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Abstract— Network alignment is a fundamental problem in
various domains since it can establish bridges for the same
entity (i.e., anchor nodes) between different networks. Most
existing network alignment methods are based on consistency
assumption, i.e., anchor nodes exhibit similar local structures
or neighbors across different networks. However, many anchor
nodes have different local structures or neighbors across
different networks, which could be regarded as anchor nodes’
heterogeneity. It poses a challenge to methods based on the
assumption of consistency, as they lack abundant shared
information, such as common neighbors. Fortunately, network
communities provide the comprehension of node relationships
and group structures within networks, which could alleviate the
information insufficient. In this article, we propose to address
the challenge of inadequate shared information triggered by
nodes’ heterogeneity from a community perspective. Our model
is based on joint optimization of node representation learning
and community discovery, including: 1) a node-level constraint
is employed to bring nodes with more anchor pairs as neighbors
closer together and 2) a community-level constraint is utilized
to bring nodes with higher order similarity closer together.
We model the cross-network community alignment relations as
asymmetric to mitigate the interference caused by anchor node
heterogeneity when measuring community alignment relations.
Furthermore, we leverage the learned cross-network community
alignment relations to supplement node alignment, which could
narrow down the search range of potential anchor nodes by
focusing solely on aligning nodes within aligned cross-network
communities. We conducted extensive experiments on real-world
datasets, and the results show the effectiveness and efficiency of
our proposed model on network alignment.

Index Terms— Anchor node heterogeneity, cross-network
community alignment relations, network alignment, node
representation learning.
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NOMENCLATURE

Symbols Definition

G*, G’ Input networks to be aligned.

E¢ Known anchor pairs set between G* and G'.

A, Al Adjacency matrices of G* and G'.

A’ A Symmetric normalization by degree matrix of
A* and A’.

D Diagonal degree matrix.

d; Degree of node v;.

Cs, C! Set of latent communities of the G* and G'.

K, K, Number of communities in G* and G'.

C~f, C'%  Cross-network community alignment relations
from G* to G' and from G’ to G*.

B, H Final node embedding matrices of G* and G".

R, R’ Degree to which a node is assigned to a
community of nodes in G* and nodes in G'.

n, pt Communities embedding matrices of G* and
G'.

d Final node embedding dimension.

wo Weight matrix at layer /.

Y7, Y7 Alignment matrix from the view of G* and

G'.

I. INTRODUCTION

ETWORK alignment refers to the process of identifying
Nidentical entities across different networks [1], [2], [3].
For example, social network alignment aims to establish
the correspondence between account nodes (referred to
as anchor nodes [4]) belonging to the same user across
multiple online social platforms [5]. Network alignment can
integrate multisource network information, thereby enhancing
the performance of downstream applications such as user
behavior prediction [6] and detection of malicious entities [7],
[8]. It has received increasing attention from both academic
and industry.

Most network alignment methods usually rely on the
consistency assumption to predict the anchor pairs across
networks [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19]. The consistency assumption is that the corresponding
anchor nodes are more likely to share similar local structures
in their respective networks. For example, IsoRank [9]
recognizes two nodes from two networks to be similar if
their neighborhoods are similar. PALE [20] preserves the
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first-order proximity of nodes to generate the respective
embeddings of networks and uses a multilayer perception to
reduce the embedding differences of anchor pairs. GAlign [17]
utilizes the embeddings from all layers of graph convolutional
networks and designs a consistency loss function to enforce
consistency constraints.

However, not all real-world scenarios meet the consistency
assumption. In fact, anchor nodes exist heterogeneity in low-
order neighborhood, i.e., corresponding anchor nodes have
different local structures across different networks due to
the different neighbors or behaviors of the same nodes.
For example, a person may have more friends in one
social network (e.g., Douban) than others (e.g., Weibo)
or have totally different friends due to different social
networks’ functionalities. Ignoring such heterogeneity could
cause anchor nodes to be misaligned and reduce alignment
accuracy. As shown in Fig. 1(a), ¢! and ¢? are anchor pairs
to be aligned. If only the local structure and consistency are
considered, ¢! will be misaligned to b? because b? shares
the anchor pair (a', @®) in neighbors with ¢!, and they have
similar degrees compared to c%. Moreover, as the network size
increases, the number of similar candidate nodes within the
network also grows, making it difficult to distinguish them.

When aligning networks, the first-order neighbors of nodes
and their closely related higher order neighbors provide
more effective information. Therefore, greater attention
should be given to these nodes. The community structure
within networks can reflect some common features of
the nodes, therefore, some studies utilize the community
information of nodes to address the issues caused by the
heterogeneity in low-order neighborhood [21], [22], [23], [24].
Generally, these methods first perform community detection in
different networks, then establish “one-to-one” and symmetric
correspondences between communities in different networks,
and finally align nodes at the community level. As shown in
Fig. 1(b), from the community perspective, there is a high-
level correlation between the communities in which ¢! and

¢? are located, and it can be inferred that members of such

communities, have a high degree of relevance. Thus, clis
more likely to align with ¢? rather than b%.

While previous works have yielded promising results, there
remain challenges in leveraging community information for
network alignment.

1) Challenge 1: How to effectively integrate the community
information for achieving better network alignment?
Existing methods often perform community detection
first and align communities in different networks, then
align nodes within each pair of aligned communi-
ties [22], [23]. When communities in different networks
are misaligned, certain nodes within a community
may not be aligned accurately. That is, misalignment
of communities hinders the accurate mapping of
corresponding nodes across networks.

2) Challenge 2: How to correctly measure alignment
relationships between cross-network communities to
reduce node misalignment? Previous methods usually
assume the alignment relationships between cross-
network communities are symmetrical and ‘“one to

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

one” [21], ignoring the asymmetric situation caused
by the heterogeneity of anchor nodes as shown
in Fig. 1(c). Inaccurate measurement can result in
erroneous community alignment, thereby impacting the
precision of node alignment.

