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Abstract—Vehicular Edge Computing (VEC) has garnered
substantial attention owing to its capacity to provide ample com-
putational resources for computation-intensive tasks. However,
how to flexibly allocate computing tasks within vehicles and
efficiently manage the resources consumed by tasks has emerged
as a challenge. To tackle this issue, this research advances the
proposition of employing an auxiliary vehicle (AV) for task
offloading and introduces a novel Auxiliary Vehicle Algorithm
(AVA). AVA integrates both federated learning and multi-agent
reinforcement learning to fully utilize computing resources in
the vehicular environment, and simultaneously achieves task
delay reduction, energy consumption minimization, and task
completion rate augmentation. Moreover, we establish a federated
learning framework to judiciously determine the proportion of
resource allocation of AV through the implementation of inventive
mechanisms. Experiment results validate that our approach
not only leads to the improvement of key system performance
indicators, but also ensures the comprehensive exploitation of the
computing resources of mobile vehicles.

Index Terms—Task offloading, Federated reinforcement learn-
ing, Edge computing, Vehicular Networks

I. INTRODUCTION

THE rapid advancement of wireless communication tech-
nology, along with the emergence and progression of

cloud computing, edge computing, and other technologies,
has accelerated the development of the Internet of Vehicles
(IoV), consequently fostering the advancement of autonomous
driving and related technologies [1], [2]. During autonomous
driving, a large amount of data is generated, such as road
condition information, traffic flow, etc. The vehicle needs
to process the above information and make corresponding
decisions to control the vehicle to ensure a normal running
process. How to process the above data in real-time is crucial
for ensuring the safety of vehicle running. However, the
escalating user demand and the high mobility of vehicles
raise challenges to the development of autonomous driving
technology, as they need to deal with large volumes of data
within limited computing resources. Limited local resources of
vehicles result in large delays and energy consumption when
processing tasks involving large volumes of data [3].

Meeting the latency requirements for processing mas-
sive tasks of vehicles with limited computing resources has
emerged as a critical challenge [4]. To this end, research has
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been conducted on task offloading for the Internet of Vehicles,
that is, how to transfer large-scale tasks to edge or cloud
computing to alleviate local computing pressure. Initially,
cloud computing was introduced to help process local data
to mitigate this issue. However, the proliferation of vehicle
terminals, the expansion of task data, and the considerable
distance between the cloud and the local terminals have led to
several challenges, including heightened latency and network
congestion [5], [6]. To address the limitations of cloud comput-
ing in IoV applications, Vehicular Edge Computing (VEC) has
attracted great attention because it is much closer to vehicles
and offers advantages in alleviating network congestion and
latency [7]–[10].

There are studies on different performance indicators, such
as latency, energy consumption, etc., in the decision-making
of Iov tasks. When optimizing performance indicators, the
high mobility of vehicles is also a critical factor to consider,
as high-speed movement of vehicles can lead to unstable
communication. The consideration of task dependencies and
energy consumption of edge servers, along with the utilization
of a table-based algorithm for making offloading decisions, has
demonstrated its limited suitability for scenarios characterized
by high dynamism and significant dimensionality [11]. To
address task offloading challenges in complex and dynamic
IoV scenarios, Yu et al. [12] proposed a task offloading
approach that integrates an enhanced fuzzy C-means algorithm
with Deep Q-Network (DQN). Clustering vehicles has been
shown to reduce communication overhead and improve com-
munication reliability [13]. Yang et al. [14] employed a vehicle
clustering strategy to designate cluster head vehicles, aiming to
ensure the stability of data transmission while optimizing en-
ergy consumption and delay. However, this approach failed to
fully utilize the available computing resources of the vehicles.
Raza et al. [15] proposed task offloading onto neighboring
vehicles to mitigate time costs. However, it lacked specific
vehicle selection strategies and did not consider energy con-
sumption. TOERT [16] aims to eliminate redundancy in tasks
while enhancing resource utilization. Nevertheless, it is worth
noting that this approach solely concentrates on optimizing
task completion rates and does not take into account metrics
related to energy consumption. Feng et al. [17] focused on
reverse offloading tasks to vehicles to reduce time-related costs
incurred by servers. However, it ignored the consideration of
energy consumption, and it was based on a greedy algorithm,
which made it less adaptable to the intricacies and dynamism
inherent in complex environments.
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Due to cost and other reasons, the distance between edge
servers is often large, and the communication range of edge
servers is limited, which leads to queuing when facing a
large number of simultaneously generated tasks, resulting in
additional delay. To solve such problems, attention has been
paid to idle vehicle resources. VEC servers can allocate their
idle resources to nearby vehicles [18]. However, the rational
selection of allocated vehicles and the proportion of allocated
resources have not been fully discussed. This dramatically
affects the efficiency of utilizing vehicle resources. In complex
edge computing scenarios, federated reinforcement learning
can be employed for task offloading to optimize returns [19]–
[22]. Li et al. [23] explored the incentive mechanism of
federated learning, which dynamically adjusts participants’
weights based on statistical features to mitigate the impact of
malicious users. This mechanism not only mitigates potential
harm but also encourages active participation. Inspired by this,
we apply this mechanism to the IoV, where vehicles assigned
tasks are treated as participants, and the allocation proportions
of resources as weights, effectively addressing the challenge
of proportional allocation.

Vehicles, due to their high maneuverability, generate signif-
icant volumes of data during the driving process. The timely
processing and feedback of this data are crucial determinants
of decision-making accuracy within the vehicle networking
environment. Large models enhance decision-making accuracy
and timeliness in connected vehicle contexts by analyzing vast
amounts of data and real-time information. In order to process
large-scale data in time, we introduce large models. The term
“large language model”, or “large model” refers to machine
learning models characterized by a substantial number of
parameters and extensive training data [24]–[26]. Compared to
traditional small models, large models, owing to their greater
parameter count and more intricate structures, exhibit stronger
learning, generalization, and computing capabilities, rendering
them suitable for applications such as autonomous driving and
road condition prediction in vehicular networking scenarios.
Using large models in vehicular networking contexts yields
more robust and accurate performance in complex driving
environments [27].

