✓

Column 1: Studies considered in this research. Column 2: Platforms used to test the performance. Column 3: Methods used in the studies. Column 4: Adaptability indicates
whether the frameworks or approaches are designed independently of the platform. Column 5: External Resource Load shows the methods, if any, used by the studies to prevent
adding external resource loads to the system. Column 6: To solve the cold start problem, Online ML is enables adaptability to dynamic contexts and real-time learning.Column 7:

Solve cold start problem in AIoT environments. Column 8: Environment indicates the implementation environment. Column 9: Predictive Maintenance indicates whether it is
used in the studies. Column 10: Co-Simulation indicates a lightweight tested.

compared to the baselines [25], [26], [27] for predictive
maintenance-based real-world IIoT application.

The rest of the article is organized as follows: Studies to
solve the cold start problem in the literature are examined in
Section II. The CAPTAIN Framework is presented in Section
III. The experimental results and performance comparison are
given in Section IV. Finally, Section V concludes the paper.

II. RELATED WORKS

We categorize the reviewed studies on cold starts [22],
which include: (i) approaches to minimise cold start latency,
(ii) strategies to reduce cold start frequency, and (iii) existing
literature on IIoT and predictive maintenance.

A. Studies to Reduce the Latency Caused by Cold Start

Agarwal et al. [14] conducted a study aiming to reduce
cold start frequency by using Q-Learning, a Reinforcement
Learning technique. Environment states and reward systems
are designed by monitoring per-instance CPU utilization. The
Kubeless platform was used to test the workload. Kumari et
al. [27] adopted a two-stage ML strategy to optimize the cold
start frequency. First, idle container windows are predicted
with the Deep Neural Network (DNN) model. In the second
stage, it follows a policy that activates pre-heated containers
by predicting future server requests with the LSTM model.
They compared the model to existing cold start reduction
techniques on platforms such as AWS Lambda, Microsoft
Azure, OpenFaaS, and Openwhisk. Jegannathan et al. [26]
used the SARIMA time series model to reduce the cold start
frequency. This study aims to reduce the container preparation
time that may cause a cold start by estimating the incoming
request time. The authors deployed their proposed system
to a Predicted-based Autoscaler (PBA) and compared its
performance with the default Horizontal Pod Autoscaler (HPA)
in Kubernetes. According to the result, the system integrated
into PBA has 18% higher performance. Lee et al. [28] tried
to reduce cold start latency in functions running in parallel
with their proposed technique. Using the Function Fusion
technique, the two functions are combined, thus eliminating
the cold start delay for the second function. Experiments have
shown that the response time is reduced by 28% to 86%.

B. Studies to Reduce the Frequency of Cold Start Occurrence

Wu et al. [29] proposed a container scheduling strategy to
recommend terminating and rebuilding containers according

to the distribution of requests. Authors used OpenWhisk to
test it, and results showed that it reduces cold start by as
much as 85%. Lin et al. [30] reduced container preparation
latency by using a pod migration-based technique in their lead
system. Instead of creating a new container for requests to
serverless, pre-warmed containers are checked. Moreover, if
there is an idle warmed container, it is allocated to execute the
incoming function to the server. This way, a new container is
not allocated for each function, and the cold start latency time
is reduced. The results show that the container preparation time
is shortened by 85%. Speeding up container startup time also
means reducing cold start latency. For this reason, Liu et al.
[31] determined the application optimization strategy in their
proposed approach called FaaSLight. This strategy ensures that
the basic part of the code in the application is loaded into the
container. In this way, container preparation time and latency
are reduced without the need to load the entire code.

C. Studies on Predictive Maintenance in Industry 4.0

Teoh et al. [9] presented a framework based on IoT and Fog-
Computing for effective resource management in Industry 4.0.
In this framework, a real failure affecting the production line is
predicted using a genetic algorithm (GA) and thus allows the
business owner to intervene in the production line. In another
study, Sang et al. [4] proposed a predictive maintenance
model, PMMI 4.0, in flexible manufacturing. PMMI 4.0 makes
predictions using an LSTM-based time series model.

D. Critical Analysis

Table II shows a comparison of existing studies with the
CAPTAIN framework. Previous works have been deployed
on the open-source platform, and performance tests have
been conducted. CAPTAIN, on the other hand, was deployed
on GCP, a commercial platform, using a real-world IIoT
application with predictive maintenance [19], [32]. CAPTAIN
framework is adaptable because it is designed independently
of the platform and can be easily deployed on any open-
source platform. The Industry 4.0 workload has been created
to test the CAPTAIN, but it can be applied to any scenario
and workload that uses serverless architecture, such as e-
commerce. Since it uses Rabit MQ, an open-source Message
Queue protocol, it does not impose an external resource load
and costs on the system. Further, server-client communication
is always monitored to improve AI module performance
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by updating the dataset (Online ML). None of the studies
reviewed target AIoT applications. The CAPTAIN framework
is deployed in a serverless computing environment, facilitating
the effective use of resources with anywhere access and
auto-scalability for flexible manufacturing. Finally, we used
predictive maintenance dataset to measure the performance
of the CAPTAIN framework using co-simulation of based
sustainable and scalable serverless computing environments.