To address the aforementioned challenges, we propose
a novel unified framework from the Community view to
alleviate the impact of Heterogeneity in Network Alignment
(CHNA) in this article. For Challenge 1, unlike previous works
that detect communities first and then match nodes within
those communities, CHNA simultaneously performs node
representation learning and community discovery, making
the learned node representations and community information
more conducive to network alignment. For Challenge 2,
CHNA discards the assumption of symmetric and “one to
one” cross-network community alignment used in existing
methods. Instead, it establishes asymmetric community
alignment relationships to alleviate the impact of node
heterogeneity at the community level. Specifically, CHNA
first uses a graph convolutional network [25] to encode
node neighborhood information and performs community
detection by maximizing modularity. This achieves the joint
optimization of community discovery and node representation
learning tasks within the network. Based on known anchor
pairs and community representations, it calculates asymmetric
alignment relationships between communities in different
networks to capture the differences in higher order neighbors
of nodes across networks. Additionally, CHNA uses distance
metrics and contrastive learning to constrain the anchor nodes
and community representations in different networks, ensuring
that the node representations learned from both networks lie
in similar embedding spaces. Finally, when aligning nodes in
different networks, CHNA uses the alignment relationships
between communities to restrict the candidate set for node
matching. This effectively reduces the candidate set and
improves the network alignment efficiency.

The main contributions of this article could be summarized
as follows.

1) We propose an end-to-end framework that jointly
optimizes community discovery and network alignment,
which can alleviate the impact of anchor nodes’
heterogeneity from the view of network community.

2) We consider the consistency and heterogeneity of anchor
nodes through the use of node-level and community-
level constraints, which can push nodes with more
anchor pairs as neighbors closer and nodes with
higher order similarity closer. Besides, introducing the
community-level constraint could reduce the number of
candidate nodes, which could reduce the time required
for node alignment effectively.

3) We evaluate CHNA on various real-world datasets and
demonstrate its effectiveness and efficiency through
extensive experiments compared to existing methods.

II. RELATED WORK

99 <

The concepts of “anchor node,” “aligned networks”, and the
research of link prediction across aligned networks were first
proposed by Kong et al. [4]. Network alignment has attracted
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Fig. 1. (a) ¢! will be misaligned with b? under the consistency assumption because they have similar local structures compared to ¢! and ¢2. (b) Community

information helps network alignment. When ¢!

and ¢? belong to communities with a high correlation, ¢! is more likely to be aligned with c¢? rather than b?.

(c) Without additional information, the alignment relations between cross-network communities are determined by their anchor node members. The number of
anchor pairs between two communities indicates their level of association. Due to the heterogeneity of anchor nodes, corresponding nodes in one network can
be distributed across multiple communities in the other network. As a result, the alignment relations between communities no longer follow the assumptions

of “one-to-one” and symmetry when viewed from different networks.

active research in the last few years [3], [17], [26], [27], [28],
[29], [301, [311, [32], [33], [34].

The significant research idea of early methods follows the
consistency assumption, where anchor nodes have similar
structures and/or attribute features. For example, UMA [26]
optimizes by maximizing consistent relationships among
nodes. MAGNA [27] is a genetic algorithm that evolves
network populations to maximize topological consistency.
FINAL [28] leverages the node/edge attribute information to
guide the topology-based alignment process. REGAL [29]
preserves structural similarities and attribute agreement by an
implicit matrix factorization.

With the development of network embedding in various
fields [35], [36], [37], [38], representation learning has been
used to improve the effectiveness of alignment methods.
Embedding-based methods preserve the structure and/or
attribute information by embedding nodes into a low-
dimensional feature space, then finding potential anchor nodes
through the embedding-based nearest-neighbor search [3],
[17], [20], [30], [39], [40], [41], [42], [43], [44], [45].
For example, CrossUGA [39] uses a shared encoder to
learn cross-network node representations based on attribute
and structure reconstruction. Then, it uses a discriminator
to mitigate the distribution differences between different
networks via adversarial training. PARROT [42] captures
topology information by random walk with restart, with
three carefully designed consistency regularization terms.
NSVUIL [43] learns node representations as a Gaussian
distribution in the Wasserstein space and designs a noise-aware
self-learning module augment the annotations. DegUIL [44]
complements missing neighborhoods for tail nodes and
discards redundant structural information for super head nodes
in embeddings, respectively, to obtain ideal neighborhoods
for meaningful aggregation in GNNs. DualNA [45] designs
dual graph convolutional networks as feature extractors
to encode the local and global structural information,
respectively, and employ attentional feature fusion to obtain

holistic representations to describe users comprehensively.
Although embedding-based network alignment methods no
longer prioritize strict consistency optimization, the implicit
assumption of consistency persists in the objective of
achieving similar embeddings for anchor pairs.

When dealing with a large number of anchor nodes that
exhibit heterogeneity between networks, achieving satisfac-
tory results becomes challenging. Some methods explicitly
incorporate heterogeneity constraints during the model design
process. For example, DHNA [46] defines heterogeneity
based on the node degrees of anchor pairs, and employs a
heterogeneity constraint to ensure that nodes with significant
degree differences across networks have similar embeddings.
DHNA may yield satisfactory results when dealing with
small network sizes. However, it is constrained by time
complexity due to the requirement of calculating the node
degree difference between nodes in two networks, and cannot
be extended to large-scale network alignment tasks.

Therefore, some studies utilize community information to
alleviate the impact of heterogeneity of anchor nodes, while
using community partitioning to transform two larger scale
network alignments into smaller scale network alignments
between two communities [21], [22], [23], [47]. These
methods most adopt a “divide-and-conquer” strategy, i.e., first
match two communities in different networks, then nodes can
be aligned within each pair of matched communities. For
example, C-Align [21] puts community discovery, community
alignment, and node alignment in one framework and uses
community information as guidance to reduce computation
complexity. AlignNemo [47] builds a weighted alignment
graph from the input networks and then extracts all connected
subgraphs of a given size from the alignment graph and ranks
them according to weights on nodes and edges. CAPER [23]
coarsens a network into multiple levels of varying coarseness,
aligns at the coarsest level, and then projects back to finer
levels while refining the solution at each level. The divide-
and-conquer strategy greatly relies on the results of matching
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communities in different networks, and improper community
matching can significantly diminish the alignment accuracy of
nodes. Therefore, some methods disregard the relationships
between cross-network communities and solely focus on
learning community representations that offer semantically
richer information for nodes within each network. For
example, NAME [24] encodes community information in the
network as node representations to capture global network
information. Additionally, it utilizes first-order consistency
and GCN to obtain node local information and attribute
information. These three representations are then used to
compute similarity between nodes across networks. However,
relying solely on communities as additional information will
lead to increased computational complexity and may not be
feasible when dealing with large-scale networks.

Compared to existing methods, the method proposed in
this article uses community partitioning to align only the
nodes within aligned communities in two networks, making
it applicable for large-scale network alignment. It also
employs joint optimization and considers the asymmetric
correspondences between communities to avoid misalignment
at the community level, which could effectively alleviate
the impact of anchor node heterogeneity by incorporating
community information.

