
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Graph Convolutional Reinforcement
Learning-Guided Joint Trajectory Optimization and

Task Offloading for Aerial Edge Computing
Huaming Wu , Senior Member, IEEE, Lei Tian, Huijun Tang , Member, IEEE,

Ruidong Li , Senior Member, IEEE, and Pengfei Jiao , Member, IEEE

Abstract— The unique capabilities of Unmanned Aerial Vehi-
cles (UAVs), including their superior mobility, flexibility, and
line-of-sight transmission, have made them well-suited for facili-
tating Aerial Edge Computing (AEC). This computing paradigm
is particularly beneficial for meeting the computing demands
of User Equipments (UEs) in emergency situations, as it offers
efficient support for task offloading. Considering the service
requirements of UEs, it is essential to minimize the processing
delay experienced by UEs in AEC systems. This is accomplished
through the joint optimization of the UAV trajectory, flight
speed, and task offloading ratio allocation for UEs. Due to
the non-convex nature and the continuous action space of the
problem, recent studies have turned to the Deep Deterministic
Policy Gradient (DDPG) to tackle similar challenges. However,
Deep Neural Networks (DNNs) employed in DDPG are limited
to extracting latent information solely from Euclidean data,
and are similarly constrained by the highly dynamic changes
in channel states within AEC networks, thereby disregarding
the valuable features inherent in the structural information.
In order to alleviate the task offloading problem in AEC systems,
we propose a novel Graph Convolutional Pooling-DDPG (GCP-
DDPG) algorithm by exploiting the graph-based multi-relational
derivation capability of the multi-Relational Graph Convolutional
Network (R-GCN) and employing the reinforcement learning
technique. Extensive simulation experiments are conducted to
evaluate the superiority and effectiveness of the GCP-DDPG
algorithm. The results demonstrate a remarkable performance
improvement of 34.6% compared to state-of-the-art approaches.

Index Terms— Aerial edge computing, unmanned aerial
vehicles, Internet of Things, graph neural networks, deep rein-
forcement learning.

I. INTRODUCTION

WITH the rapid advancement of wireless communica-
tion networks and intelligent Internet of Things (IoT)

Received 24 April 2024; revised 28 August 2024 and 3 October 2024;
accepted 30 October 2024. This work was supported in part by the National
Key Research and Development Program of China under Grant 31400,
in part by the National Natural Science Foundation of China under Grant
62071327 and Grant 62401190, and in part by Tianjin Science and Technology
Planning Project under Grant 22ZYYYJC00020. The Associate Editor for this
article was I. Ashraf. (Corresponding author: Huijun Tang.)

Huaming Wu and Lei Tian are with the Center for Applied Mathemat-
ics, Tianjin University, Tianjin 300072, China (e-mail: whming@tju.edu.cn;
tianlei@tju.edu.cn).

Huijun Tang and Pengfei Jiao are with the School of Cyberspace,
Hangzhou Dianzi University, Hangzhou 310018, China (e-mail:
tanghuijune@hdu.edu.cn; pjiao@hdu.edu.cn).

Ruidong Li is with the Institute of Science and Engineering, Kanazawa
University, Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

Digital Object Identifier 10.1109/TITS.2024.3490533

technologies, it has gained increasingly popular to deploy
compute-intensive and delay-sensitive applications on User
Equipments (UEs) [1], e.g., online games [2], autonomous
driving [3], [4] and telemedicine [5]. Meanwhile, a substantial
multitude of mobile devices are interconnected to wireless
networks, heavily relying on online resources to carry out
diverse tasks. These scenarios require more computing power
and longer battery life, which are seriously insufficient in
current smart devices.

Mobile Cloud Computing (MCC) has attracted widespread
attention as a promising approach to augment the computing
and storage capabilities of UEs, which redeploys computing
and storage resources on cloud servers, and transmits com-
puting results through downlinks. The ensuing problem is that
the cloud server is far away from UEs, which requires numer-
ous intermediate nodes to ensure the timeliness of traffic.
To alleviate the backhaul link latency, Mobile Edge Computing
(MEC) has emerged as a promising method in providing quick
and efficient computing services to UEs [6], [7]. Supported
by the considerable geographical data acquisition ability of
IoTs, Mobile Edge Networks (MENs) provide spatial loca-
tions and services to mobile users. Moreover, MEC enables
various compute-intensive and delay-sensitive applications to
run on multiple MEC servers without congestion, and supports
real-time data computing and analysis. Consequently, tasks
can be performed on MEC servers to enhance the Quality
of Service (QoS) [8].

While MEC presents numerous advantages, its effectiveness
may be constrained by the immobility of towers [9], where
IoT devices are deployed in unattended or challenging envi-
ronments such as forests, mountains, underwater locations,
as well as temporary hotspot areas or emergency situa-
tions [10]. In such scenarios, relying solely on MEC may prove
inadequate for fulfilling requirements and delivering optimal
services to UEs. To tackle this challenge, researchers have
extensively investigated Unmanned Aerial Vehicle (UAV)-
assisted MEC, also referred to as Aerial Edge Computing
(AEC), which can fully exploit the benefits of the synergy
within the air-space-ground integrated network in the era
of super 5G/6G. This computing paradigm is capable of
satisfying the escalating demand for accelerated and highly
dependable wireless connectivity, while also offering support
for emerging technologies in the domain of AEC Compared
to traditional fixed-position MEC, this approach capitalizes

1558-0016 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0001-7828-9113
https://orcid.org/0000-0002-9905-8952
https://orcid.org/0000-0003-1049-1002

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

on the fact that UAVs can carry computational resources and
have the freedom of flight, utilizing their efficient mobility to
provide on-demand communication and real-time computing
services for UEs.

Despite their potential benefits, AEC systems still suffer
from several challenges related to network deployment and
operation [11]. On the one hand, UAVs commonly encounter
limitations in terms of their battery energy capacity, and both
their flight operations and task offloading activities are charac-
terized by substantial energy consumption [12]. Thus, UAVs
need to select UEs for partial task offloading within a limited
service time. On the other hand, another challenge in AEC
systems is the development of energy-aware UAV/Vehicle
trajectory planning, which has been extensively investigated
in recent research [13], [14]. Specifically, the challenge lies in
real-time control of the trajectory for each UAV in a dynamic
environment where both the UAVs and UEs may be obstructed
by buildings. Traditional techniques such as exhaustive search
are not applicable in this scenario due to the continuous
nature of decision variable space [15], such as determining
the optimal trajectory and resource allocation. To this end,
we consider an energy-constrained AEC system as a potential
solution, aiming to tackle the aforementioned challenges by
UAVs in conjunction with MEC capabilities. Specifically, UEs
can access and offload a portion of their computing tasks to
UAVs that are equipped with computing resources, based on
their specific service requirements.

So far, many research works have been devoted to address-
ing the challenges mentioned above in UAV-assisted MEC
systems [16]. Deep Reinforcement Learning (DRL) has gained
significant popularity in tackling a wide range of prob-
lems [17], [18], which can learn and optimize algorithms
by interacting with the MEC environment to obtain training
data. These DRL algorithms typically employ Deep Neural
Networks (DNNs) as feature representations and function
approximators [19], e.g., Multilayer perceptron (MLP) [20],
Fully Convolutional Network (FCN) [21], which can abstract
the features of input data, calculate and the offloading deci-
sion of the agent. However, the neural network architectures
mentioned above can only extract latent representations from
Euclidean data, resulting in the neglect of position information
of IoT devices and highly dynamic channel state information
in AEC systems. In practice, task offloading and resource
allocation problems in AEC systems often involve structured
data that can be represented as graphs.

