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ABSTRACT

Age-structured models with nonlocal diffusion arise naturally in describ-

ing the population dynamics of biological species and the transmission

dynamics of infectious diseases in which individuals disperse nonlocally

and interact each other, and the age structure of individuals matters. In

the second part of this series of papers, we study the effects of princi-

pal eigenvalues on the global dynamics of the equation with monotone

nonlinearity on the birth rate. More precisely, we analyze the existence

and uniqueness of a nontrivial equilibrium and its stability for the age-

structured model with nonlocal diffusion under certain assumptions via

the sign of spectral bound of a linearized operator. Moreover, we investi-

gate the asymptotic properties of the nontrivial equilibrium with respect

to the diffusion rate and diffusion range.

1. Introduction

In this paper, we continue to study the global dynamics of age-structured models

with nonlocal diffusion of Dirichlet type and monotone nonlinearity on the birth

rate. More precisely, we are interested in the following age-structured model

with nonlocal diffusion of Dirichlet type:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(∂t+∂a)u(t, a, x)=D[
∫
Ω
J(x−y)u(t, a, y)dy−u(t, a, x)]−μ(a, x)u(t, a, x),

(t, a, x) ∈ (0,∞)× (0, â)× Ω,

u(t, 0, x) = f(
∫ â

0
β(a, x)u(t, a, x)da), (t, x) ∈ (0,∞)× Ω,

u(0, a, x) = u0(a, x), (a, x) ∈ (0, â)× Ω,

where u(t, a, x) denotes the density of a population at time t, age a and posi-

tion x, J is the dispersal kernel and f is a monotone type nonlinearity describing

the birth rate of the population. The background and motivation of studying

the above model were given in our first paper, the interested readers can refer

to [5]. We only mention that the nonlocal diffusion operator in (1.1) corresponds

to zero Dirichlet boundary condition, which indicates that the region outside

the habitat, RN \ Ω, is so hostile that the population cannot survive there, see

Hutson et al. [6].

Here â ∈ (0,∞] represents the maximum age and Ω ⊂ R
N is a bounded

domain. Moreover, D > 0 is the diffusion rate and the diffusion kernel J

satisfies the following assumption.
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Assumption 1.1: The kernel J ∈ C(RN ) is nonnegative and supported in B(0, r)

for some r > 0, where B(0, r) ⊂ R
N is the open ball centered at 0 with radius r.

In addition, J satisfies J(0) > 0 and
∫
RN J(x)dx = 1.

Next we present assumptions on the birth rate β = β(a, x) and the death

rate μ = μ(a, x). Define

μ(a) := min
x∈Ω

μ(a, x), μ(a) := max
x∈Ω

μ(a, x),

β(a) := min
x∈Ω

β(a, x), β(a) := max
x∈Ω

β(a, x).

Assumption 1.2: The birth rate β(a, x) and the death rate μ(a, x) satisfy the

following conditions:

(i) β ∈ C(RN , L∞
+ (0, â));

(ii) μ ∈ C(RN , L∞
loc,+[0, â));

(iii) there exists a constant μ̃ > 0 such that μ(a) ≥ μ̃ > 0 a.e. a ∈ (0, â);

(iv) for any x ∈ R
N and almost every a ∈ (0, â),

β(a) ≤ β(a, x) and μ(a, x) ≤ μ(a).

The interested readers can refer to [5] for more comments on the above as-

sumptions about β and μ. In addition, we make some assumptions on the

nonlinear function f = f(u) as follows.

Assumption 1.3: The function f satisfies the following conditions:

(i) f ∈ C1([0,∞));

(ii) f ′(u) > 0 for all u ∈ [0,∞);

(iii) f(0) ≡ 0 and f(u)
u is decreasing with respect to u;

(iv) there exists a constant L > 0 such that f(u) ≤ L for all u ∈ [0,∞).

A typical example of such nonlinearity is

f(u) =
u

1 +Au
, u ≥ 0,

with A > 0 being a constant or f(u) = 1 − e−u, u ≥ 0. We would like to

mention that Assumption 1.3(ii) is used to avoid the existence of periodic so-

lutions, which is common in age-structured models; see Magal and Ruan [8, 9],

Liu et al. [7] and the references cited there. Moreover, it seems necessary in our

problem, in particular in the monotone iterative scheme (using comparison prin-

ciples), to obtain the nontrivial positive equilibrium of (1.1) (see Theorem 4.4).
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Note that Assumptions 1.1–1.3 will be required throughout the paper, thus

in the following we will assume that these assumptions hold everywhere without

repeating them. However, we will mention any additional assumptions where

they are needed.

As mentioned in our first paper [5], the important tool in studying the global

dynamics of (1.1) is to investigate the spectrum set of the linearized operator

of (1.1) at some equilibrium, and then use the information of the spectrum set

(for example, the sign of the spectral bound or principal eigenvalue, if it exists)

to study the long time behavior of (1.1). In [5], we have studied the existence

of principal eigenvalues of the linearized operator associated to (1.1) at some

equilibrium and their limiting properties with respect to the diffusion rate and

diffusion range. In this paper, we are interested in the global dynamics of (1.1).

More precisely, we analyze the existence and uniqueness of a nontrivial equilib-

rium and its stability for the age-structured model with nonlocal diffusion (1.1)

under Assumption 1.3 via the sign of the spectral bound of a linearized op-

erator. Moreover, we investigate the asymptotic properties of the nontrivial

equilibrium with respect to the diffusion rate and diffusion range.

The paper is organized as follows. In Section 2, we recall the notations

introduced in [5], which are also used in this paper. In Section 3, we first

recall some established results in [5], in particular on the existence of principal

eigenvalues and their asymptotic behavior with respect to the diffusion rate

and diffusion range. In Section 4, we investigate the existence, uniqueness,

regularity and stability of a nontrivial equilibrium of (1.1) via the sign of the

spectral bound. In Section 5, we continue to study the global dynamics of (1.1)

in terms of the diffusion rate and diffusion range.

2. Notations

In this section, we recall our notations employed in [5], which will be also used in

this paper. We denote by X and X+ respectively the Banach space X = C(Ω)

and its positive cone or the Banach space X = L1(Ω) and its positive cone.

Here recall that Ω ⊂ R
N is a given bounded domain. Recall that for both

cases X+ is a normal and generating cone. In addition, we denote by I the

identity operator.
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Then we define the following function spaces:

X = X × L1((0, â), X), X0 = {0X} × L1((0, â), X),

endowed with the product norms and the positive cones:

X+ = X+×L1
+((0, â), X)=X+×{u∈L1((0, â), X) : u(a, ·)∈X+, a.e. in (0, â)},

X+
0 = X+ ∩ X0.

We also define the linear positive and bounded operator K ∈ L(X) by

(2.1) [Kϕ](·) =
∫
Ω

J(· − y)ϕ(y)dy, ∀ϕ ∈ X.

Note that due to Assumption 1.1 one has

(2.2) ‖K‖L(X) ≤
⎧⎨
⎩supy∈Ω

∫
Ω
J(x − y)dx if X = L1(Ω)

supx∈Ω

∫
Ω J(x− y)dy if X = C(Ω)

≤
∫
RN

J(z)dz = 1.