III. PROBLEM STATEMENT

In this section, we provide the necessary definitions,
and we summarize the main symbols and notations used
in this article in Nomenclature. We use bold uppercase
letters (e.g., X) to represent matrices, bold lowercase letters
(e.g., X) to represent vectors, and unbolded letters (e.g., x) for
scalars, as per convention. The operator |-| denotes the size of
a set. We will explain each notation as it is first encountered
in our article.

In this article, we focus on the case of two networks for
experiments in this article. We suppose the networks are
unweighted, and all the edges are undirected in this work.
A network can be represented as G = (V, E), where V := {v;}
is the set of nodes and E := {(v;,vj)|v; € V,v; € V}is
the set of edges representing node relationships. Notation A
represents a |V| x |V| adjacency matrix with an element a;;
indicating there is an edge between v; and v;, i.e., A;; =1 if
(vi,vj) € E, and A;; = 0 otherwise.

As mentioned in Section I, we alleviate the impact of
heterogeneity from the community view. We assume each
network has some nonoverlapping latent communities, and the
community partition can be denoted as C = {C, C», ..., Ck},
where K is the number of nonoverlapping latent communities
in G. In the following, we use superscripts to denote which
network the variable is associated with, and subscripts to
denote the indexes of the nodes or communities, such as C;
represents the ith community in G*.

A. Anchor Pairs

Given two networks G° = (V*, E®) and G' = (V', E"),
anchor pairs set can be denoted as E¢ = {(v{,v)|v] €
Vs, vf € V'}, where anchor nodes v; and vf represent the
same entity across G* and G'.
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B. Cross-Network Community Alignment Relations

For the community partitions C* and C’, we use the
alignment relations matrix to represent the correspondence
between communities in C° and C’. We measure the
cross-community alignment relationships separately from the
perspectives of the G* and G’ networks. By considering
different network viewpoints, the corresponding relationships
between the same pair of communities are different, thus
satisfying the asymmetric alignment relationships between
cross-network communities as shown in Fig. 1(c). From the
view of G*, the cross-community alignment relations can be
denoted as C*~' e {0, 1}5xK, C;;”" = 1 means C} and C;
are alignment communities from the view of G*. And from
the view of G’, it can be denoted as C'~* € {0, 1}K<Ks,

C. Joint Network and Community Alignment

Given two partially aligned networks G*, G’ and a few
known anchor pairs E¢, the goal of joint network and
community alignment is to identify all anchor pairs under the
cross-network community alignment relations. That is, we aim
to learn a predictive function: f : (G*, G', E*) — Y, where
Y € {0, VIV Y (v, v) = 1 if v} and v} are predicted to
be a pair of anchor nodes across communities C; and C;, and
0 otherwise.

IV. METHODOLOGY

In this section, we describe the proposed CHNA and the
mechanism that integrates community discovery and network
alignment into one framework. The overview process of
CHNA is shown in Fig. 2, which consists of four main parts.

1) Node Representation Learning and Community Dis-
covery: We design an encoder for learning node
representations and detecting communities in the
network. We merge the above two tasks into a trainable
end-to-end system. The encoder has two layers. The
first layer is a network embedding layer that uses
the adjacency matrix of the network to embed nodes
as d-dimensional vectors. The second layer performs
differentiable optimization. It takes the continuous-space
embeddings as input and produces a soft assignment of
nodes to communities and the community centers in the
embedding space. We provide a detailed description of
this process in Section I'V-A.

2) Cross-Network Community Alignment Relations Learn-
ing: In this section, we utilize known anchor pairs
and community embeddings to guide the cross-network
community alignment relations learning. We assume that
the known anchor pairs contribute more to inferring
cross-network community alignment relations. And the
distance between embedding representations of two
communities should be smaller when they have more
cross-network relations. Based on the aforementioned
assumptions, we update the cross-network community
alignment relations matrix C*~' and C'~* during the
process of node representation learning and community
discovery. We provide a detailed description of this
process in Section I'V-B.
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Fig. 2. Overall process of the proposed CHNA includes. (a) Encoder that learns node embeddings and detects communities in G* and G'. (b) Cross-network
community alignment relations learning, which measures the relationships between cross-network communities. (c) Community-level contrastive constraint that
pulls representations of similar communities together. (d) Node-level constraint that ensures the representations of known anchor pairs in different networks

are similar.

3) Community-Level Constraint: As communities in dif-
ferent networks consist of not only anchor nodes but
also numerous nonanchor nodes, the representations of
aligned communities may exhibit differences. To address
this, we enforce proximity in the embedding space for
the community representations with alignment relation-
ships from different networks, aiming to minimize their
semantic disparities. The detailed process is described
in Section IV-C.

4) Node-Level Constraint: During the joint optimization
of node representations and community representations,
there is a mutual influence between them. Consequently,
the representations learned for anchor pairs in dif-
ferent networks may exhibit disparities, necessitating
constraints on the known anchor nodes to ensure
similarity in their representations across networks.
Moreover, this constraint also enables nodes with a
significant number of shared known anchor pairs as
common neighbors in different networks to have similar
representations, thereby satisfying the general consis-
tency assumption. The detailed process is described in
Section IV-C.

A. Node Representation Learning and Community Discovery

1) GCN-Based Encoder: For node representation learning,
we focus on the neighbors of nodes than the whole network,
because nearby nodes can provide more helpful information
in predicting node relations. To better use the network’s local
structure while preserving the whole network structure into
a low-dimension embedding space, we take a simple model
parameterized by a convolutional network as an encoder. In our
model, we use GCNs [25]. GCN employs a neighborhood
aggregation scheme across all layers, where each convolutional

layer only processes first-order neighborhood information. For
each network, the propagation rules of each convolutional
layer are as follows:

HD = 6 (AHOWD) (1)

where o () is an activation function, W® is the parameter
matrix of each layer, A = D U/2(A + DD /2 is the
symmetrically normalized adjacency matrix and D € RIVIxIVI
is a diagonal matrix containing each node’s degree in G. H/+
is the |V| x d embedding matrix. Since we only consider the
alignment of networks whose nodes are without attributes in
this article, we use the identity matrix I, i.e., H® =1, as the
model input.

For community discovery, we assume that each network can
be divided into K nonoverlapping communities. We use p; to
denote the center of community C; and assume each node is
assigned to any community with a certain probability. R is
used to denote the probability to which node v; is assigned to
community Cy, and >, Ry = 1 for all v;. We optimize the
community centers via iterative process updates

z,‘ Rikhi
R S R 2)

exp(=Ah — w)

>, exp(~ Al — ;)

where h; is the embedding of node v;, k = 1,2,..., K and
i =1,2,...,|V|]. We take R;; as a soft-min assignment of
each point to the community centers based on distance. The
equation can be used with any norm |[|-||, and we use the
negative cosine similarity in this article because of its good
performance. 8 is a hyperparameter that controls the effect of
community division. These iterates [(2) and (3)] converge to

R =

3)
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a fixed point where u remains the same between successive
updates [48]. Through the output of the forward pass, we can
get the community representations u and affiliation R between
nodes and communities.

