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Multi-behavior Recommender System
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Abstract—Multi-behavior recommender system aims to model user preference representation based on multiple types
of user-item interactions (e.g., viewing, adding to favorites, adding to the cart, and purchasing). However, existing works
have two limitations in general: 1) Most of them only concern the sparse observed user-item interactions (explicit
interaction) and ignore the huge amount of unobserved user-item interactions (implicit interaction), which are incapable
of fully capturing user preference in recommender systems. 2) Previous works typically tend to only extract valuable
information by distinguishing target and auxiliary behaviors to model user reference representation, and they fail to
explore the fine-grained commonality between target and auxiliary behaviors. To tackle these limitations, we propose a
new model named Graph Contrastive learning with Multi-Behavior (GCMB) for a multi-behavior recommender system.
Specifically, we utilize Randomized Singular Value Decomposition (rSVD) to inject implicit interaction into the model,
and then combine explicit interaction and implicit interaction to learn user preference by graph contrastive learning.
Furthermore, we consider the multi-level commonality between target and auxiliary behaviors to capture the fine-grained
commonality and then model high quality of user preference representation. Extensive experiments on two real-world
datasets demonstrate that our method consistently outperforms various state-of-the-art recommender methods.

Index Terms—Multi-behavior Recommender system, Graph Contrastive Learning, Explicit Collaborative Relation
Learning, Implicit Collaborative Relation Learning, rSVD.

✦

1 INTRODUCTION

With the explosive growth of online informa-
tion, recommender systems play a key role to
alleviate such information overload [1]. The rec-
ommender system aims to learn user preference
and predict the items that he/she will be in-
terested in based on the observed historical in-
teractions between users and items. Due to the
important application value of recommender
systems, they have become indispensable tools
for online applications, e.g., online e-commerce
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platform [2], [3], [4], tourism services platforms
[5] and online video [6] or music platform [7].

Recently, the development of recommender
systems has advanced rapidly in both academia
and industry. However, existing works typ-
ically concentrate on single-type interactions
between users and items (e.g., click records),
overlooking the diverse array of behaviors that
can occur between them. For example, in an
online e-commerce platform, users can engage
with items in multiple ways, such as viewing,
adding to favorites, adding to the cart, and
purchasing. Typically, we suppose purchase be-
havior is the primary target behavior, while
assume other types of behaviors are auxiliary
behavior. These diverse behaviors offer valu-
able signals for constructing a comprehensive
user preference representation, which proves
beneficial in mitigating the challenge posed by
significant data sparsity within the context of
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the target behavior [8].
To leverage these different types of be-

haviors, several efforts on methods of the
multi-behavior recommender system have been
made. For example, some methods attempt to
capture the relationship between auxiliary and
target behaviors while modeling the represen-
tation of nodes. These methods use attention
scores to assign weights to the nodes of differ-
ent behaviors, integrating them to derive the
node representation for the target behavior [9],
[10]. To further capture the implicit relation-
ship between auxiliary and target behaviors,
both the [11] and [12] utilize a relation-aware
encoder to capture the hidden dependencies
between auxiliary and target behaviors under a
message-aggregation architecture. Other meth-
ods [13], [14], [15], [16] propose that these be-
haviors often follow certain ordinal relations,
then they utilize the relationships between dif-
ferent behaviors to learn the node representa-
tion. In addition to distinguishing the seman-
tic information of various types of behaviors,
[17] and [18] use meta-paths or second-order
neighbors to capture the item-item correlations
reflected in different types of behaviors.

Despite the effectiveness of the existing
methods above, it is nontrivial to effectively
model user preference representation through
multiple behaviors. Firstly, most existing meth-
ods only utilize the sparse explicit interaction
and ignore the huge amount of implicit interac-
tion. However, in the huge amount of implicit
interaction data, the most of non-interaction
phenomena are not caused by user’s dislike,
but by the limitation of platform push oppor-
tunities, which makes users unable to interact
with these items and give feedback. Sparse
exolicit interaction data will seriously affect the
quality of user preference representation. Al-
though contrastive learning [19] has been used
to enhance the performance of graph-based
recommender methods and can alleviate the
data sparsity problem [20], [21], these methods
often generate contrastive views through ran-
dom perturbations, which may lead to the loss
of valuable structural information, potentially
misleading the learning of node representation.
Besides these methods also ignore the implicit

interaction. Secondly, the certain user could
connect to items through different behaviors, so
we suspect that there are some commonalities
(e.g., brand, price, color) between items. And
these commonalities can reflect the key reasons
why users interact with items; these commonal-
ities are the overall user preferences under dif-
ferent behaviors. But the above works tend to
overlook the commonality between target and
auxiliary behaviors, which is a crucial factor
in determining whether users generate target
behaviors with the item. Although [10] utilizes
the commonality between target and auxiliary
behaviors, it only focuses on the commonal-
ity between the final preference representation
of target and auxiliary behaviors, neglecting
the commonality between other layers of user
preference representation. The commonality be-
tween the final preference representation of tar-
get and auxiliary behaviors is broad and coarse-
grained rather than fine-grained.