2.1. Evolution family without diffusion. We consider the following prob-

lem posed in X for 0 ≤ τ ≤ a < â:

(2.3)

⎧⎨
⎩∂av(a) = −μ(a, ·)v(a), τ < a < â,

v(τ) = η ∈ X.

This problem generates an evolution family on X , denoted by Π, that is explic-

itly given for 0 ≤ τ ≤ a < â and η ∈ X by

Π(τ, a)η = π(τ, a, ·)η

with π(τ, a, x) := exp

(
−
∫ a

τ

μ(s, x)ds

)
for 0 ≤ τ ≤ a < â and x ∈ Ω.

(2.4)

Observe that one has

(2.5) ‖Π(τ, a)‖L(X) ≤ exp

(
−
∫ a

τ

μ(s)ds

)
≤ e−μ̃(a−τ) ≤ 1, ∀ 0 ≤ τ ≤ a < â.

We also define the following family of bounded linear operators

{Wλ}λ>−μ̃ ⊂ L(X ,X0)

for (η, g) ∈ X by

(2.6)

Wλ(η, g) = (0, h)

with h(a) = e−λaΠ(0, a)η +

∫ a

0

e−λ(a−s)Π(s, a)g(s)ds.
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We will show that this provides a family of positive pseudoresolvents. With this

aim, one can make some computations to obtain

WνWλ(η, g) =

∫ a

0

e−ν(a−s)Π(s, a)e−λsΠ(0, s)ηds

+

∫ a

0

e−ν(a−s)Π(s, a)

∫ s

0

e−λ(s−τ)Π(τ, s)g(τ)dτds

=

∫ a

0

e−νae−(λ−ν)sdsΠ(0, a)η

+

∫ a

0

∫ s

0

eλτ−νae−(λ−ν)sΠ(τ, a)g(τ)dτds.

Hence for ν �= λ, we have

WνWλ(η, g) =
1

ν − λ
(e−λa − e−νa)Π(0, a)η

+
1

ν − λ
(e−(λ−ν)a − e−(λ−ν)τ )

∫ a

0

eλτ−νaΠ(τ, a)g(τ)dτ

=
1

ν − λ
(Wλ −Wν)(η, g).

Moreover, one sees (for example, Magal and Ruan [9, Lemma 3.8.3]) that for

all λ > −μ̃,
Wλ(η, g) = 0 only occurs if η = 0, g = 0

and

lim
λ→∞

λWλ(0, g) = (0, g), ∀(0, g) ∈ X0.

Furthermore, one has

‖Wλ‖L(X ,X0)
≤ 1

λ+ μ̃
.

Thus, by Pazy [11, Section 1.9] there exists a unique closed Hille–Yosida oper-

ator B̃1 : dom(B̃1) ⊂ X → X with dom(B̃1) = X0 such that

(2.7) (λI − B̃1)
−1 =Wλ for all λ > −μ̃.

Recalling (2.1) we also define a bounded linear operator B2 ∈ L(X0) by

B2(0, g) = (0, DKg(·)), ∀(0, g) ∈ X0.
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2.2. Evolution family with diffusion. Now consider the following evolu-

tion equation for η ∈ X and 0 ≤ τ ≤ a < â:

(2.8)

⎧⎨
⎩∂au(a) = D(K − I)u(a)− μ(a, ·)u(a), τ < a < â,

u(τ) = η ∈ X.

Define the evolution family {U(τ, a)}0≤τ≤a<â ⊂ L(X) associated with (2.8).

Using the constant of variation formula, U becomes for all 0 ≤ τ ≤ a < â the

solution of the equation

(2.9)

⎧⎨
⎩U(τ, a) = e−D(a−τ)Π(τ, a) +D

∫ a

τ
e−D(a−l)Π(l, a)K U(τ, l)dl,

U(τ, τ) = IX ,

where IX is the identity operator in X . Note that the right-hand side of (2.8)

is linear and bounded with respect to u, thus the existence and uniqueness

of {U(τ, a)}0≤τ≤a<â can be obtained from the general semigroup theory (see

Pazy [11]). Next we prove that {U(τ, a)}0≤τ≤a<â is exponentially bounded.

With this aim fix η ∈ X , τ ∈ [0, â) and set u(a) = U(τ, a)η. Then one has

‖u(a)‖X ≤ e−(D+μ̃)(a−τ)‖η‖X +D‖K‖L(X)

∫ a

τ

e−(D+μ̃)(a−l)‖u(l)‖Xdl.

Next, Gronwall’s inequality yields

‖u(a)‖X e(D+μ̃)(a−τ) ≤ ‖η‖X eD‖K‖L(X)(a−τ),

which implies, due to (2.2), that

‖U(τ, a)‖L(X) ≤ e−μ̃(a−τ).

As a consequence {U(τ, a)}0≤τ≤a<â is positive and exponentially bounded in X

and satisfies

(2.10) ‖U(a, a+ t)‖L(X) ≤ e−μ̃t, ∀t ≥ 0, 0 ≤ a < â− t.

Now we define the family of bounded linear operators {Rλ}λ>−μ̃ ⊂ L(X ,X0)

as follows:

(2.11)

Rλ(η, g) = (0, h)

with h(a) = e−λaU(0, a)η +
∫ a

0

e−λ(a−s)U(s, a)g(s)ds.

Moreover, for any λ > −μ̃, one has

‖Rλ‖L(X ,X0)
≤ 1

λ+ μ̃
.
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Then by the same procedure as in the case without diffusion, we can prove that

this provides a family of positive pseudoresolvents. Again by Pazy [11, Section

1.9] there exists a unique closed Hille–Yosida operator B : dom(B) ⊂ X → X
with dom(B) = X0 such that

(λI − B)−1 = Rλ for all λ > −μ̃.
Now we define the part of B in X0, denoted by B0, that is,

B0x = Bx, ∀x ∈ dom(B0), with dom(B0) := {x ∈ dom(B) : Bx ∈ X0}.
Note that B0 is the infinitesimal generator of a strongly continuous semigroup of

bounded linear operators on X0, denoted by {TB0(t)}t≥0. Moreover, it satisfies

the following estimate

‖TB0(t)‖L(X0) ≤ e−μ̃t, ∀t ≥ 0.

Observe that we have B̃1 + B2 −DI = B. From now on for the sake of conve-

nience, we denote B1 := B̃1 −DI.

On the other hand, we define C ∈ L(X0,X ) by

C(0, h) =
(∫ â

0

β(a, ·)h(a)da, 0
)
, (0, h) ∈ X0,

and A : dom(A) ⊂ X → X by

(2.12)

⎧⎨
⎩dom(A) = dom(B) ⊂ X0,

A = B + C.
This shows that A is not densely defined in X .

Remark 2.1: In addition, for each fixed x ∈ Ω, following the above proce-

dures one can obtain the age-structured operator, denoted by Bx
1 + Cx, defined

on R× L1(0, â).

Finally define a map F : X0 → X by

F (0, ψ) =

(
f

(∫ â

0

β(a, ·)ψ(a)da
)
, 0

)
Then by identifying U(t) = (0, u(t)), one can rewrite problem (1.1) as the

following abstract Cauchy problem:

(2.13)

⎧⎨
⎩

dU
dt = BU + F (U),

U(0) = U0,
with U0 = (0, u0) ∈ X0.
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3. Preliminaries

3.1. Existence of principal eigenvalues. In this subsection we list some

useful results which will be used later, and the interested readers can refer to [5]

for more details. Note that all results in this section are under Assumptions 1.1

and 1.2. We first recall a sufficient condition to make the spectral bound

s(A) := sup{Reλ ∈ R;λ ∈ σ(A)}

become the principal eigenvalue. Here we say that λ ∈ σ(T )∩R is the principal

eigenvalue of a linear operator T if it is larger than the real parts of all other

eigenvalues of T and associated with a positive eigenfunction.