2) Optimizing: For community discovery, the objective is to
partition the nodes of the network into K distinct communities
that are internally dense but have limited edges connecting
them. Formally, the objective is to find a partition maximizing
the modularity [49], defined as follows:

3D

v;,v;€V k=1

OR )—m

2|E| 1|leR‘/k (4)
where d; is the degree of node v;, and R;; = 1 if node
v; is assigned to community C; and O otherwise. A is
the adjacency matrix. |E| is the total number of edges in
the network. Equation (4) measures the number of edges
within communities compared to the expected number if
edges were placed randomly. And for each community among
the K communities, there should be one partition obtained
using (4). Define B as the modularity matrix with entries:
Bi; = A;j — (didj/(2|E|)), the training objective of a network
(the expected value of a partition sampled according to R) can
be written as follows:

Lmodularity = — 2IE| Tr[RTBR]' &)

For networks G* and G' to be aligned, we let them share
the last-layer parameters W' of the encoder for transferring
information across GCNs. Additionally, we ensure that the
final learned node embedding dimension d is the same in both
G* and G'. Through training them together, we can obtain
the final node representations H* and H' in the approximate
embedding space, community representations p*, u’, and node
assignment R*, R’ for G* and G', respectively.

B. Cross-Network Community Alignment Relations Learning

When no additional prior information is available, the
alignment relationships between cross-network communities
can be reflected by the proportion of anchor pairs in the
respective communities. Specifically, by calculating the ratio
of common anchor pairs between community C; in network
G* and communities in network G’ to the total number of
members in C;, we can identify the communities in G that
have alignment relationships with C;. Therefore, we assume
that the more anchor pairs two cross-network communities
share, the more significant their correlation. Additionally,
the more similar the embeddings of the two cross-network
communities, the stronger their correlation. By combining
known anchor pairs and community embeddings, we define
the cross-network community correlation from network G* to
G' as follows:

n s Ct .
P27’=—(C‘ ) plen) o /& (©6)
nc;

where nc:, ch is the number of known anchor pairs between
the commumty C} and the community C7, %, ncs is the number
of anchor nodes in C; of G*, 6(-, ") is the cosine similarity.
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Let C°' be the cross-network community alignment relations
matrix from the G° view, and we set initial values to 1 at the
beginning. £ is a positive integer hyperparameter. We define
the P;>* in the same way.

Then, we update C*~' and C'~* under the guidance of P~/
and P'~* as follows:

Cii7 =[Py +e] -1 ™

where ¢ is a hyperparameter that denotes C; are C; matched
among G* and G' if P‘}'j_)’ > 1—g¢, ie., ij_” = 1 when
P};”" > 1 —e. The same goes for C'~*.

C. Community-Level and Node-Level Constraint

After initially computing the alignment relationships
between cross-network communities based on known anchor
pairs, there still exist differences in the representations of
aligned communities. Therefore, we utilize community-level
constraints to enforce similarity between the representations
of communities that have alignment relationships. Specifically,
we define the following pairwise objectives for aligned
community pairs between the two networks:

ee('u?’ﬂf")
I(C}, C)) = log , 3
ge(u;’uj) + Zk ge("?vﬂ;{)
ea(’L;’IL;)
I(C], C3) = log 9

ee(ﬂ;’”’;) + Zk ga(”f*”"/i)

where the community pair (C7, C’ ) satisfies CH’ =1 and
(C?, Cp) satisfies CI;”" = 0. Commumty pair (C/, Cj ) satisfies
C;”* =1and (C], Ck) satisfies Ci;”* = 0.

In fact, the general consistency assumption is expected that
anchor pairs in different networks exhibit similar structures
or share common neighbors. Specifically, the corresponding
anchor nodes are likely to have overlapping neighbors, which
in turn can be considered as corresponding anchor node pairs.
We leverage the known anchor pairs as bridges to minimize the
dissimilarity between the representations of potential anchor
pairs in the embedding space. For each known anchor pair
(v7,v]), the embeddings of v and v} should be very similar
even the same in the embedding space. And we fuse this prior
knowledge to constrain the embedding of known anchor nodes
learned by the encoder

lanchor - Z ”hls - hf ||

(v} ,v)eE®

(10)

where h! and h! are the embeddings of anchor nodes v; and
vi in G* and G', respectively. E® is the anchor pairs set.
We could reduce the difference between known anchor pairs
by making the value of this constraint as small as possible.
When two nodes from different networks have the same anchor
pairs as neighbors, there is a high probability that their rep-
resentations will be the same, thus becoming potential anchor
pairs.

Finally, we combine the GCN-based encoder objective and
the above constraints, and train the following loss function to
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learn node representations:
] t
L= lmodularity + lmodularity + Lanchor

1 1

- —I(C},C") — —I(C}, C}

(G ) e €

where K; and K, represent the number of communities in
networks G* and G', respectively.

(1)

D. Network Alignment Based on Node Representations

Instead of finding corresponding anchor pairs in the entire
target network, we match nodes in the restricted search space.
Based on the learned alignment relationships between cross-
network communities, we utilize a similarity measurement for
nodes in matched communities to perform network alignment.

After acquiring the final node representations and commu-
nity assignments, we match the potential anchor pairs. For a
given node v; € G*, i € {1,2,...,|V’|}, we need to find
the most similar node v; e G, je{l,2,...,|V"} for it.
The communities C;ii, C ,ﬂ/ that v7, v‘j‘. belong to are matched
from the view of G*, i.e., Ci,_k),t = 1. Therefore, for each node
v} € G’ finding the corresponding node in G, we can use a
mapping function to predict whether a pair of nodes (v;, v;)
are anchor pairs in the restricted search space v, € C},

YS_)[(U‘-Y,UI-) — { 1’ 1f9(h:,hr]) >9(h:’h;<)7 k#]
e 0, otherwise.

12)

We find the corresponding node in G* for v! € G’ in the same
way, and generate result Y'7*.

More generally, we let the matrix Y*~' represent the
probability that the node and the candidate node are matching
nodes

o(hi. b)), if Ci7' =1

) (13)
0, otherwise.

