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Abstract. Let b`(n) be the number of `-regular partitions of n. We show that the
generating functions of b`(n) with ` = 3, 5, 6, 7 and 10 are congruent to the products of
two items of Ramanujan’s theta functions ψ(q), f(−q) and (q; q)3∞ modulo 3, 5 and 7.
So we can express these generating functions as double summations in q. Based on the
properties of binary quadratic forms, we obtain vanishing properties of the coefficients of
these series. This leads to several infinite families of congruences for b`(n) modulo 3, 5
and 7.
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1 Introduction

An `-regular partition of n is a partition of n such that none of its parts is divisible by `.
Denote the number of `-regular partitions of n by b`(n). The arithmetic properties, the
divisibility and the distribution of b`(n) have been widely studied in recent years.

Alladi [2] studied the 2-adic behavior of b2(n) and b4(n) from a combinatorial point
of view and obtained the divisibility results for small powers of 2. Lovejoy [13] proved
the divisibility and distribution properties of b2(n) modulo primes p ≥ 5 by using the
theory of modular forms. Gordon and Ono [8] proved the divisibility properties of b`(n)
modulo powers of the prime divisors of `. Later, Ono and Penniston [15] studied the
2-adic behavior of b2(n). And Penniston [17] derived the behavior of pa-regular partitions
modulo pj using the theory of modular forms.

The arithmetic properties of b`(n) modulo 2 have been widely investigated. Andrews,
Hirschhorn and Sellers [3] derived some infinite families of congruences for b4(n) modulo
2. By applying the 2-dissection of the generating function of b5(n), Hirschhorn and Sellers
[9] obtained many Ramanujan-type congruences for b5(n) modulo 2. Xia and Yao [18]
established several infinite families of congruences for b9(n) modulo 2. Cui and Gu [5]
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derived congruences for b`(n) modulo 2 with ` = 2, 4, 5, 8, 13, 16 by employing the p-
dissection formulas of Ramanujan’s theta functions ψ(q) and f(−q).

As for the arithmetic properties of b`(n) modulo 3, Cui and Gu [6] and Keith [10] and X-
ia and Yao [19] studied respectively the congruences for b9(n) modulo 3. Lin and Wang [12]
showed that 9-regular partitions and 3-cores satisfy the same congruences modulo 3 and
further generalized Keith’s conjecture and derived a stronger result. Furcy and Pennis-
ton [7] obtained congruences for b`(n) modulo 3 with ` = 4, 7, 13, 19, 25, 34, 37, 43, 49 by
using the theory of modular forms.

Notice that all the above congruences for b`(n) were proven by using modular forms
or elementary q-series manipulations. In this paper, we take a different approach which is
based on the properties of binary quadratic forms. Lovejoy and Osburn [14] generalized
the congruences modulo 3 for four types of partitions by employing the representations
of numbers as certain quadratic forms. Employing the arithmetic properties of quadratic
forms, Kim [11] proved that the number of overpartition pairs of n is almost always
divisible by 28.

We derive infinite families of congruence relations for `-regular partitions with ` =
3, 5, 6, 7, 10 modulo 3, 5 and 7 by establishing a general method (see Proposition 2.1).
Our method is based on a bivariate extension of Cui and Gu’s approach [5].

Notice that the generating function of b`(n) is given by

B`(q) =
∞∑
n=0

b`(n)qn =
(q`; q`)∞
(q; q)∞

,

where

(q; q)∞ =
∞∏
i=1

(1− qi)

is the standard notation in q-series. Let ψ(q) and f(−q) be Ramanujan’s theta functions
given by

ψ(q) =
∞∑
n=0

q(
n+1
2 ) =

(q2, q2)∞
(q; q2)∞

and f(−q) =
∞∑

n=−∞

(−1)nq
n(3n+1)

2 = (q; q)∞.

Denote f(−q)3 by g(q). By Jacobi’s identity [4, Theorem 1.3.9], we have

g(q) =
∞∑
n=0

(−1)n(2n+ 1)q(
n+1
2 ).