Proposition 3.1 (Ducrot et al. [5, Propositions 3.3 and 3.5]): The spectral

bounds of B1 + C and A satisfy s(B1 + C) = α∗∗ and s(A) = λ0 respectively,

which are given as follows:

(3.1)

r(Gα∗∗) := r

(∫ â

0

β(a, ·)e−(α∗∗+D)aΠ(0, a)da

)

= max
x∈Ω

∫ â

0

β(a, x)e−(α∗∗+D)aπ(0, a, x)da = 1,

r(Mλ0 ) := r

(∫ â

0

β(a, ·)e−λ0aU(0, a) da
)

= 1.

Here Gα is a linear and bounded operator from X to X , and r(A) denotes the

spectral radius of a linear bounded operator A, which is defined by

r(A) = sup{|λ| ∈ R;λ ∈ σ(A)}.
Theorem 3.2 (Ducrot et al. [5, Theorem 4.1]): Assume that s(A) > s(B1+C).
Then s(A) is the principal eigenvalue of A.

Next we recall the result on the algebraic simplicity of the principal eigen-

value s(A).

Assumption 3.3: There exists no a0 such that β(a) = 0 a.e. [a0, â). Moreover,

it is equivalent to ∫ â

a

β(l)dl > 0, ∀a ∈ [0, â).
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Theorem 3.4 (Ducrot et al. [5, Theorem 4.6]): Let Assumption 3.3 hold. As-

sume that s(A) > s(B1 + C). Then the principal eigenvalue of A, i.e., s(A), is

algebraically simple.

Next we recall two established sufficient and relatively easily verifiable con-

ditions ensuring that s(A) is the the principal eigenvalue of A.

Theorem 3.5 (Existence of principal eigenvalues. I, Ducrot et al. [5, Theo-

rem 4.8]): Assume that μmax := supa∈(0,â) μ(a) <∞ and

(3.2) x→ 1

1−Gα∗∗(x)
/∈ L1

loc(Ω).

Then s(A) is the principal eigenvalue of A, where

α∗∗ = s(B1 + C)

and Gα : Ω → R is defined by

(3.3) Gα(x) =

∫ â

0

β(a, x)e−(α+D)aπ(0, a, x)da, ∀x ∈ Ω.

Assumption 3.6: There exists a2 ∈ (0, â) such that β ≡ 0 in [a2, â)× Ω.

Theorem 3.7 (Existence of principal eigenvalues. II, Ducrot et al. [5, Theo-

rem 4.11]): Let Assumption 3.6 hold. Assume that

(3.4) x→ 1

α∗∗ − α(x)
/∈ L1

loc(Ω),

and that for each x ∈ Ω, the operator Bx
1 + Cx possesses a positive eigenvec-

tor φ ∈ W 1,1(0, a2) corresponding to α(x). Then s(A) is the principal eigen-

value of A. Here x → α(x) : Ω → R is continuous such that for any x ∈ Ω, the

following equation

(3.5)

⎧⎨
⎩∂aφ(a, x) = −(D + μ(a, x))φ(a, x) − α(x)φ(a, x), a ∈ (0, a2),

φ(0, x) =
∫ a2

0
β(a, x)φ(a, x)da

has a positive solution a → φ(a, x) ∈ W 1,1(0, â) and Bx
1 + Cx is defined in

Remark 2.1 in (0, a2).
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3.2. Limiting properties. In this subsection we recall the asymptotic behav-

ior of the principal eigenvalue with respect to diffusion rate and diffusion range.

Throughout this subsection we let Assumption 3.6 hold. Before proceeding, let

us first clarify the strict positivity in X .

f > 0 in X = C(Ω) means that f(x) > 0 for all x ∈ Ω,

f > 0 in X = L1(Ω) means that

∫
Ω

f∗(x)f(x)dx> 0 for any f∗∈L∞
+ (Ω)\{0}.

Our tool in investigating the limiting properties is generalized principal eigen-

values, which are given as follows.

Definition 3.8: Define the generalized principal eigenvalues by

(3.6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λp(A) :=sup{λ∈R : ∃φ ∈W 1,1((0, a2), X)

s.t. φ>0 and (−A+λ)(0, φ)≤(0, 0) in [0, a2]},
λ′p(A) :=inf{λ∈R : ∃φ ∈W 1,1((0, a2), X)

s.t. φ>0 and (−A+λ)(0, φ)≥(0, 0) in [0, a2]}.
Proposition 3.9 (Ducrot et al. [5, Proposition 5.2]): Let Assumption 3.6 hold

and, in addition, assume that λ1(A) is the eigenvalue of A associated with

(0, φ1) ∈ dom(A) with φ1 > 0 in [0, a2]. Then one has λ1(A) = λp(A) = λ′p(A).

3.2.1. Without kernel scaling. We first recall the theorem about the effects of

the diffusion rate on s(A). In the next result, we write sD(A) for s(A) to

highlight the dependence on D.

Theorem 3.10 (Ducrot et al. [5, Theorem 5.3]): Let Assumption 3.6 hold and,

in addition, assume that sD(A) is the principal eigenvalue of A. Then the

function D → sD(A) is continuous on (0,∞) and satisfies

(3.7) sD(A) →
⎧⎨
⎩s(B1 + C) as D → 0+,

−∞ as D → ∞,

where B1 is defined by

(3.8) B1(0, f) = (−f(0, ·),−∂af − μf), f ∈W 1,1((0, a2), X).

3.2.2. With kernel scaling. In this subsection we recall the effects of the diffusion

rate and diffusion range on the principal eigenvalue. Define Kγ,Ω as follows:

(3.9) [Kγ,Ωf ](·) =
∫
Ω

Jγ(· − y)f(y)dy, f ∈ X.
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Here the kernel Jγ satisfies the scaling

Jγ(x) =
1

γN
J
(x
γ

)
for x ∈ R

N ,

where γ > 0 represents the diffusion range. Then the nonlocal diffusion operator

is given as D
γm [Kγ,Ω − I], where m ∈ [0, 2) denotes the cost parameter.

Write Aγ,m,Ω = Bγ,m,Ω+C for A = B+C to highlight the dependence on γ,m

and Ω and further denote Bμ
γ,m,Ω, Cβ for B, C to represent the dependence on μ

and β respectively.

Theorem 3.11 (Ducrot et al. [5, Theorem 5.7]): Let Assumption 3.6 hold.

Assume that s(Aγ,m,Ω) is the principal eigenvalue of Aγ,m,Ω. Then:

(i) As γ → ∞, there holds

(3.10) s(Aγ,m,Ω) →
⎧⎨
⎩s(B1 + C)−D, m = 0,

s(B1 + C), m > 0,

where B1 is defined in (3.8).