Over the past few years, Graph Neural Networks (GNNs)
have achieved significant success and have been success-
fully applied in various domains, including social network
analysis, recommendation systems, knowledge graphs, and
bioinformatics [22], [23]. Compared to other neural net-
works, GNNs exhibit superior performance in learning graph
features, demonstrating immense potential for solving task
offloading and resource allocation problems in AEC systems.
The key idea behind GNNs is to learn node representa-
tions by aggregating and propagating information across the
graph, where each node updates its representation based on
the representations of its neighbors, enabling the capturing
of complex relationships among nodes and global topology

information [24]. This allows for better utilization of both
local structure and global features of the graph, resulting in
more accurate modeling and prediction for tasks such as task
offloading and resource allocation.

In comparison to other network architectures like Graph
Convolutional Networks (GCNs) [25] and Graph Attention
Networks (GATs) [26], which handle single-relation graph
data, the multi-relational GCN (R-GCN) [27] is designed
specifically for graphs with multiple types of relationships,
such as entities and relations in knowledge graphs. It achieves
this by introducing relationship-specific parameters that cap-
ture differences between various relationships, enabling better
generalization to unknown graph data. This is particularly
relevant in capturing the highly dynamic position information
and channel state information of IoT devices in AEC systems.
Inspired by the successful and powerful performance of GNNs,
we further employ R-GCN to overcome the limitations of
DDPG in handling graph data. The proposed Graph Convolu-
tional Pooling-DDPG (GCP-DDPG) algorithm not only uses
R-GCN to model AEC scene information, but also preserves
the advantages of the DDPG algorithm.

The main contributions of this paper are as follows:
• Partial Offloading for Energy-Constrained AEC Systems:

We develop an energy-constrained AEC system that
enables UEs to partially offload their computational tasks
to the UAV equipped with computation resources, based
on their service requirements. The UAV plans the flight
trajectory according to the environment state, collects
task data, processes calculation tasks, and sends the
results back to UEs. The approach aims to achieve
the most effective reduction in latency for all UEs by
jointly optimizing factors such as the task offloading
ratio of UEs, and the flight angle and speed of the
UAVs.

• Multi-relational Graph Embedding for AEC Networks:
we model the time-varying channel state and device’s
attributes in the proposed AEC system as multi-relational
graph-structured data, utilize R-GCN to model complex
relational interactions in graphs with different edges,
and fuse the unstructured features of both the UAV and
the users into meaningful embeddings, which integrates
the state information of devices and their neighboring
devices.

• GCP-DDPG Offloading Algorithm: Considering the com-
plexity and dynamics of AEC systems, we model the
task offloading and trajectory control problems in the
scenario as Markov Decision Process (MDP), and input
the Multi-relational graph embeddings into graph pooling
layer and DDPG module to learn the optimal offloading
ratio and trajectory control strategy, which is called GCP-
DDPG algorithm.

• Effective Performance: We conduct extensive simulations
to verify the robust performance of our proposed GCP-
DDPG algorithm. The results consistently demonstrate
that GCP-DDPG outperforms the baseline algorithms.
This confirms the superiority and robustness of the
GCP-DDPG algorithm in optimizing task-offloading pro-
cesses in AEC systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GRAPH CONVOLUTIONAL REINFORCEMENT LEARNING-GUIDED JOINT TRAJECTORY OPTIMIZATION 3

TABLE I
THE QUALITATIVE COMPARISON OF THE CURRENT LITERATURE ON AEC SYSTEMS

The remainder of this paper is outlined as follows. Section II
summarizes the related work on AEC systems and GNNs.
In Section III, we present the system model and define
the problem formulation. The GCP-DDPG-based computation
offloading training algorithm is introduced in Section IV, fol-
lowed by the simulation results and discussions in Section V.
Section VI concludes this paper.

II. RELATED WORK

A. AEC Systems

In recent years, AEC has become a research hotspot for
many scholars. Table I shows some works in AEC systems.
To minimize the overall energy consumption of commu-
nication in AEC systems, Zhang et al. [11] proposed an
approach that involves optimizing various factors including
bit allocation, slot scheduling, power allocation, and UAV
trajectory. Wang et al. [28] introduced a framework for AEC
that enables the support of multiple UAVs with diverse tra-
jectories, where a multi-agent DRL-based trajectory control
algorithm was designed to independently manage the trajec-
tory of each UAV and optimize offloading decision-making.
Chen et al. [17] presented an integrated network architec-
ture for air-ground communication, specifically designed for
offloading applications with considerations for long-range
energy and computational limitations. Additionally, an actor-
critic approach was designed to speed up the learning process
and enable real-time learning of optimal offloading policies.
Li et al. [20] conducted a study on task offloading decisions
and resource allocation in an AEC environment involving
multiple users and servers, and employed a soft actor-critic
algorithm to optimize factors such as latency, energy con-
sumption, and a weighted total cost, aiming to enhance the
overall system performance. Wang et al. [29] introduced a
novel flight MEC platform and devised a trajectory control
algorithm based on DRL, which synergistically optimizes user
association, resource allocation, and UAV trajectory within the
AEC system.

B. GNN-Based MEC Systems

GNNS have demonstrated significant advantages and poten-
tial in processing graph data, which has driven many
researchers to actively explore their application in wireless
communication.

Chowdhury et al. [30] proposed an approach that utilizes
GNNs to parameterize the iterative weighted minimum mean

square error method. By leveraging GNNs, they aimed to
optimize the power allocation process and achieve improved
performance in terms of power efficiency and network capac-
ity. Chen et al. [31] tackled the issue of dependent task
offloading in multi-user scenarios in MEC environments.
They proposed a GNN approach for Directed Acyclic Graph
(DAG)-based multi-dependency task offloading, leveraging the
capabilities of GNNs for improved performance and effi-
ciency. Sheng et al. [32] introduced a unified framework
that addresses various design problems in wireless networks.
The use of GNNs in wireless network design demonstrates
near-optimal performance, further emphasizing the efficacy
of GNNs as a powerful tool in this domain. Li et al. [33]
designed a distributed scheduling algorithm for task offloading
in MEC scenarios. This algorithm is based on a multi-agent
collaborative DRL approach, utilizing a GAT to capture the
spatial location relationship among UEs in the environment,
this algorithm effectively reduces average delay and packet
drop rate, and improves link utilization, leading to improved
performance in task scheduling. Huang and Wang et al. [34]
designed a user preference prediction and recommendation
model for GNN-based MEC systems called GCN-GAN. The
model utilizes the user’s browsing history and preferences to
prioritize recommending high-quality video to the local MEC
server. However, these studies focus solely on optimization
within MEC scenarios and do not account for UAV-assisted
environments, which are inherently more dynamic and com-
plex compared to the former.