III. CAPTAIN FRAMEWORK

In this section, we discuss the CAPTAIN framework along
with the implementation details of its components.

A. System Model

Fig. 1 shows the system model for the CAPTAIN Frame-
work, which is created by combining two different main mod-
ules: 1) Proxy Module, where client-server communication
is monitored; and 2) AI Module, where time series-based
forecasts are generated to reduce cold start frequency. We
discuss these two modules in detail in the subsequent sections.

SERVERLESS CLOUD PLATFORM

CAPTAIN FRAMEWORK

PROXY MODULE

AI MODULE

Application I

Application II

Application III

IIoT

ML Deployment

Cloud Data Storage

Cloud Search Engine

Ping

Fig. 1: System Model

Proxy Module: This module monitors the communication
between the client and the server and records data such as
latency, the timestamp when the transaction took place, the
host from which the message was received, and the target
to which it was forwarded, using a message queue (MQ)
protocol. Fig. 2 shows the architecture of the proxy module.
The proxy module uses an MQ protocol because of its
advantages such as high performance, reliability, and granular
scalability [33]. Following is a summary of these concepts and
the benefits they provide:

Response

Request

API Middleware Proxy 
Manager

Serverless
API

Transaction
Information

Message Queue

Data Storage 

Event Consumer

Model Handler

Model Repository

Model Trainer

Ping Trigger

Cloud 
Layer

PING

Fig. 2: Architecture of the Proxy Module

• High Performance: Incoming data can be added to the
queue without waiting for the completion of the pro-
cesses.

• Increased Reliability: It reduces data loss to zero when
different parts of the system are offline, reducing the
errors that may occur.

• Granular Scalability: The system can add requests to the
queue at peak times without the risk of conflicts. Here,
the risk of conflict means resource contention. Conflicts
that occur when applications access the shared resource’s
disk storage, cache, and memory are known as resource
contention [34]. Resource Contentions negatively affect
Quality of service (QoS) parameters such as throughput.
With granular scalability, the amount of data in the queue
can be scaled up and down.

Algorithm 1 The Event-Driven Architecture for Proxy Module
1: Input: Request
2: Output: Response

Variables:
3: R← Request
4: Rk ← Routing Key
5: Th ← Target Host
6: Tp ← Target Path
7: D ← Duration
8: Begin
9: R = API.called()

10: Rk = KeyExtract(R.Routing)
11: Th = GetTargetHost(Rk)
12: Tp = Th + R.Routing.Remove(Rk)
13: R.Path = Tp

14: R = proxy.call(R)
15: endTime = time.Now()
16: async{
17: event = TransactionInfoEvent(
18: Timestamp: time.Now()
19: Key: Rk

20: Host: Th

21: Target: Tp

22: Duration : D)
23: rabbitPublisher.publish(event)}
24: return Response
25: End

Transaction information from MQ is saved in the database
of the AI module with event-driven architecture. Using event-
driven architecture aims to respond quickly enough in heavy
data traffic situations, avoid system interruptions, and pre-
vent malfunctions such as communication delays. The data
sampling time interval is the time difference between two
requests. This can take from a few seconds to several hours.
In the CAPTAIN framework, this time should be distributed
between 5-20 minutes. Because in commercial platforms such
as AWS, Google, and Microsoft, containers that complete their
function are kept warm for a certain period of time to reduce
the occurrence of cold starts [35]. This is 15 minutes for
GCP, so the server must not receive a request for at least
15 minutes [36] for a cold start to occur. The CAPTAIN
framework constantly monitors server-client communication
using online ML. Moreover, in this way, the AI module
constantly updates its database. Our aim in doing this is to
predict the cold start latency occurrence time as accurately
as possible, thereby reducing the cold start frequency. The
pseudo-code of the proxy module is given in Algorithm 1.
First, the request routing information from the proxy and
the key of the registered serverless API are extracted. In
the next step, the serverless host address belonging to this
key is obtained. The target path (target serverless address) is
obtained with this information. On the incoming request, only
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the target path is changed, the request is sent, and the response
is returned to the client. Finally, Timestamp, Key, Host, Target,
and Duration information are sent asynchronously to Rabbit
MQ as transaction info. Since there are no loops in Algorithm
1, the time complexity is O(1).

IIoT Application: We created an IIoT application using a
predictive maintenance dataset as discussed in our previous
work, MASTER [19]. We used the GCP Cloud Functions-
based realistic serverless platform and the configuration set-
tings for the instance created in GCP-Cloud Functions are as
follows: Region: “Europe-west2”, Trigger: “Http”, Runtime:
“Python 3.7” and Memory allocated: “256 MB”. The AI model
is deployed on a serverless instance to detect synchronous mo-
tor failures by analyzing six variables transmitted by sensors:
“Type”, “Air temperature”, “Process temperature”, “Rotational
speed”, “Torque” and “Tool wear”. To create the workload
for an IIoT application, a successively increasing number of
concurrent requests are sent to the instance on the server.
Here, concurrent requests represent the number of users and
the dynamic scalability performance of the system is observed
with the increasing number of users. All workloads, including
six variants, are created in HTTP format using Apache JMeter
running on the local computer and sent to the AI model, which
detects synchronous motor failure in the production line and
is deployed on the GCP instance.