Ysat(vf’ U?) = [
In this way, we can sort the probability from high to low and
return the candidate nodes list.
Algorithm 1 illustrates the whole process of the proposed
model.

E. Analysis

To further explain why we can alleviate the impact of
heterogeneity from a community view, we analyze the learning
process of our CHNA.

As introduced in Section IV-A, in G* and G', we embed
a node and its adjacent nodes in the local structure to be
close in the embedding space, and generate K communi-
ties through clustering. The optimization is to maximize
Imodularity (V, A), v € V, i.e., the quality of community partition
evaluated on the input network. According to (2) and (3),
we need to obtain embeddings for (du/0H) and (dR/0H),
which allows us to backpropagate gradients from the
loss  Imodularity (v, A) to the component that produced the
embeddings H. Define a function f as follows:

2Rk

SR (14)

fia(p, v) = pt —

Algorithm 1 Network Computation With Representations
Learned by CHNA

Input: Networks G* and G’
Output: The alignment matrix Y*~’ for G* and Y for G’
1: Construct a GCN-based encoder
2: for G* = (V*, E®) and G' = (V', E") do
3: Initialize the first layer embeddings H' = H' =
I, cross-network community alignment relations matrix
C~! = C' =1, community numbers K and K,
// the initial value of K and K, is the average community
number obtained by the Leuven algorithm.
: for epochs do
5: Compute node embeddings H* and H' for each
layer by Eq. (1)
6: Compute community embeddings u* and p' by
Eq. (2)
7 Compute nodes about each community’s alloca-
tion R* and R’ by Eq. (3)
8: Compute cross-network community alignment
relations matrix C*~ and C'~* by Eq. (7), respectively
9: Compute the loss function L by Eq. (11)
10: Update parameters W by backpropagation
11: end for
12: end for
13: return H*, H', C*~!, C'~%, R*, R/
14:  Compute alignment matrix Y*~' and Y™ from
embeddings H* and H’, respectively, by Eq. (12) or
Eq. (13)

where (u, v) is a fixed point of the iterates if f(u,v) = 0.
Applying the implicit function theorem yields that (du/0H) =
—[(@f (r, H))/3p]1~"((Bf (1, H))/9H), from which (9R/9H)
can be easily obtained via the chain rule. It could be found
that (af/opm) will often be dominated by its diagonal terms
(the identity matrix). Therefore, we can approximate (df/90p)
by its diagonal, which in turn gives (du/0H) ~ —(9f/0v).
From (14), we could find that ;Lﬁ is constant with respect
to v, since here p is a fixed value. Hence, —(3f/dv) =
(a/au)(zj Rjkhj)/(zj R;ji). For a specific node v;, the
updating rule of its embedding h; becomes
. of 9 2. Rjih;
h;, .= h,—i—navi =h; navi szjk . (15)

Note that the update equation is relevant with community
Jt;.. Consider the case of combining cross-network community
information shown in Fig. 1(b), according to (8) and (9), nodes
in cross-network communities will gradually get closer as the
community representation is close.

As shown in Fig. 1(c), without prior knowledge, we regard
the alignment relations between nodes within communities
as indicative of relationships between cross-network commu-
nities. According to (6), cross-network communities with a
greater number of known anchor pairs and similar community
embeddings possess higher relevance. Due to the varying
number of known anchor nodes in communities, different
perspectives from each network yield asymmetric alignment
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relations between cross-network communities. Hence, the
aforementioned update processes mutually influence one
another, facilitating the integration of node and community
information. In this way, the model could mitigate the impact
of anchor node heterogeneity.

F. Time Complexity

Without loss of generality, we can define the following
variables: n; and n; as the total number of nodes in G* and G’,
respectively; n, as the number of known anchor pairs; d as the
dimension of node and community embeddings; e, and e, as
the total number of edges in G* and G’, respectively; K, and
K; as the number of communities in G* and G, respectively.
There are mainly four steps to analyze for time complexity in
one network.

1) GCN-Based Encoder: Take G°® as an example, the
normalized Laplacian matrix A® is computed once. Since
the adjacency matrix A is sparse and D* is a diagonal
matrix, the time complexity for calculating As is O(ey).
Therefore, the propagation of /-layers GCN in two
networks takes O(l(e;d + ngd?) + l(e;d + n;d*)) =
O((ny + ny)d?).

2) Community Discovery: As introduce in Section IV-E,
forward-pass updates [(2) and (3)] are differentiable
functions, and it can automatically compute the
approximate backward pass with respect to v (i.e.,
compute products with approximations to (du/0H) and
(0R/9H)) by applying standard auto differentiation
tools to the final update of the forward pass. Instead
of inverting (df/dp), the final iteration requires time
O((ns +n)d (K + K1) = O((ng +ny)d).

3) Cross-Network Community Alignment Relations Learn-
ing: The first term of (6) is a constant, and the
main calculation of (6) is the cosine similarity. For
a pair of communities, its time complexity is O(2d).
Thus, the total time complexity of calculating the
similarity of community pairs between two networks is
04K K,d*) = O(K,K,d?).

4) Community-Level and Node-Level Constraint: The main
calculation of communities constraint is the cosine
similarity between community pairs, similar to cross-
network community alignment relations learning, and
the total time complexity is O(K,K,d*). We constrain
the known anchor pairs by reducing their embedding
distance, and the time complexity is O (n2d).

Therefore, the total time complexity is O((n, + n,)d*> +
(ny + n)d + 2K, K.d* + n’d) = O((n; + n,)d* + (ns +
ny)d).

V. EXPERIMENTS
A. Experimental Settings

1) Datasets: We validate the effectiveness of the proposed
CHNA using real-world networks, including Aminer (a free
online service that offers comprehensive search and mining
services for researcher social networks) and LinkedIn (a
professional network where users can maintain their profile
page and connections). These two networks were collected

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I
STATISTICS OF THE DATASETS

Network #Anchor  #Average

Pair #Nodes #Edges Links Community
Aminer 1,056,941 3,929,876 4269 29,777 39
LinkedIn 6,726,011 19,360,689 ’ 326

Twitter 5,120 164,919 21

Foursquare 5,313 76,972 1,609 31 35
LiveJournal 3,017,286 87,037,566 134 1,682 119
Flickr 214,626 9,114,557 141

LiveJournal 3,017,286 87,037,566 471 1,682 125
Last.fm 136,409 1,685,524 346

LiveJournal 3,017,286 87,037,566 615 1,682 104
MySpace 854,498 6,489,736 20

Flickr 214,626 9,114,557 510 141 35
Last.fm 136,409 1,685,524 346

Flickr 214,626 9,114,557 378 141 33
MySpace 854,498 6,489,736 - 20 -
Last.fm 136,409 1,685,524 1381 346 38
MySpace 854,498 6,489,736 ’ 20

by [50]. Twitter (a worldwide microblog), Foursquare (a
location-based social network), LiveJournal (a free online
social network where users can keep a blog, journal, or diary),
Flickr (a photo-sharing network), Last.fm (online music
service where users can get music recommendations), and
MySpace (a social networking website for users to share
blogs, photographs, and music). Twitter and Foursquare used
in our experiment are obtained from [51], LiveJournal, Flickr,
Last.fm, and MySpace are provided by [50]. The specific
information of datasets is shown in Table I.

