
1

GAIKube: Generative AI-based Proactive
Kubernetes Container Orchestration Framework for

Heterogeneous Edge Computing
Babar Ali, Muhammed Golec, Subramaniam Subramanian Murugesan, Huaming Wu, Sukhpal Singh Gill, Felix

Cuadrado and Steve Uhlig

Abstract—Containerized edge computing emerged as a pre-
ferred platform for latency-sensitive applications requiring in-
formed and efficient decision-making accounting for the end
user and edge service providers’ interests simultaneously. Edge
decision engines exploit pipelined knowledge streams to enhance
performance and often fall short by employing inferior resource
predictors subjected to limited available training data. These
shortcomings flow through the pipelines and adversely impact
other modules, including schedulers leading to such decisions
costing delays, user-experienced accuracy, Service Level Agree-
ments (SLA) violations, and server faults. To address limited data,
substandard CPU usage predictions, and container orchestration
considering delay accuracy and SLA violations, we propose a
threefold GAIKube framework offering Generative AI (GAI)-
enabled proactive container orchestration for a heterogeneous
edge computing paradigm. Addressing data limitation, GAIKube
employs DoppelGANger (DGAN) to augment time series CPU
usage data for a computationally heterogeneous edge cluster.
In the second place, GAIKube leverages Google TimesFM for
its long horizon predictions, 4.84 Root Mean Squared Error
(RMSE) and 3.10 Mean Absolute Error (MAE) against veterans
Long Short-Term Memory (LSTM) and Bidirectional LSTM (Bi-
LSTM) on concatenated DGAN and original dataset. Consider-
ing TimesFM quality predictions utilizing the DGAN extended
dataset, GAIKube pipelines CPU usage predictions of edge
servers to a proposed dynamic container orchestrator. GAIKube
orchestrator produces container scheduling, migration, dynamic
vertical scaling, and hosted application model-switching to bal-
ance contrasting SLA violations, cost, and accuracy objectives
avoiding server faults. Google Kubernetes Engine (GKE) based
real testbed experiments show that the GAIKube orchestrator
offers 3.43% SLA violations and 3.80% user-experienced ac-
curacy loss with zero server faults at 1.46 CPU cores expense
in comparison to industry-standard model-switching, GKE pod
scaling, and GKE optimized scheduler.

Index Terms—Edge Computing, Generative AI, Container
Migration, Vertical Scaling, Kubernetes, Service Level Agreement

I. INTRODUCTION

Explosive growth of the Internet of Things (IoT) devices is
a key enabler for producing a diverse range of services and
applications. Machine Learning (ML) and Deep Learning (DL)
applications are constantly improving end users’ experiences
generating notably accurate inferences in the fields of span-
ning healthcare, transportation, surveillance, and computer vi-

B. Ali, M. Golec, S. S. Murugesan, S. S. Gill, and S. Uhlig are
with the School of Electronic Engineering and Computer Science, Queen
Mary University of London, United Kingdom. Email: {b.ali, m.golec,
s.subramanianmurugesan, s.s.gill, steve.uhlig}@qmul.ac.uk

H. Wu is with the Center for Applied Mathematics, Tianjin University,
Tianjin, China. Email: whming@tju.edu.cn

F. Cuadrado is with the Technical University of Madrid (UPM), Spain.
Email: felix.cuadrado@upm.es

(Corresponding author: Hauming Wu)

sion [1]. End users are mainly interested in quick and accurate
responses. To address latency challenges, edge computing in-
filtrated the computing continuum hosting ML/DL applications
in closer proximity to data, enticing users to offload compute-
intensive tasks to edge. It extends cloud service closer to users,
which is mainly a distributed, heterogeneous and resource-
constrained computing paradigm [2].

A. Opportunities and Challenges

The inevitable confluence of edge and containerization
brings tremendous opportunities in the computing landscape
enhancing reliability, latency, ease of application management,
lesser overhead, and bandwidth conservation [3], [4]. However,
it introduces critical management challenges requiring efficient
solutions to manage service provider cost, user-experienced ac-
curacy, latency, and edge server health. The computational het-
erogeneity of edge servers (CPU, memory), Kubernetes con-
tainers (CPU, memory), and multiple accessible ML/DL model
versions add up to existing challenges [5]. Model-Switching
[6] offers to change ML/DL model versions responding to
dynamic load and high accuracy demands. However, static
resource provisioning incurs either cost or SLA violations [7].
Thus, Model-Switching assisted vertical container scaling at
edge computing offers a multitude of benefits with greater
responsibility on scheduler. For example, a decision for all the
containers to employ the best accuracy model in the lowest
possible container cores extremely overloading a few edge
servers can increase accuracy and conserve cost but it can
damage edge servers and increase Service Level Agreement
(SLA) violations [8]. Therefore, an efficient and dynamically
adaptive orchestrator for containers at the edge is required.

It is financially infeasible to deploy powerful servers at
the edge [9]. Sub-optimal and reactive solutions can cause
resource contention and potential downtimes ultimately incur-
ring monetary cost and wasted computations [9]. To avoid
system faults, the orchestration unit must be equipped with
a server usage predictor to assist in producing proactive
and dynamic decisions [10]. Moreover, high-precision pre-
dictors are inherently data-hungry requiring diverse training
data while data limitation can result in average models [11].
Generative Adversarial Networks (GAN) attempted to address
this limitation and offer to produce synthetic data employ-
ing state-of-the-art ML models under the hood [12], [13],
[14]. DoppelGANger (DGAN) [15] and TimeGAN [16] are
prominent GANs characterizing time series data. Furthermore,
with the shorter prediction sequences limitation of TimeGAN,
this work employs DGAN for its salient features [17]. The

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

2

next section presents the motivation for Generative Artificial
Intelligence (GAI) based container orchestration.

B. Motivation

Firstly, GAI can generate vast amounts of high-quality data
while significantly cutting down on data collection time and
cost [18]. Original data can be extended with unseen and
realistic data encompassing a wide range of workload patterns
leading to the production of accurate and robust models
[19]. Secondly, researchers are producing multiple variants
of ML/DL applications differing in accuracy and computation
resource demands [20]. Fig. 1a represents the SLA violation
percentage comparison of Yolo5 application nano, small, and
medium versions hosted in 0.5, 1, and 2 cores containers. SLA
violations for each model are reduced with the increment of
provisioned cores. It can be concluded that under-provisioning
increases SLA violations and over-provisioning incurs costs
[21]. Moreover, Fig. 1b shows SLA violations against con-
tainer cores with dynamic model-switching subjected to vi-
olation rate. Two cores container offering the lowest SLA
violations with the highest accuracy. Half core suffers from
under-provisioning while one core changed models resulting
in improved accuracy and a higher violation rate. Thus, model-
switching requires dynamic scaling for accuracy, cost, and
SLA violations. Finally, GKE offers container placement in
balanced and optimized modes. Prior one distributes contain-
ers evenly among server nodes, while optimized mode opts to
overload servers. The balanced mode can lead to higher cost
with more active nodes while optimized one can suffer from
server damage where putting load more than 75-80% impacts
machine performance [22], [23]. Thus, there is a need for an
efficient and proactive container placement in optimized mode
to avoid performance degradation.

Nano Small Medium
Yolo5 Model Variants

0

20

40

60

80

100

SL
A

Vi
ol

at
io

n
(%

)

Core = 0.5
Core = 1
Core = 2
Accuracy

0.5 1 2
Container Cores

0

20

40

60

80

100

SL
A

Vi
ol

at
io

n
(%

)

SLA Violations
Accuracy

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

(a) (b)

Fig. 1: (a) Latency SLA violations for various cores and
model versions against model accuracy with 700ms SLA
threshold. (b) Container cores against SLA violations for
Model Switching

C. Contributions

Considering the challenges of user-experienced accuracy,
latency, service provider cost, SLA violations, edge server
health, and data limitation, in this paper we propose the
GAIKube container orchestration framework offering threefold
contributions. It utilizes GAN to produce CPU usage data for
heterogeneous edge servers. Leveraging the extended dataset,
GAIKube employs a decoder-only time series predictor for
proactive scheduling. Finally, pipelining predictions into a
dynamic and adaptive scheduler responsible for heterogeneous

edge server cluster management. The following are key con-
tributions of this work.

• GAIKube employs DGAN [15] to produce time series
CPU usage data of heterogeneous 2, 4, and 6 cores edge
servers utilizing Bitbrains [24] dataset historical records

• We adopted Google TimesFM [25] offering minimal
RMSE and MAE errors against LSTM and Bi-LSTM for
six timestep ahead CPU usage forecasts of heterogeneous
edge nodes on the extended Bitbrain dataset

• GAIKube proposes a proactive scheduler to dynamically
modify container resources, switch YOLO models, and
migrate containers exploiting pipelined predictions and
SLA violation rates. These decisions account for accu-
racy, latency, cost, and edge server health

• Experimental results in the GKE testbed show GAIKube
outperforms the default GKE optimized scheduler [26],
dynamic pod scaler [27] and model-switching [6] offering
3.43% SLA violations, 3.80% accuracy loss, and zero
server faults at 1.46 CPU cores expense.