AI Module: This module is trained with the dataset created
using the proxy module and PINGs the server according to
the AI-based time series model prediction result contained
in it. In this way, containers are run before a request that
could cause a cold start comes to the server, preventing a cold
start. The main pseudo code for The CAPTAIN Framework is
given in Algorithm 2. Transaction information (Ti) from the
proxy module, which is constantly listening between the client
and server, is continuously sent to Rabbit MQ, which is the
Message Queue protocol. Rabbit MQ transmits the information
it receives to the AI Database (DBAI ) asynchronously, and
the data is constantly updated in this database. DBAI is
created using the online ML technique and trains the Time
Series Model (Ts) continuously. Our goal in using online ML
is to increase the Ts accuracy rate as much as possible. If
the forecasts made using Ts are greater than the previously
determined threshold (τ ), it is predicted that the cold start
will occur, and the server will be pinged. In this way, a cold
start that may occur on the server is prevented. As can be seen
from the pseudocode, the time complexity is O(n) because
there is only a ‘for loop’. And the for loop will continue to
run until the number of elements in the dataset reaches n. As
n increases, so does time complexity.

B. Implementation Details
The implementation details for the CAPTAIN framework,

the proxy module, and the AI module are given below:
• Proxy Module: For the proxy module, we utilize Rab-

bitMQ due to its open-source nature, platform indepen-
dence, and support for a wide range of programming
languages [37]. The proxy module is implemented in the
Go programming language [38], which helps minimize
external latency between the server and the client.

Algorithm 2 The CAPTAIN Operating Mechanism
1: Input: Ti

2: Output: Ping
Variables:

3: Ti ← Transaction Information
4: Ping ← Ping
5: Pm ← Proxy Module
6: Mq ← Message Queue
7: Sc ← Serverless Cloud
8: DBAI ← AI Database
9: Ts ← Time Series Model

10: Fc ← Forecast Value
11: τ ← Threshold
12: t, l← Time and Latency
13: Begin
14: Pm(

∑i
0 T ) −→Mq

15: Mq(
∑ i

0T ) −→ Update(DBAI )

16: for t, l in DBAI :
17: Train (Ts)
18: Fc = Forecast (Ts)
19: if Fc > τ :
20: Send (Ping) → Sc

21: End

• AI Module: In the CAPTAIN framework, a single time-
series model is employed for efficiency. Among the
available models, RF demonstrated superior performance
compared to LGBM, making it the chosen model for the
AI module.

Fig. 3 illustrates the network diagram of the CAPTAIN
framework and its implementation details.
• Cloud User: The layer where Industrial Internet of Things

(IIoT) and sensors are located;
• Switch: A device that facilitates data transmission be-

tween different network devices.
• Routers: Components responsible for routing data be-

tween devices across the internet and within the network.
• Virtual Machine (VM) instance: The environment where

the CAPTAIN framework is deployed.
• Cloud Function Instance: Environments where the ML

model is deployed.
The proxy and AI modules of the CAPTAIN framework

are deployed on VM instances using GCP’s Compute Engine
service. VM instances are utilized to accommodate varying
numbers of cloud users (IIoT applications) accessing the CAP-
TAIN framework, with Compute Engine scaling VM instances
up or down to manage fluctuating workloads. The ML model,
designed for a serverless architecture, is deployed to Cloud
Function instances.

Google Cloud Functions

Internet
Router

VM Instances

CAPTAIN

Internet

Router

Internet

Switch

IIoT

Fig. 3: Network Diagram of the CAPTAIN Framework.

C. Time Series Models

We have used AI-based time-series models for the cold start
prediction in the proposed CAPTAIN framework (LightGBM

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488283

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 31,2024 at 01:41:47 UTC from IEEE Xplore.  Restrictions apply. 



6

and RF) and baselines (ARIMA, SARIMA, and LSTM).
ARIMA model is used in time series analysis and forecasting
[39], which is created based on the historical values found
in the time series, and predictions are made. While creating
the ARIMA model, p, d and q parameter values should be
determined respectively. p represents the order of time delays,
d represents the number of times the data history values are
subtracted to make the data stationary, and p represents the
order of the moving-average model. The formulation of the
ARIMA model is given as follows:

y
′

t = c+φty
′

t−1+· · ·+φpy
′

t−p+θ1εt−1+· · ·+θqεt−q+εt, (1)