C. GNN-Based AEC Systems

Recent efforts focused on using GNN to extract environmen-
tal features, which has proven to be an effective approach that
thoroughly captures the complex relationships between various
devices in UAV-assisted scenarios and can aid in decision-
making. Pamuklu et al. [35] proposed a Graph Reinforcement
Learning(GRL) method to optimize QoS by offloading from
IoT devices to the UAVs without trajectory optimization of
UAVs. Li et al. [36] proposed a GRL method to maximize
the total computation of tasks offloaded to the UAV. Different
from the previous studies, we are the first to construct graph
data based on an AEC scenario to optimize total delay by
partial offloading and trajectory optimization, where the UAV
and UEs are constructed as nodes, and the channel states of
different time slots are constructed as edges with different rela-
tionships. The proposed GCP-DDPG completes preliminary

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. Architecture of the considered AEC system.

feature learning through FC and employs R-GCN to capture
the spatial location features of UEs and the UAV, obtaining
graph embeddings by the GAP method. Finally, the encoded
state information is inputted into DDPG to learn the optimal
real-time task offloading and UAV trajectory control strategy.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the scenario, communication
model, computational model, and performance metrics used to
formulate the problem of evaluating the performance of task-
offloading processes.

A. AEC System Model

In this paper, we consider an AEC system model in the
IoT scenario, as illustrated in Fig. 1. In this scenario, a single
UAV and N UEs are deployed in 3-D Cartesian coordinates,
and the UAV carries a nano-MEC server that flies at a fixed
height to provide computing services for UEs. Considering
the limited computational resources of UEs, it is feasible to
partially offload compute-intensive and delay-sensitive tasks to
the nano-MEC server of the UAV for execution. Meanwhile,
the remaining tasks are handled locally by the UEs themselves.
To partition each episode L into T discrete time slots of equal
length, we denote the set of time slots as T ∈ {1, 2, · · · , T }.
The list of symbols and their definitions is provided in Table II.

At the beginning of each episode, the UE executes a
computing task in a predetermined area and sends an offload
request to the nano-MEC server installed on the UAV. It is
assumed that UEs can communicate with the UAV in real
time during the episode. The UAV and UEs jointly determine
the task offloading ratio and the UAV trajectory strategy for
that time slot. The UAV follows the designed trajectory and
reaches the designated location, providing computing services
to the UEs for the remaining time slots. The flow for each
time slot is depicted in Fig. 2.

B. Communication Model

The positions of the UAV and UEs directly impact the
quality of the communication link between them. To express

TABLE II
SYMBOLS AND THEIR DEFINITIONS

Fig. 2. Schematic diagram of computation offloading time slots in the
considered AEC system.

their positions clearly, we establish a 3D Cartesian coordinate
system. In the time slot t ∈ T , the position of the n-th UE can
be denoted as qn(t) = [xn(t), yn(t)]. Additionally, we assume
that the UAV flies at a fixed height H and its coordinates are
expressed as Q(i) = [X(t), Y(t)]. The channel gain between
the n-th UE and the UAV can be denoted as [37]:

gn(t) =
g0

||Q(t + 1)− qn(t)||2 + H2 , (1)

where || · ||2 represents the L2 norm and g0 represents
the channel gain at a distance of 1m between the receiver
and the sender. During the UAV flight, the flying speed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GRAPH CONVOLUTIONAL REINFORCEMENT LEARNING-GUIDED JOINT TRAJECTORY OPTIMIZATION 5

v(t) ∈ [0, vmax] and angle β(t) ∈ [0, 2π] of the UAV in
time slot t are given by the agent, and the next hover position
of the UAV can be expressed as:

Q(t + 1) = [X (t)+ v(t)T f ly cos β(t), Y (t)

+ v(t)T f ly sin β(t)]T . (2)

Here, we consider the occlusion effects caused by obstacles
in the real-world environment. As a result of these occlusions,
the uplink rate Rn(t) is calculated by:

Rn(t) = B log2

(
1+

Pn(i)gn(t)
σ 2 + in(t)Pnlos

n (t)

)
, (3)

where B represents the channel bandwidth. The variables
Pn(t) and Pnlos

n (t) respectively stand for the transmission
power and the transmission loss of the n-th UE during task
uploading in the time slot t . Moreover, in(t) is an indicator
variable, which signifies the presence or absence of any
blocking between the UAV and the n-th UE during the t-th
time slot.

The battery and computing capabilities of the UAV and the
nano-MEC server are limited. Therefore, only a portion of the
tasks from user equipment can be offloaded and executed on
the nano-MEC server. We assume that the n-th UE needs to
calculate Dn(t) bits of data in time slot t . Thus, the transmis-
sion delay can be mathematically represented as follows:

T trans
n (t) =

Dn(t)on(t)
Rn(t)

, (4)

where on(t) ∈ [0, 1] denote the task offloading ratio of the n-th
UE to the nano-MEC server in the time slot t , while 1−on(t)
indicates that the rest tasks are executed locally on the n-th
UE.

C. Computational Model

In the time slot t , when the n-th UE offloads a task to the
nano-MEC server, the resulting computational delay can be
calculated using the following formula:

T com
U AV,n(t) =

Dn(t)on(t)s
fU AV

, (5)

where s represents the number of CPU cycles required to
process each unit byte and fU AV is denoted as the comput-
ing frequency of the nano-MEC server. Correspondingly, the
computation latency of a task executed locally is expressed as:

T com
U E,n(t) =

Dn(t)(1− on(t))s
fU E,n

, (6)

where fU E,n is the computing frequency of the n-th UE.
Correspondingly, the energy consumed by the UAV can be

categorized into two parts in a given time slot t , one of which
is attributed to the UAV’s flight, while the other is due to
the computational tasks it performs. Specifically, the energy
consumed by the UAV for its flight can be expressed as:

E f ly(t) = ϕ||V (t)||2, (7)

where ϕ = 0.5M f ly T f ly , M f ly denotes the weight of the UAV,
and T f ly denotes the duration of the UAV’s flight within each
time slot.

In addition, the energy consumed by the nano-MEC server
due to computing tasks in the time slot t is denoted as:

EU AV,n(t) = k f 2
U AV Dn(t)on(t)s, (8)

where k is the switched capacitance [31].
The total energy consumption of the UAV in a given time

slot t can be calculated as the sum of the energy consumed
for its flight and the energy consumed for computational tasks,
expressed as:

EU AV (t) = E f ly(t)+
N∑

n=1

EU AV,n(t). (9)

D. Problem Formulation

Based on the AEC system described above, we design a
joint optimization approach for determining the task offloading
ratio of UEs and real-time scheduling of the UAV, aiming
to ensure efficient utilization of limited computing resources
in the presence of UAV energy constraints. Specifically, the
optimization problem aims to minimize the processing delay of
tasks for all UEs. The formulation of this optimization problem
can be expressed as follows:

min
Q(t+1,on(t))

T∑
t=1

N∑
n=1

max{T com
U E,n(t), T trans

n (t)+ T com
U AV,n(t)},

s.t.
K∑

t=1

EU AV (t) ≤ EBattery, (10a)

0 ≤ on(t) ≤ 1,∀t,∀n, (10b)
0 ≤ v(t) ≤ vmax ,∀t, (10c)
0 ≤ β(t) ≤ 2π,∀t, (10d)

where constraint (10a) guarantees that the total energy con-
sumption of the UAV in all time slots does not exceed the
maximum battery capacity EBattery . Constraints (10b), (10c),
and (10d) restrict the feasible range of task offloading ratio,
UAV flight speed, and flight angle, respectively.