In light of the aforementioned limita-
tions, we revisit the graph contrastive learning
paradigm for multi-behavior recommenders,
introducing an effective augmentation method
known as GCMB. This approach takes into
account the multi-level commonality between
target and auxiliary behaviors during the pref-
erence representation learning process. Specif-
ically, in order to take into account both ex-
plicit and implicit collaboration relationship
when modeling user preference, we first utiliz
rSVD to prefill the implicit collaboration re-
lationship under multi-bahavior and generate
a contrastive view. Then, the implicit collabo-
ration relationship is injected into the model
by aligning the original view and the con-
trastive view under different behaviors. This
allows our model to extract additional informa-
tion from the contrastive view to enhance the
preference representation in the original view.
Furthermore, our model considers the multi-
level commonality between target and auxiliary
behaviors to capture fine-grained similarities.
This capability allows our model to refine refer-
ence representations further and achieve high-
quality learning outcomes.

In summary, we have made the following
contributions to this work:
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• We emphasized the importance of implicit
interaction, and proposed to explore the re-
lationship of implicit multi-behavior inter-
action. And then we utilize implicit inter-
action to improve and enhance the quality
of user preference representation.

• In our model, we explored the fine-grained
commonality to refine and improve the
quality of user preference representation.

• The effectiveness of our GCMB model is
demonstrated on two real-world datasets,
showing improved recommender perfor-
mance compared to baselines.

2 RELATED WORK

2.1 Graph-based Recommender Models
Recently, Graph Neural Network (GNN) tech-
niques have been widely utilized in recom-
mender systems [1]. Some works [22], [23] ap-
ply random walk method in graph-based rec-
ommenders systems. [22] constructs an item-
item similarity graph based on the user-item
graph and runs the item-item graph on a vari-
ant of the [24] algorithm called [25]. Graph Con-
volutional Networks (GCN) [26], [27], [28] have
demonstrated significant advantages in graph
representation learning, due to the essence of
data in recommender system is graph struc-
ture, so GCN has been widely applied in
recommender systems [29], [30], [31]. [31] re-
move non-linear activation functions and fea-
ture transformations to simplify GCN.

2.2 Multi-behavior Recommender Systems
Multi-behavior recommender systems aim to
enhance the recommender performance of the
target behavior by utilizing multiple types of
auxiliary behaviors. Existing works can be clas-
sified into two categories based on the relation-
ships between behaviors.

Firstly, some works consider that different
types of interaction behaviors often follow cer-
tain orders (e.g., click >add to cart >purchase).
For example, [13] proposes a model that asso-
ciates each behavior type’s predictions in a cas-
cading manner. [14] associates the predictions
of each behavior in a transitive manner. [15]

builds on previous works and utilizes GCN to
capture higher-order information in the graph.
[32] incorporates the cascading relationships
between behaviors into the learning process
of embedding representation. [16] is an exten-
sion of [32] that designs feature transformation
modules to avoid misleading embedding learn-
ing. Then it aggregates the learned embeddings
of different types of behaviors for final predic-
tion.

Secondly, some works treat some behaviors
as strong signals, while others may be regarded
as weak signals, so they use attention scores
to represent the weights of different behav-
iors. [17] utilizes attention mechanisms in the
propagation layer to learn behavior strength
while capturing behavior semantics through
item-item propagation layers to aid in better
learning of embedding representation. [11] and
[12] further consider the dependency between
different types of behavior embeddings in the
learning process.

2.3 Contrastive Learning for Multi-behavior
Recommender Systems
[33] proposed a new graph contrastive learn-

ing based framework by coupling with hyper
metapaths to learn embeddings of user behav-
ior patterns adaptively. [34] proposed a con-
trastive meta network to capture the diverse
multi-behavior patterns. [10] further employed
contrastive learning modules to capture the
commonality between behaviors. While these
three papers utilized comparative learning to
capture commonalities in multi-behavioral pat-
terns, they differ from our proposed approach
in that this paper integrates explicit and im-
plicit interactions between users and items, and
considers multi-level commonalities between
target and ancillary behaviors to enhance user
preference representations.