where auto-regressive model parameters are φ, and moving
average model parameters are θ. ε are error parameters.
There are methods such as drawing an ACF graph and auto
ARIMA to find the parameters (p, d, q) in the ARIMA model.
SARIMA is a version of the ARIMA model with seasonal
components to provide higher performance in seasonal time
series than ARIMA [40]. Therefore, it provides higher per-
formance in seasonal time series than ARIMA [40]. Contains
(p, d, q) ∗ (P,D,Q, s) as parameters, where (p, d, q) are the
parameters used for the non-seasonal part of the model, and
(P,D,Q) are the parameters used for the seasonal part of
the model and represent the same things. Unlike ARIMA,
the s parameter is used for the seasonal length in the data.
LSTM is a deep learning model used in sequential data
structures, especially in time series [41]. This model is very
successful in the time series analysis of sequential data using
recurrent neural networks. LGBM [42] is a tree-based ML
algorithm like XGBoost but it works faster than XGBoost and
makes predictions by following the same formulation for time-
series problems. RF [43] is an ensemble learning-based ML
algorithm. Unlike XGBoost and LGBM, it trains each tree
independently. For this reason, time-series data with features
such as temporal trends or seasonality should be handled
carefully.

D. Datasets

1) Predictive Maintenance Dataset: It is a synthetic,
generic dataset derived from modeling a continuously running
production line deployed in a real-world serverless environ-
ment1. It includes situations where the number of instances is
triggered and scaled, which is a feature of great importance in
serverless computing. In this dataset, it was reported that cold
start occurred for three different situations [18]: (i) the first
request to the instance, (ii) the case of a new request to the
instance that has not been running for more than 15 minutes
(scale to zero feature), and (iii) more than 300 requests to
the instance. For the reason given in iii, the PING mechanism
can be considered in the case where more instances of the
same function request distribution. In other words, the PING
mechanism works actively in cases where a new instance needs
to be distributed due to large request rates. Fig. 4a shows the
latency variation in the predictive maintenance dataset. The
predictive maintenance dataset was created by examining a
system that runs continuously six days a week and contains

1https://github.com/MuhammedGolec/Cold-Start-Dataset-V2

Date, Time, Hour, Day, Latency, Request, CPU& RAM Usage
variables. These variables show, respectively, the date of arrival
of the request to the server, the hour of arrival of the request
to the server, the day of arrival of the request to the server,
the amount of the request’s latency between the client and the
server, the number of simultaneous requests sent to the server,
and the CPU& RAM usage rates of the instances.

(a) Predictive Maintenance Dataset (b) Microsoft Azure Dataset

Fig. 4: Latency variation in Cold Start and Microsoft Azure
datasets for performance evaluations.

2) Azure Dataset: It is a public dataset made available
by serverless service providers2. This dataset, together with
the predictive maintenance dataset, is utilised for evaluat-
ing baseline and CAPTAIN framework performance and for
selecting the AI model to be employed in the AI module
of the CAPTAIN. We chose this dataset because, unlike
the predictive maintenance dataset, it has a wider range of
possible request patterns and includes cases when the same
function is deployed in parallel. Fig. 4b shows the latency
variation in the Microsoft Azure dataset. In this dataset, which
collects information about function invocations on Microsoft
Azure for a 13-day period, there are four variables: “app”,
“func”, “end_timestamp”, “duration” [44]. These variables
represent the ID of the application, the ID of the function
of the applications, the end time of the function, and the total
execution time of the function.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

This subsection outlines the system and model configuration
that were used to conduct these experiments, both locally
and on a real-world serverless platform. The purpose of these
experiments was to test the CAPTAIN framework’s ability to
predict cold starts, reduce their frequency, and compare it with
basic methods.

1) Local System Environment: We conducted cold start
prediction performance comparisons of AI models and base-
lines using the system configurations for the local PC: Intel®
Core™ i7-10750H CPU, 2.6 GHz to 5.0 GHz Clock Speed,
16 GB of RAM, and Windows 10 Pro OS.

2) Serverless Environment Configuration: To test the proxy
module of the CAPTAIN framework, the environment parame-
ters of the serverless instance are as follows: Platform: Google
Cloud Functions, Region: Europe-west2b, Runtime: Python
3.11, RAM: 256 MB.

2https://github.com/Azure/AzurePublicDataset
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3) AI Model Parameters: AI models and their parameter
values used in cold start prediction are shown in Table III.
These values were obtained using various parameter opti-
mization methods, aiming for the best cold start prediction
performance.

TABLE III: AI Model Parameters
Work Model Parameters

SWILD [25] ARIMA p = 1, d = 1, q = 0, P = 0, D = 1, Q = 0
PBA [26] SARIMA p = 0, d = 1, q = 0, P = 0, D = 1, Q = 1

TLA [27] LSTM
“scaler_type”=robust, “max_steps”=500,

“encoder_n_layers”=2,
“encoder_hidden_size”=128

CAPTAIN LGBM ‘learning_rate’: 0.1, ‘num_leaves’: 31,
‘max_depth’: -1, ‘min_child_samples’: 20

RF ‘n_estimators’: 100, ‘min_samples_split’: 2,
‘min_samples_leaf’: 1, ‘max_features’: ‘auto’

4) Distribution Cost: The distribution cost of the CAPTAIN
framework is considered from three aspects:
• PING Cost: The AI module of the CAPTAIN framework

predicts the time of the request to the server and makes
the container on the server operational by starting it with
the PING mechanism (HTTP request). Let’s assume that
the AI module’s prediction accuracy is 3%, which means
30 wrong predictions for every 1000 requests. This means
that containers are started unnecessarily 30 times. For
this purpose, the following formulation can be used when
calculating the PING cost (per 1000 requests).