As discussed in Section I, the heterogeneity of anchor
nodes primarily manifests in their local structures. To quantify
this heterogeneity, we employ the degree difference between
pairs of anchor nodes. In other words, if a pair of anchor
nodes exhibits a significant difference in the number of
neighboring nodes between the two networks, it indicates
strong heterogeneity between the anchor nodes. Consequently,
we calculate the average degree difference of known anchor
node pairs between the two networks, denoted as H. This
average degree difference serves as a measure of the dataset’s
heterogeneity. Table I provides evidence of the existence of
heterogeneity among anchor nodes in these datasets.

2) Baseline Methods: We apply the following state-
of-the-art baseline methods to compare with our model:
NAME [24], CAPER [23], MEgo2Vec [52], IONE-Con-
Ex [53], CrossMNA [54], CAMU [16], GAlign [17], and
DHNA [46].

3) Evaluation Metrics: For each matching pair (v;, v;) in
the test set, we rank the target nodes in the result according to
cos(h?, h;). To quantitatively evaluate this ranking, we select
Precision@o (P @«) and mean reciprocal rank (MRR) [20]
as metrics. Specifically, P@a = (|M@c|/|U|) indicates
whether the true positive match occurs in top-a candidates,
where |M @q| is the count of the correct alignments between
networks G* and G’ in top-a choices, and |U| is the
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TABLE I

EXPERIMENTAL RESULTS ON DIFFERENT DATASETS. THE BEST AND RUNNER-UP RESULTS ARE HIGHLIGHTED IN BOLDFACE AND UNDERLINED,
RESPECTIVELY. *% DENOTES THE IMPROVEMENT OF CHNA COMPARED TO THE BEST BASELINE METHODS RESULTS

Dataset
. Aminer Twitter LiveJournal  LiveJournal  LiveJournal Flickr Flickr Last.fm
Metric Method . .
LinkedIn  Foursquare Flickr Last.fm Myspace Last.fm  Myspace  Myspace

NAME 0.1809 0.7200 0.2559 0.2582 0.2566 0.2886 0.2632 0.3109
CAPER 0.1706 0.6793 0.2431 0.2749 0.2529 0.2504 0.2432 0.2805
P@10 MEgo2Vec 0.1083 0.6500 0.2271 0.2279 0.2221 0.2450 0.2400 0.2479
IONE-Con-Ex 0.1401 0.7320 0.2706 0.2812 0.2706 0.2950 0.2000 0.2217
CrossMNA 0.1628 0.6541 0.1625 0.1857 0.2502 0.2010 0.2152 0.2470
CAMU 0.1715 0.7132 0.2812 0.2966 0.2788 0.3122 0.2600 0.2839
GAlign 0.1938 0.7200 0.2742 0.2843 0.2851 0.2919 0.2600 0.2947

DHNA - 0.7533 - - - - - -
CHNA 0.2000 0.7401 0.2738 0.3098 0.2978 0.3000 0.2715 0.3287
A% 3.20% 1.11% -2.63% 4.45% 4.45% -3.91% 3.15% 5.73%
NAME 0.1176 0.5700 0.1382 0.1344 0.1604 0.1901 0.2005 0.1900
CAPER 0.1208 0.5527 0.1409 0.1396 0.1600 0.1627 0.1700 0.1782
MRR MEgo2Vec 0.0136 0.3500 0.0222 0.0270 0.0399 0.0297 0.0215 0.0818
IONE-Con-Ex 0.0231 0.3725 0.0280 0.0280 0.0423 0.0281 0.0326 0.0876
CrossMNA 0.0210 0.3111 0.0350 0.0372 0.0584 0.0359 0.0379 0.0491
CAMU 0.1176 0.3509 0.2044 0.1846 0.1880 0.1722 0.2520 0.2044
GAlign 0.1443 0.5741 0.1655 0.1723 0.1886 0.1888 0.1855 0.2001

DHNA - 0.5620 - - - - - -
CHNA 0.1679 0.5790 0.1876 0.1912 0.2040 0.2000 0.2366 0.2192
*% 16.35% 0.85% -8.22% 3.58% 8.16% 5.21% -6.11% 7.24%

Due to the consideration of the asymmetric alignment relations between cross-network communities in our approach, there may be
some differences between the alignment results from G* to G* and from G* to G*°. Thus we use the average value of PG=@10
and P(t=5) @10 as the final result of P@10, where P(5~Y @10 and P(*—>%) @10 represent the ranking result from the view that
from G* to G* and G* to G*, respectively. The same for the M RR evaluation.

NAME CAPER —e— MEgo2Vec

—¥— IONEConEX

CrossMNA CAMU GAlign —a— CHNA

ue

10 15 20 25 30

(d)

(e) (f)

Fig. 3.

(h)

(9)

P@qu results over different « values. (a) Aminer-LinkedIn. (b) Twitter-Foursquare. (c) LiveJournal-Flickr. (d) LiveJournal-Last.fm.

(e) LiveJournal-Myspace. (f) Flickr-Last.fm. (g) Flickr-Myspace. (h) Last.fm-Myspace.

number of anchor links in the ground truth set. MRR =
171U Z(véyvlv)(l/(rank(v;))), where rank(v;) is the rank of
true anchor target in the sorted list of anchor candidates.

4) Implementation Details: We utilize a two-layer (i.e.,
[ = 2) GCN as the encoder, with the ReLU(-) as the activation
function. To perform community discovery, we employ the
Leuven algorithm [55] iteratively for ten times and calculate
the average number of communities in each network as the
initial value of K. For training our method, we use the Adam
optimizer with the following hyperparameter settings: 8 = 70,
& = 0.4, learning rate = 0.0001, and dropout rate = 0.2 for
all experiments. To measure the performance in the network

alignment task, we randomly split the known anchor node pairs
into a training set and a test set at a ratio of 4:1. We set the
same node embedding dimension d = 200 for all methods
and use d as the community embedding dimension in CHNA.
Regarding the baseline methods, we apply their respective best
parameter settings for each method.