In the decision-making stage of the task, traditional methods
rely on predefined models and rules to achieve optimal solu-
tions, lacking adaptability and primarily serving static prob-
lems. In contrast, multi-agent reinforcement learning defines
a state space, selects appropriate actions, and sets rewards for
executing actions, thereby continuously interacting with the
connected vehicle environment to learn and make real-time
task-offloading decisions in dynamic and complex environ-
ments. The incorporation of deep learning further enhances
the capabilities of multi-agent reinforcement learning models,
improving decision accuracy and enabling the handling of
complex problems and long-term reward considerations that
traditional methods cannot achieve. In comparison to single-
agent reinforcement learning, multi-agent systems facilitate
collaborative problem-solving, enhancing efficiency and gen-
eralization abilities. Therefore, in this paper, we employ multi-
agent reinforcement learning as the underlying algorithm that
makes the final task-offloading decisions.

For the above issues, this article is the first to study how to
scientifically use the idle computing resources of surrounding
vehicles to achieve low delay, low energy consumption, and
high task-offloading completion rate when edge computing
power is tight. To address the gaps in the above research,
we present an innovative approach that integrates AVs. Our
primary aim is to efficiently utilize spare computing resources
of vehicles to alleviate the pressure of shortage of edge
computing resources and optimize delay, energy consumption,
and completion rate. The primary contributions of this paper
are threefold:
• This paper introduces a federated learning incentive

mechanism to solve the problem of offloading waiting
caused by edge-computing resource constraints, by effec-
tively utilizing nearby vehicle spare resources. Compared
with single edge-computing task offloading schemes,
this mechanism improves communication stability and
releases the problem of long waiting time caused by the
lack of edge computing resources.

• In order to solve the problems of data explosion and
communication instability caused by high-speed vehicle
movement, this paper combines deep reinforcement learn-
ing with federated learning and introduces large models to
adapt to highly dynamic environments and process large
amounts of data in a short time, ensuring accurate and
timely vehicle decision-making.

• This paper proposes a total cost as a system evaluation
indicator that integrates delay, energy consumption, and
completion rate under the maximum allowable energy,
delay threshold, and limitations on computing resources.
This enables the optimization of overall performance
based on user preferences while considering multiple
indicators, making the evaluation system more compre-
hensive.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of federated learning and the
incentive mechanisms adopted in this study, and provides a
review of the literature on DRL and large model algorithms.
In Section III, we present the system model and define the task
offloading model. Section IV offers a detailed exposition of the
AVA algorithm. Simulation results, comparative experiments,
and the evaluation of our algorithm are presented in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORK

This section will discuss the research related to federated
learning and incentive mechanisms, DRL, and large models,
and elucidate the rationale behind certain innovative aspects
highlighted in the paper.

A. Federated Learning-based Approaches

Federated learning is a machine learning algorithm that
consists of two main components: the client and the server.
The model training takes place on the client side, and then the
model parameters from the clients are uploaded to the central
server for aggregation [32]. Because the models on the client
side do not share parameters during training, federated learning

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3481876

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 22,2024 at 13:08:37 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , 2024 3

TABLE I
COMPARISON OF THE PROPOSED SCHEME WITH PRIOR STUDIES

Perspective Innovation Aspects This Work [28]
2020

[29]
2018

[30]
2022

[11]
2022

[14]
2022

[13]
2022

[15]
2020

[16]
2022

[19]
2023

[31]
2023

Partial offloading 3 7 7 7 7 7 7 3 3 7 3
Problem Auxiliary vehicle 3 7 7 7 7 7 7 7 7 7 7

background SCBS sever 3 7 7 7 7 7 7 7 3 7 7
Resource allocation 3 7 7 7 7 7 3 7 7 7 7

DRL 3 3 3 7 7 3 7 7 7 3 7
Joint optimization 3 3 7 7 3 3 7 3 7 7 7

Algorithm Federated learning 3 7 7 3 7 7 7 7 7 3 3
Incentive mechanism 3 7 7 7 7 7 7 7 7 7 7

Task priority 3 7 7 7 7 7 7 7 7 7 7
Completion rate 3 7 7 7 7 7 7 7 3 7 7

Metrics Latency 3 7 3 7 3 3 7 3 7 7 3
Energy 3 3 3 7 3 3 3 3 7 7 7

is typically used to address privacy protection issues while also
reducing the computing burden on the server side [33].

In federated learning, incentive mechanisms encourage
clients to participate and share their models. This is because
when clients participate in federated learning, they expend
their resources, and the incentive mechanism provides model-
based compensation to the clients to promote their involve-
ment. In [34], the incentive mechanism of federated learning is
used in the edge-cloud collaborative scenario of blockchain to
compensate participants to balance system overhead and model
performance. In mobile edge computing, federated learning
can also be used to enhance privacy and decentralization,
and [35] discussed several significant issues that need to be
addressed, including the incentive mechanism. Therefore, it
can be inferred that when a task is offloaded to a vehicle in
transit, the computing resources the vehicle provides represent
a cost to its resources. In order to allocate resources reason-
ably, we can incorporate the incentive mechanism of federated
learning here to fairly evaluate the contribution of the vehicle
and provide appropriate rewards to encourage the vehicle to
contribute more resources for task offloading.