The rest of the paper is organized as follows. Section II
highlights existing research works conducted in this paradigm
followed by critical analysis. The accuracy, cost, and server
utilization problem is formulated in section III. GAIKube
framework is detailed in section IV. Performance evaluation
and results are discussed in section V. Section VI concludes
this work and highlights future directions.

II. RELATED WORK

Tuli et al. [28] proposed a PreGAN model for proactive
container migrations in heterogeneous edge computing. The
generator employed faulted edge server classification to pro-
duce modified scheduling decisions. The discriminator selects
between the original and the generator decisions targeting var-
ious quality parameters. PreGAN improved energy and SLA
violations, However, this work does not offer dynamic scaling
and model-switching for user-experienced accuracy. In another
work, Ray et al. [29] proposed a proactive VM migration
technique to avoid server faults. The authors modeled the profit
and migration cost problem using Integer Linear Programming
(ILP) to redistribute VMs from faulty to healthy nodes. This
work outperformed its counterparts however, they did not
consider IoT applications and dynamic scaling.

Zhang et al. [6] proposed a model-switching technique
to modify the hosted DL application version in response
to dynamic workload and accuracy requirements employing
profiled statistics. It improved user-experienced accuracy in
comparison to individual DL models. However, this work is
evaluated in homogeneous settings without offering dynamic
scaling. Salmani et al. [7] proposed the idea of selecting
a set of model variants employing model-switching to meet
accuracy, delay, and cost objectives. It utilized ILP to identify
the model variants and container replicas to respond to dy-
namic workload. Kubernetes experiments show reduced cost
and improved accuracy. However, this work overlooked het-
erogeneity and employed the default Kubernetes scheduler for
container placements. Wang et al. [30] proposed a proactive
heuristic Vertical Pod Autoscaler (VPA) employing LSTM

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

3

TABLE I: Comparison of GAIKube with existing works

Work Edge/ GAI Proactive Heterogeneity Method Objective Model Vertical Real Performance Parameters

Cloud Switching Scaling Testbed CPU Util. Cost Accuracy SLA Violations Migrations

[28] Edge ✓ ✓ ✓ GRU+GAN Fault Avoidance ✓ ✓ ✓ ✓ ✓
[6] Cloud ✓ Heuristic Accuracy, Cost ✓ ✓ ✓
[7] Cloud ✓ LSTM + ILP Delay, Cost, Accuracy ✓ ✓ ✓ ✓ ✓

[29] Cloud ✓ ✓ ILP Profit, Migration Cost ✓ ✓
[32] Cloud ✓ ✓ GAN + PPO Task waiting time
[27] Cloud/Edge GKE VPA Cost, Workload ✓ ✓ ✓
[26] Cloud/Edge ✓ GKE Optimized Scheduler Cost, Utilization ✓ ✓ ✓ ✓
[30] Cloud ✓ LSTM+Heuristic CPU cost ✓ ✓ ✓
[31] Cloud ✓ ✓ Bi-LSTM+Heuristic Fault Avoidance ✓ ✓ ✓

GAIKube Edge ✓ ✓ ✓
DGAN+TimesFM+ Accuracy, Utilization

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓GAIKube Orchestrator SLA violatons

Columns GAI, Proactive, and Heterogeneity show the employment of Generative AI, resource predictor, and computational heterogeneity (CPU, memory).
Column Real Testbed classifies simulation and real-world experiment platforms

predictions to conserve CPU cores. Containers are rescaled
when the predicted usage falls outside the lower and upper
bound thresholds. However, the predictive performance can
be enhanced with the latest predictive models and extended
datasets. In another work, Tran et al. [31] employed Bi-
LSTM on the Bitbrains dataset for CPU prediction to avoid
server faults. Bi-LSTM predictions are pipelined to a container
migration framework that proactively migrates containers to
predicted healthy servers. However, this work can be analyzed
in heterogeneous settings with dynamic scaling.

GARLSched [32] algorithm accelerates the Proximal Policy
Optimization (PPO) scheduler learning process employing
a GAN expert. Discriminator classification performance is
enhanced by distinguishing GAN expert and PPO actions.
Simulation results show GARLSched improved task waiting
time in scalable settings however, this work lacks real testbed
evaluation. GKE VPA [27] and GKE optimized scheduler
[26] are the industry-standard production scalers and container
schedulers of the Google platform. VPA dynamically updates
container CPU and memory resources employing historical
records and monitored performance responding dynamic work-
load and costs. In parallel, the GKE optimized scheduler ag-
gressively maximizes server utilization by placing containers
to the maximum limit. This approach improved utilization and
minimized cost at the possible expense of server faults.

A. Critical Analysis

Table I presents a detailed comparison of existing research
conducted in this paradigm. Works [28], [32] offered GAN
solutions for scheduling. PreGAN aligns closely with our work
however, it does not entertain model-switching and dynamic
scaling. GARLSched worked on improving task waiting time
in the simulated settings and overlooked significant orchestra-
tion parameters. Most of the works employed prediction algo-
rithms in computationally heterogeneous clusters. Objectives
include fault avoidance, cost, accuracy, utilization, etc. where
only [6], [7] offered dynamic model-switching. However, both
of these works not only overlooked vertical scaling but also
employed the default Kubernetes orchestrator. Vertical scaling
is offered by [26], [27], [30] but these works address specific
objectives without considering multiple ones together. The cost
metric represents the cost considered in terms of CPU cores,
energy, or nodes consolidated by the considered works. It can
be seen that none of the works have considered a diverse range
of parameters and objectives together accounting for both the
end users and edge service provider interests simultaneously.

Given the heterogeneous and resource-constrained edge
environment, there is a need for a framework capable of
responding to dynamic workload, SLA violations, and user-
experienced accuracy avoiding edge server faults. Further-
more, it should cope with the limited available training data
to generate quality resource predictions. Therefore in this
work, we are proposing GAIKube which offers threefold
contributions. It employs DGAN to augment CPU usage data
for heterogeneous edge cluster nodes. Utilizing the extended
dataset GAIKube produces quality CPU usage predictions
using TimesFM. Finally, it exploits pipelined predictions to
produce container scheduling, migration, YOLO application
model-switching, and dynamic vertical scaling decisions.

III. PROBLEM FORMULATION

This section formally describes the problem of accuracy,
cost, and utilization of heterogeneous edge server nodes.
We consider a computationally heterogeneous edge cluster
with nodes N = {n1(θ, η), n2(θ, η), · · · , nK(θ, η)} offer-
ing distinct CPU (θ) and memory (η) resources. Containers
can request dynamic CPU (θr) and memory (ηr) resources
from edge nodes to host ML/DL applications. Let P =
{p1(θr, ηr), p2(θr, ηr), · · · , pJ(θr, ηr)} be this set of pods
representing distinct and heterogeneous resource requests. At
each point in time i, every node has a certain utilization
of its resources and a set of all the nodes utilization be
U = {u1(θ, η), u2(θ, η), · · · , uK(θ, η)}. CPU and memory
utilization of a node k at time i come from the total requested
to the maximum allocatable resources [24].

uk(i, θ, η) =

(∑
nk(θ

r)

nk(θmax)
,

∑
nk(η

r)

nk(ηmax)

)
. (1)

DL applications can have multiple model versions differing
in accuracy. Let m ∈ {1, 2, · · · ,M} be the set of model
versions and each version has unique associated accuracy am.
At any time interval i, there can be only one active model in
a given container p by:

M∑
m=1

xm,p(i) = 1, (2)

where xm ∈ {0, 1}. The accuracy is subjected to the active
version for a container p and the accuracy of the system at
time i be:

A(i) =
∑
p∈P

M∑
m=1

amxm,p(i). (3)

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

4

Active model in any container can be switched to another
version subjected to system state and requirements and it can
be stated as:

s(i) =

{
1 if xm,p(i− 1) ̸= xm,p(I),

0, otherwise.
(4)

While all the model switches in interval i in total containers
P can be:

SP (i) =
∑
p∈P

|xm,p(i)− xm,p(i− 1)| . (5)

To measure the overall average accuracy of the system, user
traffic served by each model is required. Each container p
entertains a fraction user traffic λp of total traffic λ. Since
the model may be switched at intervals on each container,
this leads to the possibility that traffic λp is further split
between model versions λm,p. Thus, the average accuracy aap
of container p over all the intervals I comes from the traffic
entertained by each model to its accuracy [6].

aap =
∑
i∈I

M∑
m=1

(
λm,p(i)

λp

)
amxm,p(i). (6)

Now the average or Mean Accuracy (MA) of the system
over all the containers, models, and the traffic of each model
can be estimated using Eq. (6):

MA =
∑
p∈P

(
λp

λ
aap

)
. (7)

As stated earlier each container requests for resources from
edge server nodes. Thus, the total system cost C at i comes
from the number of CPUs requested by containers [7].