3 PRELIMINARIES

3.1 Problem Definition
Firstly, we define the interaction between nodes
as graph G = (V,E), where nodes V consist
of the node of users u ∈ U and items i ∈ I .
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And the edge E consists of K (K ≥ 2) different
types of user-item interaction edges. Besides
the user-item interaction edges under the kth
(1 ≤ k ≤ K) behavior is defined as Ek, Ek

together with all nodes ( users and items )
can be defined as a subgraph Gk = (V,Ek),
which also can be expressed as an interaction
adjacent matrix Ak ∈ R|U |∗|I|. We hypothesize
the first behavior is target behavior, and other
k−1 behaviors are auxiliary behaviors. Usually,
the target behavior is purchase, and it is the
prediction objective, the other behaviors are
regarded as auxiliary behavior, and assist the
target behavior to complete recommend tasks.

The research problem in our study is de-
fined as follows Input: consists of user-item
interactions across various types of behavior,
labeled as {G1, ..., Gk, ..., GK}. Output: a pre-
dictive function that estimates the likelihood of
user u will interact with item i under the target
behavior.

3.2 Overall Framework

The overall framework of our GCMB model
is illustrated in Figure 1 and consists of four
key modules. First, in the Explicit Collabora-
tive Relation Learning Module, we utilize GCN
to learn node embedding representations from
user-item explicit interaction subgraphs under
different types of behaviors. These embeddings
are then integrated using automatically learned
weight coefficients. Second, in the Implicit Col-
laborative Relation Learning Module, we em-
ploy rSVD to extract implicit collaborative sig-
nals from a global perspective. This step pre-
populates implicit collaborative relationships
under multiple behaviors and injects them into
the GCMB model, thereby enhancing the user
preference representation. Third, in the Multi-
level Commonality Learning Module, we cap-
ture the multi-level commonalities between tar-
get behaviors and auxiliary behaviors through
a multi-level aggregation layer learning ap-
proach. Specifically, we learn the commonalities
between these behaviors at different aggrega-
tion layers to achieve finer-grained and high-
quality node representations. Finally, in the
Explicit-Implicit Contrastive Learning Module,

we combine explicit and implicit interactions
through graph contrastive learning to better
learn user preferences and improve the over-
all performance of the model. In summary,
by introducing rSVD to pre-populate implicit
collaborative relationships and using a multi-
level commonality learning module to capture
the commonalities between different behaviors,
our GCMB model performs well in recommen-
dation tasks.

3.3 Explicit Collaborative Relation Learn-
ing

First, we derive the embedding vectors Eu ∈ Rd

and Ei ∈ Rd for user u and item i through
initialization, where d is the embedding dimen-
sion. Next, we perform multi-layer GCN to
aggregate neighborhood information for each
node in multiple types of behavior subgraphs.
The process of aggregation is represented as
follows:

Zk,l
u = σ

(
p
(
Ak
)
· Ek,l

i

)
, (1)

Zk,l
i = σ

(
p
(
Ak⊤

)
· Ek,l

u

)
, (2)

where Zk,l
u and Zk,l

i represent the aggregated
embedding for user u and item i in the lth layer
under the kth behavior. We apply the activation
function σ(·) using a LeakyReLU with a neg-
ative slope of 0.5. Ak denotes the normalized
adjacency matrix, and the application of edge
dropout is indicated as p(·), aiming to mitigate
overfitting concerns. Furthermore, to preserve
the inherent node information, we incorporate
residual connections between each layer:

Ek,l+1
u = Zk,l+1

u + Ek,l
u , (3)

Ek,l+1
i = Zk,l+1

i + Ek,l
i . (4)

The final embedding for a node is the sum of
its embeddings across all layers,

Ek
u =

L∑
l=0

Ek,l
u , (5)

Ek
i =

L∑
l=0

Ek,l
i . (6)
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kÂ

Tˆˆˆˆ
qqq VSUA =

Explicit Collaborative Relation Learning Module

Implicit Collaborative Relation Learning Module

1=l
0=l

uka Concat

2l =

Figure 1: The model architecture of GCMB. i) Explicit Collaborative Relation Learning Module
learns the node representation under multiple behaviors interaction. ii) Implicit Collaborative

Relation Learning Module extracts implicit collaborative signals by rSVD. iii) Multi-level
Community Learning Module captures the commonality between target and auxiliary

behaviors. iv) Explicit-Implicit Contrastive Learning Module combine explicit and implicit
interaction to learn user preference by graph contrastive learning.

Inspired by [10], the final node embedding is
expressed as follows:

auk =
exp (Wk ∗ nuk)∑K

m=1 exp (Wm ∗ num)
, (7)

Eu = Wu

(
K∑
k=0

auk · Ek
u

)
+ bu, (8)

Ei = Wi

(
Concat

(
Ek

i

))
+ bi, (9)

where Wk is considered a strength weight for
behavior k, which remains constant for all
users. nuk represents the relative number of
interactions edges under behavior k of user u.
Additionally, Wu, bu, Wi, bi are the weight and
bias of neural network. The final step involves
calculating the inner product between the ulti-
mate embedding Eu and Ei to predict user u’s
preference towards item i. In order to optimize
this module, we employ the pairwise loss.