CostPING : CostContainer × 30, (2)

where CostContainer represents the cost of running the
container for every 1000 requests. This error rate is at
a level that can be ignored when calculating the cost in
large serverless systems. In addition, it should be noted
that the running fee of the container will vary depending
on the cloud functions environment parameters used by
the customer using the CAPTAIN system.

• CAPTAIN Proxy Module Cost: We deployed the CAP-
TAIN framework on a VM instance on the GCP Compute
Engine, which can scale this VM instance if needed.
The number of VMs can be automatically increased
or decreased to balance the workload. The cost of the
proxy module will vary depending on the environment
parameters of the VM instance used. In this paper,
the instance environment parameters where the proxy
module is deployed are as follows: Region: “Europe-
west2 (London)”, Zone: “Europe-west2-a”, Series: “T2D
(Scale-out workloads)”, vCPUs: “1 -60”, Memory: “4 -
240 GB”, Platform: “AMD EPYC Milan”, Monthly Cost:
$41.77. Additionally, we mentioned that the Rabbit MQ
protocol is used to record transaction information in the
proxy module. Since Rabbit MQ is not supported free
of charge by Google Cloud Platform, the Rabbit MQ
server is also created by using another VM instance. The
VM environment parameters used are e2-micro (2vCPU,
1core, 1GB memory) and the monthly cost is $7.11.

• CAPTAIN AI Module Cost: We deploy the CAPTAIN
AI module to a separate VM instance with different
environment parameters than the proxy module. Because
the situations in which the AI module and the proxy

module need to be scaled may be different. To explain
as an example, let’s consider a scenario where the AI
module should scale and the proxy module should not.
In this case, it is sufficient to scale only the lower-
paid instance where the AI module is located, which
will reduce the total cost spent on the CAPTAIN frame-
work. The environment parameters for the VM used
for the AI module are as follows: Region: “us-central1
(Iowa)”, Zone: “us-central1-a”, Series: “T2A (Scale-out
workloads)”, vCPUs: “1-48”, Memory: “4 - 192 GB”,
Platform: “Ampere Altra Arm”, Monthly Cost: $29.10.

B. Evaluation Metrics

We have evaluated the performance of the CAPTAIN frame-
work using time series performance metrics such as Mean
Squared Error (MSE), Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and R2 Score as well as QoS
metrics such as Throughput, Cold Start Latency Average
Response Rate (ARR) and Energy Consumption & Carbon
Emissions. Our previous works [17] [18] [45] [19] provide
the details of time series performance and QoS metrics.

C. Workloads

In this paper, various workloads were created to test the
proxy & AI modules.

Predictive Maintenance Dataset Trace: First, an IIoT
application is deployed to the GCP Cloud Functions instance
using the environment parameters [19]. To collect traces,
varying numbers of simultaneous HTTP requests are generated
using Apache JMeter. The range of requests [0, 800] is chosen
to encompass scenarios that trigger a cold start, including:
(i) the arrival of the first request to the server, (ii) a new
request reaching a container that has been idle for more than
15 minutes (scaled to zero), and (iii) a situation where more
than 300 simultaneous requests require the initiation of a new
container. These traces are collected continuously from 08:00
to 18:00 over a period of 6 days. The proxy module in the
CAPTAIN framework is then tested using this workload.

Microsoft Azure Dataset Trace: The dataset used for
cold start prediction experiments in the CAPTAIN framework
comes from Azure function calls recorded between July 15 and
July 28, 2019 [25]. It shows that over half of the applications
have just one function, and most requests come from appli-
cations with up to three functions. There’s little correlation
between the number of functions and request volume. Half
of the functions run in less than 1 second, and 90% of
functions have a maximum execution time of 60 seconds,
including cold start delays. This suggests that cold start latency
significantly affects function execution time, highlighting the
importance of addressing cold starts in serverless systems.
Additionally, serverless functions are typically shorter than
those in traditional cloud-based workloads [25], so serverless
providers need to deploy containers faster.

D. Baseline Models

The baselines used to compare the performance of the
CAPTAIN framework are as follows:
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1) Serverless in the Wild (SWILD) [25]: This resource
management policy, known as the Hybrid Histogram Policy,
integrates both keep-alive and pre-warming techniques to
minimize the occurrence of cold starts. It applies a customized
keep-alive policy tailored to each workload and uses the
ARIMA time-series model to predict optimal pre-warming
times for containers based on request invocation patterns. As
a result, this policy reduces energy consumption compared to
the static keep-alive policies commonly employed by cloud
service providers.

2) Prediction Based Autoscaler (PBA) [26]: PBA utilizes
a SARIMA-based time series model to estimate incoming
request times. Based on these predictions, it adjusts the number
of containers—either increasing or decreasing their count—to
minimize cold start latency and ensure more efficient resource
allocation.