C(i) =

P∑
p=1

p(ηr). (8)

Each application model responds to user queries and returns
the response. Considering this scenario of varying model
accuracy and their requirement for dynamic CPU, this work
estimates the SLA Violations (SLAV) to improve end-user
experience. SLA is violated when a request processing time
Te exceeds the threshold SLAth. SLA Violation of a given
model in container p is calculated by:

SLAVm,p =

{
1 if Te > SLAth,

0 otherwise.
(9)

The SLAV Rate (SVR) of a given container for interval i
can be estimated using the number of violations to the traffic
observed in this interval.

SVRm,p(i) =
SLAVm,p(i)

λm,p(i)
. (10)

At the end of time interval i−1, metrics are carried forward
to interval i including the cost of the system, current utilization
of edge server nodes, violation rate observed for each of the
containers, and accuracy of active models. Considering these,
the objective is to maximize accuracy A, maximize edge server

CPU utilization U , and minimize the violation rate V R in each
interval i given by:

max : MA+ U − SV R (11)
s.t. : Te ≤ SLAth, (11a)

θr ≤ max(N(θ)), (11b)
θr ≤ θth, (11c)

A(i) ≤
∑
p∈P

max
m∈M

(amxm,p(i)), (11d)∑
p∈P

p(θrr , η
r
r) ≤ N(θ, η), ∀k. (11e)

The first constraint ensures SLA violation does not occur
while the second constraint states that a container can never
request CPU than the maximum available CPU in the cluster.
The third constraint limits the container requested CPU from
the defined CPU threshold θth. The accuracy can never exceed
the maximum achievable. Lastly, the resources used by all the
containers in a node should stay below the node capacity.

IV. THE GAIKUBE FRAMEWORK

This section describes the system architecture, machine
learning employed models, and techniques used at each stage
of this framework.

A. System Architecture

2. DGAN
Training

3. DGAN Data
Generation

Metadata

1. Input Series
Decouple

DGAN

TimesFM

7. Times FM
Inference

8. MTA CPU
Predictions

6. C
ores

D
ecoupling

N1

N3 N4

11. Scaling +
Model Switch 10. D'

Metadata
Generator

9. Predictions

GAIKube
Scheduler

11. Migration

12. Public Traffic
& Response

9. D

Data-
center

n+1 n+2 ...

Heterogeneous
Containers

YOLO ModelsHeterogeneous
Edge Servers

DGAN
Data

Scheduler
Scheduler
Decisions Metadata

Distinct
Cores Data IoT Users

Profiled Logs

9. YO
LO

 Logs

n+1, n+2, n+3,...

n+1, n+2, n+3,...
n+1, n+2, n+3,...
n+1, n+2, n+3,...

D
G

AN

4. Metadata
Generation

5. Metadata
+DGAN1 23 n-1 n

Fig. 2: GAIKube System Architecture representing DGAN,
TimesFM Predictor, Scheduler, GKE Heterogeneous Testbed

Fig. 2 shows the system architecture highlighting the DGAN
generator, TimesFM predictor, GAIKube scheduler, GKE het-
erogeneous edge datacenter, IoT users, and the framework
flow. GAIKube framework entertains computationally hetero-
geneous edge servers and containers hosting a variety of
YOLO images shown in the data center module of Fig. 2.
Beginning with decoupling historical CPU usage data into
individual series followed by DGAN training. The trained
models generate new records followed by custom metadata

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

5

(MDT) creation. Both the DGAN data and MDT are concate-
nated for individual series and appended to the original dataset
in step 5 of Fig. 2. These extended records are pipelined
to the TimesFM predictor to generate Multi Timestep Ahead
(MTA) predictions for heterogeneous edge servers. TimesFM
differentiates the input dataset on unique cores. Moreover,
TimesFM is tuned with the desired prediction length followed
by MTA predictions pipelined to the GAIKube scheduler in
step 9. MTA predictions are conducted in an auto-regressive
mode where the predicted timesteps are appended to the
training data to extract forecast CPU usage for the next step.

The scheduler is responsible for producing proactive mi-
gration, scaling, and model-switching decisions leveraging
TimeFM predictions and YOLO profiled dataset. In addition, it
leverages the edge data center state including container place-
ments, selected YOLO models, provisioned container cores,
observed SVR, and edge server utilization. The scheduler
produces the latest decision D′ followed by its implementation
in the edge data center. Possible migration, model-switching,
and scaling are shown in the data center in Fig. 2. Finally,
public traffic is directed to the IP and port exposed by
containers.

TABLE II: Symbols and definitions

Symbol Definition

N Set of heterogeneous edge nodes
P Set of containers and/ or pods
U Set of CPU and memory utilization of N
I Total time intervals
i ε I Time interval i from I
C(i) Cost in terms of container cores in i
D′ New scheduling decision
M Yolo5 model versions
Y (i) Migration count in i
S(i) Total model switches in i
θ CPU of edge node
θr CPU requested by pod p
η Memory/ RAM of edge node

ηr Memory/ RAM requested by pod p
λ Total user traffic in I
λp Total traffic of pod p in I
λm,p Total traffic of pod p and model m in I
µ CPU predictions
ω Prediction window length
θth CPU usage threshold for edge nodes
SLAth SLA threshold of Yolo5 execution time
am Accuracy of model version m
A(i) Accuracy of active model version in pod at i
Te Execution time

B. Datasets

This section describes the Bitbrains and custom YOLO
datasets employed in this research work. GAIKube leverages
heterogeneous 2, 4, and 6 core machine records of Bitbrains
for edge servers CPU prediction. The YOLO profiled dataset
enriches the scheduler offering processing time of distinct
versions hosted in 0.5, 1, and 2 cores containers.

1) Bitbrains: Bitbrains [24] is an open-source dataset com-
prising CPU, memory, disk, and network features of dis-
tributed data center-hosted financial applications of banks,
credit card operators, and insurance companies. It is commonly
employed for edge/ fog settings [33] subjected to dynamic
workload characteristics. Accounting for the requirement of
highly dynamic workloads of heterogeneous servers, we ana-
lyzed 1250 VMs from fastStorage class and selected machines

TABLE III: DGAN Hyperparameters
Model Hyperparameters

DGAN

max_sequence_len: 288, feature_noise_dim: 32, num_records:5,
attribute_num_layers: 3, use_attribute_discriminator: true,
normalization: 1, apply_feature_scaling: true,
attribute_loss_coef: 10, generator_learning_rate: 0.0001,
discriminator_learning_rate: 0.0001, batch_size: 64,
attribute_discriminator_learning_rate: 0.0001

983, 980, and 943 of 2, 4, and 6 cores, respectively. These
selected machines showed regular patterns of CPU usage per-
centage over a month as shown in Fig. 3. 2 core VM exhibits
regular spikes, while 4 and 6 core VMs show balanced and
consistent usage patterns. The rest of the machines are either
underutilized or exhibit non-uniform spikes. Considering CPU
as the key factor in Google Cloud platform cost calculation
[34], we considered CPU Usage [%] in this work. Initial
data analysis showed records are logged at irregular intervals
with missing values at certain timestamps for each core. We
addressed these limitations by resampling and forwardfill at a
5-minute interval. These processed records of 2, 4, and 6 core
VMs are concatenated, sorted, and ingested to the TimesFM.

2) Yolo Profiling: We employed You Look Only Once 5
(Yolo5) [35] DL application, which performs detection and
classification on images and live video streams, identifies
objects by drawing bounding boxes, and shows confidence us-
ing probability. Yolo5 has multiple versions including Yolo5n
(nano), Yolo5s (small), Yolo5m (medium), etc. differing in
accuracy and computational resources requirements. Consid-
ering the constrained resources at the edge and the timely
response requirement of end users, we adopted nano, small,
and medium versions for conducting inferences in less than
a second. Given that CPU cores substantially influence task
processing time, we profiled a custom dataset of the YOLO
model version and hosted container CPU cores. A Docker1

image for each nano, small, and medium version is created and
deployed in 0.5, 1, and 2 cores containers hosted in the GKE
London region. These containers can receive public traffic on
port 5000 using Flask2, detect and label the provided image
employing the model version, and return the results to the
user. Finally, the received response is stored on the client side.
The response includes the detected image, processing time,
propagation time, model version, container core, etc. These
profiled metrics are utilized by the scheduler for decision-
making shown in step 9 of Fig. 2. Details related to the
working of Kubernetes are given in our previous work [4].

C. AI/ML Models

This section details DGAN and TimesFM models utilized
in the GAIKube framework.

1) DoppelGANger CPU Generator: DGAN [15] is a novel
time series data generation model aiding the traditional gen-
erator and discriminator with per-feature scaling to mitigate
mode collapsing in GANs. It incorporates multi-step RNN
predictions capturing temporal sequences to produce long-
term data. However, DGAN fails to generalize multiple se-
ries simultaneously. Despite MDT generation claims, it was

1https://www.docker.com/
2https://flask.palletsprojects.com/en/3.0.x/

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

6

unable to capture time series MDT patterns and produced
MDT at irregular timestamps. Finally, DGAN is sensitive to
the frequency and number of future samples. Experimental
analysis with 72, 144, 288, and 2016 future samples showed
that DGAN collapses with prolonged future sample generation.
On the contrary, short-term future samples resulted in high
fluctuations failing to grasp the trend.