(ii) Assume, in addition, that J is symmetric, i.e., J(x) = J(−x), and

μ, β ∈ C2(RN , L∞
+ (0, a2)). As γ → 0+, there holds

s(Aγ,m,Ω) → s(B1 + C), ∀m ∈ [0, 2).

(iii) In the case when m = 0, if Ω contains the origin and μ(a, x) is radially

symmetric and radially non-decreasing with respect to x, namely,

μ(a, x) = μ(a, y) if |x| = |y|
and

μ(a, x) ≥ μ(a, y) if |x| ≥ |y|
for all a ∈ [0, â), then γ → s(Aγ,0,Ω) is non-increasing.

4. Global dynamics in terms of the spectral bound

In this section, we extend the techniques and results in Coville [3] to investi-

gate the existence, uniqueness and stability of a nontrivial equilibrium of our

model (1.1). Throughout this section, let Assumptions 1.1, 1.2 and 1.3 hold. In

addition, we make the following assumption.
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Assumption 4.1: There exists a2 ∈ (0, â) such that β ≡ 0 on [a2, â)× Ω and∫ a2

a

β(l)dl > 0 for any a ∈ [0, a2).

For the sake of simplicity, we will not repeat Assumptions 1.1, 1.2, 1.3 and 4.1

in this section. However, we will indicate the additional assumptions where we

need.

Before proceeding, we would like to mention that even for age-structuredmod-

els with Laplacian diffusion, it is not easy to study the existence of a nontrivial

equilibrium; see Walker [17–24] where the focuses were mainly on the existence

of a nontrivial equilibrium of age-structured models with nonlinear Laplacian

diffusion and with/without nonlinear birth and death rates. Walker assumed

the maximum regularity of the nonlinear diffusion to obtain compactness of

the semigroup and then used bifurcation method (Crandall and Rabinowitz [4],

Rabinowitz [12]) to study them. However, the semiflow generated by nonlocal

diffusion is not compact with respect to the compact open topology and so-

lutions of nonlocal diffusion problems usually lose the spatial regularity, which

means that we cannot apply Walker’s methods directly to our case. Here we use

the sub- and super-solution method to provide a criterion for the existence of a

nontrivial equilibrium via the sign of the spectral bound of linearized equations

motivated by Coville [3].

Let us first write down the equation that the equilibrium satisfies:

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂au(a, x)=D[

∫
Ω
J(x−y)u(a, y)dy−u(a, x)]−μ(a, x)u(a, x),

(a, x)∈(0, a2)×Ω,

u(0, x)=f(
∫ a2

0
β(a, x)u(a, x)da), x∈Ω.

Definition 4.2: u ∈ W 1,1((0, a2), C(Ω)) is called a super-solution (resp. sub-

solution) of (4.1) if = is replaced by ≥ (resp. ≤) in the two equations of (4.1).

4.1. Comparison principle. Now let us prove the comparison principle

for (4.1).

Lemma 4.3: Let 0 < u ∈ W 1,1((0, a2), C(Ω)) be a sub-solution of (4.1) and

0<v∈W 1,1((0, a2), C(Ω)) be a super-solution of (4.1). Then u≤v in [0, a2]× Ω.
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Proof. Let α∗ := sup{α > 0 : αu ≤ v in [0, a2] × Ω}. By the assumption on u

and v, the number α∗ is well defined and positive. If α∗ ≥ 1, then we are done.

So we assume that α∗ < 1.

Set w := v − α∗u, then w ≥ 0. Moreover, set

a0 := min{a ∈ [0, a2] : ∃x ∈ Ω, s.t. w(a0, x) = 0}.

Such a0 exists due to the definition of α∗. It follows that there exists x0 ∈ Ω

such that w(a0, x0) = 0.

If a0 ∈ (0, a2], observe that w satisfies the following equation:

∂aw(a, x) ≥ D

[∫
Ω

J(x− y)w(a, y)dy − w(a, x)

]
−μ(a, x)w(a, x),

(a, x) ∈ (0, a2]× Ω.

Recalling the constant of variation formula (2.9), one has

(4.2) w(a, x) ≥ e−Daπ(0, a, x)w(0, x) +D

∫ a

0

e−D(a−l)π(l, a, x)[Kw](l, x)dl.

Considering the above inequality at (a0, x0), we have a contradiction, since by

the definition of a0, w(a, x) > 0 for all (a, x) ∈ [0, a0) × Ω implies that the

right-hand side of (4.2) is positive.

If a0 = 0, that is, w(0, x0) = 0, thanks to Assumption 4.1 on β one has∫ a2

0

β(a, x0)α∗u(a, x0)da > 0.

On the other hand, by Assumption 1.3(iii) on f , one has that w(0, x0) satisfies

w(0, x0) = v(0, x0)− α∗u(0, x0)

≥ f

(∫ a2

0

β(a, x0)v(a, x0)da

)
− α∗f

(∫ a2

0

β(a, x0)u(a, x0)da

)

> f

(∫ a2

0

β(a, x0)v(a, x0)da

)
− f

(∫ a2

0

β(a, x0)α∗u(a, x0)da
)

≥ 0,

where we used Assumption 1.3(iii) and α∗ < 1. It is a contradiction with

w(0, x0) = 0. Thus α∗ ≥ 1 and the proof is complete.
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4.2. Existence and uniqueness of a positive equilibrium. Next let us

define the linearized operator Al which is obtained by linearizing (4.1) at u = 0:

(4.3)
Al(0, φ) :=

(
−φ(0, ·)+f ′(0)

∫ a2

0

β(a, ·)φ(a, ·)da,−∂aφ+D(K−I)φ−μφ
)
,

(0, φ) ∈ dom(Al),

where dom(Al) = {0}×W 1,1((0, a2), C(Ω)) and denote the spectral bound of Al

by λl1. Recall from Proposition 3.1 that λl1 satisfies

(4.4) r

(
f ′(0)

∫ a2

0

β(a, ·)e−λl
1aU(0, a)da

)
= 1.

Theorem 4.4: Assume that λl1 > 0 is the principal eigenvalue of Al.

Then there exists at least one positive solution u∗(a, x) of (4.1) belonging to

W 1,1((0, a2), L
1(Ω)).

Proof. (a) Construction of super-/sub-solutions. Set u ≡ L, where L

is defined in Assumption 1.3(iv). Let us verify that u(a, x) is indeed a super-

solution of (4.1):

∂au(a, x)−D

[ ∫
Ω

J(x− y)u(a,y)dy − u(a, x)

]
+ μ(a, x)u(a, x)

= DL

[
1−

∫
Ω

J(x− y)dy

]
+ μ(a, x)L ≥ 0.

Moreover,

u(0, x) = L ≥ f

(∫ a2

0

β(a, x)u(a, x)da

)
holds, since by Assumption 1.3(iv) one has f(u) ≤ L for all u ≥ 0.

Next, we construct a sub-solution of (4.1) motivated by Coville [3, Theorem

1.6]. For any δ > 0 sufficiently small, we can find a small constant ε1 = ε1(δ) > 0

such that f(u) ≥ (f ′(0) − δ)u for 0 < u ≤ ε1. Such ε1 can be achieved due to

Assumption 1.3 on f . Moreover, due to λl1 > 0 one can further reduce δ such

that λl1δ > 0 with λl1δ satisfying

r

(
(f ′(0)− δ)

∫ a2

0

β(a, ·)e−λl
1δaU(0, a)da

)
= 1.