B. DRL-based Approaches

DRL combines deep learning and reinforcement learning
to help learn optimal strategies through environment interac-
tion [36]. Its application in automotive networks is widespread
due to the complex and dynamic nature of vehicular environ-
ments, enabling intelligent agents to make adaptive decisions
regarding task offloading and resource allocation [37]. Task
offloading is an important issue in in-vehicle networks and is
frequently tackled using DRL techniques for decision-making,
including multi-agent DRL methods [38].

In [39], DRL is applied within the incentive mechanism
of federated learning in Intelligent Cyber-Physical Systems to
offer long-term incentives for model participants operating in
dynamic environments. The multi-agent game is formulated
as a Markov decision process to devise allocation strategies
efficiently. This inspired employing DRL as the underlying
algorithm for federated learning, enabling real-time dynamic
decisions for task offloading in vehicular networking.

In recent years, OpenAI’s GPT family has attracted
widespread attention, such as ChatGPT [40]. This is a large
language model with many parameters and data that provides
strong learning capabilities and the ability to solve complex

problems [26]. In the highly dynamic and complex environ-
ment of connected vehicles, ordinary models may struggle
to ensure the accuracy of decisions, potentially impacting
critical issues such as vehicle safety [41]. Therefore, large
models can be introduced into connected vehicles to ensure
the accuracy of decisions. However, the accuracy of large
models comes at the cost of high computing resources, which
is difficult for ordinary vehicles to satisfy locally [42]. Hence,
we can alleviate this burden by leveraging task offloading
to nearby edge or cloud computing resources [43], which
offer significantly enhanced computing capabilities. The task
offloading process can employ appropriate decision algorithms
to assign large model tasks for processing either in the cloud or
at the edge, aiming to mitigate the high delay and low-quality
issues arising from local computing resource constraints [44].

Numerous delay-sensitive applications demand substantial
computational resources, such as autonomous driving and
vehicle queuing [45]. It is necessary to offload and deploy
large model application tasks within the IoV onto nearby edge
servers for computing processing. However, due to the sig-
nificant computing requirements of large model applications,
deploying them extensively on edge servers is not feasible due
to the high configuration costs. Therefore, vehicles equipped
with high computing capabilities emerge as alternative of-
floading targets, leading to the issue of vehicle selection and
resource allocation. This paper will elaborate on the specific
implementation of such offloading schemes.

C. DRL under Federated Learning Framework

There has been growing interest in combining federated
learning frameworks with reinforcement learning decision-
making to address various challenges in distributed systems.

For instance, Yu et al. [46] introduced the I-UDEC frame-
work, which enables heterogeneous resource allocation and
hybrid computing offloading. They proposed a DRL approach
to optimize delay, considering varying levels of delay sen-
sitivity. Additionally, federated learning was employed to
ensure the security of private data. Wu et al. [47] introduced
an asynchronous federated learning scheme to address local
model failure due to high vehicle mobility, which can lead to
inaccuracies in global models. They also developed a collabo-
rative caching scheme using an adversarial DQN algorithm
to minimize content transmission delay. In [48], DRL is
employed for resource allocation to reduce the total delay and
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energy consumption of federated learning. However, the use
of federated learning here is only for privacy security. Wang
et al. [49] applied federated learning to protect data privacy
in the IoV, and used DRL for wireless network selection
to improve learning performance. Al-Maslamani et al. [50]
integrated DRL as a reputation model within the edge server
of federated learning. This integration aimed to enhance the
accuracy of the global model while also strengthening data
privacy measures.

Compared to the contributions of the studies above, this
paper offers several advantages. Firstly, while previous articles
investigate the offloading of tasks from mobile devices, they
do not extend their theories to address task offloading in
the context of IoV. In contrast, our paper leverages federated
learning and reinforcement learning to tackle task-offloading
challenges within IoV scenarios. Secondly, whereas previous
studies primarily aim to optimize delay, our paper takes
a broader approach by introducing a comprehensive metric
capable of concurrently measuring delay, energy consumption,
and completion rate. Lastly, in terms of algorithms, previous
studies primarily utilize federated learning frameworks for
privacy protection. In contrast, our study focuses on leverag-
ing federated learning incentive mechanisms to optimize the
resource allocation ratio of auxiliary vehicles to enhance the
contribution ratio of vehicles to other vehicle offloading tasks
and provide additional resources for vehicle networking task
offloading. Overall, our paper presents innovative applications
by integrating federated learning and DRL within the context
of connected vehicles.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

Fig. 1 illustrates the network model, which comprises a
macro cell base station (MCBS), multiple small cell base
stations (SCBSs), and a fleet of vehicles denoted as i (i ∈
N ) [16]. The SCBSs and vehicles are situated within the com-
munication range of the central MCBS, and the SCBSs have
a coverage radius of 200 meters. The SCBSs are connected
to the MCBSs through wired cables. Each vehicle is equipped
with a single antenna and has communication and computing
capabilities. Vehicles communicate with each other using radio
technology, whereas the SCBSs are connected to the MCBSs
through wired cables.

Fig. 1. System model

We assume that each vehicle is assigned a task, which can be
divided into M subtasks. The amount of CPU cycles required
to complete subtask j (j ∈ M ) of vehicle i is represented as
Bi,j . The priority of subtasks is pref(nj). The predecessor
subtasks need higher priorities relative to their successor
subtasks. The CPU frequency associated with vehicle i and
the SCBS is denoted as fvi and fS , respectively. However,
offloading all tasks to the SCBS would inevitably lead to
network congestion and a surge in time delay. Consequently,
this paper focuses on reducing system costs by leveraging
the inherent resources of each vehicle. The decision variable
is defined as a three-dimensional matrix Y of dimensions
N×M×3. Each element Yi,j,k ∈ [0, 1] denotes the offloading
decision for the j-th subtask of vehicle i, where i ∈ N ,
j ∈ M , and k ∈ [1, 2, 3]. When k = 1, the j-th subtask
for vehicle i is processed locally, while k = 2 or k = 3
indicates offloading to the SCBS or Auxiliary Vehicle (AV),
respectively. The symbols and their detailed meanings can be
found in Table II.