Algorithm 1 DGAN Data Generation
1: Input: Historical Bitbrains Data ρ
2: Output: Combined New and Historical Records ρ
3: procedure DATA GENERATION
4: ρ = load data
5: ρ = clean(ρ)
6: f [1, 2, · · · , F] = ρ[θ], ρ[θ], ρ[θ], · · · ρ[θ]
7: for j = 1, j++, while j ≤ F do
8: f = f [j]
9: ϕ = train(f,H)

10: f∗ = ϕ(f)
11: mdt = datetime(begin, end)
12: f∗ = f∗[mdt]
13: f = f + f∗

14: ρ∗[f] = f

15: ρ = ρ∗[1] + ρ∗[2]+, · · · , ρ∗[F]
16: return ρ

Considering these challenges, we split the Bitbrains dataset
into individual 2, 4, and 6 core series shown in Algorithm 1
step 6 and Fig. 2 step 1. GAIKube trains a separate model for
each server core shown in Algorithm 1 step 9, where H is
the DGAN hyperparameter given in Table III. Moreover, we
already had decoupled the date-time MDT. Leveraging future
sample analysis, we tuned DGAN to generate one-day data
f∗ comprising 288 CPU usage samples for each core at a
5-minute interval. To make freshly generated logs consistent
with the Bitbrains, GAIKube generates MDT for the number
of samples per day and the number of days followed by
logs concatenation represented in steps 11-13 of Algorithm 1.
Finally, all the core logs are combined to produce an extended
single dataset ρ in Algorithm 1 step 15 and Fig. 2 step 5. Fig.
3 exhibits original and DGAN generated data of employed 2,
4, and 6 cores heterogeneous servers from Bitbrians. It can be
seen that the DGAN data follows similar trends for each core.

Time
0

20

40

60

80

100

CP
U

Us
ag

e
[%

] Real Data
DGAN Data

Time
0

20

40

60

80

100

CP
U

Us
ag

e
[%

] Real Data
DGAN Data

2013-08-13

2013-08-17

2013-08-21

2013-08-25

2013-08-29

2013-09-01

2013-09-05

2013-09-09

2013-09-13

2013-09-17

Time

0

20

40

60

80

100

CP
U

Us
ag

e
[%

] Real Data
DGAN Data

Fig. 3: Real and Doppler GAN CPU usage data of 2, 4 and 6
core VMs

2) TimesFM CPU Predictions: Leveraging tokens, posi-
tional encoding, and self-attention in the decoder-only mode,
Times Foundation Model (TimesFM) [25] addresses RNN

limitations of mishandling long-term past temporal dependen-
cies. It equates tokens as the input time series data patch
and implements positional encoding to capture temporal de-
pendencies followed by self-attention enabling the model to
learn the relation among different patches. GAIKube pipelines
Bitbrains extended dataset from DGAN for heterogeneous
VMs. To better capture the trends, TimesFM’s internal archi-
tecture enables each core to be processed as a unique series.
Addressing the limited visibility into the future given the
uncertain and dynamic edge computing paradigm, GAIKube
exploits TimesFM long-horizon forecasts producing half-hour
or six timesteps ahead CPU usage predictions for each server.

TimesFM prediction procedure is shown in Algorithm 2.
TimesFM requires historical data ρ, prediction length ω, and
unique VM cores. As stated earlier, we utilize the DGAN
returned dataset. After loading and splitting the dataset into
80% and 20% training and testing sets, we calculate the
number of iterations for auto-regressive model predictions
in step 6. Predictions µ are made using hyperparameters H
given in Table VI. TimesFM employs previous outputs in
an auto-regressive mode requiring predicted timesteps to be
incorporated into the training data to generate predictions for
the next iteration as shown in step 10. Finally, TimesFM
CPU usage predictions of edge servers are ingested into the
scheduler for informed decision-making as shown in Fig. 2
step 9.

Algorithm 2 TimesFM Prediction
1: Input: Historical Data ρ, Prediction Window ω, Unique VM Cores vm core
2: Output: Predictions µ
3: procedure TIMESFM
4: ρ = load data
5: trainset, testset = train test split()
6: iter = (|testset|/ω × vm core)
7: µ∗ = []
8: for j = 1, j++, while j ≤ iter do
9: µ = timesfm.predict(trainset,H)

10: trainset = trainset + trainset[µ]
11: µ∗[j] = µ

12: µ = µ∗[1] + µ∗[2], · · ·
13: return µ

D. Scheduler
GAIKube scheduler is responsible for container migration,

scaling, and YOLO model-switching decisions to achieve
contrasting accuracy, utilization, and SVR objectives given
in Eq. (11) for underlined heterogeneous edge clusters. This
scheduler is classified into sub-categories to respond to dy-
namic workloads leveraging Times FM predictions and ob-
served latency metrics. Algorithm 3 presents a scheduling
procedure responsible for managing overload, normal load,
and SVR using Algorithms 4, 5 and 6, respectively. Moreover,
containers hosted in forecasted overloading servers are proac-
tively migrated to mitigate server faults. GAIKube scheduler
extracts MTA TimesFM predictions µ at each interval. In
addition, it reads public traffic YOLO statistics of the previous
iteration for each container in the system to calculate SVR.
Violations are calculated from execution time Te of user
requests as each model version exhibits different processing
times for distinct container cores. Algorithm 3 step 8 leverages
predictions to detect overloading nodes. In case of a non-
empty response, Algorithm 4 is invoked with overloaded nodes

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

7

indices O. There are possible migrations or container vertical
downscaling from predicted overload servers O. Otherwise,
the predicted load is in control where GAIKube strives for
accuracy hosting improved accuracy YOLO model using Algo-
rithm 5. Algorithm 6 entertains the non-altered containers and
switches hosted YOLO versions to either maximize accuracy
or reduce SLA violations. System cost in terms of containers
CPU cores, migration count, model switches count, and the
rest of the metrics are updated in step 13. New decision D′

with possible migrations, vertical scalings, and model-switches
is implemented in the GKE heterogeneous edge server as
shown in steps 10-11 of Fig. 2.

Algorithm 3 GAIKube Scheduler
1: Input: Logs Path, SLA Threshold SLAth, CPU Threshold θth, Previous Decision

D
2: Output: New Scheduling Decision D′

3: procedure PLACEMENT
4: for i = 1, i++, while i ≤ I do
5: µ = Timesfm(ρ)
6: Θ = logs[i − 1]
7: V = SLA-Violations(Θ)
8: if O = ∃ µ ≥ θth then
9: V ′, D′ = Overload(O, V)

10: else
11: V ′, D′ = Normal − Load(V)

12: D′ = Model − Switching(V ′)
13: Calculate C(i), Y (i)
14: return D′, C(i), Y (i)

1) Predicted Overload: Algorithm 4 presents GAIKube
procedure responding to predicted overload situations. Fig. 3
presents the CPU usage of employed core VMs and it is visible
that 2 core has regular CPU usage exceeding the threshold of
80%. The overload handler identifies and sorts containers P̂
on each of the predicted overloaded nodes in descending order
of their requested resources as shown in Algorithm 4 step
4. In search of a new destination for these containers, edge
cluster nodes N̂ are shortlisted offering at least 0.5 cores of
CPU followed by descending order sorting. P̂ and N̂ given in
scheduler section are subsets of original P and N , respectively.

Exploiting the sorted available edge nodes with predicted
normal load N̂ , GAIKube attempts to migrate each container
without CPU downscale in the first place if the new node stays
under the 80% threshold as shown in steps 7-17 Algorithm 4.
If the server usage condition fails in step 13, GAIKube cuts
down the container CPU and repeats the search. Container
CPU cutdown stops at 0.5 cores considering the base case
for hosting the YOLO application. In a successful search,
subjected container location, YOLO image mi, and CPU core
are modified given in Algorithm 4 step 14. If the requested
CPU resources on given overloaded nodes fall under the
threshold confirmed in step 22 Algorithm 4, GAIKube leaves
the rest of the containers on this node and moves to the next
overloaded node in the list. Finally, updated decision D′ and
SLA violation list V are returned for further processing.