3) Two-layer Adaptive Approach (TLA) [27]: This ap-
proach employs a two-layer structure to manage container
lifecycle and minimize cold starts. In the first layer, an actor-
critic algorithm determines the duration for which contain-
ers should remain active, thereby keeping them warm for
a specified period after function execution to prevent cold
starts. In the second layer, the LSTM model predicts function
invocation times, and containers are pre-warmed based on
these predictions to further reduce cold start latency.

E. Experimental Results

1) Predictive Maintenance Dataset-based Experiments:
This section discusses the experimental results based on the
predictive maintenance dataset.

Serverless Platform Performance: We used the GCP
Cloud Functions-based realistic serverless platform for exper-
iments. Serverless computing can dynamically scale resources
as needed. We measured the scalability performance using
GCP Cloud Functions’ QoS parameters, such as throughput
and latency, and observed the cold start latency occurring
on the instance. Fig. 5 shows the Average Response Rate
(ARR) and throughput values that the system displays to an
increasing number of concurrent requests. For a description
of these two QoS metrics, please see subsection IV-B. Fig. 5a
shows the ARR value of the serverless platform against the
increasing number of users. It is normal for the ARR to
increase as the concurrent request increases. However, upon
careful inspection, the ARR for 100 concurrent requests is
higher than the ARR for 200 concurrent requests. This is
because of the cold start originating from the serverless
paradigm. The amount of cold start latency can be affected
by the amount of RAM memory and the software language
used. This latency can be a problem for time-sensitive AIoT
applications [17]. Fig. 5b shows the throughput value of the
serverless platform in response to the increasing number of
users. As the number of users increases, the throughput will
also increase. The highest throughput value was achieved when
500 simultaneous requests were sent, and after that point,
the throughput gradually decreased. This is due to resource
contention on the server, such as shared memory and storage
[46].
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Fig. 5: Performance measurements in terms of latency and
throughput while deploying the predictive maintenance dataset

Fig. 6: The latency variation in the dataset produced by the
Proxy Module

Proxy Module Performance: We test the CAPTAIN frame-
work proxy module performance from two different aspects.
i) We test whether there is an external delay caused by the
proxy module positioned between the client and the server.
Doing this is important because external latency from the
proxy module can compromise the consistency of the article’s
destination. ii) We test to what extent the proxy module
correctly monitors a communication network. To do this, we
will compare by recreating the dataset previously created in
another study [19]. It has been mentioned before that the proxy
module in the CAPTAIN framework is placed between the
client-server and monitors the transaction information. The
most crucial point to be considered while creating the proxy
module is the external latency that may arise from the proxy. In
order to create as little latency as possible in the framework,
the proxy module has been created using the Go language.
The external latency is calculated with POSTMAN [47]. Table
IV shows the latency times between client-proxy and proxy-
server. According to these results, the latency between client
and server is twenty-four milliseconds on average (excluding
the first request originating from a cold start), while external
latency originating from the proxy module is only three
milliseconds. This amount guarantees that the latency time
that may occur due to the proxy is negligible.

Using the CAPTAIN framework, we reproduce the predic-
tive maintenance dataset in [18]. Our purpose in doing this is
to determine how accurately the proxy module monitors client-
server communication and creates a dataset. First, a GCP
instance was created using all environment parameters. The

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3488283

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 31,2024 at 01:41:47 UTC from IEEE Xplore.  Restrictions apply. 



9

(a) MSP Training(Time) (b) MSP Training(Energy) (c) MSP Training(Co2) (d) SSP Training(Time)

(e) SSP Training(Energy) (f) SSP Training(Co2) (g) MSP Prediction(Time) (h) MSP(Energy)

(i) MSP Prediction(Co2) (j) SSP Prediction(Time) (k) SSP(Energy) (l) SSP Prediction(Co2)

Fig. 7: The Performance Comparison in terms of Computational Time, Energy Consumption, and CO2 Emissions for CAPTAIN
and Baseline Frameworks (SWILD, PBA, TLA) using Microsoft Azure Dataset

TABLE IV: External Latency Caused by the Proxy Module
Request Queue Client-Proxy Proxy-Server

1 843 sec 840 sec
2 22 mSec 18 mSec
3 19 mSec 16 mSec
4 26 mSec 24 mSec
5 29 mSec 27 mSec
6 30 mSec 27 mSec
7 25 mSec 23 mSec
8 28 mSec 25 mSec
9 33 mSec 30 mSec
10 26 mSec 24 mSec

workload has been created as described in subsection III-D
using JMeter. The resulting dataset and the original dataset are
compared in Fig. 6, which shows the proxy module obtained
values very close to the values in the original predictive
maintenance. The reasons why there are small differences
between the two datasets are; (i) Network Effect: The request
sent to the Server is executed in a different data center in the
cloud provider and (ii) Environmental Factors: The request
sent to the Server is executed in different physical resources.
But in general, this difference is negligible and the results
prove that the proxy module is working correctly.