TABLE II
NOTATIONS AND DEFINITIONS

Notation Definition

N Number of vehicles
M Number of subtasks
Ti,j The jth subtask of the ith vehicle
prei,j Priority of subtasks
vi The velocity of vehicle i
li(t) Coordinates of the position of the ith vehicle
AV Auxiliary vehicle
Di The average distance of vi from other vehicles
pS The transmit power of SCBS
Yi,j,k The offloading decision for subtask Ti,j
fvi Computing power of vi
Pi Transmitting power of vehicle i
Bi,j The number of CPU required to execute the task
Dataupi,j Amount of uploaded data
Datadown

i,j Amount of downloaded data
RV 2V

vi,A
Transmitting power between vehicle and AV

W trans
vi,A

Transmitting energy consumption between V2V
Twait
i,j Task Ti,j ’s waiting time for all predecessor tasks
ri Task completion rate of vehicle i
Tfi An indicator on whether ith task has been completed
Si The distance traveled by vehicles covered by SCBS
BV 2I Bandwidth of task uploaded to SCBS
tV 2Ir
i,S Time within SCBS’s communication range of vehicle i
drestvi,A

(t) The remaining distance of vehicle i from the AV range

We can calculate the distance of vehicles operating within
the coverage area of SCBS as follows [15]:

Si = 2
√
r2 − e2, (1)

where r is the radius of the SCBS and e is the vertical distance
from the SCBS to the road surface.

The duration for which the vehicle remains within the
coverage area of the SCBS is given by:

tV 2Ir
i,S =

Si
vi
, (2)

where vi represents the velocity of vehicle i.
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B. Auxiliary Vehicle

We introduce an Auxiliary Vehicle (AV) into the problem
scenario to assist SCBS in computing offloading tasks for other
vehicles. Without loss of generality, the AV may also equip
tasks that need to be computed. Therefore, we introduce a
variable R to represent the proportion of the AV’s resources
used to compute offloading tasks for other vehicles.

To effectively conduct computations, it is essential to select
a suitable vehicle as an AV based on the criterion CSi.
Considering both the distance and computing capacity of the
vehicles, this can be formulated as P1:

(P1) max : CSi = αDi + βfvi (3)
s.t. : α+ β = 1, (4)

where α and β represent the weighting factors for distance
and computational capabilities, respectively, determined based
on user requirements.

The average distance between vehicle i and other vehicles
is given by:

Di =
1

N − 1

N∑
j=1,j 6=i

‖li(t)− lj(t)‖, (5)

where the variables li and lj represent the coordinates of
vehicle i and vehicle j, respectively. The distance between
the two vehicles is obtained through the Euclidean distance
formula. Then, the total distance between vehicle i and all
other vehicles is divided by the total number of vehicles minus
one to obtain the average distance between vehicle i and other
vehicles.

We quantify the computing resources utilized by the AV for
the computation of tasks assigned to other vehicles as fAV =
R × fA, where fA represents the computing capacity of the
AV.

C. Communication Model

The communication model encompasses two distinct
modes: vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication [51]. We employ Dedicated Short Range
Communication (DSRC) for V2V communication and LTE-
Advanced (LTE-A) for V2I communication. Orthogonal fre-
quency is typically utilized for V2V communication, while
we assume a Rayleigh fading channel for the channel model.
The Rayleigh fading channel model is frequently employed
to characterize multipath fading in wireless communication.
This model, rooted in the Rayleigh distribution, posits that
signals traverse multiple reflective paths before reaching the
receiver, leading to fluctuations in signal strength across time
and space. In the context of VEC environments characterized
by vehicle mobility and dynamic communication, the Rayleigh
fading channel model remains applicable for describing signal
multipath effects.

According to [52], we can determine the path loss of
communication of V2V and V2A as follows, respectively:

losV 2V
i = 10

−63.3+17.7 lg (di,A(t))

10 , (6)

losV 2I
i = 10

−63.3+17.7 lg (di,S(t))

10 , (7)

where 0 ≤ di,A ≤ Climit and di,S(t) represent the distance
between vehicle i and vehicle A, and between vehicle i and the
SCBS at time t, respectively. These distances can be expressed
as follows:

di,A(t) = ‖li(t)− lA(t)‖, (8)
di,S(t) = ‖li(t)− lS(t)‖, (9)

where li(t), lA(t) and ls(t) denote the positions of the vehicle
i, vehicle A, and the SCBS at time t, respectively. Climit rep-
resents the maximum communication range between vehicles.

The uploading transmission rates from vehicle i to the AV
and the SCBS are given by [17]:

RV 2V
vi,A = BV 2V log2

(
1 +

Pilos
V 2V
i ‖h2‖
N0

)
, (10)

RV 2I
vi,S = BV 2I log2

(
1 +

Pilos
V 2I
i ‖h2‖
N0

)
, (11)

where BV 2V denotes the bandwidth between vehicles, and
BV 2I denotes the bandwidth between the vehicle and SCBS.
Pi is the transmitting power of the vehicle’s onboard device.
N0 represents the power of white Gaussian noise. The channel
fading coefficient h follows a Rayleigh distribution, and the
path loss is characterized by dσ , where σ denotes the path loss
exponent.