IV. GCP-DDPG

We first propose a novel GCP-DDPG scheme that effec-
tively combines DRL and GNNs to obtain a near-optimal
task offloading strategy and real-time scheduling strategy of
the UAV in the AEC system. The framework is illustrated
in Fig. 3. The GCP-DDPG algorithm-based agent observes
the state of the AEC system and makes informed decisions.
Subsequently, it receives rewards as feedback from the AEC
system. Notably, our study distinguishes itself from previous
research by introducing a novel approach where the AEC
system is represented as multi-relational graph data for the
first time. Specifically, we learn the initial features through the
fully connected layer (FC) and extract state embeddings St by
R-GCN and graph pooling modules. After that, we use the
policy network to output the real-time action at and execute
the action in the current state S(t). The action at results in the
next new state S(t + 1).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 3. The overall architecture of the proposed GCP-DDPG algorithm in AEC systems. We fuse features from different devices by R-GCN [27] and Pooling
layer as embeddings and input embeddings to DDPG [38] to learn action policies in continuous action space.

A. State Space and State Embedding

1) State Space: We represent UEs and the UAV in AEC
systems as graph data. Each node has its feature, which refers
to a set of attributes that provides additional information about
the node. Feature space refers to the set of all possible features
that an environment can be in at any given time. In the graph
composed of UEs and the UAV, we treat the potential factors
influencing decisions as features of each node. Specifically,
the features of user nodes consist of location information,
task information, and obstacle occlusion information, while
the features of the UAV node include remaining power and
location information. We refer to the set of all possible
features as the Feature Space. Additionally, since we use this
information as state inputs in reinforcement learning, we also
refer to this Feature Space as the State Space. The features of
UE nodes in time slot t can be expressed as:

sn(t) = [qn(t), Dn(t), in(t)], (11)

where qn(t) indicates the position of the n-th UE in the time
slot t , Dn(t) represents the size of the calculation task of the
n-th UE in the time slot t , and in(t) indicates the indicative
function of the obstacle occlusion between the UAV and the
n-th UE in the time slot t . If in(t) = 0, it signifies the
absence of transmission loss, and we construct an edge of
type 0. Conversely, if in(t) = 1, it indicates the presence
of transmission loss due to obstructing buildings, and we
construct an edge of type 1.

Similarly, the features of UAV nodes can be expressed as:

sU AV (t) = [Er (t), Q(t)], (12)

where Er (t) represents the remaining power of the UAV in
time slot t and Q(t) indicates the real-time position of the

UAV in time slot t . For ease of expression, we denote the
state of the AEC system as follows:

S(t) = {sn(t),∀n ∈ [1, N], sU AV (t)}. (13)

2) State Embedding: In this part, we input S(t) com-
posed of UAV and UEs information in time slot t into
R-GCN [27] and the Pooling module to obtain embeddings,
which transforms entire graphs into low-dimensional vectors.
First, we perform preliminary feature extraction on the nodes
by applying the full connection (FC) layer.

Hn(t) = FC1(sn(t)), (14)
HU AV (t) = FC2(sU AV (t)), (15)

where FC1 represents FC layer for UEs, and FC2 represents
FC layer for the UAV.

Subsequently, we construct different types of edges to
represent the different channel states between the UAV and
the UE in each time slot t . Specifically, we employ a binary
variable in(t) to denote whether there is a building block
obstructing the transmission between the UAV and the UE
n at time slot t . By adopting this approach, we construct two-
state edges that capture the diverse channel states and further
utilize the R-GCN to efficiently process the multi-relational
graph features. The process can be expressed as follows:

Hn(t) = σ(Wn,U AV HU AV (t)+ Hn(t)), (16)

HU AV (t) = σ
(m∑

n=1

1
m

WU AV,n Hn(t)+ HU AV (t)

+

N∑
n=m+1

1
N − m

WU AV,n Hn(t)
)
, (17)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GRAPH CONVOLUTIONAL REINFORCEMENT LEARNING-GUIDED JOINT TRAJECTORY OPTIMIZATION 7

Algorithm 1 State Embedding
Input: S(t) = {sn(t),∀n ∈ [1, N], sU AV (t)}
Output: st

1: for n ∈ [1, N] do
2: Hn(t) = FC1(sn(t))
3: end for
4: HN+1(t) = FC2(sU AV (t))
5: for n ∈ [1, N] do
6: Hn(t) = σ(Wn,U AV HU AV (t)+ Hn(t)))
7: end for
8: HU AV (t) = σ(

∑m
n=1

1
m WU AV,n Hn(t) +∑N

n=m+1
1

N−m WU AV,n Hn(t)+ HU AV (t))
9: st = pooling(H1(t), H2(t), · · · , HN (t), HU AV (t))

10: return st

where σ represents a nonlinear activation function. Wn,U AV
and WU AV,n represent their respective learnable weight matri-
ces. m represents the number of channel states in(t) = 0. This
step involves the aggregation of messages between nodes.

After message passing, we use graph pooling to construct
the graph embedding based on node embeddings. Specifically,
the state embedding of the AEC system can be expressed as:

st = pooling(H1(t), H2(t), · · · , HN (t), HU AV (t)). (18)

In general, graph pooling approaches, are categorized into
three types, including concatenate (cat) pooling, mean pooling,
and add pooling [39], as follows:

cat pooling : st = concatenate(H1(t), H2(t),

. . . , HN (t), HU AV (t)), (19)

mean pooling : st =

∑N
n=1 Hn(t)+ HU AV (t)

N + 1
, (20)

add pooling : st =

N∑
n=1

Hn(t)+ HU AV (t). (21)

The state embedding algorithm is specifically described in
Algorithm 1.

B. Action Space

With the observed environment and obtained state embed-
ding generated by Algorithm 1, the agent selects actions in
time slot t that include the task offloading rate of each UE, the
flight angle, and the flight speed of the UAV. It is important to
mention that the agent operates in a continuous action space.
The action at can be expressed as follows:

at = (o1(t), o2(t), · · · , oN (t), v(t), β(t)). (22)

where on(t) ∈ [0, 1],∀n ∈ [1, N] indicates the task offloading
rate of all UEs in time slot t , v(t) ∈ [0, vmax] indicates the
flight speed of the UAV and β(t) ∈ [0, 2π] indicates the flight
angle of the UAV are continuous variables. These continuous
variables work together to optimize the latency of all UEs.

C. Reward

By assigning a negative reward proportional to the delay, the
agent is incentivized to take actions that reduce delay, because
a smaller delay will result in a less negative reward. Our
primary objective is to maximize the reward by minimizing the
delay, as defined in the problem statement. Therefore, we set
the reward rt as follows:

rt = −

N∑
n=1

max
{
T com

U E,n(t), T trans
n (t)+ T com

U AV,n(t)
}
. (23)

D. GCP-DDPG Algorithm

In order to optimize UAV trajectory control and task
offloading ratios, and enhance the performance of AEC sys-
tems, we employ DDPG [38], which combines DNNs and
deterministic policy gradients to learn action policies in con-
tinuous action space. To estimate the policy and Q-value
functions, DDPG utilizes DNNs to approximate the actor-
network µ(s, a; θµ) with learnable parameters θµ and the
critic network Q(s, a; θ Q) with parameters θ Q . Moreover,
to enhance the stability and efficiency of the learning process,
DDPG employs a dual neural network architecture for both
the policy and value functions. This architecture consists of a
target actor-network denoted as µ′, with parameters θµ′ and a
target critic network referred to as Q′, with parameters θ Q′ .