Lr =
∑

(u,i,j∈R)

max
(
0, 1− E⊤

u Ei + E⊤
u Ej

)
, (10)

where R = (u, i, j) | (u, i) ∈ R+, (u, j) ∈ R−, and
R+ is the observed interactions, R− is the unob-
served interactions.

3.4 Implicit Collaborative Relation Learn-
ing

To further alleviate the issue of sparse explicit
multi-behavior data, we propose to use rSVD
as guidance to generate the contrastive view
under different types of behaviors and align
the node representation between the original
view and the contrastive view under different
types of behaviors. By doing so, we effectively
extract supplementary information from the
contrastive view, thereby enhancing the quality
of node representation in the original view.
Specifically, we begin by performing SVD [35]
on the adjacency matrix Ak, Ak = UkSkV k⊤.
However, conducting SVD on large matrices is
computationally expensive. Therefore, drawing
inspiration from the rSVD algorithm [8], [36],
[37], we opt to approximate the range of the
input matrix through a lower-rank orthogonal
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matrix. Subsequently, we apply the SVD pro-
cedure to this reduced matrix, effectively miti-
gating the computational challenges associated
with larger matrices.

Ûk
q , Ŝ

k
q , V̂

k
q
⊤ = rSV D

(
Ak, q

)
, (11)

Âk
SV D = Ûk

q Ŝ
k
q V̂

k
q
⊤, (12)

where q is the required rank for the decom-
posed matrices, and Ûk

q ∈ RU×q, Ŝk
q ∈ Rq×q,

V̂ k
q ∈ RI×q are the approximated versions of

Uk, Sk, V k. The global aggregation process is
expressed as follows:

Gk,l
u = σ

(
Âk

SV D · Ek,l
i

)
, (13)

Gk,l
i = σ

(
Âk

SV D
⊤ · Ek,l

u

)
. (14)

3.5 Multi-level Commonality Learning
In traditional multi-behavior recommendation
methods, the commonalities between target
and auxiliary behaviors are often overlooked,
although these commonalities are crucial for
predicting whether user-item interactions will
occur. Existing methods typically rely on the
final node representations to learn the common-
alities between behaviors, which can result in
overly broad and coarse-grained commonality
information.

To address this issue, we propose a Multi-
level Commonality Learning Module that cap-
tures the commonalities between target behav-
ior k and auxiliary behavior k′ across differ-
ent aggregation layers, thereby achieving finer-
grained and higher-quality node representa-
tions. The specific steps are as follows:

First, Multi-layer Aggregation Learning. In
the multi-layer aggregation learning, we use
GCN to learn node embedding representations
across multiple propagation layers. Each prop-
agation layer captures different levels of local
structural information. Through multi-layer ag-
gregation, we can obtain node representations
at various levels of granularity, from coarse to
fine. Specifically, the node embedding represen-
tation Zu

k,l at layer l can be calculated using the
following formula:

Zu
k,l = σ

(
(Ak) · Ei

k,l

)
, (15)

where Ak is the adjacency matrix for behavior,
Ei

k,l is the node embedding at layer l, and σ
is the activation function. This multi-layer ag-
gregation approach captures local structural in-
formation at different levels, thereby providing
richer node representations.

Second, multi-level commonality extraction.
After each propagation layer, we compute the
similarity between the node representations of
the target behavior k and the auxiliary behav-
ior k′. Specifically, we use cosine similarity or
other similarity measures to quantify the com-
monalities between these node representations.
By doing so, we can capture the multi-level
commonalities between the target and auxiliary
behaviors across different propagation layers.
This multi-level commonality extraction helps
to more comprehensively understand user pref-
erence patterns across different behavior types,
thereby improving the model’s accuracy.

Next, the contrastive learning loss function.
To further improve the quality of node rep-
resentations, we introduce the InfoNCE loss
function. This loss function uses contrastive
learning to compare the node representations of
the target behavior and the auxiliary behavior.
The specific formula is as follows:

Lk,k
′

u = −log
exp

(
sim

(
Zu

k,l, Z
u
k′ ,l

)
/τ
)

∑
u′∈U exp

(
sim

(
Zu

k,l, Z
u′

k′ ,l

)
/τ
) ,
(16)

where Zu
k,l and Zu

k′,l represent the node embed-
ding representations of user u at layer l for
behavior k and behavior k′, respectively. sim()
is the similarity function, τ is the temperature
parameter, and U is the set of users. Through
contrastive learning, we can better distinguish
the commonalities between target and auxiliary
behaviors, thereby improving the quality of the
node representations.