2) Predicted Normal Load: GAIKube Algorithm 3 invokes
Normal Load Algorithm 5 when MTA predicted CPU usage
of heterogeneous edge servers is under the threshold for
all edge servers. In such times, GAIKube strives for higher
accuracy with possible upscaling. Differing from overload,
Algorithm 5 selects containers P̂ hosting less accuracy YOLO

Algorithm 4 Overload Handler
1: procedure OVERLOAD(O, V)
2: for o = 1, o++, while o ≤ |O| do
3: P[o] =

∑
p∈o p

4: P̂ = descend sort(P)
5: N̂free = descend sort(N̂)
6: for o = 1, o++, while o ≤ |O| do
7: for p = 1, p++, while p ≤ |P̂o| do
8: placed = False
9: while |N̂free| > 1 do

10: h = N̂free.pop()
11: θ = p(θ)
12: while θ >= min(p(θr)) do
13: if ((h(θ) + θ)/halloc) ∗ 100 ≤ θth then
14: D′[p] = (hid, θ,mi)
15: V [p][pass] = True
16: placed = True
17: break
18: else
19: θ = θ/2

20: if placed = True then
21: break
22: if outil ≤ θth then
23: break
24: return V,D′

Algorithm 5 Normal Load Handler
1: procedure NORMAL-LOAD(V)
2: P̂ = ascend sort(P̂)
3: N̂free = descend sort(N̂)
4: for p = 1, p++, while p ≤ |P̂ | do
5: placed = False
6: pod = P̂ .pop()
7: while |N̂free| > 1 do
8: h = N̂free.pop()
9: θ = max(p(θr))

10: while θ > pod(θr) do
11: if ((h(θ) + θ)/halloc) ∗ 100 ≤ θth then
12: D′[p] = (hid, θ,mi)
13: V [p][pass] = True
14: placed = True
15: break
16: else
17: θ = θ/2

18: if placed = True then
19: break
20: return V, D’

versions and sorts them in ascending order of CPU cores.
Moreover, edge servers are sorted in the descending order of
remaining resources. For each container, GAIKube begins the
search with the highest CPU core and model version based
on the YOLO profiled dataset to select a new server capable
of hosting this container without violating the CPU usage
threshold checked in step 11 Algorithm 5. In success, container
location, CPU cores, and YOLO image are modified along
with locally managed cluster metrics. However, the failure
leads to container CPU cutdown shown in step 17 followed by
a repeating cycle on the same server node. This cycle breaks
when CPU cutdown reaches the currently provisioned cores
with the threat of possible scale-down instead of up. Algorithm
5 returns decision D′ and modified SLA violation list V of
containers to Algorithm 3.

3) Model Switching: In either of the load situations ex-
plained before, the model-switching Algorithm 6 is called
at each iteration given in step 12 of Algorithm 3 with the
modified violation list V ′. This modified list has the SVR of
unaffected containers in the system so far where Algorithm
6 modifies their YOLO models. GAIKube downgrades the
YOLO model for the container offering a 10% violation rate

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

8

Algorithm 6 Model-Switching
1: procedure MODEL-SWITCH(V ′)
2: for p = 1, p++, while p ≤ |P | do
3: row = V [p]
4: if row[p][pass] = True then
5: continue
6: curr vio = row[violation]
7: if curr vio > 0.1 then
8: Model version down
9: else

10: Model version up
11: N̂free = sort(N̂)
12: placed = True
13: while |Hfree| > 1 and placed = False do
14: h = N̂free.pop()
15: θ = p(θ)
16: if ((h(θ) + θ)/halloc) ∗ 100 ≤ θth then
17: D′[p] = (hid, θ,mi)
18: placed = True
19: break
20: return D′

for public traffic entertained in the previous iteration otherwise
the model is upgraded in steps 7-10 of Algorithm 6. In either
case, a new container has to be started with the updated YOLO
image and edge server node. Algorithm 6 search edge server
for this container in steps 13-19 with 80% threshold condition.

4) Complexity Analysis: Beginning with DGAN being re-
sponsible for data augmentation exploiting limited available
historical records by creating synthetic samples. Among data
preprocessing, DGAN training, new sample generation, and
concatenation, training is the dominant factor with the com-
plexity of O(M · R · T) where M , R, and T represent
unique servers (each core has an individual model), number of
employed records, and training steps, respectively. TimesFM
predictor is the second significant component offering auto-
regressive inferences with the computational complexity O(I ·
R) where I is the predictions iteration count shown in step
6 of Algorithm 2. Finally, the scheduler component poses
more complexity for its sub-modules to handle dynamic work-
load and accuracy objectives producing container migration,
dynamic scaling, and model-switching decisions. Scheduler
Algorithm 3 calls either Algorithm 4 or 5 with a set of
predicted overloaded nodes O where each of these sub-
modules deals with modified pods list P̂ and nodes list N̂ . The
model-switching algorithm is mandatory with an additional
complexity of pods P and modified nodes N̂ . Thus, the
scheduler yields an overall complexity of O(O ·P̂ ·N̂+P ·N̂).

Combining the complexities of DGAN, TimesFM predictor,
and the GAIKube scheduler, the worst-case complexity of this
framework can be calculated by O(M ·R·T+I ·R+O ·P̂ ·N̂+
P ·N̂). It is important to note that the actual runtime may vary
due to implementation details, parallel processing capabilities,
network latency, and the specific algorithms employed for
model training, prediction, and decision-making.

V. PERFORMANCE EVALUATION

This section details the GKE experimental testbed, evalua-
tion metrics, and workload module. In addition, we analyzed
the performance of compared predictors and schedulers sep-
arately to signify their contributions in terms of respective
evaluation metrics.

A. Experimental Setup

GAIKube evaluates the performance of the proposed work
and its counterparts in the GKE-based real testbed Europe-
West2-b London regional cluster. It is a three heterogeneous
nodes cluster of 2, 4, and 6 cores VMs with 50 GB of fixed
storage for each VM. Due to budget limitations, one node from
each core category is considered. Furthermore, we employed
two 0.5 cores, one of 1 core and one of 2 cores containers
in the experimentation. Table IV represents GKE cluster
configurations considered in this work. After cluster creation,
these machines are warmed up by pulling each Docker image
in every node/ VM as image pulling poses significant delays
that can substantially influence experimentation. Beginning
with the deployment of all the containers in the optimized
mode (explained in section I-B), the scheduler is activated
from iteration 1 as it requires metrics for decision-making.

TABLE IV: Server Nodes and Containers Configurations

Machines
Features vCPU Cores Memory Disk Size Quantity IP Type Model Version

(GB) (GB)

Node-1 2 4 50 1 Private
Node-2 4 8 50 1 Private
Node-3 6 8 50 1 Private

Container-1 0.51 1 Dynamic 1 LoadBalancer Nano2

Container-2 11 1 Dynamic 2 LoadBalancer Small2

Container-3 21 1 Dynamic 1 LoadBalancer Medium 2

1Container-CPU*: 0.5, 1, 2. 2Model-Version*: Nano, Small, Medium.

Table V presents the 99th percentile (P99) of processing
time for each container core and model version extracted
from the YOLO profiled dataset. Considering 700ms SLA as
shown in the Motivation section, nano can meet SLA for one
and two-core containers, small is better suitable for two-core,
and medium is highly likely to violate SLA for all the cores
given these results. Considering these insights 0.5, 1, and 2
core containers begin with nano, small, and medium versions,
respectively while the container CPU cores and YOLO model
versions are dynamically modified.

TABLE V: 99th Percentile Processing Time (ms) Comparison

Core
Version Nano Small Medium

Half 902.03 2015.69 6662.79
One 499.33 895.28 2349.16
Two 368.76 569.76 925.28

Each of the experiments is set to run for 43 iterations of
5-minute intervals from the testing set of Bitbrains, making
it 3 hours and 40-minute trace. Due to time and resource
limitations, we rescaled Bitbrains at 5-minute to 1-minute
intervals. After each scheduling decision, there is a 1-minute
of public traffic to each container generated by the workload
module excluding container recreation overhead. At the end of
an interval, the scheduler extracts various metrics, TimesFM
predictions, and SVR to produce a new decision for the next
iteration.

B. Evaluation Metrics

This section describes the evaluation metrics of both the
prediction models and the edge cluster, used in this work to
evaluate the performance of compared techniques.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

9

1) Perdition Models Metrics: We have evaluated the per-
formance of GAIKube using time series metrics such as Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE),
and their details are given in previous works [36].

2) Edge Cluster Metrics: The following metrics are used
to evaluate the performance of the GAIKube framework:

• SLA Violation Percentage (VP) [33]: SLA violation is
defined as the workload request exceeding the 700ms
threshold given by Eq. (9). For a given container over
the total time intervals of I , VP comes from:

V P =

∑I
i=1 Te > SLAth

|I|
× 100%. (12)

• Average Migrations [7]: Migration is the case when a
container location changes in comparison to the previous
interval location. Average migrations over the total time
interval I comes from:

AM =

∑I
i=1 Y (i)

|I|
, (13)

where Y (i) shows the migration count in interval i.
• Mean Accuracy (MA [%]): Mean accuracy of Yolo mod-

els can be calculated by Eq. (7).
• Average Cost [7]: Cost comes from the CPU cores

requested by containers given in Eq. (8) and the mean
cost is the sum of cost over the total time intervals.