Similarly, the downloading transmission rates of AV and
SCBS to the vehicle i are given by:

RV 2V
A,vi = BV 2V log2

(
1 +

PAlos
V 2V
i ‖h2‖
N0

)
, (12)

RV 2I
S,vi = BV 2I log2

(
1 +

PSlos
V 2I
i ‖h2‖
N0

)
, (13)

where PS and PA represent the transmitting power of the
SCBS and the AV, respectively. The AV’s CPU frequency and
the CPU frequency allocated to the other vehicles by the AV
are denoted by fi and fA (cycles per second), respectively.

The average uploading transmission rates of the vehicle i
to AV and SCBS are given by [15].

RV 2V
vi,A =

∫ tV V r
i,A

0
RV 2V
vi,A (t) dt

tV 2Ir
i,A

, (14)

RV 2I
vi,S =

∫ tV V r
i,S

0
RV 2I
vi,S (t) dt

tV Iri,S

. (15)

Similarly, the average downloading transmission rates for
V2V and V2I communication channels are provided by [15].

RV 2V
vi,A =

∫ tV V r
i,A

0
RV 2V
vi,A (t) dt

tV V ri,A

, (16)

Rvi,SV 2I =

∫ tV Ir
i,S

0
Rvi,SV 2I (t) dt

tV Iri,S

. (17)

D. Task Offloading Decision

As to the task offloading decision, we can divide it into
three parts according to different processors.
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1) Local Computing: yi,j,1 = 1 means the jth subtask of
the ith vehicle is computed locally. The delay and energy
consumption associated with the local computation of the jth

subtask for the ith vehicle are expressed as:

T li,j =
Bi,j
fvi

, (18)

Eli,j = W l
CT

l
i,j = µfviν

2Bi,j
fvi

. (19)

where WC represents the energy consumption of the CPU, ν
represents the effective capacitance coefficient for each CPU
cycle, and v corresponds to the working voltage. The energy
consumption mentioned here specifically refers to the local
computing energy of vehicles, which can be calculated by
WC = µfν2.

2) AV Computing: yi,j,3 = 1 indicates that the jth subtask
of the ith vehicle is offloaded to the AV for computation, and
the processing results are subsequently sent to the correspond-
ing vehicles.

The delay associated with uploading the subtask data to
the AV and downloading it back to the vehicle is defined as
follows [15]:

Tup toAi,j =
Dataupi,j
RV 2V
vi,A

, (20)

T down to vii,j =
Datadowni,j

RV 2V
A,vi

. (21)

where Dataupi,j and Datadowni,j represent the sizes of the
uploading and downloading data volumes for the jth subtask
of the ith vehicle, respectively.

The time required for processing tasks on the AV is given
by:

TAexei,j =
Bi,j
fA

. (22)

The total delay of the jth subtask of the ith task with
AV computing comprises the task-uploading time, task-
downloading time, and processing time.

TTAi,j = Tup toAi,j + TAexei,j + T down to vii,j . (23)

Similarly, the total energy consumption comprises the en-
ergy used for uploading tasks, the energy used for processing
tasks by the AV, and the energy spent on result retrieval.

ETAi,j = Etransvi,A + EAexei,j + Edown to vii,j , (24)

where the required energy to transmit the task from vehicle i
vi to AV is given by;

Etransvi,A = W trans
vi,A Tup toAi,j . (25)

The required energy that takes for the task to be executed on
AV is:

EAexei,j = W exe
A TAexei,j = µAfAν

2
AT

Aexe
i,j . (26)

The required energy for downloading the task to the original
vehicle is:

Edown to vii,j = W trans
A,vi T down to vii,j = µAfAν

2
AT

down to vi
i,j .

(27)

3) SCBS Computing: yi,j,2 = 1 means the SCBS helps to
compute the jth subtask of the ith vehicle and send the results
back.

The total delay of the ith task with SCBS computing com-
prises several components, including the delay of uploading
the task data to the SCBS and receiving the results, the
processing time of the task on the SCBS, and the executing
time of all predecessor tasks for the jth subtask of the ith

vehicle. Where the required delay to transmit the task from
vehicle i to SCBS is

Tup to V 2I
i,j =

Dataupi,j
RV 2I

. (28)

The required energy that takes for the task to be executed on
AV is

TSexei,j =
Bi,j
fs

. (29)

The required waiting time for the task is

Twaiti,j = max
k∈pred(Ti,j)

TSexei,k , T down to vii,j =
Datadowni,j

RV 2I
S,vi

, (30)

where TSexei,k represents the task processing time of the jth

subtask of the ith vehicle on the SCBS.

TTSi,j = Tup to V 2I
i,j +TSexei,j + max

k∈pred(Ti,j)
TSexei,k +Twaiti,j . (31)

The total energy consumption consists of the energy used for
uploading tasks, the energy expended during task execution,
and the energy required for downloading the results.

The energy required to transmit the task from vehicle i to
SCBS is given by:

Etransvi,S = W trans
vi,S Tup to V 2I

i,j . (32)

The energy required for the task to be executed on the SCBS
is given by:

ESexei,j = W exe
S TSexei,j = µSfSν

2
ST

Sexe
i,j . (33)

The energy required for downloading the subtask data to the
vehicle from the SCBS is given by:

EStransi,j = W trans
S Tup to V 2I

i,j

= µSfSν
2
ST

up to V 2I
i,j , (34)

where the transmitting energy consumption of V2I is W trans
S .