2) Microsoft Azure Dataset-based Experiments: We evalu-
ate the CAPTAIN and the baselines in terms of computational
time, energy consumption, and CO2 emissions to draw at-
tention to environmental sustainability and carbon footprint
awareness. Fig. 7 shows the computation time, energy, and

CO2 amounts for CAPTAIN and other frameworks, respec-
tively. While the model with the lowest values for all three
metrics is LGBM and RF, the model with the highest values
is LSTM. The reason for this is that LSTM contains multiple
layers and many neural networks, and it takes more input
values than ML models. For this reason, it will cause longer
computation time and subsequently higher energy consump-
tion and CO2 emissions. The results show that CAPTAIN
has a higher latency prediction rate and less energy and CO2

emissions compared to other baselines.

F. AI Module Performance Comparison

This section initially determines the AI model for the
CAPTAIN framework. Teoh et al. [9] used logistic regres-
sion for predictive maintenance, and found that this model
performs well when implemented in integrated IoT and fog
computing environments. However, for serverless computing
environments, RF provides better performance than Logistic
Regression (LR), as reported in our previous work [17]. So, in
the CAPTAIN framework, we selected RF and LGBM models
due to their robust learning techniques and non-linear struc-
tures, which make them more effective than LR. The LR model
tends to be inadequate for handling complex datasets, such as
those used in predictive maintenance, where RF and LGBM
offer superior performance. To do this, we compare the cold
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start prediction performance of LGBM and RF models, which
show high performance in time-series prediction problems,
using all datasets. As a result, we deploy the most successful
model to the AI module and compare CAPTAIN and three
baselines [25]–[27] using the same datasets. In the second part,
we deploy the LGBM model, which was found to make the
most effective cold start prediction according to the results of
the previous experiment, to the AI model in the CAPTAIN
framework. Then, we test the success of preventing cold start
by deploying it to a real serverless environment.

1) Results Based on the Microsoft Azure Dataset: Table V
provides cold start prediction performance comparisons for
time series models trained using Microsoft Azure datasets.
Since we are interested in outliers such as cold starts in
datasets, we evaluate models using MAE. Fig. 10 shows the
performance comparison of MSP and SSP cold start latency
prediction for proposed (CAPTAIN) and baseline frameworks
(SWILD, PBA, and TLA) using the Microsoft Azure dataset.
As a result of the experiments conducted for The Azure
Dataset, the most successful models are RF with 0.414 MAE
in Multi-step prediction (MSP) and LGBM with 1.190 MAE
in Single-step prediction (SSP). The models with the lowest
cold start prediction performance are LSTM with 0.644 MAE
in MSP and SARIMA with 2.310 MAE in SSP. Fig. 8 shows
the cold start prediction results for Microsoft Azure Dataset.
The results show that the most successful model in MSP is
RF, and the most successful model in SSP is LGBM.

TABLE V: Performance comparison of CAPTAIN with base-
lines regarding cold start MSP & SSP using the Azure dataset.

MSP PREDICTION
Work Model MAE MAPE RMSE MSE

SWILD [25] ARIMA 0.640 1.77 1.051 1.108
PBA [26] SARIMA 0.628 1.66 1.052 1.109
TLA [27] LSTM 0.644 1.71 1.060 1.137

CAPTAIN LGBM 0.464 1.30 0.710 0.586
RF 0.414 1.33 0.616 0.468

SSP PREDICTION
Work Model MAE MAPE RMSE MSE

SWILD [25] ARIMA 2.226 0.83 2.226 4.966
PBA [26] SARIMA 2.310 0.86 2.309 5.348
TLA [27] LSTM 2.300 0.86 2.304 5.324

CAPTAIN LGBM 1.190 0.44 1.190 1.974
RF 1.240 0.46 1.240 2.202

Fig. 8: The Cold Start Prediction Results for CAPTAIN and
the Baselines in Azure Dataset

2) Results Based on the Predictive Maintenance Dataset:
Table VI provides cold start prediction performance compar-
isons for time series models trained using predictive main-
tenance datasets. Since we are interested in outliers such as
cold starts in datasets, we evaluate models using MAE. It was
the most successful model in predicting cold start with RF

Fig. 9: The Cold Start Prediction Results for CAPTAIN and
the Baselines in Predictive Maintenance Dataset