AC =

∑I
i=i C(i)

|I|
. (14)

• CPU Utilization Percentage (CUP): CPU utilization [37]
of a server node can be calculated using Eq. (1):

CUP =

∑
nk(θ

r)

nk(θmax)
× 100%. (15)

TABLE VI: Model Hyperparameters
Model Hyperparameters

TimesFM

input=(timestamp, vm_core, cpu_usage),
horizon=6, context_len=288, num_layers=20,
input_patch_len=32, output_patch_len=128,
frequency=’5min’, model_dims=128

LSTM

hidden_layers=2, layers=lstm, neurons=100,
optimizer=Adam, lr=0.0001, loss=’mse’,
epochs=100, batch=128, input=(72, 7),
hidden_activate=’relu’, output=18,
output_activate=’linear’

Bi-LSTM

hidden_layers=2, layers=bi_lstm, neurons=100,
optimizer=Adam, lr=0.0001, loss=’mse’,
epochs=100, batch=128, input=(72, 7),
hidden_activate=’relu’, output=18,
output_activate=’linear’

C. Baselines

This section describes all the baselines considered in the
GAIKube framework. We evaluated time series prediction
models for CPU usage, followed by schedulers including
default Kubernetes configured in optimized mode and the
combination of Pod level VPA along with Model-Switching.

1) Prediction Baselines: This section presents the baselines
compared to the TimesFM to highlight the justification of its
employment. We aimed to leverage long-term predictions for
proactive decision-making to improve cluster nodes’ health
and avoid over-usage. For LSTM and Bi-LSTM, we added
time series features of minute, hour, day, month, year, etc.

into the Bitbrains dataset followed by normalization to [0,1].
For the fair comparison with TimesFM 6 timesteps ahead pre-
dictions, we created data sequences for LSTM and Bi-LSTM,
comprising the last two hours of data as input and target CPU
Usage [%] of the next 18 values making 6 timesteps for each
core. As stated in section IV-C2 that TimesFM entertains each
core as an individual series, we followed the same approach
for both LSTM and Bi-LSTM by creating a separate model for
each core. Table VI shows the hyperparameters of TimesFM
and compared models.

• LSTM [30], [38]: LSTM is an RNN model commonly
used for time series predictions based on its feature of
holding memory for past intervals. It uses input, forget
and output gates for traversing input data and weights to
minimize the error by learning the data patterns.

• Bi-LSTM [31], [39]: It is an extended version of LSTM
and it creates two LSTM models i.e; forward and back-
ward to update model weights using backpropagation
aiming to minimize error.

2) Scheduler Baselines: As GAIKube offers model-
switching, dynamic scaling, and container scheduling simulta-
neously leveraging TimesFM pipelined predictions. Thus, the
counterparts are required to be equipped with similar features
for fair comparison. We selected two counterparts comprised
of industry-standard composite features.

• The first scheme called Single model VPA GKE (SVG)
offers no model-switching employing industry-standard
GKE Vertical Pod Autoscaling (VPA)[27] and the GKE
optimized mode scheduler [26].

• Model-switching [6], GKE VPA [27] and GKE opti-
mized scheduler [26] combines together to create MVG
scheme. Unlike SVG, MVG dynamically updates the
YOLO model.

The scheduling and vertical container scaling decisions are
the responsibility of GKE VPA and GKE scheduler for both
SVG and MVG. GKE produces these decisions by exploiting
its internal decision engine, monitoring, and historical records.
D. Workloads

Workload is the real-world traffic directed to Yolo applica-
tions serving public users. In each experiment interval i, public
traffic exploiting FLASK API is directed for one minute to all
the active pods/ containers in a sequential manner followed
by storing the logs. These insights are employed for container
resource management in the next iterations subjected to the
SLA violation rate.

E. Experimental Results

This section compares the performance of prediction models
and the edge cluster schedulers.

1) Prediction Models Comparison: Fig. 4 shows the pre-
diction results of baselines LSTM and Bi-LSTM against
TimesFM. This figure presents a comparison of compared
models on concatenated Bitbrains (left) and DGAN (right)
data split by a vertical line. Each of these models is employed
to predict CPU Usage [%] for the next half an hour as
stated earlier. It can be seen that all three compared models

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

10

captured the trend with LSTM a bit shy to detect peaks for 2
core machines. However, TimesFM and Bi-LSTM have better
performance in detecting trends and peaks. Moreover, the auto-
regressive mode enables TimesFM to handle the Bitbrains to
DGAN data transition very well where LSTM and Bi-LSTM
can be seen of the beat for 4 cores at a few times.

40

60

80

CP
U

Us
ag

e
[%

]

2 Core
Real Data
Bi-LSTM
LSTM
TimesFM

30

40

50

60

70

CP
U

Us
ag

e
[%

]

4 Core
Real Data
Bi-LSTM
LSTM
TimesFM

12:00
18:00

00:00
06:00

12:00
18:00

00:00
06:00

12:00

Time

30

40

50

CP
U

Us
ag

e
[%

]

6 Core
Real Data
Bi-LSTM
LSTM
TimesFM

Fig. 4: TimesFM, Bi-LSTM, LSTM CPU predictions on
testing & DGAN data of 48 hours for 2, 4 and 6 Core VMs.
Bitbrains Testing data is at the left while DGAN is at the right
of the vertical line

Two cores server has CPU usage between 20-85% with
regular spikes exceeding the 80% threshold. 4 and 6 cores
server show stable usage. Prior ranges between 30-70% while
later has CPU usage between 30-50%. TimesFM outperforms
both LSTM and Bi-LSTM for 4 core VM where it can be seen
that both counterparts get off the pattern but later cover the
loss. The auto-regressive mode data feeding enables TimesFM
to predict more accurate results due to fresh data. Finally, 6
core VM has the most stable usage among the other 2 VMs.
Similar results are shown by each model where TimesFM is
staying in the middle, missing a few short peeks but these
are not critical in comparison to 2 core where CPU usage
hits 80% critical point. LSTM stays closer to TimesFM and
Bi-LSTM attempts to detect peaks at few points. Table VII
presents RMSE, MAE error scores, and the average prediction
or inference time for a single prediction. We are presenting
RMSE and MAE on the Bitbrains testing data and concate-
nated Bitbrains and DGAN data. TimesFM has the the lowest
RMSE and MAE, closely followed by LSTM while Bi-LSTM
has a poor score for both metrics. We have similar results for
Bitbrains and DGAN data RMSE and MAE where TimesFM
has the lead followed by LSTM and Bi-LSTM validating Fig. 4
results. Furthermore, TimesFM has the worst inference time of
645ms which is more than 10 times the baselines for reasons.
Firstly, both the LSTM and Bi-LSTM are provisioned well-
processed data while TimesFM requires non-normalized data
and a few hyperparameters performing the processing itself.
Secondly, baselines are once trained while TimesFM requires
auto-regressive data. These reasons are responsible for highly
accurate predictions of TimesFM at the cost of inference time.

Analyzing the RMSE and MAE errors of TimesFM on the
concatenated dataset, two conclusions can be drawn. Firstly,
DGAN can produce quality time series synthetic data to

TABLE VII: Proposed and Baselines Models Comparison

Model Test Data
RMSE

Test Data
MAE

Test + DGAN
RMSE

Test + DGAN
MAE

Avg. Inf.
Time (ms)

TimesFM 4.301 2.824 4.847 3.102 644.808
Bi-LSTM 5.617 4.526 7.108 5.535 47.483

LSTM 4.448 3.528 5.366 4.289 49.311

address the data limitations with significantly low errors. Sec-
ondly, auto-regressive logs appending enables the Transformer
family TimesFM to produce significant accurate predictions.
Thus, we employed TimesFM in the GAIKube framework.

2) Cluster Metrics Comparison: This section presents the
comparison of GAIKube and the baselines mentioned in
section V-C2 in terms of metrics defined in section V-B.

Fig. 5 presents the CPU utilization of each of the 2, 4,
and 6 cores GKE edge servers. These are the results of 43
timesteps approximately 3 hours 40 minutes from the Bit-
brains dataset. Exploiting the TimesFM predictions, GAIKube
improves utilization and successfully avoids faults by not
letting any server violate the CPU 80% threshold. It emptied
2 cores server and maximally utilized the 4 and 6 cores
servers. Dynamic upscaling of containers in response to higher
accuracy exploiting P99 latency given in Table V with the
CPU threshold condition eliminates 2-core VM from the race.
On the contrary, both SVG and MVG utilize the same GKE-
optimized scheduler and it can be seen that 2 and 4-core
VMs are over-utilized by each of them, while the 6-core VMs
are under-loaded. GKE optimized mode strives to maximize
utilization without any limitation on resource usage raising
faults and damage probability by a higher magnitude. Results
analysis shows that GAIKube efficiently utilizes available
resources while avoiding over-utilization at the heterogeneous
cluster.