By utilizing deterministic policy gradients and the dual net-
work architecture, we can effectively handle high-dimensional
action spaces and avoid the high variance that is often associ-
ated with stochastic policy gradients. According to the chain
rule [40], the policy gradient can be updated in the following
manner:

∇θµ J ≈ Eµ′ [∇θµ Q(s, a; θ Q)|s=st ,a=µ(st ;θµ)]

= Eµ′ [∇a Q(s, a; θ Q)|s=st ,a=µ(st ;θµ)∇θµµ(s; θµ)|s=st],

(24)

which employs the gradient ascent algorithm for optimization
calculations to increase the expectation of discounted cumu-
lative rewards:

J (µ) = Eµ[r1 + γ r1 + γ 2r2 + · · · + γ nrn], (25)

where γ is the reward discount factor.
The critic network is updated through updating the value of

Deep Q-Network (DQN) [41], and the gradient is expressed
as:

L(θ Q) = Eµ′ [(yt − Q(st , ai ; θ
Q))2
], (26)

where yt = γ Q(si+1, µ(st+1); θ
Q).

First of all, we need to initialize the policy online network
µ(s, a; θµ) and the critic network Q(s, a; θ Q), respectively.
The parameters of the online network are assigned to their
corresponding target network parameters, i.e., θ Q′

←− θ Q

and θµ′
←− θµ. At the same time, reset the state S(1) of the

AEC MEC system.
During a single experience trajectory episode phase,

an action at is generated by adding behavior noise Nt as
follows:

at = µ(s, a : θµ)+ Nt , (27)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

where Nt samples the Gaussian distribution Nt ∼ N(µn, σ 2
n),

µn is the mean and σ 2
n is the variance.

The UAV’s trajectory strategy and UEs’ task offloading
strategy depend on at generated by the agent, returning
rewards rt and new states S(t + 1). Next, the agent stores
the generated information tuple (S(t), at , rt , S(t + 1)) in R
as training samples for the online network. After that, the
agent randomly samples (S(t), at , rt , S(t + 1)) from R as
training sample data in mini-batch. Execute Algorithm 1 to
obtain mini-batches (st , at , rt , st+1) from (S(t), at , rt , S(t +
1)). The actor target network µ′ outputs actions µ′(st+1),
the θ Q calculate yi based on yt = γ Q(si+1, µ(st+1); θ

Q).
Update parameter θ Q of the critic network using the stochastic
gradient descent algorithm.

After that, the actor-network µ(s, a; θµ) is updated as
follows:

∇θµ J ≈
1
N

∑
i

∇a Q(s, a; θQ)|s=st ,a=µ(st)∇θµµ(s; θµ)|st .

(28)

In DDPG, the target actor network µ′ and target critic
network Q′ are updated using the soft update method. This
update process can be formulated as follows:

θ Q′
←−τθ Q′

+ (1− τ)θ Q, (29)

θµ′
←−τθµ′

+ (1− τ)θµ, (30)

where the default value of the soft update factor τ is typically
set to 0.001. This value determines the rate at which the
target networks are blended with the local networks during
the update process.

In general, the proposed GCP-DDPG algorithm is illustrated
in Algorithm 2, where the computation offloading training
process is described.

E. Complexity Analysis

As described in Algorithm 2, in the DCP-DDPG architec-
ture, let’s consider that the number of neurons in the FC
layer is denoted as N f c and the number of neurons in the
R-GCN graph convolutional layer is denoted as Ng . The time
complexity for the FC layer would be O((N+1)·N f c), due to
linear transformations, and the time complexity for the R-GCN
graph convolutional layer would be O((N + 1) · Ng) since it
involves linear transformations as well.

In the Actor and Critic networks with NL layers and Nac
neurons per layer, the forward propagation process includes
matrix multiplication and activation function computations.
Therefore, the overall time complexity for the forward prop-
agation can be approximated as O(2 · NL · N 2

ac). As a result,
the time complexity of the DCP-DDPG algorithm can be
estimated as O((N+1)·(N f c+Ng)+2·NL ·N 2

ac), considering
the computations involved in both the FC and R-GCN layers,
as well as the forward propagation in the Actor and Critic
networks.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive simulation experi-
ments to exhibit the superiority of our proposed GCP-DDPG
algorithm.

Algorithm 2 GCP-DDPG-Based Computation Offloading
Training Algorithm
Input: Number of training episode E ; Critic network learning rate
αCritic; Actor-network learning rate αCritic; Experience relay buffer
R; Mini-batch size BRL ;
1: Initialize the weight parameters θµ and θ Q of actor-network

µ(s, a; θµ) and critic network Q(s, a; θ Q), respectively.
2: Initialize the weight parameters θ Q′

←−θ Q and θµ′
←−θµ of

target critic network Q′ and actor network µ′, respectively.
3: Initialize the networks FC1 and FC2
4: Initialize the parameters Wn,U AV and WU AV,n ,∀n ∈ [1, N]
5: Empty experience relay buffer R
6: while each episode = 1, 2, · · · , E do
7: Initialize the state S(1) of the AEC system.
8: for t = 1, 2, 3, · · · , T do
9: Execute Algorithm 1 to obtain the state embedding St of

the AEC system.
10: Calculate the action at = µ(s, a : θµ) + Nt in the current

time slot based on the current policy µ(s, a : θµ) with
noise.

11: Execute action at , and record the reward rt and the next
state S(t + 1).

12: Store transfer tuple (S(t), at , rt , S(t + 1)) in experience
relay buffer R.

13: Randomly sample mini-batches BRL of transitions
(S(t), at , rt , S(t + 1)) from R.

14: Execute Algorithm 1 to obtain mini-batches
(st , at , rt , st+1) from (S(t), at , rt , S(t + 1)).

15: yi = ri + Q′(st+1, µ′(st+1; θ
µ′); θ Q′)

16: Minimizing the loss to update the critic network Q(s, a :
θ Q).

17: Update actor-networks using gradient policy algorithm.
18: ∇θµ

J ≈ 1
N

∑
i ∇a Q(s, a; θQ)|s=st ,a=µ(st)∇θµ

µ(s; θµ)|st

19: Soft update the target network via Eq. (29) and Eq. (30).
20: end for
21: end while

A. Parameters Setting

This paper considers an AEC system, where a UAV and
N = 4 UEs are randomly placed within a 100× 100 m2 area.
The UAV’s flight altitude is set at a fixed value of H = 100 m,
and its quality is set to M f ly = 9.65 kg. The maximum flight
speed, denoted as vmax , is set to 50 m/s. The entire week of
time L = 400 seconds is divided into T = 40 time slots, with
each time slot having a UAV flight time T f ly of 1 second.
The task data Dn(t) generated by the n-th UE follows a
uniform distribution within the range of 2.5 to 3 Mbits.
The computation frequency fU E,n of each UE is uniformly
distributed between 0.5 ∼ 1 GHz. The initial position of
the UAV is set to [50, 50]. Further details of the simulation
parameters are provided in Table III [21], [31].