Finally, integration into the model. The
multi-level commonalities extracted through
the above steps are integrated into the model to
optimize the node representations. Specifically,
we combine the loss from multi-level com-
monality learning with the loss from explicit-
implicit contrastive learning to jointly optimize
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the overall performance of the model. The over-
all loss function is as follows:

Lc =
∑
k′

(
Lk,k

′

u + Lk,k
′

i

)
. (17)

Through this approach, the multi-level com-
monality learning module not only captures
the multi-level commonalities between target
and auxiliary behaviors but also effectively in-
tegrates both explicit and implicit collaborative
information, thereby enhancing the accuracy
and personalization of recommendations.

3.6 Explicit-Implicit Collaborative Relation
Contrastive Learning

Traditional graph-based contrastive learning
methods for recommender systems often uti-
lize the three-view paradigm, where generated
contrast views are used for contrastive learn-
ing, while the original view is not involved
in contrastive learning loss. Because traditional
methods usually use randomly perturbed gen-
erated contrast views and that may mislead the
original view.

In contrast, our proposed method takes
rSVD as a guide to generate contrast views
based on global collaborative relationships. We
combine explicit interaction and implicit in-
teraction to learn user preference by graph
contrastive learning. Consequently, we directly
simplify the contrastive learning in the in-
foNCE loss by aligning the representation of the
original and contrast views for different types
of behaviors. The InfoNCE loss Li

s for the items
are defined in the same way.

Lu
s =

∑
k,l,u

−log
exp

{
s
(
Zk,l

u , Gk,l
u /τ

)}∑U
u′=0 exp

{
s
(
Zk,l

u , Gk,l
u′ /τ

)} .
(18)

The overall loss function of the Explicit-
Implicit contrastive learning module can be
obtained as below,

Ls = Lu
s + Li

s. (19)

3.7 Joint Optimization

We combine the above two modules to optimize
our recommender model, which the overall loss
function of model is formalized as,

Ls = Lr + λ1Ls + λ2Lc + µ ∥Θ∥22 , (20)

where λ1, λ2 and µ are hyperparameters to
control the influence weight of Multi-level
Commonality Learning Module and Explicit-
Implicit Contrastive Learning Module and L2

regularization, respectively, Θ represents all
trainable parameters in our Modules.

4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Dataset

To demonstrate the superior performance of
our model GCMB, we conducted experiments
on two real-world datasets: BeiBei and Taobao
[14] in Tabel 1. The BeiBei dataset and the
Taobao dataset both consist of three different
types of user behaviors: view, add to cart, and
purchase. The interaction data in both datasets
exhibit high sparsity, with the sparsity level
of 1.93% and 0.10%. Specifically, in the BeiBei
dataset, the sparsity rates for the various be-
haviors stand at 1.39%, 0.37%, and 0.17%, re-
spectively. In parallel, the Taobao dataset show-
cases sparsity rates of 0.08%, 0.01%, and 0.01%
for the same behaviors. Besides we observed
the purchase behavior data in both datasets is
severely sparse. In the BeiBei dataset, around
76% of users have only 0 to 15 purchase behav-
ior interactions, while this percentage is as high
as 99% in the Taobao dataset. In summary, both
of these datasets are highly sparse.

Table 1: Dataset statistics.

Dataset #User #Item #View #Add-to-cart #Purchase
Beibie 21,716 7,977 2,412,586 642,622 304,576
Taobao 48,749 39,493 1,548,126 173,747 259,747
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4.1.2 Baseline

We compare our GCMB with the following
state-of-the-art methods:

• BPR [38] supposed that observed interac-
tions should have a higher likelihood than
unobserved interactions.

• NCF [39] used a multi-layer MLP to en-
hance the embedding paradigm in Collab-
orative Filtering (CF), in order to achieve
non-linear feature interactions.

• NGCF [40] was an advanced CF model
based on GNN, which utilized multi-layer
information propagation to capture multi-
behavior representations containing high-
order semantic information.

• LightGCN [31] performed node embed-
ding by neighborhood aggregation on the
graph and removed the transformation
and nonlinear activation on the basis of
GCN.

• LightGCL [41] designed a view contrastive
enhancement strategy guided by rSVD for
the single-behavior recommender.

• NMTR [13] considered the relationship of
multiple behaviors as the cascading rela-
tionship and optimized the model under
the multi-task learning framework.

• EHCF [14] proposed a novel non-sampling
transfer learning solution.

• GNMR [11] explicitly modeled the depen-
dencies between different types of user-
item interactions under a graph-based
message-passing architecture.

• MBRec [12] focused on the collaborative
relationship of behavior patterns between
cross-layer preference representations.