It is known that for any prime p,

(qp; qp)∞ ≡ (q; q)p∞ (mod p).
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We thus derive the following congruences

B3(q) ≡ f(−q)2 (mod 3), (1.1)

B6(q) ≡ f(−q2)ψ(q) (mod 3), (1.2)

B5(q) ≡ f(−q)g(q) (mod 5), (1.3)

B10(q) ≡ g(q2)ψ(q) (mod 5), (1.4)

and
B7(q) ≡ g(q)2 (mod 7). (1.5)

Note that the right hand side of the above congruences can be written in the following
form

F (q) =
∞∑

k,l=−∞

c(k, l)qθ(k,l), (1.6)

where θ(k, l) is quadratic in k and l. By investigating the quadratic residues, we find
that, for a certain prime p, there exists an integer 0 ≤ a ≤ p− 1 such that the congruence
θ(k, l) ≡ a (mod p) has a unique solution k ≡ r (mod p) and l ≡ s (mod p). Then by
considering the coefficients of qn in F (q) with n ≡ a (mod p), we deduce a recursion and
a vanishing property on the coefficients of F (q). This leads to several infinite families of
congruence relations for b`(n) with ` = 3, 5, 6, 7 and 10.

As an example, when ` = 3, let α, n be nonnegative integers and pi ≥ 5 be primes
such that pi ≡ 3 (mod 4). By the vanishing property, we have

∞∑
n=0

b3

(
p21 · · · p2αpα+1n+

p21 · · · p2α+1 − 1

12

)
qn ≡ f(−qpα+1)2 (mod 3).

Thus for any integer j 6≡ 0 (mod pα+1), we have

b3

(
p21 · · · p2α+1n+

p21 · · · p2αpα+1(12j + pα+1)− 1

12

)
≡ 0 (mod 3).

Specially, when α = 0, p1 = 7 and j 6≡ 1 (mod 7), the above congruence reduces to

b3(49n+ 7j − 3) ≡ 0 (mod 3).

This paper is organized as follows. In Section 2, we give a vanishing property on the
coefficients of the formal power series in the form of (1.6) and derive congruence relations
for b`(n) in general form. Then in Section 3, we give some explicit examples of these
congruences.
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2 The vanishing property and congruences of b`(n)

Let

F (q) =
∞∑
n=0

a(n)qn =
∞∑

k,l=−∞

c(k, l)qθ(k,l)

be a formal power series in q. In this section, we first give a vanishing property on a(n)
by investigating the congruence of θ(k, l). Meanwhile, we also get a recursion of a(n).
As corollaries, we derive the vanishing properties of the products of ψ(q), f(−q) and
g(q). Finally, combining the congruences (1.1)–(1.5), we obtain several infinite families of
congruence relations for b`(n).

The following proposition gives a vanishing property and a recursion on the coefficients
a(n) of F (q), which plays a key role in finding the congruences of b`(n).

Proposition 2.1 (Vanishing Property). Let p be a prime and

F (q) =
∞∑
n=0

a(n)qn =
∞∑

k,l=−∞

c(k, l)qθ(k,l).

Suppose that there exist integers θ0, r, s and an invertible transformation σ : Z2 → Z2

satisfying the following three conditions

(a) the congruence θ(k, l) ≡ θ0 (mod p) has a unique solution k ≡ r (mod p) and l ≡ s
(mod p) in Z2

p;

(b) θ(pk + r, pl + s) = p2θ(σ(k, l)) + θ0;

(c) c(pk+ r, pl+ s) = λ(p) · c(σ(k, l)), where λ(p) is a constant independent of k and l.

Then the following two assertions hold.

(1) For any integer n, we have

a(p2n+ θ0) = λ(p) · a(n).

(2) For any integer n with p - n, we have

a(pn+ θ0) = 0. (2.1)

Proof. It is obvious to see that

{(k, l) : θ(k, l) = p2n+ θ0}
= {(k, l) : k = pk′ + r, l = pl′ + s, θ(k, l) = p2n+ θ0}

(
by (a)

)
= {(k, l) : k = pk′ + r, l = pl′ + s, θ(σ(k′, l′)) = n}.

(
by (b)

)
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Therefore, by Condition (c), we derive that

a(p2n+ θ0) =
∑

(k,l) : θ(k,l)=p2n+θ0

c(k, l) =
∑

(k′,l′) : θ(σ(k′,l′))=n

λ(p) · c(σ(k′, l′)) = λ(p) · a(n).

By Conditions (a) and (b), we have

θ(k, l) ≡ θ0 (mod p) =⇒ θ(k, l) ≡ θ0 (mod p2).

The vanishing property (2.1) holds immediately.

Now we apply the above property to the products of ψ(q), f(−q) and g(q) to derive
the congruence relations of `-regular partitions.