Then we consider the following linear equation:

(4.5)

⎧⎨
⎩∂aφ(a, x) = −(D + μ(a, x))φ(a, x) − αφ(a, x), a ∈ (0, a2),

φ(0, x) = (f ′(0)− δ)
∫ a2

0 β(a, x)φ(a, x)da.
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By Ducrot et al. [5, Proposition 3.11], there exists a continuous function

x→ α(x) : Rn → R such that for any x ∈ R
n, equation (4.5) with α = α(x)

has a positive solution a → φ(a, x) ∈ W 1,1(0, a2). Denote α∗∗ = maxx∈Ω α(x).

From the definition of α∗∗ there exists a sequence of points (xn)n∈N such

that xn ∈ Ω and |α∗∗ −α(xn)| ≤ 1
n . Thus, by the continuity of α(x), for each n

there exists ηn > 0 such that for all x ∈ Bηn(xn) we have |α∗∗ − α(x)| ≤ 2
n .

Now we consider a sequence of real numbers {εn}n∈N which converges to

zero such that εn ≤ ηn

2 . Next let {χn}n∈N be the following sequence of cut-off

functions:

χn(x) := χ
( |x− xn|

εn

)
where χ is a smooth function such that 0 ≤ χ ≤ 1, χ(x) = 0 for |x| ≥ 2

and χ(x) = 1 for |x| ≤ 1.

Finally, let us consider the following sequence of continuous functions {αn}n∈N

defined by αn(x) := sup{α(x), α∗∗χn(x)}. Observe that by construction the se-

quence {αn}n∈N is such that ‖α− αn‖C(Ω) → 0.

By construction, for each n, the function αn satisfies maxx∈Ω αn = α∗∗

and αn ≡ α∗∗ in B εn
2
(xn). Therefore, the sequence {αn}n∈N satisfies

1

α∗∗ − αn
/∈ L1

loc(Ω).

Next set

μn(a, x) = μ(a, x)− αn(x) + α(x)

and consider equation (4.5) with μ replaced by μn. Then it can be checked that

(f ′(0)− δ)

∫ a2

0

β(a, x)e−(D+αn(x))ae−
∫

a
0

μn(s,x)dsda = 1.

It follows that αn is a continuous function such that for any x ∈ R
n, equa-

tion (4.5) with μ replaced by μn and with α = αn(x), has a positive solu-

tion a→ φn(a, x) ∈W 1,1(0, a2). Hence by Theorem 3.7, there exists a principal

eigenpair (λn1 , φn) of the eigenvalue problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂aφ(a, x) = D[

∫
Ω
J(x− y)φ(a, y)dy − φ(a, x)] − μn(a, x)φ(a, x) − λφ(a, x),

(a, x) ∈ (0, a2)× Ω,

φ(0, x) = (f ′(0)− δ)
∫ a2

0
β(a, x)φ(a, x)da, x ∈ Ω

such that 0 < φn ∈ W 1,1((0, a2), C(Ω)).



Vol. TBD, 2024 AGE-STRUCTURED MODELS. II 17

Using the fact that ‖μ− μn‖C(Ω,L∞(0,a2))
→ 0 as n → ∞, from Ducrot et

al. [5, Proposition 5.6] it follows that for n big enough, say n ≥ n0, we have

λn1 >
λl1δ
2

> 0.

Moreover, by choosing n0 bigger if necessary, we achieve for n ≥ n0 that

λn1 − ‖μ− μn‖C(Ω,L∞(0,a2))
≥ λl1δ

4
> 0.

Now for n ≥ n0 fixed and ψ = εφn with ε > 0 small enough such that∫ a2

0

β(a, x)ψ(a, x)da ≤ ε1,

we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂aψ(a, x)−D[

∫
Ω J(x− y)ψ(a, y)dy − ψ(a, x)] + μ(a, x)ψ(a, x)

= −(μn(a, x) − μ(a, x) + λn1 )ψ ≤ 0,

ψ(0, x) = (f ′(0)− δ)
∫ a2

0
β(a, x)ψ(a, x)da ≤ f(

∫ a2

0
β(a, x)ψ(a, x)da),

where we used the fact that f(u) ≥ (f ′(0)− δ)u for 0 < u ≤ ε1. It implies that

for ε > 0 sufficiently small and n large enough, εφn is a sub-solution of (4.1).

From now on, we fix an n large enough and denote u = εφn.

(b) Existence via an iterative scheme. Now it is clear that we can

choose ε small enough such that u ≤ u. Then by a basic iterative scheme we

obtain the existence of a positive nontrivial solution u of (4.1). For complete-

ness, we provide the iterative scheme in the following.

Let un for n ≥ 1 be the solution of the following linear problem:

(4.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂aun(a, x)=D[

∫
Ω J(x − y)un(a, y)dy − un(a, x)] − μ(a, x)un(a, x),

(a, x)∈(0, a2)×Ω,

un(0, x) = f(
∫ a2

0 β(a, x)un−1(a, x)da), x ∈ Ω,

where u0 = u. First note that un is well defined and in W 1,1((0, a2), L
1(Ω)).

Then we will show that un is increasing and that

(4.7) u ≤ u1 ≤ u2 ≤ · · · ≤ u.
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Indeed, taking w := u1 − u and v := u − u1, by Assumption 1.3(ii) of f , they

satisfy respectively⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂aw(a, x) ≥ D[

∫
Ω J(x− y)w(a, y)dy − w(a, x)]− μ(a, x)w(a, x),

(a, x) ∈ (0, a2)× Ω,

w(0, x) ≥ 0, x ∈ Ω,

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂av(a, x) ≥ D[

∫
Ω J(x− y)v(a, y)dy − v(a, x)]− μ(a, x)v(a, x),

(a, x) ∈ (0, a2)× Ω,

v(0, x) ≥ 0, x ∈ Ω.

Using the comparison principle of nonlocal diffusion equations, we conclude

that w ≥ 0 and v ≥ 0, that is u ≤ u1 ≤ u. Now by induction, we can obtain

the desired result (4.7).

Next, for (a, x) ∈ (0, a2) × Ω a.e., un(a, x) has a limit as n → ∞, denoted

by u∗(a, x), that is un(a, x) → u∗(a, x) in (0, a2)×Ω a.e. Thus, by the continuity

of f we have that for a.e. x ∈ Ω,

(4.8) f

(∫ a2

0

β(a, x)un(a, x)da

)
n→∞−−−−→ f

(∫ a2

0

β(a, x)u∗(a, x)da
)
.

In addition, one has

ϕn(a,x) := D

[ ∫
Ω

J(x − y)un(a, y)dy − un(a, x)

]
− μ(a, x)un(a, x)

n→∞−−−−→ D

[ ∫
Ω

J(x − y)u∗(a, y)dy − u∗(a, x)
]
− μ(a, x)u∗(a, x) := ϕ(a, x),

a.e. in (0, a2)×Ω and in L1((0, a2)×Ω). Hence, for a.e. x ∈ Ω and (η, ξ) ⊂ (0, a2),

one has

un(ξ, x) − un(η, x) =

∫ ξ

η

ϕn(a, x)da,

which implies that

u∗(ξ, x)− u∗(η, x) =
∫ ξ

η

ϕ(a, x)da.