B. Model Performance Analysis

Following the widely adopted way of validating network
alignment, we evaluate the proposed CHNA and baseline
methods via predicting anchor links between networks, where
P@q and MRR are adopted as the metrics. Table II shows the
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experimental results of our method and baselines at the metric
of P@10 and MRR. Fig. 3 shows the results of all methods
on different o varying from 5 to 30.

1) Precision Improvement: Our model outperforms most
of the baselines across all datasets in terms of the two
metrics. Compared to the best baseline, we achieve at most a
5.73% improvement at the metric of P @10, and a significant
improvement over the state-of-the-art methods at the metric
of MRR. The results demonstrate the effectiveness of our
method. Besides, CAMU, GAlign, and NAME also show good
performance. Although NAME also considers community
information, it primarily focuses on multiorder topological
consistency, resulting in slightly worse performance compared
to our CHNA on datasets with heterogeneity. CAPER finds the
coarse structure (i.e., community structure) in the network,
then perform the coarse structure and node-level alignment,
satisfying the one-to-one constraint. However, as illustrated in
Fig. 1(c), the heterogeneity of anchor nodes can result in an
asymmetric cross-network community relationships. This can
lead to cross-network community pairs no longer satisfying
the one-to-one constraint, thereby affecting the performance
of CAPER.

It is worth noting that we only compared with DHNA
on the Twitter-Foursquare dataset. This is because the time
complexity of the DHNA method limits its performance
on large-scale datasets. The time complexity of DHNA is
O((ng + n)d* + (e + e, + e, + nyn;)d), where n,; and n,
are the node numbers of G* and G', respectively, while e
and e, represent the edge numbers of G* and G’, respectively.
Additionally, e, denotes the number of anchor pairs between
G* and G'. Tt can be seen that the time complexity of
DHNA is positively correlated with the product of the total
number of nodes in the two networks. As the number of
nodes in the networks to be aligned increases, the time
required by DHNA increases significantly. Furthermore, due
to the large memory consumption of the DHNA method
when dealing with large-scale networks, we only compared
with it on the Twitter-Foursquare dataset. With a known
anchor node pair ratio of 4:1 for training and testing
sets, DHNA achieved a P@10 result of 0.7533, slightly
higher than the proposed CHNA in this article. DHNA
yields superior results by directly searching candidate nodes
across the entire target network, as opposed to limiting the
search within aligned communities. Because the correctness
of cross-network community alignment relations learning and
the reduction of candidate node matching scope through
community alignment relations both have an impact on node
alignment. However, with the increasing scale of networks,
the incorporation of cross-network community alignment
enhances the scalability of our CHNA model, making it more
applicable to practical network alignment tasks.

2) Impact of Different o Choices: Fig. 3 shows the results
of P@u over different o values (except for DHNA), ranging
from 5 to 30. All methods show a precision ascent with a
larger value of &. When « is small, the limited performance
of all methods can be attributed to the fact that only network
structure is used for alignment. Only using network structure
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TABLE III

EXPERIMENTAL RESULTS UNDER THE DIFFERENT RATIO OF
TRAINING ANCHOR PAIRS ON TWITTER-FOURSQUARE

Ratio of training anchor links
Metric ~ Method 20% 50% 80%
NAME 0.5003  0.6057 0.7200
CAPER 0.4802  0.5772 0.6793
MEgo2Vec 0.3461  0.5597 0.6500
P@10 IONE-Con-Ex | 0.3926  0.6382 0.7320
CrossMNA 0.3829  0.5558 0.6541
CAMU 0.4590  0.6447 0.7132
GAlign 0.4821  0.6462 0.7200
DHNA 0.4402  0.6305 0.7533
CHNA 0.5115  0.6517 0.7401
NAME 0.3300  0.4551 0.5700
CAPER 0.3255 0.4191 0.5527
MEgo2Vec 0.2011  0.2292 0.3500
MRR IONE-Con-Ex | 0.2331  0.3402 0.3725
CrossMNA 0.2163  0.2977 0.3111
CAMU 0.3755  0.2672 0.3509
GAlign 0.3793 04374 0.5741
DHNA 0.3175  0.4022 0.5620
CHNA 0.3657  0.4300 0.5790
— 0.4
g 0.3
3
g 0.2
=

0.0

WANE  GAign | CAMUCrosMAONEConEMEge2ves
Twitter-Foursquare

Fig. 4. Time for finding anchor pairs in test set on Twitter-Foursquare dataset.

makes it unable to distinguish between nodes with similar local
structures hampers the alignment effectiveness.

3) Effect of Anchor Pairs Percentage: The unsupervised
embedding-based methods CAMU and GAlign generally
perform better than the supervised embedding-based methods
IONE-Con-Ex and CrossMNA. Although our method needs
known anchor pairs to guide community alignment, their
importance is primarily observed during the initialization stage
of the cross-network community alignment matrix. Subse-
quently, the cross-network community alignment relationships
are primarily updated and computed based on community
representations. Thus, CHNA can guarantee good performance
even when the known anchor node pairs account for a
small proportion of the entire network. MEgo2Vec has poor
performance compared to other baselines because it requires
known anchor nodes to construct the ego network and learn
the node embedding, which depends on the number of known
anchor nodes. Furthermore, we verify the dependence of each
method on the known anchor nodes on the Twitter-Foursquare
dataset by changing the proportion of anchor nodes used for
training and testing. The results are listed in Table III. Each
method is influenced to some extent by the ratio of training
anchor nodes. Supervised methods, such as IONE-Con-Ex,
DHNA, and CrossMNA, are particularly sensitive to the ratio
of training anchor nodes and experience a significant impact
from it. Hence, when the training anchor pairs are sparse,
our method CHNA can obtain superior performance compared
with most baselines.
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Fig. 5. Time for finding anchor pairs in test set on each dataset (except for
Twitter-Foursquare dataset).

4) Time for Searching Anchor Pairs: To investigate the
effectiveness of reducing the search range through cross-
network community alignment relations, we compare the time
required for aligning nodes in the test set across different
datasets. The results are shown in Figs. 4 and 5. Due to the
high time complexity of DHNA, aligning two larger networks
takes nearly a day, which is significantly longer than other
baselines. Therefore, we only compare its runtime on the
Twitter-Foursquare dataset as shown in Fig. 4. It can be
seen that even for relatively small network alignment tasks,
DHNA still requires the most alignment time. Our method
demonstrate the fastest node matching in the test sets of all
datasets. This is because our method find the corresponding
node in G’ for a given node in G* based on calculating
similarity and sorting the nodes within the aligned community,
which could typically contains fewer nodes compared to
G'. On the other hand, NAME, IONE-Con-Ex, CrossMNA,
CAMU, and GAlign require more time as they need to search
the entire network. MEgo2Vec exhibits the longest runtime as
it necessitates the construction of an additional “ego” network.