Theorem 2.2. Let α, n be nonnegative integers and pi ≥ 5 be primes such that pi ≡ 3
(mod 4). Then we have

∞∑
n=0

b3

(
p21 · · · p2αpα+1n+

p21 · · · p2α+1 − 1

12

)
qn ≡ f(−qpα+1)2 (mod 3). (2.2)

In particular, for any integer j 6≡ 0 (mod pα+1), we have

b3

(
p21 · · · p2α+1n+

p21 · · · p2αpα+1(12j + pα+1)− 1

12

)
≡ 0 (mod 3). (2.3)

Proof. We have

∞∑
n=0

b3(n)qn =
(q3, q3)∞
(q; q)∞

≡ (q; q)2∞ = f(−q)2 (mod 3).

Assume that f(−q)2 =
∑∞

n=0 a(n)qn. To prove (2.2), it suffices to show that

∞∑
n=0

a

(
p21 · · · p2αpα+1n+

p21 · · · p2α+1 − 1

12

)
qn = f(−qpα+1)2. (2.4)

By the summation expression of f(−q), we have

f(−q)2 =
∞∑

k,l=−∞

c(k, l)qθ(k,l),

where

c(k, l) = (−1)k+l and θ(k, l) =
k(3k + 1)

2
+
l(3l + 1)

2
.

Notice that

θ(k, l) =
3

2

((
k +

1

6

)2

+

(
l +

1

6

)2
)
− 1

12
.
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For any 1 ≤ i ≤ α + 1, we have

θ(k, l) ≡ − 1

12
(mod pi) ⇔

(
k +

1

6

)2

+

(
l +

1

6

)2

≡ 0 (mod pi)

Since pi ≡ 3 (mod 4), −1 is not a quadratic residue modulo pi. Hence(
k +

1

6

)2

≡ −
(
l +

1

6

)2

(mod pi) ⇔ k ≡ −1

6
& l ≡ −1

6
(mod pi).

If pi ≡ 7 (mod 12), we have k ≡ pi−1
6

(mod pi) and l ≡ pi−1
6

(mod pi). Hence, we have

θ

(
kpi +

pi − 1

6
, lpi +

pi − 1

6

)
= p2i θ(k, l) +

p2i − 1

12

and

c

(
kpi +

pi − 1

6
, lpi +

pi − 1

6

)
= (−1)

pi−1

3 (−1)pi(k+l) = c(k, l).

If pi ≡ 11 (mod 12), we have k ≡ −pi−1
6

(mod pi) and l ≡ −pi−1
6

(mod pi). Thus we
obtain that

θ

(
kpi +

−pi − 1

6
, lpi +

−pi − 1

6

)
= p2i θ(−k,−l) +

p2i − 1

12

and

c

(
kpi +

−pi − 1

6
, lpi +

−pi − 1

6

)
= (−1)

−pi−1

3 (−1)pi(k+l) = c(−k,−l).

We thus deduce from Proposition 2.1 (1) the recursion

a

(
p2in+

p2i − 1

12

)
= a(n). (2.5)

Iteratively using recursion (2.5), we obtain

a

(
p21 · · · p2αpα+1n+

p21 · · · p2α+1 − 1

12

)
= a

(
p21

(
p22 · · · p2αpα+1n+

p22 · · · p2α+1 − 1

12

)
+
p21 − 1

12

)
= a

(
p22 · · · p2αpα+1n+

p22 · · · p2α+1 − 1

12

)
= · · ·

= a

(
pα+1n+

p2α+1 − 1

12

)
.
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By Proposition 2.1 (2), a
(
pα+1n+

p2α+1−1
12

)
6= 0 only when pα+1 | n. Therefore,

∞∑
n=0

a

(
pα+1n+

p2α+1 − 1

12

)
qn =

∞∑
n′=0

a

(
p2α+1n

′ +
p2α+1 − 1

12

)
qpα+1n′ .

Using recursion (2.5) once again, the above sum reduces to

∞∑
n′=0

a(n′)qpα+1n′ = f(−qpα+1)2,

which completes the proof of (2.4).

Furthermore, since the right hand side of (2.4) contains only those terms of qn with
pα+1 | n, congruence (2.3) follows immediately.

By a similar discussion, we derive the following congruence relations for b6(n) modulo
3, b5(n) and b10(n) modulo 5, and b7(n) modulo 7. We only give the proofs for congruences
(1.2)–(1.5) and certify Condition (a) in Proposition 2.1.