The neural network architecture is configured by specifying
the number of neurons in FC1 and FC2 as 64. The dimension
of input for FC1 is 4, where the first and second dimensions
are the position coordinates of the UE, the third dimension
represents the size of the calculation task of the UE, and the
fourth dimension represents the indicative value of the obstacle
occlusion. The input dimension for FC2 is 3, where the first
dimension is the remaining power and the second and third
dimensions are the position coordinates of the UAV.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GRAPH CONVOLUTIONAL REINFORCEMENT LEARNING-GUIDED JOINT TRAJECTORY OPTIMIZATION 9

TABLE III
SIMULATION PARAMETERS

The following module of FC1 and FC2 is a two-layer R-
GCN [27] with powerful graph data information extraction
capability. The actor and critic networks are constructed with
two FCs each, where the dimension of the actor’s output is
N+2 and the dimension of the critic’s output is 1. To train the
network parameters, the Adam optimizer is employed, with a
learning rate of 0.001 assigned to both the actor and critic
networks. To ensure efficient training, the experience buffer
capacity is set to 10,000, and a mini-batch size of 64 is used.
Additionally, the soft update factor τ is set to 0.001, which
helps stabilize the training process.

B. Baseline Methods

In order to evaluate the GCP-DDPG algorithm more
comprehensively, we tested three different graph pooling
approaches with the same network structure, which can extract
the most informative nodes and connections and capture
higher-level relationships in the graph. Specifically:
• GCP(C)-DDPG: It is the GCP-DDPG algorithm that

employs the concatenate pooling method proposed
in [42], which is computed by Eq. (19).

• GCP(M)-DDPG: It is the GCP-DDPG algorithm that
utilizes the mean pooling method, which is computed by
Eq. (20).

• GCP(A)-DDPG: It is the GCP-DDPG algorithm that
adopts the add pooling method, which is computed by
Eq. (21).

By comparing the performance of these three methods, we aim
to determine which approach results in the most effective and
efficient AEC system.

We establish the same baseline algorithms as described
in [21] and [31] to evaluate the performance of the GCP-
DDPG algorithm.
• OLNA: All tasks of all UEs are executed locally, there-

fore in this scheme, no offloading action occurs.
• EFOA: The UAV offers computation offloading services

to UEs at its initial position, with all UEs offloading their
tasks to the nano-server carried by the UAV.

• Random: The UAV is positioned at a fixed location, and
the offloading strategy for each task is selected randomly.

• DDPG [21]: To ensure a fair evaluation of the effective-
ness of our GCP-DDPG algorithm, we exclusively utilize
the DDPG algorithm for evaluation purposes. In detail,
we employ only two FCs in both the actor and critic
networks.

Fig. 4. Reward comparison between GCP-DDPG-based methods and
baselines.

• ACED [31]: The ACED algorithm utilizes a Multilayer
Perceptron (MLP) to extract information from IoT nodes
within the MEC system and employs GNNs to extract
task-related information. Subsequently, the Actor-Critic
algorithm [17] is employed for task offloading. It is note-
worthy that the proposed AEC system does not involve
the modeling of tasks as directed acyclic graphs. As a
result, the GNN module in the ACED algorithm is neither
utilized nor included in the proposed system.

• SAC [20]: The SAC algorithm, relying on the Actor-
Critic architecture, integrates entropy regularization to
promote exploration and prevent convergence to local
optima. It demonstrates proficiency in learning policies
within continuous action spaces and showcases excep-
tional real-time performance and adaptability in contexts
characterized by limited resources, such as AEC systems.

C. Reward Comparison

To conduct the evaluation, we performed 1000 episodes of
training using the DRL algorithm, as well as three different
variants of the GCP-DDPG algorithm. The neural networks in
these algorithms were configured with different learning rates
for plotting and averaging to minimize simulation errors. The
learning rates ranged from 0.01 to 0.001. The performance
comparison among various algorithms is illustrated in Fig. 4.

As depicted in Fig. 4, it is noticeable that with the increase
in the number of episodes, all algorithms exhibit convergence
within 1000 episodes. Importantly, it should be noted that the
GCP-DDPG algorithm demonstrates faster convergence speed,
improved performance, and greater stability when compared
to other DRL algorithms like DPPG, ACED, and SAC. As a
result, our experimental results indicate that the GCP-DDPG
algorithm outperforms the others.

D. Impact of Different Computing Frequencies on
Nano-MEC Server

To further validate the powerful performance of the
proposed algorithm, we conducted performance testing of
different algorithms at various computing frequencies of the
nano-MEC server.

As depicted in Fig. 5, an augmentation in the computing
capacity of the nano-MEC server leads to the ability to
allocate a greater amount of computational resources to UEs.
However, the OLNA algorithm exclusively relies on local

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. Latency comparison between GCP-DDPG-based methods and
baselines under different nano-MEC server computing frequencies.

Fig. 6. Latency comparison of GCP-DDPG-based methods and baselines
under different UAV battery capacities.

computational resources and neglects those on the nano-MEC
server where the UAV operates. As a result, the OLNA
algorithm suffers from high processing latency. Conversely, the
EFOA algorithm offloads all tasks to the nano-MEC server and
disregards the local resources, resulting in resource wastage
and high processing latency. The Random algorithm displays
high uncertainty, with no discernible optimal performance.
As popular deep reinforcement learning (DRL) algorithms,
DDPG, ACED, and SAC algorithms outperform the OLNA,
EFOA, and Random algorithms, providing better solutions.
Furthermore, the proposed GCP-DDPG algorithm not only
preserves the advantages of the DDPG algorithm but also
leverages the efficient processing capability of GNNs on graph
data, leading to superior performance over the baselines and
lower processing delay. The GCP-DDPG algorithm exhibits
a performance improvement of up to 194.4% compared to
OLNA, EFOA, and Random algorithms, and up to 26.7%
compared to DDPG, ACED and SAC algorithms under varying
computing frequencies of UAVs.

E. Impact of Different UAV Battery Capacities

Fig. 6 presents the performance comparison of each
algorithm under different UAV battery capacities.

With the increase of the battery capacity of the UAV, the
UAV gains greater autonomy and flexibility in controlling its

Fig. 7. Latency comparison of GCP-DDPG-based methods and baselines
under maximum flight speed of different UAVs.

trajectory, which in turn allows it to provide better computing
services for the UEs. Since OLNA, EFOA, and Random
algorithms do not optimize the trajectory of the UAV, the
increase in the battery power of the UAV does not have
a significant impact on the algorithm results. Furthermore,
both our proposed GCP-DDPG algorithm and the DDPG
algorithm significantly reduce the processing delay as the
battery power of the UAV increases, with the variants of the
GCP-DDPG algorithm exhibiting optimal performance. Under
different UAV battery capacities, the GCP-DDPG algorithm
we proposed demonstrates a performance improvement of
up to 123.0% compared to OLNA, EFOA, and Random
algorithms, and a performance improvement of up to 34.6%
compared to DDPG, ACED and SAC algorithms.

F. Impact of Maximum Flight Speed of Different UAVs

Fig. 7 presents the performance comparison of each
algorithm at the maximum flight speed of the UAV.