It follows that u∗ ∈ W 1,1((0, a2), L
1(Ω)) satisfies the first equation of (4.1)

with ∂au
∗ = ϕ a.e. in (0, a2) × Ω. Further, u∗(·, x) is continuous in [0, a2] for
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a.e. x ∈ Ω. Thus, one has un(0, x) → u∗(0, x) as n → ∞ in Ω, which by (4.8)

implies that

u∗(0, x) = f

(∫ a2

0

β(a, x)u∗(a, x)da
)
.

Hence, the proof is complete.

Next we investigate the uniqueness of u∗. Before proceeding, we first study

the regularity of u∗ with respect to x. We make the following additional as-

sumption.

Assumption 4.5: Assume that F (x, u) := u − G0(x)f(u) is strictly monotone

with respect to u for any x ∈ Ω, where G0(x) is defined in (3.3) with α = 0

and â replaced by a2.

Assumption 4.5 with G0(x) ≡ 1 is widely used to obtain the regularity of

solutions of nonlocal diffusion problems; see Bates et al. [1] and Berestycki and

Rodŕıguez [2].

Now let us revisit problem (4.1). Solving the first equation of (4.1), one

obtains

u(a, x) = e−Daπ(0, a, x)u(0, x) +D

∫ a

0

e−D(a−l)π(l, a, x)[Ku](l, x)dl.

Then plugging the above equality into the boundary condition one has

(4.9)

ũ(x) :=

∫ a2

0

β(a, x)u(a, x)da

=

∫ a2

0

β(a, x)e−Daπ(0, a, x)u(0, x)da

+D

∫ a2

0

β(a, x)

∫ a

0

e−D(a−l)π(l, a, x)[Ku](l, x)dlda

= : G0(x)f(ũ(x)) +H(x),

where

H(x) = D

∫ a2

0

β(a, x)

∫ a

0

e−D(a−l)π(l, a, x)[Ku](l, x)dlda

is continuous, due toKu ∈ W 1,1((0, a2), C(Ω)) for any u ∈W 1,1((0, a2), L
1(Ω)),

by Assumption 1.1 on J . Now under Assumption 4.5, for any x ∈ Ω, one

has ũ(x) = F−1(x,H(x)), where F−1 denotes the inverse of F with respect

to u for any fixed x ∈ Ω. Thus ũ is continuous. It follows that u(0, ·) is
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continuous and so is u(a, ·). Thus, we now have u∗ ∈ W 1,1((0, a2), C(Ω)) under

Assumption 4.5.

Theorem 4.6: Under Assumption 4.5, the positive equilibrium u∗ is unique.

Proof. We prove the uniqueness by using a sliding argument. Let u and v be

two positive bounded solutions of (4.1). Since they are bounded and strictly

positive, the following quantity is well defined:

κ∗ := inf{κ > 0 : κu ≥ v in [0, a2]× Ω}.
We claim that κ∗ ≤ 1. Indeed, assume by contradiction that κ∗ > 1. We

consider the following nonlocal problem

(4.10)
∂aw = D

[∫
Ω

J(x− y)w(a, y)dy − w(a, x)

]
−μ(a, x)w(a, x),

(a, x) ∈ (0, a2)× Ω.

By Shen and Zhang [14, Proposition 2.2] or Rawal et al. [13, Proposition 2.2]

and Assumption 1.1 on J , solutions of equation (4.10) have the strong mono-

tone property; i.e., for φ, ψ ∈ C+(Ω) with φ ≥ ψ, φ �≡ ψ,w(a, x;φ) > w(a, x;ψ)

for all a > 0, x ∈ Ω at which both w(a, x;φ) and w(a, x;ψ) exist, where

w(a, x;φ) and w(a, x;ψ) are solutions of (4.10) with initial data w(0, x;φ) = φ

and w(0, x;ψ) = ψ respectively.

On one hand, from the integral boundary condition with non-negativeness

of β, we have due to κ∗ > 1 and assumptions of f that

κ∗u0 := κ∗u(0, x;u0) = κ∗f
(∫ a2

0

β(a, x)u(a, x)da

)

> f

(∫ a2

0

β(a, x)κ∗u(a, x)da
)

≥ f

(∫ a2

0

β(a, x)v(a, x)da

)
= v(0, x; v0) =: v0.

It follows from the strong monotone property that

(4.11) w(a, x;κ∗u0) > w(a, x; v0), ∀(a, x) ∈ [0, a2]× Ω.

On the other hand, let φ(a, x) = κ∗w(a, x;u0). Then φ(0, x) = κ∗u0 and

∂aφ = D

[∫
Ω

J(x−y)φ(a, y)dy−φ(a, x)
]
−μ(a, x)φ(a, x), (a, x) ∈ (0, a2)×Ω.
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By the uniqueness of solutions for nonlocal diffusion equations, we have

(4.12) κ∗w(a, x;u0) = w(a, x;κ∗u0).

Combining (4.11) and (4.12) we have

κ∗u(a, x) = κ∗w(a, x;u0) > w(a, x; v0) = v(a, x), ∀(a, x) ∈ [0, a2]× Ω,

which is a contradiction with the definition of κ∗. We conclude that u ≥ v.

Now switching u and v in the above argument, we also have v ≥ u, which shows

the uniqueness of the solution.

At last, we give a result on the nonexistence of positive continuous equilibria.

Proposition 4.7: Assume that λl1 ≤ 0 is the principal eigenvalue of the oper-

ator Al defined in (4.3). Then any nonnegative continuous solution of (4.1) is

identically zero.

Proof. Assume by contradiction that λl1 ≤ 0 and there exists a nonnegative

continuous solution u to equation (4.1) which is positive somewhere in [0, a2]×Ω.

Next, we have the following claim

Claim 4.8: u is positive everywhere in [0, a2]× Ω.

We first assume that the above claim holds. It follows from Assumption 4.1

that there exists a positive constant c0 such that∫ a2

0

β(a, x)u(a, x)da ≥ c0, ∀x ∈ Ω.

From Assumption 1.3, we have

(4.13)
f(
∫ a2

0
β(a, ·)u(a, ·)da)∫ a2

0
β(a, ·)u(a, ·)da ≤ f(c0)

c0
< f ′(0), in Ω.

Moreover, since u is a solution of (4.1), we have for all x ∈ Ω that

f(c0)

c0

∫ a2

0

β(a, x)u(a, x)da ≥ f(
∫ a2

0
β(a, x)u(a, x)da)∫ a2

0
β(a, x)u(a, x)da

∫ a2

0

β(a, x)u(a, x)da

= f

(∫ a2

0

β(a, x)u(a, x)da

)
= u(0, x).
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Next let us define an operator Al
c0 as follows:

(4.14)
Al

c0(0, φ) :=

(
−φ(0, ·)+ f(c0)

c0

∫ a2

0

β(a, ·)φ(a, ·)da,−∂aφ+D(K−I)φ−μφ
)
,

(0, φ)∈dom(Al
c0),

where dom(Al
c0) = {0} ×W 1,1((0, a2), C(Ω)). Furthermore, due to (4.13), one

has (by Claim 3.7 in Ducrot et al. [5] which states that λ → r(Mλ) is strictly

decreasing)

λ′p(Al
c0) < λ′p(Al) = λl1 ≤ 0.