Theorem 2.3. Let α, n ≥ 0 be nonnegative integers and let pi be primes with pi ≡
13, 17, 19 or 23 (mod 24). Then we have

∞∑
n=0

b6

(
p21 · · · p2αpα+1n+

5(p21 · · · p2α+1 − 1)

24

)
qn

≡ (−1)
±p1−1

6
+···+±pα+1−1

6 f(−q2pα+1)ψ(qpα+1) (mod 3), (2.6)

where ± depends on the condition that ±pi−1
6

should be an integer for any 1 ≤ i ≤ α + 1.
In particular, for any integer j 6≡ 0 (mod pα+1), we have

b6

(
p21 · · · p2α+1n+

p21 · · · p2αpα+1(24j + 5pα+1)− 5

24

)
≡ 0 (mod 3). (2.7)

Proof. We have

∞∑
n=0

b6(n)qn =
(q6, q6)∞
(q; q)∞

≡ (q2; q2)3∞
(q; q)∞

≡ (q2; q2)∞
(q2; q2)∞
(q; q2)∞

= f(−q2)ψ(q) (mod 3).

By the summation expressions of f(−q) and ψ(q), we have

f(−q2)ψ(q) =
∞∑

k,l=−∞

c(k, l)qθ(k,l),

where

c(k, l) =

{
(−1)k, l ≥ 0,

0, l < 0,
and θ(k, l) = k(3k + 1) +

l(l + 1)

2
.
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Notice that

θ(k, l) = 3

(
k +

1

6

)2

+
1

2

(
l +

1

2

)2

− 5

24
.

When p ≡ 13, 17, 19 or 23 (mod 24), we have
(−6
p

)
= −1, where

( ·
p

)
is the Jacobi symbol.

Hence the congruence equation θ(k, l) ≡ − 5
24

(mod p) has a unique solution

k ≡ ±p− 1

6
and l ≡ p− 1

2
(mod p),

where ± depends on the condition that ±p−1
6

should be an integer.

Theorem 2.4. Let α, n be nonnegative integers and let pi ≡ −1 (mod 6) be primes. Then
we have

∞∑
n=0

b5

(
p21 · · · p2αpα+1n+

p21 · · · p2α+1 − 1

6

)
qn

≡ (−1)α+1p1 · · · pα+1f(−qpα+1)g(qpα+1) (mod 5). (2.8)

In particular, for any integer j 6≡ 0 (mod pα+1), we have

b5

(
p21 . . . p

2
α+1n+

p21 · · · p2αpα+1(6j + pα+1)− 1

6

)
≡ 0 (mod 5). (2.9)

Proof. We have

∞∑
n=0

b5(n)qn =
(q5, q5)∞
(q; q)∞

≡ (q; q)4∞ = f(−q)g(q) (mod 5).

By the summation expressions of f(−q) and g(q), we have

f(−q)g(q) =
∞∑

k,l=−∞

c(k, l)qθ(k,l),

where

c(k, l) =

{
(−1)k+l(2l + 1), l ≥ 0,

0, l < 0,
and θ(k, l) =

k(3k + 1)

2
+
l(l + 1)

2
.

Notice that

θ(k, l) =
3

2

(
k +

1

6

)2

+
1

2

(
l +

1

2

)2

− 1

6
.

When p ≡ −1 (mod 6), we have
(−3
p

)
= −1 and hence the congruence equation θ(k, l) ≡

−1
6

(mod p) has a unique solution

k ≡ −p− 1

6
and l ≡ p− 1

2
(mod p).
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Theorem 2.5. Let α, n be nonnegative integers and let pi be primes such that pi ≡ 5 or
7 (mod 8). Then we have

∞∑
n=0

b10

(
p21 · · · p2αpα+1n+

3(p21 · · · p2α+1 − 1)

8

)
qn

≡ (−1)
p1+···+pα+1−(α+1)

2 p1 · · · pα+1g(q2pα+1)ψ(qpα+1) (mod 5). (2.10)

In particular, for any integer j 6≡ 0 (mod pα+1), we have

b10

(
p21 . . . p

2
α+1n+

p21 · · · p2αpα+1(8j + 3pα+1)− 3

8

)
≡ 0 (mod 5). (2.11)

Proof. We have

∞∑
n=0

b10(n)qn =
(q10, q10)∞

(q; q)∞
≡ (q2; q2)5∞

(q; q)∞
≡ (q2; q2)3∞

(q2; q2)∞
(q; q2)∞

= g(q2)ψ(q) (mod 5).

(2.12)

By the summation expressions of g(q) and ψ(q), we have

g(q2)ψ(q) =
∞∑

k,l=0

c(k, l)qθ(k,l),

where

c(k, l) = (−1)k(2k + 1) and θ(k, l) = k(k + 1) +
l(l + 1)

2
.

Notice that

θ(k, l) =

(
k +

1

2

)2

+
1

2

(
l +

1

2

)2

− 3

8
.