Therefore, the total energy consumption is given by:

ETSi,j = Etransvi,S + ESexei,j + EStransi,j . (35)

E. Task Completion Rate

To ensure the successful completion of a task, we introduce
the concept of task completion rate. Task completion is con-
tingent upon the successful execution of the last subtask. If
the previous subtask fails, it implies that the result fails to be
transmitted to the vehicle before it exits the communication
range of the SCBS or AV. The total number of completed tasks
is denoted as

Tf = ΣNi=1Tfi, (36)

where Tfi indicates whether the ith task has been completed.
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If tV Iri,S −t
M−1
to ≥ T toSi,M ≥ 0 and tV 2Ir

i,A −tM−1to ≥ T toAi,j ≥ 0,
then Tfi will be set to 1; otherwise, it is set to 0. This condition
ensures that until vehicle i completes M − 1 tasks, it remains
within the communication range of the AV or SCBS, and the
remaining stay time is sufficient for the completion of the task.
If either of the two inequality conditions is satisfied, the task
is considered completed.

Subsequently, the task completion rate of vehicle i is
calculated as follows:

ri =
Tf
N
, (37)

which represents the percentage of successful tasks to the total
number of tasks.

F. Problem Formulation

The total delay of the system is calculated as follows:

Tto =
N∑
i=1

M∑
j=1

(Yi,j,1T
l
i,j + Yi,j,2T

TA
i,j + Yi,j,3T

TS
i,j ). (38)

The total energy consumption of the system is calculated as
follows:

Eto =

N∑
i=1

M∑
j=1

(Yi,j,1E
l
i,j + Yi,j,2E

TA
i,j + Yi,j,3E

TS
i,j ). (39)

We aim to minimize the total delay and energy consumption
while maximizing task completion. This can be regarded as
a multi-objective joint optimization problem, and we convert
it into a single-objective optimization problem via weighted
summation. The objective function of the problem is defined
as the total cost to be optimized, represented as P2, which
consists of the weighted sum of total delay, total energy
consumption, and the reciprocal of task completion rate. This
way, when optimizing the total cost, it can comprehensively
reduce the total delay and total energy consumption, and
improve the task completion rate, achieving multi-objective
joint optimization. This can be formulated as follows:

(P2) min : Λ1 × Tto + Λ2 × Eto + Λ3 × 1/ri

s.t. : 0 ≤ fi ≤ fmaxi , i ∈ N (40a)
0 ≤ fA ≤ fmaxA (40b)
0 ≤ fs ≤ fmaxs (40c)
3∑
k=1

Yi,j,k = 1, i ∈ N, j ∈M (40d)

Yi,j,k ∈ {0, 1} (40e)

max{T li , TV 2V
i , TSi } ≤ tmaxi (40f)

max{Eli, EV 2V
i , ESi } ≤ Emaxi (40g)

0 ≤ Pi ≤ Pmaxi , i ∈ N, (40h)

where Λ1, Λ2, and Λ3 represent the weighting factors of delay,
energy consumption, and task completion, respectively. These
values can be determined based on user preferences. We em-
ploy the Analytic Hierarchy Process [53] to qualitatively and
quantitatively analyze the determination of weighting factors.
The three factors mentioned in the text are used as row and

column labels to construct a 3 × 3 symmetric judgment matrix.
Then, users assign scores based on the importance level, uti-
lizing a predefined scale table. Finally, column normalization,
row summation, and consistency checks are performed. The
final output that passes the consistency check is used as the
weighting factor. If the objective is to enhance a specific
indicator individually, one can adjust the weight factor of the
remaining indicators within the overall cost framework to zero.
In P2, Constraints (a-c) represent the maximum computing
resource limit for vehicles and SCBS. Constraints (d-e) pertain
to vehicular decision constraints for the jth subtask of the ith

vehicle, ensuring that a subtask can only be executed on a
single processor. Constraint (f-g) limits the maximum tolerable
delay and energy consumption for each mode. Constraint (h)
denotes the maximum transmitting power.
P2 is a challenging Mixed-Integer Nonlinear Programming

(MINLP) problem, generally NP-hard. It is challenging to
obtain the solutions effectively because of their non-convexity.
To address this, we decompose the original problem into two
parts and design algorithms to solve each corresponding part.

IV. AVA ALGORITHM

A. Federated Learning on Server

To effectively motivate the chosen AV to allocate its com-
puting resources, we introduce the incentive mechanism of
federated learning. This mechanism operates as a reward or
punishment system within the federated learning framework.

In the incentive mechanism of federated learning, reputa-
tion value is used to measure the level of contribution and
trustworthiness of participants. It is typically derived from the
participant’s contribution level and is essential in the incentive
mechanism. Reputation is employed to penalize malicious
participants and reward cooperative ones. In our context,
we will employ this incentive mechanism to motivate the
AVs to actively contribute their computing resources, thereby
alleviating the strain on the SCBS terminal or local computing.
We define the reputation in federated learning as:

Reputation =

(
GT −

∑T−1
i=1 G

i

T − 1

)
×R, (41)

where T is the epoch, and Gi represents the total system
cost for the ith round. R represents the allocation ratio of
resources the current assisting vehicle utilizes to aid other
vehicles in task offloading. The greater the proportion of
resources contributed by the AV to assist other vehicles in
task computation, the more significant its contribution to other
vehicles. Meanwhile, we must consider the AV’s contribution
to optimizing the objective function G. To achieve a more
balanced performance, we incorporate the difference between
the total cost of the current round and the average cost of the
previous T − 1 rounds into the contribution metric. A larger
difference implies a greater contribution in the current round.

Regarding the setting of rewards, we introduce the priority
of vehicles and set it as prei, indicating the priority of task
execution for the i−th vehicle. When the vehicles offload their
tasks to the server for execution, they are sorted according to
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Fig. 2. The architecture of federated reinforcement learning-empowered task offloading in VEC.

priority, and the tasks of vehicles with the higher priority are
executed first. We update the priority as follows:

prei =

 prei, prei < prei − PID
prei − PID, i = nA
prei + 1, i = prei > prei − PID

(42)

where PID (0 ≤ PID ≤ pred(A)) represents the degree to
which the priority is increased, and PID is a natural number.
The priority among vehicles is initially randomized. Rewards
are then adjusted according to variations in the reputation value
of the AV, particularly focusing on increments in priority.