C. Ablation Study

In this section, we conduct ablation studies to validate
the effectiveness of using community information and
modeling the asymmetric cross-network community alignment
relationships. We design three model variants as following:
CHNA-0O that without both community-level and node-level
constraints [(8)—(10)]; CHNA-1 that without community-level
constraint [(8) and (9)]; CHNA-2 that regards the cross-
network community alignment relationships as symmetric.
That is, CHNA-2 calculates the cross-network community
correlation between network G* and G’ as follows:

”(cg,c},)
ney +ne;
Cij = |_Pl-j +8-| —1.

Fig. 6 shows the results. From the result of CHNA-0,
we can find that the node-level constraint plays a crucial
role in network alignment tasks, indicating that the majority
of anchor node pairs between networks exhibit consistency.
Moreover, it can be seen that the community information
we used and the way it is used is helpful to alleviate the
impact of heterogeneity compared to CHNA-1 and CHNA-2.
Furthermore, we can find that assuming the relationships of
cross-network communities as symmetric even leads to worse

P = () L g (16)

a7
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Fig. 6. Results of ablation study.
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Fig. 7. Parameter study on embedding dimension and community discovery
effect control parameter 8. (a) P @10 versus dimension. (b) P @10 versus S.

performance than not considering community information.
It is because the wrong correspondence between cross-network
communities will cause all nodes in the two communities
to miss the correct matching nodes. In all, the experimental
results of ablation studies verify our motivation in Section I.

D. Hyperparameter Sensitivity

To assess the impact of CHNA’s hyperparameters on
performance, we conducted several experiments to analyze
accuracy under varying hyperparameter settings.

1) Impact of Embedding Dimensionality d: Fig. 7(a) shows
the sensitivity of the embedding dimension of the encoder.
Generally, selecting a high number of dimensions does not lead
to a significant improvement in performance (P @10), while
it increases both time and space complexity. Therefore, it is
advisable to avoid excessively high dimensions to maintain
a favorable trade-off between performance and resource
requirements.

2) Impact of the Hyperparameter B: Fig. 7(b) presents the
impact of the hyperparameter 8, which controls the hardness
of community allocation and influences the effectiveness
of community discovery. In general, a larger value of S
yields better results. Through experimentation and analysis,
we determined the optimal value of 8 to be 8 = 70.

3) Impact of the Number of Communities: In the CHNA,
we need to set the number of communities in the network
before training. We choose the Last.fm-MySpace dataset to
verify the influence of the number of communities because
there is some difference between the average community
number of them and the number of known anchor node pairs is
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Fig. 8. Parameter study on the number of communities and the heterogeneity
at the community level. P~ @10 represents the result ranking from Last.fm
to MySpace, and P¢~%) @10 represents the result ranking from MySpace to
Last.fm.

relatively sufficient. Fig. 8 depicts the variation of the number
of communities in Last.fm, ranging from 1 to 346, and in
MySpace, ranging from 1 to 20. It can be observed that the
change in the number of communities does indeed have a
specific impact on the matching accuracy. However, overall,
it has a negligible effect (with P@10 results fluctuating
between 0.3 and 0.38). In general, a smaller number of
communities corresponds to higher matching accuracy. This
is because in such scenarios, a larger pool of nodes can be
matched and selected, increasing the likelihood of finding
corresponding nodes for those in the test set. This also reflects
that asymmetric community alignment relations are essentially
caused by the distribution of anchor nodes or the heterogeneity
of anchor nodes.

4) Impact of the Heterogeneity: In the proposed CHNA
approach, we consider the asymmetry of community alignment
relations between different networks as a manifestation of
heterogeneity at the community level. Consequently, to align
a pair of nodes, we take into account the rankings of results
from G* to G' and from G' to G*, respectively. As shown
in Fig. 8, we observe variations in the node alignment results
when viewed from different network perspectives, with only a
slight overlap in the ranking of results from G* to G’ and G’
to G*. Similar to the impact of the number of communities,
when the network has a smaller number of communities, each
community tends to contain a relatively larger number of
nodes. This not only increases the potential for matching more
nodes but also raises the likelihood of correctly identifying
communities that can be aligned.

E. Case Study

Fig. 9 visually represents the asymmetric community
alignment relations within the Twitter-Foursquare social
networks, which were employed in our experiments. The
intensity of the color corresponds to the likelihood of
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Fig. 9. Asymmetric alignment relations of cross-network communities that
reflects the impact of anchor nodes’ heterogeneity at the community level.

alignment between community pairs. In an ideal scenario
with completely symmetrical community pair alignment, the
diagonal color should be the darkest, gradually becoming
lighter for the remaining regions. However, we observe an
uneven distribution of darker color patches, indicating the
presence of asymmetry in community pair alignment. This
asymmetry is a consequence of the anchor node heterogeneity
described in this article at the community level.

VI. CONCLUSION

This article focuses on network alignment by designing
an alignment model that utilizes cross-community relations
information for guidance. The model takes into account
both consistency and heterogeneity. To ensure consistency,
known anchor nodes are used to bring potential anchor nodes
closer together. Regarding heterogeneity, we consider the
community as a fundamental network structure that reflects
common features of nodes, thereby alleviating the impact of
heterogeneity in network alignment from a community per-
spective. We introduce a framework that simultaneously learns
node representations and discovers communities for each
network. Then, the alignment of cross-network communities
is guided by known anchor nodes, and a pairwise constraint
on communities between different networks is applied to
establish alignment between communities. Subsequently, node
correspondence is established based on the similarities of their
representations in the asymmetrically aligned communities,
which improves alignment accuracy while reducing time com-
plexity. Experimental results demonstrate that CHNA learns
embeddings that preserve the node structure while considering
heterogeneity, resulting in improved network alignment
performance. Specifically, it achieves an improvement of up
to 5.73% in P@10 compared to state-of-the-art methods.
Additionally, it effectively reduces the time complexity of node
matches between different networks.

In future work, we will delve deeper into exploring
the heterogeneity caused by anchor nodes. Furthermore,
we will also consider filtering anchor nodes, that is,
selecting “appropriate” anchor nodes to guide the matching
of communities and networks.
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