When p ≡ 5 or 7 (mod 8), we have
(−2
p

)
= −1 and hence the congruence equation

θ(k, l) ≡ −3
8

(mod p) has a unique solution

k ≡ p− 1

2
and l ≡ p− 1

2
(mod p).

Theorem 2.6. Let α, n be nonnegative integers and let pj be primes such that pj ≡ 3
(mod 4). Then we have

∞∑
n=0

b7

(
p21 · · · p2αpα+1n+

p21 · · · p2α+1 − 1

4

)
qn ≡ p21 · · · p2α+1g(qpα+1)2 (mod 7). (2.13)

In particular, for any integer j 6≡ 0 (mod pα+1), we have

b7

(
p21 . . . p

2
α+1n+

p21 · · · p2αpα+1(4j + pα+1)− 1

4

)
≡ 0 (mod 7). (2.14)
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Proof. We have

∞∑
n=0

b7(n)qn =
(q7, q7)∞
(q; q)∞

≡ (q; q)6∞ = g(q)2 (mod 7). (2.15)

By the summation expression of g(q), we have

g(q)2 =
∞∑

k,l=0

c(k, l)qθ(k,l),

where

c(k, l) = (−1)k+l(2k + 1)(2l + 1) and θ(k, l) =
k(k + 1)

2
+
l(l + 1)

2
.

Notice that

θ(k, l) =
1

2

(
k +

1

2

)2

+
1

2

(
l +

1

2

)2

− 1

4
.

When p ≡ 3 (mod 4), we have
(−1
p

)
= −1 and hence the congruence equation θ(k, l) ≡

−1
4

(mod p) has a unique solution

k ≡ p− 1

2
and l ≡ p− 1

2
(mod p).

Remark that, the above congruence relations obtained by using the vanishing property
also can be derived by applying the Hecke operator on certain eigenforms.

3 Some examples

In this section, we give some specializations of the congruence relations in the previous
section.

The first specialization is to set α = 0 and p1 = 5 in (2.8). We thus obtain

b5(5n+ 4) ≡ 0 (mod 5),

which can be easily derived from Ramanujan’s congruence p(5n + 4) ≡ 0 (mod 5) for
ordinary partitions. In a similar way, we obtain from (2.10) and (2.13) that

b10(5n+ 4) ≡ 0 (mod 5) and b7(7n+ 5) ≡ 0 (mod 7).

The second specialization is that setting all the primes p1, p2, . . . , pα+1 to be equal to
the same prime p. We thus derive the following infinite families of congruences for b`(n).

Let α be a positive integer, p be a prime and j be an integer with p - j.
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1. If p ≥ 5 and p ≡ 3 (mod 4), then we have

b3

(
p2αn+ p2α−1j +

p2α − 1

12

)
≡ 0 (mod 3).

2. If p ≡ 13, 17, 19 or 23 (mod 24), then we have

b6

(
p2αn+ p2α−1j +

5(p2α − 1)

24

)
≡ 0 (mod 3).

3. If p ≡ −1 (mod 6), then we have

b5

(
p2αn+ p2α−1j +

p2α − 1

6

)
≡ 0 (mod 5).

4. If p ≡ 5 or 7 (mod 8), then we have

b10

(
p2αn+ p2α−1j +

3(p2α − 1)

8

)
≡ 0 (mod 5).

5. If p ≡ 3 (mod 4), then we have

b7

(
p2αn+ p2α−1j +

p2α − 1

4

)
≡ 0 (mod 7).

Now setting α = 1 and taking some explicit primes in the above congruence relations,
we obtain the following congruences.

1. For n ≥ 0 and j 6≡ 1 (mod 7), we have

b3(49n+ 7j − 3) ≡ 0 (mod 3).

2. For n ≥ 0 and j 6≡ 3 (mod 13), we have

b6(169n+ 13j − 4) ≡ 0 (mod 3).

3. For n ≥ 0 and j 6≡ 2 (mod 11), we have

b5(121n+ 11j − 2) ≡ 0 (mod 5).

4. For n ≥ 0 and j 6≡ 2 (mod 5), we have

b10(25n+ 5j − 1) ≡ 0 (mod 5).
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5. For n ≥ 0, we have

b7(9n+ 5) ≡ 0 (mod 7), b7(9n+ 8) ≡ 0 (mod 7).

We conclude this paper with an example involving two primes. Setting α = 1, p1 = 3
and p2 = 7 in (2.14), we obtain

b7(441n+ 63j + 110) ≡ 0 (mod 7),

where n ≥ 0 and j 6≡ 0 (mod 7).
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