• S-MBRec [10] used a multi-layer graph
convolutional neural network to capture
behavior preference representations that
contained high-order semantic information
and learned the differences and common-
alities between different behaviors.

• MB-CGCN [16] utilized behavior depen-
dencies to model the preference repre-
sentation in the preference representation
learning process.

4.1.3 Evaluation Metrics
In order to fully evaluate the effectiveness of
our model, we adopt two representative eval-
uation metrics in the field of recommender:
Recall@K and NDCG@K [42].

4.1.4 Parameters Setting
The implementation environment of our model
GCMB is PyTorch. The learning rate is 0.001.
The training batch size is 256. The embedding
dim is 32. The L2 regularization coefficient is 0.1
and 0.2 for Beibei and Taobao. The rank of rSVD
is 4 and 2 for Beibei and Taobao. λ1 is searched
from {0.0001, 0.0005, 0.001, 0.005, 0.01}, λ2 is
searched from {0.02, 0.025, 0.03, 0.035, 0.04}, and
the temperature coefficient τ is searched in
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

4.2 Performance Comparison
To fully demonstrate the superiority of our
model, we conducted experiments with differ-
ent values of K = {10, 20, 40}. From Table 2, we
summarized the following observations.

Firstly, compared to all baseline methods,
our model achieved the best performance.
When compared to the best baseline method,
our model showed significant improvements in
Recall@20 on both datasets, with an increase
of 29.6% and 65.9%. We attribute this improve-
ment to two main reasons: 1) Generating con-
trastive views guided by rSVD and then di-
rectly aligning the node representation between
the original view and the contrastive view un-
der different types of behaviors. The model
can effectively extract additional information
from the contrastive views of multi-behavior
to enhance the node representation in the orig-
inal views. 2) Learning multi-level common-
alities between target and auxiliary behaviors
enhanced the quality of the node representation
under target behavior.

Secondly, the overall performance of the
multi-behavior recommender in the base-
lines outperformed the single-behavior rec-
ommender. This reveals that auxiliary behav-
iors provide valuable and useful information
for the multi-behavior recommender system,
positively impacting the recommendation for
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Table 2: The performance of model with the metrics of Recall@K and NDCG@K (K=10, 20, 40) on
Beibei, Taobao.

Beibei Recall@10 Recall@20 Recall@40 NDCG@10 NDCG@20 NDCG@40
BPR 0.0315 0.0482 0.0862 0.0204 0.0237 0.0314
NCF 0.0368 0.0494 0.0931 0.0184 0.0242 0.0321

NGCF 0.0383 0.0643 0.1068 0.0188 0.0253 0.0339
LightGCN 0.0389 0.0638 0.1076 0.0192 0.0257 0.0346

single-behavior

LightGCL 0.0382 0.0604 0.1018 0.0202 0.0257 0.0341
NMTR 0.0389 0.0651 0.1092 0.0192 0.0258 0.0348
EHCF 0.0383 0.0642 0.1084 0.0196 0.0261 0.0351

GNMR 0.0384 0.0667 0.1173 0.0191 0.0261 0.0381
MBRec 0.0395 0.0676 0.1196 0.0198 0.0272 0.0394

S-MBRec 0.0403 0.0677 0.1163 0.0205 0.0273 0.0372
MB-CGCN 0.0458 0.0726 0.1314 0.0221 0.0295 0.0413

multi-behaviors

GCMB 0.0558 0.0941 0.1478 0.0264 0.0360 0.0469

Taobao Recall@10 Recall@20 Recall@40 NDCG@10 NDCG@20 NDCG@40
BPR 0.0143 0.0211 0.0305 0.0080 0.0097 0.0116
NCF 0.0182 0.0238 0.0401 0.0101 0.0921 0.0147

NGCF 0.0206 0.0289 0.0412 0.0115 0.0136 0.0161
LightGCN 0.0219 0.0291 0.0420 0.0124 0.0143 0.0177

single-behavior

LightGCL 0.0236 0.0342 0.0477 0.0132 0.0158 0.0186
NMTR 0.0258 0.0481 0.0656 0.0157 0.0202 0.0279
EHCF 0.0276 0.0499 0.0671 0.0153 0.0210 0.0285

GNMR 0.0319 0.0458 0.0687 0.0164 0.0209 0.0288
MBRec 0.0327 0.0463 0.0695 0.0177 0.0211 0.0292

S-MBRec 0.0336 0.0467 0.0664 0.0182 0.0214 0.0252
MB-CGCN 0.0366 0.0596 0.0881 0.0207 0.0265 0.0324

multi-behaviors

GCMB 0.0744 0.0989 0.1289 0.0451 0.0512 0.0574

the target behavior. When compared with the
best method in single-behavior recommender
method, we discover that our model achieved
significant improvements, further validating
the above conclusions.