Algorithm 1 FedRep
1: Initialize φ0, h01, · · · , h0n.
2: for t = 1, 2, · · · , T do
3: Server receives clients’ parameters
4: Server sends current representation φ0 to client
5: for k = 1, 2, · · · ,K do
6: Receive ht,ki from client
7: Implementing incentive mechanism
8: Aggregate ht,ki ←

∑N
j=1 h

t,k
i,j

9: Send ht,ki to client
10: end for
11: end for

Fig. 2 shows the overall architecture of federated rein-
forcement learning-empowered task offloading in VEC. The
detailed steps are as follows:
• Step 1: Each agent selects an action from the environ-

ment’s experience pool based on selecting strategies.
• Step 2: The agents in the client train local models through

multi-agent reinforcement learning.
• Step 3: The parameters of the local model are passed to

the global model.
• Step 4: Aggregate parameters of the local model and

incentivize the increase or decrease of R.
• Step 5: The global model transmits the parameters back

to the local model.
• Step 6: The data is stored in the experience pool.
The specific joint optimization algorithm is outlined in

Algorithm 1. Initially, we initialize the parameters of the

server model. Subsequently, clients receive data to train the
network parameters of DRL. Following this, all clients upload
their parameters to the server for aggregation. The server then
employs incentive mechanisms to dynamically adjust resource
allocation for AV, aiming to minimize the total cost.

For federated learning, a critical challenge is to involve
AVs in the learning process effectively. The introduction of
incentive mechanisms facilitates the sharing of benefits be-
tween federated and assisted vehicles during the reinforcement
learning process, involving the participation of assisted vehi-
cles. However, to ensure the long-term stability of federated
learning and enhance the availability of computing resources
of AVs to perform offloading tasks from other vehicles, this
paper adopts priority as an incentive for AVs. Moreover,
it dynamically allocates AVs’ computing resources to other
vehicles by continuously maximizing reputation values to
incentivize participation.

Algorithm 2 MADDPG-based client training
Input: vehicle positions, computing resources of vehicles and
SCBS.

1: Initialize the weights of target, eval networksθ and θ
′

with
random number, and the replay buffer D.

2: for episode = 1, · · · ,M do
3: Receive initial state S;
4: Initialize a random action;
5: for vehicle i = 1, · · · , N do
6: Execute actions ai and obtain new state s

′

i;
7: Obtain the reward R of vehicle i based on Eq. (45);
8: Obtain the action A, new state S

′
;

9: Store (S, A, S
′
, R) in replay buffer D;

10: end for
11: for vehicle i = 1, · · · , N do
12: Sample a random mini-batch of samplesfrom D;
13: Update the eval network by minimizing the loss

function;
14: end for
15: Update the target network parameters of each vehicle

i: θ
′

i ← δθi + (1− δ) θ′i at every C steps.
16: end for
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B. Federated Learning on Client
We employ the Multi-Agent Deep Deterministic Policy

Gradient (MADDPG) on the client to tackle the task offloading
problem. We formulate this problem as a Markov Decision
Process (MDP).

1) State Space: We define the system’s state space as s(t),
which encompasses the computing capacity of vehicles and
SCBS, as well as the positions of vehicles.
s(t) = {x1(t), · · ·xi(t), C1(t), C2(t) · · ·Ci(t), Cb(t)} , (43)

where xi(t) represents the position of vehicle i at time t, while
Ci(t) and Cb(t) denote the computing capacity of vehicle i
and SCBS, respectively. This enables rational decision-making
based on real-time vehicle position and current resources of
vehicles and SCBS.

2) Action Space: The action space a(t) indicates whether to
retain the task or offload it to the other two servers, expressed
as:

a(t) = {a1(t), a2(t), · · · ai(t), · · · , aN (t)} , (44)

where ai(t) represents the decision of the ith task. In par-
ticular, ai(t) = 1, 2 or 3 represents local processing, SCBS
processing, and AV processing, respectively. Since the action
vector is discrete, DQN can be utilized for action selection.

3) Reward Function: We aim to minimize the system cost
(G) while considering real-world constraints, with the reward
set as the negative value of G.

r(t) = −G. (45)
This approach is adopted because the objective is to minimize
the total cost, whereas the goal of reinforcement learning is
to maximize long-term expected rewards.

The algorithmic process for the MADDPG-based client
training is as described in Algorithm 2.

C. Computing Complexity
In Alg. 1, there is a nested loop. The complexity can be

expressed as O(TK). The complexity of Alg. 2 is determined
by another nested loop, and it amounts to O(MN). This
loop corresponds to the number of episodes in the interaction
between the agent and the environment, and the number of
times the vehicles are traversed, respectively.

V. PERFORMANCE EVALUATION

A. Parameter Settings
In the considered VEC network scenario, we assume a total

of N vehicles, along with one SCBS. Each vehicle is assigned
a task that can be further segmented into M subtasks, and the
interdependence of these subtasks is illustrated in Fig. 2. The
weight values α and β are both set to 0.5. The channel model
adheres to the Rayleigh fading model with a path loss exponent
σ = 2. White noise N0 is specified as 3 × 10−13, and the
bandwidth for V2V (BV 2V ) and V2I (BV 2I ) communication
is set to 1 MHz. Key parameter values include Climit = 150
m [54], fvi =

[
106, 2× 108

]
cycles/s, Pi = Pt = 1.3

W [55], and PSCBS = 40 W. The capacitance coefficients
µ = 10−28 [56], ν = νvi = νAV = 12 V, νSCBS = 220 V, and
maximum time delay and energy consumption are specified as
fmax

s = 8 × 108 c/s [57] and Emax
i = 3 J. For the values of

other parameters, please refer to Table III.