0

25

50

75

100

Re
qu

es
te

d
CP

U
[%

]

2 Core

Predicted CPU
GAIKube
SVG
MVG

0

25

50

75

100

Re
qu

es
te

d
CP

U
[%

]

4 Core

Predicted CPU
GAIKube
SVG
MVG

0 10 20 30 40
Iterations

0

25

50

75

100

Re
qu

es
te

d
CP

U
[%

]

6 Core

Predicted CPU
GAIKube
SVG
MVG

Fig. 5: Requested CPU Percentage of 2, 4 and 6 core VMs

Fig. 6a shows the comparison of average accuracy given in
Eq. (6) achieved by each container. Max shows the maximum
achievable accuracy of Yolo5 offered by the medium version
while Min is the lowest bound by the nano version. Containers
0, 1, 2, and 3 are initialized with nano, small, small, and
medium versions, respectively based on P99 latency compari-
son in Table V. Model-switching capability subjected to SVR
and higher accuracy hunger, results in the best performance for
GAIKube. Despite starting with 0.5 core, container 0 upscales
in the initial phase and stays at this CPU core to maximize

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

11

0 1 2 3
Container Number

0

20

40

60

80

100

Yo
lo

5
Ac

cu
ra

cy
 (%

)

Min

Max

GAIKube
SVG
MVG

(a) YOLO mean accuracy
of containers

0 1 2 3
Container Number

0

20

40

60

80

100

Vi
ol

at
io

n
[%

]

GAIKube
SVG
MVG

(b) SLA VP of containers

0 10 20 30 40
Iterations

0

2

4

6

8

10

Co
st

GAIKube
SVG
MVG

(c) CPU Cores Cost

0 10 20 30 40
Iterations

0

1

2

3

4

5

M
ig

ra
tio

ns
 C

ou
nt

GAIKube
SVG
MVG

(d) Migration Count

Fig. 6: YOLO mean accuracy, SLA VP, CPU cores cost, and migration count comparison of GAIKube, SVG, and MVG

accuracy for GAIKube while SVG and MVG fail to upscale.
Both of these employ the same GKE scaling mechanism.
Despite enabled vertical scaling, GKE VPA fails to upscale
for two reasons. Firstly, it can scale utilizing monitored CPU
and memory resources only. Secondly, GKE VPA is offered
for the Deployment level, not the individual Pod level. These
limitations left container 0 with a 0.5 core hosting nano model
for each SVG and MVG. Yolo5 small version offers 56.8%
of accuracy and SVG achieves this at containers 1 and 2
as it never changes the model. While GAIKube and MVG
model switching resulted in slightly lesser accuracy to SVG.
Finally, all of GAIKube, SVG, and MVG achieve the highest
accuracy at container 3. SVG never changes the model, while
MVG and GAIKube have the same model-switching logic.
With this logic, the model is only switched to low accuracy
if there is at least a 10% violation rate in the last interval,
which never happened for GAIKube and MVG. Given the
highest achievable accuracy of 64.1% for Yolo5 medium,
GAIKube acquires 60.21%, SVG 55.85%, and MVG 54.7%
mean accuracy at cluster level as shown in Table VIII.

TABLE VIII: Violation Percentage, Mean Accuracy, Average
Migrations and Average Cost Comparison

Method
Metric VP [%] MA [%] AM AC

GAIKube 3.43 60.21 0.34 5.96
SVG 14.77 55.85 0.0 4.5
MVG 15.30 54.70 0.84 4.5

SLA violation percentage for each container is shown in
Fig. 6b given by Eq. (12). GAIKube offers the lowest VP
for containers 0 and 1 while, there are 8.23% and 1.14%
violations for containers 2 and 3, respectively. In conjunction
with container 0 accuracy in Fig. 6a, GAIKube has the lowest
VP while the failed scaling of SVG and MVG results in almost
50% VP. GAIKube has the lowest violations for container 1
because of model switching followed by MVG for the same
reason. SVG hosts the same small version for both containers
1 and 2 and it has 8.74% violations for container 1 and 0% for
container 2. As the SLA violations are subjected to execution
time Te of user requests, some unforeseen background CPU
usage can lead to such cases. As expected container 3 has
the lowest violations for all the compared techniques. Further,
Table VIII presents cluster-wide VP where GAIKube has
3.43%, SVG has 14.77% and MVG has 15.30% VP. GAIKube
and MVG are offering higher SLA violations for container
2 subjected to switching logic which shows the requirement
for a fine-tuned logic. Cost is presented in Fig. 6c for each
time interval. As stated earlier container 0 is upscaled in the

initial phase and it stays at this scale throughout the lifetime
which resulted in higher cost for GAIKube in comparison to
SVG and MVG. The experiment is initialized with 0.5, 1,
1, and 2 cores for containers 0, 1, 2, and 3, respectively.
It sums up the cost to 4.5 cores. This cost is constant for
SVG and MVG for its vertical scaling limitation. However,
GAIKube scales containers 0, 1, 2, and 3 to 2, 1, 1, and 2 cores
respectively offering the highest cost. Table VIII presents the
AC of each technique. Finally, Fig. 6d shows the container
migrations in each iteration. SVG has zero migrations as it
never scales and does not change the model version. There
are frequent migrations for MVG for its model switching and
the GKE-optimized mode scheduling. On the contrary, there
are fewer migrations for GAIKube but these are significant
ones. As GAIKube moves from nano to small and medium
versions in all containers. Thus, there is a possibility of
container migration subjected to SLA VP of 10% in the last
iteration. However, the available resources in the 4 and 6 core
machines are not enough to host more containers while 2 core
is predicted to be overloaded, thus there is no migration after
the 13th interval for GAIKube. AM presented in Table VIII
shows that SVG conducted no migrations and scaling while
there is an average of 0.34 migrations for GAIKube and 0.84
migrations for MVG.

VI. CONCLUSIONS AND FUTURE WORK

We presented GAIKube to address the challenges of data
limitation, poor time series predictions, and beyond the safe
threshold CPU usage by industry-standard GKE scheduler.
GAIKube employs DGAN to generate new CPU usage data
for heterogeneous edge servers. Google TimesFM exploits
this data to produce MTA predictions for informed decision-
making. RMSE and MAE errors for concatenated Bitbrians
and DGAN data demonstrate the quality of DGAN synthetic
data and the significance of TimesFM predictions. Finally,
GAIKube proposed a proactive and efficient Kubernetes con-
tainer orchestrator to maximize resource utilization, reduce
SLA VP, improve user-experienced accuracy, and avoid server
faults for the hosted Yolo5 DL application. CPU usage-
oriented proactive container management and SLA violation-
oriented reactive model switching enable GAIKube to achieve
contrasting accuracy, SLA, and cost objectives. GAIKube
offers a reduced 3.43% SLA violations and 3.89% accuracy
drop at 1.46 CPU core expense. The industry-standard GKE
SVG scheduler offers 14.77% SLA violations and 8.25% MA
loss while MVG has 15.30% and 9.4% SLA violations and
MA loss, respectively, where both schemes failed to avoid
server faults. There are a few possible directions to explore

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

12

in the future. Firstly, TimesFM performed the best however,
the higher inference time can be a bottleneck that should
be reduced. Secondly, GAIKube addressed computationally
heterogeneity for CPU servers leaving room to explore a mix
of CPU and GPU heterogeneous edge clusters. Finally, we
employed the YOLO application and these IoT applications
can be increased to produce an extensive framework.

ACKNOWLEDGMENTS

B. Ali is supported by the Ph.D. Scholarship at the Queen
Mary University of London. M. Golec is supported by the
Ministry of Education of the Turkish Republic. H. Wu is
supported by the National Natural Science Foundation of
China (No. 62071327). F. Cuadrado has been supported by
the HE ACES project (No. 101093126).

SOFTWARE AVAILABILITY

GAIKube framework code is publicly available for the
researchers at https://github.com/BabarAli93/GAIKube.

REFERENCES

[1] X. Shao, G. Hasegawa et al., “An online orchestration mechanism
for general-purpose edge computing,” IEEE Transactions on Services
Computing, vol. 16, no. 2, pp. 927–940, 2022.

[2] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A review
of machine learning and iot in smart transportation,” Future Internet,
vol. 11, no. 4, p. 94, 2019.

[3] L. M. Al Qassem, T. Stouraitis, E. Damiani, and I. M. Elfadel,
“Containerized microservices: A survey of resource management frame-
works,” IEEE Transactions on Network and Service Management, 2024.

[4] B. Ali, M. Golec, S. S. Gill et al., “Edgebus: Co-simulation based
resource management for heterogeneous mobile edge computing envi-
ronments,” Internet of Things, vol. 28, p. 101368, 2024.

[5] S. S. Gill, M. Golec et al., “Edge ai: A taxonomy, systematic review and
future directions,” Cluster Computing, vol. 28, no. 1, pp. 1–53, 2025.

[6] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg, “{Model-
Switching}: Dealing with fluctuating workloads in {Machine-Learning-
as-a-Service} systems,” in 12th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 20), 2020.

[7] M. Salmani et al., “Reconciling high accuracy, cost-efficiency, and low
latency of inference serving systems,” in Proceedings of 3rd Workshop
on Machine Learning and Systems, 2023, pp. 78–86.

[8] G. T. Francis et al., “A hybrid intrusion detection approach based
on message queuing telemetry transport (mqtt) protocol in industrial
internet of things,” Transactions on Emerging Telecommunications Tech-
nologies, vol. 35, no. 9, p. e5030, 2024.

[9] S. Tuli, G. Casale, and N. R. Jennings, “Pregan+: Semi-supervised
fault prediction and preemptive migration in dynamic mobile edge
environments,” IEEE Transactions on Mobile Computing, vol. 23, no. 6,
pp. 6881–6895, 2024.