Thus by Definition 3.8, for all negative λ > λ′p(Al
c0), there exists a positive

continuous function φλ such that

(−Al
c0 + λ)(0, φλ) ≥ (0, 0).

Arguing as above, we can see that φλ ≥ δ for some positive δ. Let us define the

following quantity:

γ∗ := inf{γ > 0 : u ≤ γφλ}.
We end the proof of the theorem by proving that γ∗ = 0. Assume that γ∗ > 0.

Set w := u− γ∗φλ. Further, set

a0 = min{a ∈ [0, a2] : ∃x ∈ Ω, s.t. w(a, x0) = 0}.

Such a0 exists due to the definition of γ∗. It follows that there exists

(a0, x0) ∈ [0, a2]× Ω such that w(a0, x0) = 0.

If a0 ∈ (0, a2], observe that w satisfies the following equation:

∂aw(a, x) ≤ D

[∫
Ω

J(x− y)w(a, y)dy − w(a, x)

]
−μ(a, x)w(a, x),

(a, x) ∈ (0, a2]× Ω.

Recalling the constant of variation formula (2.9), one has

(4.15) w(a, x) ≤ e−Daπ(0, a, x)w(0, x) +D

∫ a

0

e−D(a−l)π(l, a, x)[Kw](l, x)dl.

Considering the above inequality at (a0, x0), we have a contradiction, since by

the definition of a0, w(a, x) < 0 for all (a, x) ∈ [0, a0)×Ω implies the right hand

side of (4.15) is negative.
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If a0 = 0, that is, w(0, x0) = 0, by (4.13), one has that w(0, x0) satisfies

w(0, x0) = u(0, x0)− γ∗φλ(0, x0)

≤ f(c0)

c0

∫ a2

0

β(a, x0)u(a, x0)da− γ∗
f(c0)

c0

∫ a2

0

β(a, x0)φλ(a, x0)da

=
f(c0)

c0

∫ a2

0

β(a, x0)w(a, x0)da ≤ 0.

It follows by Assumption 4.1 that w(a, x0) = 0 at least in [a2 − ε, a2] for

some ε > 0 small enough. Then by the proof of Claim 4.8 in the following,

we have w ≡ 0 in [0, a2]× Ω. Thus u = γ∗φλ and we get the following contra-

diction

0 = ∂au−D[K − I]u+ μu = ∂aγ
∗φλ −D[K − I]γ∗φλ + μγ∗φλ ≥ −λγ∗φλ > 0.

Thus, γ∗ = 0 and the proof is complete.

Now let us prove Claim 4.8.

Proof of Claim 4.8. Assume by contradiction that u is zero somewhere, without

loss of generality, say u(a0, x0) = 0. If a0 ∈ (0, a2], recalling again the constant

of variation formula (2.9), one has

(4.16) u(a, x) = e−Daπ(0, a, x)u(0, x) +D

∫ a

0

e−D(a−l)π(l, a, x)[Ku](l, x)dl.

Considering the above inequality at (a0, x0), it follows that for any l ∈ [0, a0],

one has [Ku](l, x0) = 0 and thus u(l, x1) = 0 for all x1 ∈ B(x0, r). Next

consider (4.16) at (l, x1), one has u(l, x2) = 0 for all x2 ∈ B(x1, r). Then by

continuing this process, we can get u(l, ·) ≡ 0 in Ω∩B(x0, nr) with some n ∈ N

large enough for all l ∈ [0, a0]. On the other hand, by the nonlocal equation,

the solution starting at u(a0, ·) ≡ 0 will be zero, i.e., u(l, ·) ≡ 0 when l > a0,

which implies u ≡ 0. This contradicts the fact that u is positive somewhere

in [0, a2]× Ω.

If a0 = 0, we have

u(0, x0) = f

(∫ a2

0

β(a, x0)u(a, x0)da

)
= 0.

It follows by the assumption on f that∫ a2

0

β(a, x0)u(a, x0)da = 0.
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This implies that u(ã, x0) = 0 at least for ã ∈ (0, a2] due to Assumption 4.1.

Considering equation (4.16) at (ã, x0) with ã ∈ (0, a2], we have the same con-

tradiction as above. Hence, u > 0 in [0, a2] × Ω, which concludes the desired

result.

4.3. Stability. In this subsection we will show the global stability of the pos-

itive equilibrium u∗ obtained in Theorem 4.4. First the existence of a solution

u(t, a, x) for (1.1) defined for all time t ≥ 0 follows from a standard semigroup

method by writing equation (1.1) as an abstract Cauchy problem (2.13), which

is shown in the following:

(4.17)

⎧⎨
⎩

dU
dt = BU + F (U),

U(0) = U0,
with U0 = (0, u0)

and based on the Lipshcitz assumption on f , see Thieme [15, 16] or Magal and

Ruan [9]. Next, thanks to the definition of B, we have that B is resolvent

positive. Moreover, F is monotone due to Assumption 1.3(ii) on f , i.e.,

0 ≤ U ≤ V ⇒ 0 ≤ F (U) ≤ F (V ).

Thus, by Magal et al. [10, Theorem 4.5], we can conclude that the weak com-

parison principle holds for (4.17), which is written as follows.

Lemma 4.9 (Weak comparison principle): Assume that U0 ∈ X0 and U0 ≥ 0X0.

Then the mild solution to (4.17) is U(t) ≥ 0X0 for any t ≥ 0.

It follows that the weak comparison principle also holds for (1.1). Now we

give the strong comparison principle for (1.1).

Lemma 4.10 (Strong comparison principle): Assume that u0 ∈ C([0, a2]× Ω)

and u0(a, x) ≥ 0 but u0(a, x) �≡ 0. Then the strong solution to (1.1) is

u(t, a, x) > 0 for any t > 0 and (a, x) ∈ [0, a2]× Ω.

Proof. Solving the problem (1.1) along the characteristic line a − t = c,

where c ∈ R, we now derive the formula for a solution to (1.1). For fixed c ∈ R,

we set w(t) = u(t, t + c) for t ∈ [max(−c, 0),∞). With a = t + c one obtains

for t ∈ [max(−c, 0),∞) the equation

(4.18) ∂tw(t) = D[K − I]w − μ(t+ c, ·)w.
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We first study the case c ≥ 0. Clearly, w(0) = u(0, c) = u(0, a− t) = u0(a− t).

Considering the equation (4.18) with initial data w(0) ≥ 0 and w(0) �≡ 0,

we have w(t) > 0 for t > 0 by the strong comparison principle of the nonlocal

diffusion problem, due to J(0) > 0 in Assumption 1.1. It follows that u(t, a) > 0

for a ≥ t. On the other hand, integrating (4.18) from 0 to t, one obtains

w(t) = U(c, t+ c)w(0),

and thus

u(t, a) = U(a− t, a)u0(a− t).

Next we consider the case c < 0. Integrating (4.18) from −c to t, one gets

w(t) = U(0, t+ c)w(−c),
and hence

u(t, a) = U(0, a)u(t− a, 0).

Thus now the solution to (1.1) reads as follows:

(4.19) u(t, a) =

⎧⎨
⎩U(a− t, a)u0(a− t), a ≥ t,

U(0, a)u(t− a, 0), a < t.