with 26.2 MAE for MSP and LGBM with 83.8 MAE for SSP
for the predictive maintenance dataset. Likewise, this dataset’s
least successful prediction model is the LSTM model with
294.1 MAE for MSP and 843.2 MAE for SSP. Fig. 9 shows
the cold start prediction results for the Predictive Maintenance
dataset. Likewise the result of Microsoft Azure, the results
show that the most successful model in MSP is RF, and the
most successful model in SSP is LGBM. This is because
different algorithms are used for both models. While RF uses
a decision tree algorithm, the LGBM model uses a gradient
boosting-based algorithm. The decision tree algorithm uses
multiple trees for each step estimate in MSP predictions to
provide higher performance in longer predictions. Moreover,
this algorithm effectively captures complex patterns between
input features and target variables to gain significant advan-
tages in MSP prediction. Gradient boosting algorithm, on the
other hand, can increase performance in successive time steps,
and this feature provides a great advantage for SSP where
the next time step is predicted. Additionally, the gradient
boosting algorithm can improve prediction performance for
future predictions by learning from the prediction errors of
past steps. It can be seen that the most unsuccessful models
in cold start latency prediction are LSTM, SARIMA, and
ARIMA, respectively. This is because the LSTM model is
a DL-based time-series model and therefore data dependent.
This means that LSTM will fail on datasets that are small and
have complex patterns such as cold start. Likewise, ML-based
classical time-series models such as ARIMA and SARIMA
work with low performance on datasets with complex patterns.
This is because both models cannot capture nonlinear patterns
well enough as they are modeled under the assumption that
the data are stationary. In both datasets, RF yields the highest
performance rate in MSP, while LGBM time-series models
yield the highest performance rate in SSP. Additionally, the
CAPTAIN framework has a higher performance rate in pre-
dicting cold starts than other baseline works.

G. Cold Start Prevention Performance

In line with the results obtained from the experiments, it
was decided to use the model RF with the highest performance
in MSP for the CAPTAIN AI module. This is because MSP
forecasts are more accurate and reliable and can provide long-
term forecasting. In line with the prediction results, the PING
mechanism is informed approximately 20 minutes before the
cold start occurs, and thus, the necessary precautions are
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(a) SWILD-ARIMA (MSP) (b) PBA-SARIMA (MSP) (c) TLA-LSTM (MSP) (d) CAPTAIN-RF (MSP) (e) CAPTAIN-LG (MSP)

(f) SWILD-ARIMA (SSP) (g) PBA-SARIMA (SSP) (h) TLA-LSTM (SSP) (i) CAPTAIN-RF (SSP) (j) CAPTAIN-LG (SSP)

Fig. 10: Performance Comparison of MSP & SSP Cold Start Latency Prediction for Proposed (CAPTAIN) and Baseline
Frameworks (SWILD, PBA, and TLA) using Microsoft Azure Dataset

TABLE VI: Performance Comparison of CAPTAIN frame-
work and baselines regarding cold start MSP & SSP perfor-
mances using the Predictive Maintenance Dataset.

MSP PREDICTION
Work Model MAE MAPE RMSE MSE

SWILD [25] ARIMA 206.8 0.82 254.12 71388
PBA [26] SARIMA 211.6 0.88 250.83 70103
TLA [27] LSTM 294.1 0.97 441.66 197460

CAPTAIN LGBM 32.8 0.10 50.82 3504
RF 26.2 0.09 38.19 1835

SSP PREDICTION
Work Model MAE MAPE RMSE MSE

SWILD [25] ARIMA 310.8 0.31 310.80 112642
PBA [26] SARIMA 209.8 0.20 209.80 60510
TLA [27] LSTM 843.2 0.86 843.25 722880

CAPTAIN LGBM 83.8 0.09 83.75 11818
RF 108.3 0.11 108.25 14860

(a) Before Applying CAPTAIN (b) After Applying CAPTAIN

Fig. 11: Cold Start Prevention Performance Before and After
Applying the CAPTAIN Framework.

taken to prevent the occurrence of a cold start. Fig. 11
shows the CAPTAIN framework’s success in preventing cold
start. This result was achieved by deploying CAPTAIN in a
real serverless environment using the parameters previously
described in subsection IV-A. The threshold value shown with
the red line was determined as 180 ms after calculating the
variance value of the dataset. This means that if the latency
prediction result in the CAPTAIN AI module is 180 and above,
a PING will be sent to the server by the proxy module.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the new testbed, CAPTAIN, using time-
series models such as LGBM and RF to solve the cold start
problem in the serverless paradigm. The CAPTAIN framework
is capable of predicting possible cold start times and prevent-

ing their occurrence by pinging the server based on prediction
results. We used predictive maintenance and the Microsoft
Azure dataset to test the CAPTAIN framework’s performance
in GCP-based realistic serverless computing environments for
both single-step and multiple-step prediction operations. In
both datasets, the most successful ML models were LGBM in
SSP and RF in MSP. We evaluated the serverless computing
platform’s performance in terms of QoS parameters such
as latency and throughput. Finally, the performance of the
CAPTAIN framework is compared with three baselines using
cold start frequency, computational time, energy consumption,
and CO2 emissions. Experimental results demonstrate that the
AI module in CAPTAIN framework outperforms in predicting
cold start latency as well as optimizing cold start frequency as
compared to state-of-the-art frameworks. Future research can
be undertaken to deepen these understandings in three areas:
(a) incorporating cutting-edge AI models like Generative AI,
(b) evaluating AI models for load distribution in the context of
IIoT applications, and (c) expanding the CAPTAIN framework
to accommodate a continuum of cloud-to-edge nodes for a
wider variety of AIoT scenarios. To increase the CAPTAIN
framework’s potential, we will investigate alternative dynamic
approaches like load sharing and resource consolidation, as
well as consider multiple cloud providers.
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