4.3 Ablation Study

To explore the importance of the Explicit-
Implicit Contrastive Learning Module and the
Multi-level Commonality Learning Module in
our model, we conducted experiments by indi-
vidually removing each module and comparing
the recommender performance. As shown in
Figure 2, we use the Beibei dataset as an exam-
ple. And w/o com means to remove the Multi-
level Commonality Learning Module, w/o con
means to remove the Explicit-Implicit Con-
trastive Learning Module.

We observed a significant decrease in exper-
imental results when either of the modules was

removed. Therefore, we can conclude that both
modules have a positive effect on this model,
and the Explicit-Implicit Contrastive Learning
Module can alleviate the issue of sparse ob-
served user-item interaction data.

Furthermore, we compared the performance
of model when only consider the commonality
between final representation and multi-level
commonality. As shown in Figure 3, w/o mlc
means only consider the commonality. So, we
can demonstrate the Multi-level Commonality
Learning Module is indispensable.

4.4 Performance on Sparse Data

In this section, we aim to demonstrate the
effectiveness of the Multi-level Commonality
Learning and the Explicit-Implicit Contrastive
Learning Modules in alleviating data sparsity.
We also seek to showcase the superior recom-
mender performance of our model on sparse
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Figure 2: The ablation study of Beibei.

Figure 3: The ablation study of Beibei about the
Multi-level Commonality Learning module,
with the metrics of Recall@K and NDCG@K

(K=10, 20, 40).

datasets. To achieve this, we divided users into
four groups based on the number of interac-
tions they have with items under the target
behavior, i.e., ≤15, 15-30, 30-45, and ≥45. Then
we compared the Recall@20 of different user
groups in the Beibei dataset through ablation
experiments. Recall@20 is the average recall
value across user groups, as shown in Figure
4.

We observed our model outperforms all ab-
lation experiments across different user groups,
and w/o com and w/o con also outperform
w/o all across different user groups. This
demonstrates our model can alleviate the is-
sue of sparse multi-behavior data, and both
the Multi-level Commonality Learning and the
Explicit-Implicit Contrastive Learning Modules
play a key role. Besides, the performance of
w/o com is better than w/o con when the user
group is ≤15. This also demonstrates that the
Explicit-Implicit Contrastive Learning Module
is more significant when data is sparse. As
the Explicit-Implicit Contrastive Learning Mod-
ule enhances node representations of different

Figure 4: The performance of sparse data for
GCMB.

types of behaviors, it provides a certain guar-
antee for graph learning.

Additionally, we compared the performance
of our model with two representative baselines,
[10] and [16]. As shown in Figure 5 and Figure
6, our model consistently outperforms [10] and
[16] in all user groups, confirming its superior
recommender performance on sparse datasets.

4.5 Hyper-parameter Study

Firstly, we consider various values for λ1 and λ2

from the sets {0.0001, 0.0005, 0.001, 0.005, 0.01}
and {0.02, 0.025, 0.03, 0.035, 0.04}. Then, we
evaluate the recommender performance for all
combinations of λ1 and λ2 and present the
results in the form of a heatmap. The darker
the color, the better the corresponding recom-
mender metrics. As can be seen in Figure 7 and
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Table 3: Performance of GCMB with different layer on Beibei.

layer Recall@10 Recall@20 Recall@40 NDCG@10 NDCG@20 NDCG@40
1 0.0070 0.0186 0.0405 0.0030 0.0058 0.0102
2 0.0558 0.0941 0.1478 0.0264 0.0360 0.0469
3 0.0408 0.0704 0.1203 0.0195 0.0269 0.0370

Figure 5: The performance of sparse data on
Beibei.

Figure 6: The performance of sparse data on
Taobao.

Figure 8, when λ1 = 0.001 and λ2 = 0.03, the
recommender performance is optimal.

Secondly, we analyze the effect of param-
eters τ on recommender performance. By ob-
serving Figure 9, we can find when τ is larger
than 0.1, the recommender performance shows
a downward trend. When τ = 0.1 the model
realizes the optimal state, so we can infer that τ
= 0.1 is the optimal parameter setting.

Finally, we analyze the influence of different
layers on the model. As can be seen in Tabel 3,
layer=2 is the optimal choice for recommender.

4.6 Discussion

4.6.1 rSVD for Implicit Interaction

In this paper, we chose to use rSVD to in-
ject implicit interactions, primarily due to its

Figure 7: Performance of GCMB with different
λ1 and λ2 on Beibei.