TABLE III
SIMULATION PARAMETERS

Parameter Value Parameter Value

α 0.5 β 0.5
σ 2 N0 3× 10−13

BV 2V 1 MHz BV 2I 1 MHz
Climit 150 m fvi

[
106, 2× 108

]
cycles/s

PSCBS 40 W µ 10−28

ν 12V νSCBS 220 V
Emax

i 3 J Dataupi,j [1, 10] MB
Pi 1.3 W fmax

s 8× 108 cycles/s

B. Baselines

The following schemes are employed as baseline algorithms
in the experiments to compare with the algorithm proposed in
this paper.
• Full local executing (FL): All the tasks are executed

locally
• Full SCBS executing (FS): All the tasks are executed

on SCBS
• Energy and delay greedy (EDS): Offloading decisions

are made using a greedy algorithm, considering energy
and delay factors [58].

• Energy and delay multi-agent reinforcement (EDM):
Multi-agent reinforcement learning is employed to deter-
mine the offloading strategy, taking into account energy
and delay considerations [28].

C. Experiment Results

We evaluated the algorithm’s performance by measuring the
total cost across diverse simulation configurations. This com-
prehensive metric incorporates factors such as delay, energy
consumption, and success rate.

1) Impact of Learning Rate: Fig. 3 illustrates the growth of
average rewards at various learning rates ranging from 0.001
to 0.2. As shown in the figure, higher learning rates result in
faster convergence of the average reward. However, after 600
epochs of training, the learning rate of 0.1 reaches the optimal
value first. It is also noteworthy that the increasing learning
rate can lead to finding a local optimal solution instead of the
global optimal.

Fig. 3. Average rewards under different learning rates
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2) Impact of Transmitting Power: In Fig. 4, the relationship
between the total cost and transmitting power is depicted
for different task offloading methods. Unlike the FL scheme,
the results obtained from the other four methods consistently
reveal a reduction in the total cost as transmitting power
increases. This is because the increase in transmitting power
will reduce delay and improve task completion rate. The FL
scheme executes tasks locally, so transmitting power does not
affect it. Nevertheless, excessively high transmitting rates can
result in elevated energy consumption, subsequently leading
to an increase in the total cost. Remarkably, the AVA method
consistently maintains the lowest cost across all transmitting
power levels employed in the experiment simulation. This
means that compared to other offloading schemes that do not
include idle vehicle resources, the proposed scheme effectively
utilizes idle vehicle resources to alleviate the pressure on the
vehicle and edge computing power.

Fig. 4. Comparison of different schemes under different transmitting power
scenarios.

3) Impact of Number of Tasks: Fig. 5 demonstrates that
the task offloading cost is directly proportional to the number
of tasks in all schemes. As the number of tasks increases, the
total cost correspondingly rises. This is because as the number
of tasks increases, both delay and energy consumption will
significantly increase, and the success rate will also decrease.
The proposed scheme surpasses the other four schemes due
to its generation based on the minimum offloading cost,
indicating that the use of idle vehicle resources significantly
improves the optimization of task offloading costs. As to FL,
due to the local execution of all tasks, with the increase of task
quantity and limited local resources, the latency and energy
consumption will be much higher than other baseline schemes,
and the completion rate will also decrease. Therefore, the
overall cost is the highest. This illustrates the importance of
task offloading.

4) Impact of Computing Capacity of SCBS: In Fig. 6, it is
evident that as the computing capacity of the SCBS increases,
the total cost decreases for all baseline schemes except the FL
scheme. This is attributed to the fact that full local computation
is independent of the SCBS computing capacity and solely
relies on the local vehicle’s computing capability. Therefore,
the trend of FL remains unchanged. Moreover, the trend
indicates that as the SCBS computing capacity reaches a high
level, the task waiting time becomes negligible, resulting in the
lowest total cost for offloading tasks to SCBS. Furthermore,

Fig. 5. Comparison of different schemes across different numbers of tasks.

the curves for EDS, EDM, and AVA gradually approach
the curve of FS and eventually converge to the FS curve.
Notably, the total cost of AVA remains the lowest throughout,
demonstrating the superiority of the proposed approach. This
is because the proposed solution reduces the waiting time for
tasks on the edge server and the time for vehicles to transmit
tasks by transferring them to nearby vehicles.

Fig. 6. Comparison of different schemes across different computing capacities
of SCBS

5) Impact of Number of Vehicles: In Fig. 7, the comparison
results for total cost among the five task offloading schemes are
presented across different numbers of vehicles. The total cost
consistently rises with the increase in the number of vehicles.
This is because an increase in the number of vehicles also
leads to a rise in the number of tasks, as mentioned in 3)
above. Compared with other schemes, the proposed scheme
still maintains the lowest cost, which proves that the proposed
scheme has effectively improved overall performance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the AVA algorithm to tackle the
joint optimization problem in IoV. By leveraging reinforce-
ment learning, agents can dynamically adjust to changes in the
real-time environment. The integration of federated learning
further enhances and facilitates flexible resource allocation
of AV. Simulation experiments conclusively demonstrate that
our proposed method effectively allocates unused vehicle re-
sources and reduces overall system costs. Moreover, it adeptly
handles complex task offloading problems, even in scenarios
involving a large number of states.
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Fig. 7. Comparison of different schemes across different numbers of vehicles

In the future, we aim to enhance the model’s performance
in complex real-world scenarios. This includes utilizing digital
twin simulations to model vehicle trajectories and real-time
traffic conditions and incorporating these factors into our
model. We also plan to explore increasing the number of
auxiliary vehicles to boost available resources and alleviate
communication congestion.
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