Similar to the previous analysis, OLNA, EFOA, and Ran-
dom algorithms are not impacted by the change in the
maximum flight speed of the UAV. On the other hand, our pro-
posed GCP-DDPG algorithm achieves optimal performance
when compared to the baselines. At different flying speeds
of the UAV, the proposed GCP-DDPG algorithm shows a
performance improvement of up to 93.3% when compared to
OLNA, EFOA, and Random algorithms. Furthermore, the pro-
posed GCP-DDPG algorithm outperforms the current popular
DDPG algorithm, achieving a performance improvement of up
to 16.7%.

G. Impact of Different Task Data Size Generated by UEs

The algorithm’s performance was also evaluated using dif-
ferent task data sizes generated by UEs. In particular, the tasks
were divided into time slots of 0 ∼ 0.5 Mbits, 0.5 ∼ 1 Mbits,
1 ∼ 1.5 Mbits, 1.5 ∼ 2 Mbits, 2 ∼ 2.5 Mbits, and 2.5 ∼
3 Mbits, and the algorithm was tested against each range to
assess its effectiveness.

As shown in Fig. 8, with the increase of the task data
generated by UEs, the task processing delays of all UEs
increase accordingly under any algorithm, while our proposed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

WU et al.: GRAPH CONVOLUTIONAL REINFORCEMENT LEARNING-GUIDED JOINT TRAJECTORY OPTIMIZATION 11

Fig. 8. Latency comparison between GCP-DDPG-based methods and
baselines under different task data sizes generated by UEs.

GCP-DDPG algorithm exhibits significantly lower delays
compared to the baselines, indicating its superior performance.
Under varying task sizes, the proposed algorithm demonstrates
significant performance improvements compared to other algo-
rithms. Specifically, it achieves an improvement of up to
127.5% compared to OLNA, EFOA, and Random algorithms.
Furthermore, it outperforms state-of-the-art DRL algorithms
such as DDPG, ACED, and SAC with a performance improve-
ment of up to 36.3%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we establish a UAV-assisted MEC system
as a multi-relational graph data structure, wherein UAVs
play a crucial role in efficiently serving UEs and providing
computational support in temporary hotspot areas. The primary
objective is to minimize the processing latency experienced
by all UEs by jointly optimizing the UAV trajectory, flight
speed, and task offloading ratio. To tackle this challenge,
we propose the GCP-DDPG algorithm, which incorporates
GNNs to enhance the solution of the task offloading problem
based on DDPG in MEC environments. The superiority of the
proposed GCP-DDPG algorithm is validated through extensive
simulation experiments. Furthermore, the proposed method
exhibits ease of deployment in real-world MEC environments,
accommodating various communication conditions.

In future work, we plan to leverage the capabilities of
GNNs to investigate the task offloading problem in other
MEC scenarios. We aim to explore scenarios where multiple
UAVs collaborate to accomplish task offloading, with each
UAV assigned to fly in distinct regions to assist ground UEs.
We will specifically focus on developing algorithms based on
multi-agent DRL and convolutional forms in heterogeneous
graphs with multiple types of nodes and edges.

REFERENCES

[1] M. K. Afzal, Y. B. Zikria, S. Mumtaz, A. Rayes, A. Al-Dulaimi,
and M. Guizani, “Unlocking 5G spectrum potential for intelligent IoT:
Opportunities, challenges, and solutions,” IEEE Commun. Mag., vol. 56,
no. 10, pp. 92–93, Oct. 2018.

[2] R. Gupta, S. Tanwar, S. Tyagi, and N. Kumar, “Tactile internet and its
applications in 5G era: A comprehensive review,” Int. J. Commun. Syst.,
vol. 32, no. 14, p. e3981, Sep. 2019.

[3] P. Sun et al., “Scalability in perception for autonomous driving: Waymo
open dataset,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 2446–2454.

[4] H. Tang, H. Wu, G. Qu, and R. Li, “Double deep Q-network based
dynamic framing offloading in vehicular edge computing,” IEEE Trans.
Network Sci. Eng., vol. 10, no. 3, pp. 1297–1310, May/Jun. 2023.

[5] R. Bashshur, C. R. Doarn, J. M. Frenk, J. C. Kvedar, and J. O. Wool-
liscroft, “Telemedicine and the COVID-19 pandemic, lessons for the
future,” Telemedicine e-Health, vol. 26, no. 5, pp. 571–573, May 2020.

[6] H. Wu, J. Chen, T. Nguyen, and H. Tang, “Lyapunov-guided delay-
aware energy efficient offloading in IIoT-MEC systems,” IEEE Trans.
Ind. Informat., vol. 19, no. 2, pp. 2117–2128, Feb. 2023.

[7] X. Zhou et al., “Edge computation offloading with content caching
in 6G-enabled IoV,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 3,
pp. 2733–2747, Jul. 2024.

[8] M. Huang, W. Liu, T. Wang, A. Liu, and S. Zhang, “A cloud–MEC
collaborative task offloading scheme with service orchestration,” IEEE
Internet Things J., vol. 7, no. 7, pp. 5792–5805, Jul. 2019.

[9] N. Mohamed, J. Al-Jaroodi, I. Jawhar, H. Noura, and S. Mah-
moud, “UAVFog: A UAV-based fog computing for Internet of
Things,” in Proc. IEEE SmartWorld, Ubiquitous Intell. Com-
put., Adv. Trusted Computed, Scalable Comput. Commun., Cloud
Big Data Comput., Internet People Smart City Innov. (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug. 2017, pp. 1–8.

[10] W. Z. Khan, M. Y. Aalsalem, M. K. Khan, M. S. Hossain, and
M. Atiquzzaman, “A reliable Internet of Things based architecture for
oil and gas industry,” in Proc. 19th Int. Conf. Adv. Commun. Technol.
(ICACT), 2017, pp. 705–710.

[11] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, “Joint computation and
communication design for UAV-assisted mobile edge computing in IoT,”
IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5505–5516, Aug. 2020.

[12] J. Zhang et al., “Computation-efficient offloading and trajectory schedul-
ing for multi-UAV assisted mobile edge computing,” IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2114–2125, Feb. 2019.

[13] P. Tong, M. Li, M. Li, J. Huang, and X. Hua, “Large-scale vehicle
trajectory reconstruction with camera sensing network,” in Proc. 27th
Annu. Int. Conf. Mobile Comput. Netw., 2021, pp. 188–200.

[14] P.-Q. Huang, Y. Wang, and K.-Z. Wang, “Energy-efficient trajectory
planning for a multi-UAV-assisted mobile edge computing system,”
Frontiers Inf. Technol. Electron. Eng., vol. 21, no. 12, pp. 1713–1725,
Dec. 2020.

[15] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

[16] Y. Xu, T. Zhang, D. Yang, Y. Liu, and M. Tao, “Joint resource and
trajectory optimization for security in UAV-assisted MEC systems,”
IEEE Trans. Commun., vol. 69, no. 1, pp. 573–588, Jan. 2021.

[17] N. Cheng et al., “Space/aerial-assisted computing offloading for IoT
applications: A learning-based approach,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 5, pp. 1117–1129, May 2019.

[18] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing clus-
ters,” in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 270–288.

[19] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel DDPG method
with prioritized experience replay,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern. (SMC), Oct. 2017, pp. 316–321.