Figure 8: Performance of GCMB with different
λ1 and λ2 on Taobao.

efficiency, scalability, and global signal extrac-
tion capability. rSVD reduces computational
complexity through random sampling, mak-
ing it suitable for large-scale datasets. It ef-
fectively extracts implicit collaborative signals,
supplementing unobserved user-item interac-
tions, and enhances user preference representa-
tion by combining explicit and implicit signals,
improving recommendation accuracy and per-
sonalization.

Compared to traditional methods, rSVD
is more efficient than GCN for large, sparse
graphs, extracts a broader range of implicit
signals than Item-based CF, and provides a
lightweight alternative to Autoencoders, espe-
cially in data-sparse scenarios. Experiments on
two real-world datasets show that rSVD consis-
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(a) Beibei

(b) Taobao

Figure 9: The performance of different τ on
Beibei and Taobao.

tently outperforms state-of-the-art recommen-
dation methods, confirming its effectiveness
and practicality.

However, rSVD also has limitations: ran-
dom sampling may introduce uncertainty, af-
fecting the stability of the results; the choice
of the rank k and the number of samples
significantly impacts performance and requires
careful tuning.

4.6.2 Enhanced Comparative Analysis

We validate the proposed GCMB method
in three ways. First, compared to matrix
factorization-based methods [38] and graph-
based methods [31], our method uses rSVD
to inject implicit interactions, more compre-

hensively capturing user preferences. Second,
unlike commonality analysis methods based
on attention mechanisms [14] and meta-path-
based methods [19], our multi-level common-
ality learning module captures commonalities
at different levels through multi-layer aggrega-
tion and contrastive learning, providing finer-
grained and higher-quality node representa-
tions. Finally, by incorporating recent multi-
behavior recommender system methods, such
as MB-CGCN [16] and MBGCN [17], our ex-
periments show that our method outperforms
these approaches across multiple evaluation
metrics, especially in terms of implicit interac-
tion and commonality analysis.

4.6.3 Scalability Analysis
In this paper, the proposed GCMB method
demonstrates excellent scalability for large-
scale datasets. We address potential compu-
tational limitations and bottlenecks by using
rSVD to inject implicit interactions. rSVD sig-
nificantly reduces computational complexity to
O (n · klogk), compared to the O(n3) of tra-
ditional SVD, and decreases memory usage
through random sampling. It also supports
batch processing and parallel computation, en-
hancing efficiency.

Experiments on two large real-world
datasets validate the high efficiency and ac-
curacy of our method. To mitigate potential
bottlenecks in data preprocessing and hyper-
parameter tuning, we employ efficient prepro-
cessing techniques and automatic hyperparam-
eter tuning tools. Overall, the GCMB method
exhibits strong scalability and effectively ad-
dresses computational limitations.

4.6.4 Application Analysis
In e-commerce, GCMB enhances user satisfac-
tion and purchase conversion rates by pro-
viding precise personalized recommendations
through the combination of explicit and implicit
interaction signals. It also comprehensively un-
derstands user preferences via multi-behavior
analysis. In social media platforms, GCMB op-
timizes content recommendations, increasing
user engagement and retention, and uncovers
potential connections and interest similarities
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among users through global collaborative sig-
nals. For travel service platforms, GCMB of-
fers personalized travel routes and attraction
recommendations, improving user experience,
and predicts future user behavior through his-
torical behavior analysis, enabling the platform
to prepare resources and services in advance. In
online video and music platforms, GCMB gen-
erates personalized playlists, enhancing user
experience, and helps users discover more con-
tent of interest by capturing behavioral com-
monalities, thereby increasing user stickiness
and activity. These real-world application cases
highlight the broad applicability and significant
benefits of the GCMB method across various
domains.

5 CONCLUSIONS

In this paper, we propose a GCMB for the multi-
behavior recommender. Specifically, to enhance
the node representation of the original view, we
devise a graph contrastive learning paradigm
guided by rSVD instead of the traditional three-
view paradigm. This approach effectively in-
jects implicit collaborative relation learning into
the multi-behavior recommender model. Fur-
thermore, we improve the quality of the node
representation by focusing on the multi-level
commonality between target and auxiliary be-
haviors. Extensive experiments on two real-
world datasets demonstrate that our method
consistently outperforms various state-of-the-
art recommender methods.

In future work, we will integrate knowledge
graphs into the GCMB model to enhance rec-
ommendation performance. This includes ex-
tracting entities and relationships from public
knowledge graphs (e.g., Wikidata and DBpe-
dia), aligning them with user behavior data,
and fusing the knowledge graph with the
multi-behavior graph. Using GNNs, we will
learn embeddings and incorporate contextual
information, thereby improving the model’s
understanding of user preferences. This in-
tegration will significantly enhance feature
representation, cold-start handling, contextual
awareness, and interpretability.
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