[10] T. Zonta, C. A. Da Costa et al., “Predictive maintenance in the
industry 4.0: A systematic literature review,” Computers & Industrial
Engineering, vol. 150, p. 106889, 2020.

[11] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness
of data,” IEEE intelligent systems, vol. 24, no. 2, pp. 8–12, 2009.

[12] I. Goodfellow, J. Pouget-Abadie et al., “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[13] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative
adversarial networks: Algorithms, theory, and applications,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 35, no. 4, pp. 3313–
3332, 2023.

[14] E. Brophy, Z. Wang, Q. She, and T. Ward, “Generative adversarial
networks in time series: A systematic literature review,” ACM Computing
Surveys, vol. 55, no. 10, pp. 1–31, 2023.

[15] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar, “Using gans for
sharing networked time series data: Challenges, initial promise, and
open questions,” in Proceedings of the ACM Internet Measurement
Conference, 2020, pp. 464–483.

[16] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative ad-
versarial networks,” Advances in neural information processing systems,
vol. 32, 2019.

[17] E. Ayanoglu et al., “Machine learning in nextg networks via generative
adversarial networks,” IEEE Transactions on Cognitive Communications
and Networking, vol. 8, no. 2, pp. 480–501, 2022.

[18] M. Allen et al., “Q-module-bot: A generative ai-based question and an-
swer bot for module teaching support,” IEEE Transactions on Education,
vol. 67, no. 5, pp. 793–802, 2024.

[19] C. Liang, H. Du et al., “Generative ai-driven semantic communication
networks: Architecture, technologies and applications,” IEEE Transac-
tions on Cognitive Communications and Networking, 2024.

[20] M. Xu, H. Du et al., “Unleashing the power of edge-cloud generative ai
in mobile networks: A survey of aigc services,” IEEE Communications
Surveys & Tutorials, vol. 26, no. 2, pp. 1127–1170, 2024.

[21] M. Golec et al., “Captain: A testbed for co-simulation of scalable server-
less computing environments for aiot enabled predictive maintenance in
industry 4.0,” IEEE Internet of Things Journal, 2024.

[22] S. Ghafouri, S. Abdipoor, and J. Doyle, “Smart-kube: Energy-aware
and fair kubernetes job scheduler using deep reinforcement learning,” in
2023 IEEE 8th International Conference on Smart Cloud (SmartCloud).
IEEE, 2023, pp. 154–163.

[23] S. Tuli, S. S. Gill et al., “Hunter: Ai based holistic resource management
for sustainable cloud computing,” Journal of Systems and Software, vol.
184, p. 111124, 2022.

[24] S. Shen, V. Van Beek, and A. Iosup, “Statistical characterization of
business-critical workloads hosted in cloud datacenters,” in 2015 15th
IEEE/ACM international symposium on cluster, cloud and grid comput-
ing. IEEE, 2015, pp. 465–474.

[25] A. Das, W. Kong, R. Sen, and Y. Zhou, “A decoder-only foundation
model for time-series forecasting,” in Forty-first International Confer-
ence on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net, 2024.

[26] “Optimized gke scheduling.” [Online]. Available: https://cloud.google.
com/kubernetes-engine/docs/concepts/cluster-autoscaler

[27] “Vertical pod autoscaling.” [Online]. Available: https://cloud.google.
com/kubernetes-engine/docs/concepts/verticalpodautoscaler

[28] S. Tuli, G. Casale, and N. R. Jennings, “Pregan: Preemptive migration
prediction network for proactive fault-tolerant edge computing,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 2022, pp. 670–679.

[29] B. K. Ray, A. Saha, S. Khatua, and S. Roy, “Proactive fault-tolerance
technique to enhance reliability of cloud service in cloud federation
environment,” IEEE Transactions on Cloud Computing, vol. 10, no. 2,
pp. 957–971, 2020.

[30] T. Wang, S. Ferlin, and M. Chiesa, “Predicting cpu usage for proactive
autoscaling,” in Proceedings of the 1st Workshop on Machine Learning
and Systems, 2021, pp. 31–38.

[31] M.-N. Tran, X. T. Vu, and Y. Kim, “Proactive stateful fault-tolerant
system for kubernetes containerized services,” IEEE Access, vol. 10,
pp. 102 181–102 194, 2022.

[32] J. Li, X. Zhang et al., “Garlsched: Generative adversarial deep rein-
forcement learning task scheduling optimization for large-scale high
performance computing systems,” Future Generation Computer Systems,
vol. 135, pp. 259–269, 2022.

[33] S. Tuli, S. R. Poojara et al., “Cosco: Container orchestration using co-
simulation and gradient based optimization for fog computing environ-
ments,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 1, pp. 101–116, 2021.

[34] Google, “Pricing — compute engine: Virtual machines
(vms) — google cloud.” [Online]. Available: https:
//cloud.google.com/compute/all-pricing

[35] G. Jocher, “Yolov5 by ultralytics,” 2020. [Online]. Available:
https://github.com/ultralytics/yolov5

[36] S. Velu et al., “Cloudaibus: a testbed for ai based cloud computing
environments,” Cluster Computing, vol. 27, pp. 11 953–11 981, 2024.

[37] K. Mason, M. Duggan, E. Barrett, J. Duggan, and E. Howley, “Predicting
host cpu utilization in the cloud using evolutionary neural networks,”
Future Generation Computer Systems, vol. 86, pp. 162–173, 2018.

[38] L. Nashold and R. Krishnan, “Using lstm and sarima models to forecast
cluster cpu usage,” arXiv preprint arXiv:2007.08092, 2020.

[39] F. Ullah, M. Bilal, and S.-K. Yoon, “Intelligent time-series forecasting
framework for non-linear dynamic workload and resource prediction in
cloud,” Computer Networks, vol. 225, p. 109653, 2023.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

13

Babar Ali is a PhD student in the School of
Electronic Engineering and Computer Science at
Queen Mary University of London (QMUL). He has
published his research findings in journals such as
Elsevier IoT and Wiley IJNM. His research interests
include Cloud Computing, IoT, Edge Computing,
and Wireless Sensor Networks.

Muhammed Golec is a PhD student in Com-
puter Science at Queen Mary University of London
(QMUL). Earlier, he graduated from QMUL in MSC
Computer Science (Distinction) through the Ministry
of Education Scholarship. His research interests in-
clude Cloud Computing, Serverless Computing, AI,
and Security and Privacy.

Subramaniam Subramanian Murugesan is a PhD
student in Electronic Engineering at Queen Mary
University of London (QMUL). He holds a master’s
degree in Big Data Science from QMUL. He has
published his research findings in journals such as
the IEEE JBHI, Cluster Computing (Springer). His
research focuses on AI/ML/DL applications, Cloud
& IoT, software engineering, and edge AI technolo-
gies.

Huaming Wu (Senior Member, IEEE) received the
B.E. and M.S. degrees from Harbin Institute of
Technology, China in 2009 and 2011, respectively,
both in electrical engineering. He received the Ph.D.
degree with the highest honor in computer science
at Freie Universität Berlin, Germany in 2015. He
is currently a Professor at the Center for Applied
Mathematics, Tianjin University, China. His research
interests include mobile cloud computing, edge com-
puting, Internet of Things, deep learning, complex
networks, and DNA storage.

Sukhpal Singh Gill (FHEA) is an Assistant Pro-
fessor of Cloud Computing at the School of Elec-
tronic Engineering and Computer Science, Queen
Mary University of London, UK. Dr. Gill is serving
as an Editor-in-Chief for IGI Global IJAEC and
Area Editor for Springer Cluster Computing Jour-
nal, also serving as an Associate Editor in IEEE
IoT, Elsevier IoT, Wiley SPE, Wiley ETT and IET
Networks Journals. His research interests include
Cloud Computing, Edge Computing, IoT and En-
ergy Efficiency. For further information, please visit:

http://www.ssgill.me.
Felix Cuadrado received a Ph.D. degree in
telecommunications engineering from the Universi-
dad Politécnica de Madrid (UPM), Spain, in 2009.
He is Associate Professor at UPM, Visiting Reader
at Queen Mary University of London, and a fellow
of the Alan Turing Institute. He has numerous publi-
cations in top-tier journals and conferences, includ-
ing IEEE TSC, IEEE TCC, Elsevier JSS, Elsevier
FCGS, IEEE ICDCS, and Nature SciRep.

Steve Uhlig obtained a Ph.D. degree in Applied
Sciences from the University of Louvain, Belgium,
in 2004. Prior to joining Queen Mary, he was a
Senior Research Scientist with Technische Univer-
sität Berlin/Deutsche Telekom Laboratories, Berlin,
Germany. Starting in January 2012, he is the Pro-
fessor of Networks and Head of the Networks Re-
search group at Queen Mary, University of London.
Between 2012 and 2016, he was a guest professor
at the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China. Current Re-

search interests: Internet measurements, software-defined networking, content
delivery.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3508771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 03,2024 at 04:41:33 UTC from IEEE Xplore. Restrictions apply.