[20] S. Li, X. Hu, and Y. Du, “Deep reinforcement learning for computation
offloading and resource allocation in unmanned-aerial-vehicle assisted
edge computing,” Sensors, vol. 21, no. 19, p. 6499, 2021.

[21] Y. Wang, W. Fang, Y. Ding, and N. Xiong, “Computation offloading opti-
mization for UAV-assisted mobile edge computing: A deep deterministic
policy gradient approach,” Wireless Netw., vol. 27, no. 4, pp. 2991–3006,
May 2021.

[22] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, pp. 57–81, Sep. 2020.

[23] T. Zhao, X. Zhang, and S. Wang, “GraphSMOTE: Imbalanced node
classification on graphs with graph neural networks,” in Proc. 14th ACM
Int. Conf. Web Search Data Mining, Mar. 2021, pp. 833–841.

[24] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks in
recommender systems: a survey,” ACM Comput. Surveys, vol. 55, no. 5,
pp. 1–37, 2022.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[26] P. Veličković et al., “Graph attention networks,” 2017,
arXiv:1710.10903.

[27] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in Proc. Eur. Semantic Web Conf., Heraklion, Crete, Greece.
Berlin, Germany: Springer-Verlag, 2018, pp. 593–607.

[28] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and L. Hanzo, “Multi-
agent deep reinforcement learning-based trajectory planning for multi-
UAV assisted mobile edge computing,” IEEE Trans. Cogn. Commun.
Netw., vol. 7, no. 1, pp. 73–84, Mar. 2020.

[29] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and A. Nallanathan,
“Deep reinforcement learning based dynamic trajectory control for UAV-
assisted mobile edge computing,” IEEE Trans. Mobile Comput., vol. 21,
no. 10, pp. 3536–3550, Oct. 2022.

[30] A. Chowdhury, G. Verma, C. Rao, A. Swami, and S. Segarra, “Unfolding
WMMSE using graph neural networks for efficient power alloca-
tion,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 6004–6017,
Sep. 2021.

[31] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, and X. Wang, “Multitask
offloading strategy optimization based on directed acyclic graphs for
edge computing,” IEEE Internet Things J., vol. 9, no. 12, pp. 9367–9378,
Jun. 2022.

[32] Y. Shen, J. Zhang, S. H. Song, and K. B. Letaief, “Graph neural networks
for wireless communications: From theory to practice,” IEEE Trans.
Wireless Commun., vol. 22, no. 5, pp. 3554–3569, May 2023.

[33] Y. Li, J. Li, and J. Pang, “A graph attention mechanism-based multiagent
reinforcement-learning method for task scheduling in edge computing,”
Electronics, vol. 11, no. 9, p. 1357, Apr. 2022.

[34] Y. Huang and Y. Wang, “The application of graph neural network
based on edge computing in English teaching mode reform,” Wireless
Commun. Mobile Comput., vol. 2022, pp. 1–12, Mar. 2022.

[35] T. Pamuklu, A. Syed, W. S. Kennedy, and M. Erol-Kantarci, “Heteroge-
neous GNN-RL based task offloading for UAV-aided smart agriculture,”
IEEE Netw. Lett., vol. 5, no. 4, pp. 213–217, Jun. 2023.

[36] K. Li, W. Ni, X. Yuan, A. Noor, and A. Jamalipour, “Deep-graph-based
reinforcement learning for joint cruise control and task offloading for
aerial edge Internet of Things (EdgeIoT),” IEEE Internet Things J.,
vol. 9, no. 21, pp. 21676–21686, Nov. 2022.

[37] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, “Energy-
efficient UAV-assisted mobile edge computing: Resource allocation and
trajectory optimization,” IEEE Trans. Veh. Technol., vol. 69, no. 3,
pp. 3424–3438, Mar. 2020.

[38] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. 4th Int. Conf. Learn. Represent. (ICLR), San Juan,
Puerto Rico, May 2016, pp. 1–14.

[39] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Mar. 2020.

[40] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proc. Int. Conf.
Mach. Learn., 2014, pp. 387–395.

[41] V. Mnih, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, pp. 529–533, Feb. 2015.

[42] F. Hu, Y. Zhu, S. Wu, L. Wang, and T. Tan, “Hierarchical graph
convolutional networks for semi-supervised node classification,” 2019,
arXiv:1902.06667.

Huaming Wu (Senior Member, IEEE) received the
B.E. and M.S. degrees from Harbin Institute of
Technology, China, in 2009 and 2011, respectively,
both in electrical engineering, and the Ph.D. degree
(Hons.) in computer science from Freie Universität
Berlin, Germany, in 2015. He is currently a Professor
with the Center for Applied Mathematics, Tianjin
University, China. His research interests include
mobile cloud computing, edge computing, the Inter-
net of Things, deep learning, complex networks, and
DNA storage.

Lei Tian received the B.Sc. degree from Yanshan
University, China, in 2020, and the M.S. degree from
the Center for Applied Mathematics, Tianjin Univer-
sity, China, in 2023. His research interests include
the Internet of Things, mobile edge computing, and
deep learning.

Huijun Tang (Member, IEEE) received the B.Sc.
degree from Jinan University, China, in 2016, and
the M.S. and Ph.D. degrees from Tianjin Univer-
sity, China, in 2018 and 2022, respectively. She is
currently a Lecturer with the School of Cyberspace,
Hangzhou Dianzi University. Her research interests
include the Internet of Things, mobile edge comput-
ing, and deep learning.

Ruidong Li (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer science from
the University of Tsukuba in 2005 and 2008,
respectively. He is currently an Associate Professor
with Kanazawa University, Japan. Before joining
Kanazawa University, he was a Senior Researcher
with the National Institute of Information and
Communications Technology (NICT), Japan. His
research interests include future networks, big data,
intelligent Internet edge, the Internet of Things,
network security, information-centric networks, arti-

ficial intelligence, quantum internet, cyber-physical systems, and wireless
networks. He is a member of IEICE. He served as the Chair for several
conferences and workshops, such as the General Co-Chair for IEEE MSN
2021, AIVR2019, and IEEE INFOCOM 2019/2020/2021 ICCN Workshop,
and the TPC Co-Chair for IWQoS 2021, IEEE MSN 2020, BRAINS 2020,
IEEE ICDCS 2019/2020 NMIC Workshop, and ICCSSE 2019. He serves
as the Secretary for the IEEE ComSoc Internet Technical Committee (ITC)
and the Founder and the Chair for the IEEE SIG on Big Data Intelligent
Networking and IEEE SIG on Intelligent Internet Edge. He is an Associate
Editor of IEEE INTERNET OF THINGS JOURNAL and also served as the
Guest Editor for a set of prestigious magazines, transactions, and journals,
such as IEEE Communications Magazine, IEEE NETWORK, and IEEE
TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING.

Pengfei Jiao (Member, IEEE) received the Ph.D.
degree in computer science from Tianjin University,
Tianjin, China, in 2018. From 2018 to 2021, he was
a Lecturer with the Center of Biosafety Research
and Strategy, Tianjin University. He is currently a
Professor with the School of Cyberspace, Hangzhou
Dianzi University, Hangzhou, China. His current
research interests include complex network analysis
and its applications.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 19,2024 at 01:40:43 UTC from IEEE Xplore. Restrictions apply.