Next we plug the explicit formula (4.19) into u(t, 0) to obtain

(4.20)

u(t, 0) = f

(∫ t

0

χ(a)β(a, ·)U(0, a)u(t − a, 0)da

+

∫ a2

t

χ(a)β(a, ·)U(a − t, a)u0(a− t)da

)
,

where χ(a) is the cutoff function satisfying χ(a) = 1 when a ∈ (0, a2), other-

wise χ(a) = 0. Now we consider two cases.

Case 1. If t < a2, (4.20) is written as follows:

(4.21)

u(t, 0) = f

(∫ t

0

β(a, ·)U(0, a)u(t− a, 0)da

+

∫ a2

t

β(a, ·)U(a − t, a)u0(a− t)da

)
.

Since u(t, a) = U(a−t, a)u0(a−t) > 0 for a ≥ t and
∫ a2

a β(l, ·)dl ≥ ∫ a2

a β(l)dl > 0

a.e. for any a ∈ [0, a2) by Assumption 4.1 on β, the second term on the right-

hand of (4.21) must be positive. It follows by Assumption 1.3 on f that we

have u(t, 0) > 0. Thus u(t, a) > 0 for a < t via (4.19).
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Case 2. If t ≥ a2, (4.20) is written as follows:

(4.22) u(t, 0) = f

(∫ a2

0

β(a, ·)U(0, a)u(t− a, 0)da

)
.

We claim that u(t, 0, x) := [u(t, 0)](x) > 0 in [a2,∞) × Ω. By contradiction,

suppose that there exists (t0, x0) ∈ [a2,∞) × Ω such that u(t0, 0, x0) = 0. By

Assumption 1.3 on f , one obtains

0 =

∫ a2

0

β(a, x0)U(0, a)u(t0 − a, 0, x0)da

≥
∫ a2

0

β(a, x0)e
− ∫

a
0
(D+μ(s))dseDKau(t0 − a, 0, x0)da,

where we used the fact that e−
∫

a
0
(D+μ(s))ds and eDKa are commuting. By As-

sumption 4.1 on β, one has
∫ a2

a
β(l, x0)dl ≥

∫ a2

a
β(l)dl > 0 a.e. for any a∈ [0, a2),

then we can find one point b0 ∈ [a2− ε, a2] such that eDKb0u(t0 − b0, 0, x0) = 0,

where ε > 0 is small enough. By definition, one has

eDKb0u(t0 − b0, 0, x0) =
∞∑
n=0

(Db0)
n

n!
K∗n ∗ u(t0 − b0, 0, x0),

where K∗n denotes the n-fold convolution of K; that is K∗n = K ∗ · · · ∗ K,

n times. It follows that for each n ∈ N,

K∗n ∗ u(t0 − b0, 0, x0) = 0.

However, by Assumption 1.1 on J , one has J > 0 in B(0, r), which implies that

u(t0 − b0, 0, x) = 0, for all x ∈ B(x0, nr) ∩Ω.

When n is large enough, B(x0, nr) ∩ Ω covers Ω, and thus u(t0 − b0, 0, ·) ≡ 0

in Ω.

Next replace t0 by t0 − b0 in (4.20). If t0 − b0 falls in [0, a2), by the ar-

gument as in Case 1, one has u(t0 − b0, 0) > 0, which is a contradiction.

Hence, t0 − b0 must fall in [a2,∞). Then by the same argument as in Case 2,

one can find b1 ∈ [a2 − ε, a2] such that u(t0 − b0 − b1, 0) = 0. Now repeat-

ing the above process by induction, one can find a sequence {bi}i≥0 such

that u(t0−
∑M

i=0 bi, 0) = 0 for anyM ≥ 0. But we know every bi is in [a2−ε, a2],
so there always exists a minimal M0 > 0 such that t0 −

∑M0

i=0 bi < a2. Then by

Case 1, one has

u

(
t0 −

M0∑
i=0

bi, 0

)
> 0.
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Now consider (4.22) at t = t0−
∑M0−1

i=0 bi, which is larger than or equal to a2.

We get a contradiction, since now the left hand side of (4.22) equals zero, while

the right-hand side of (4.22) is larger than zero.

In summary, we cannot have (t, x) ∈ (0,∞)×Ω such that u(t, 0, x) = 0, which

implies that u(t, 0, x) > 0 and thus u(t, a) > 0 by (4.19). Hence, the proof is

complete.

Finally we present the following global stability result.

Theorem 4.11 (Stability): Let Assumption 4.5 hold. Assume that λl1 > 0.

Then the nontrivial equilibrium u∗ is stable in the sense that u(t, a, x) → u∗(a, x)
pointwise as t → ∞, where u(t, a, x) is a solution of (1.1) with initial

data u0(a, x) ≥ 0 but u0(a, x) �= 0 in [0, a2]× Ω.

Proof. If u0(a, x) ≥ 0 but u0(a, x) �= 0 in [0, a2]×Ω, using the strong comparison

principle (Lemma 4.10), there exists a positive constant δ such that u(1, a, x) > δ

in [0, a2] × Ω. Since λl1 > 0, we can allow εu defined in Theorem 4.4 to be a

sub-solution of (4.1) for ε small enough. Since u(1, a, x) ≥ δ and u is bounded,

by choosing ε smaller if necessary we also achieve that εu ≤ u(1, a, x). Now let

us denote U(t, a, x) the solution of (1.1) with initial data εu. By the weak com-

parison principle (Lemma 4.9), U(t, a, x) ≥ εu(a, x) for all t ≥ 0. Given s ≥ 0,

let

zs(t, a, x) := U(t+ s, a, x)− U(t, a, x),

which satisfies zs(0, a, x) ≥ 0 by the above argument and

(4.23)

⎧⎨
⎩

dU
dt = BU +GU,

U(0) = U0,
with U = (0, zs)

on (0,∞)× [0, a2]× Ω for some function G on (0,∞)× [0, a2]× Ω with

‖G‖L∞ ≤ ‖F ′‖L∞ .

The weak comparison principle (Lemma 4.9) then applies to (4.23) to yield

that zs ≥ 0 for all s ≥ 0, from which follows that U(t, a, x) is a non-decreasing

function of the time and U(t, a, x) ≤ u(t+ 1, a, x).

On the other hand, L which is defined in the proof in Theorem 4.4 is a

super-solution of (4.1) and u0 is bounded; we also have u(t, a, x) ≤ U(t, a, x) if

necessary choosing L large enough, where U(t, a, x) denotes the solution of (1.1)

with initial data U(0, a, x) = L ≥ u0. A similar argument as above using the
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comparison principle shows that U is a non-increasing function of t. Thus, we

have for all time t ≥ 0 that

εu ≤ U(t, a, x) ≤ u(t+ 1, a, x) ≤ U(t+ 1, a, x).

The monotonicity of U and U implies

U(t, a, x) ↗ U∗(a, x) and U(t, a, x) ↘ U∗(a, x)

pointwise as t → +∞ for some functions U∗ ≤ U∗. In what follows, we show

that U∗, U∗ ∈W 1,1((0, a2), C(Ω)) are solutions to (4.1).

For now, we acknowledge this claim and will give a prove later. Hence, the

uniqueness in Theorem 4.6 implies U∗ = U∗ = u∗. Moreover, due to Dini’s

theorem, we can derive that U ↗ U∗ and U ↘ U∗ in C([0, a2]×Ω) as t→ +∞,

which together with the above inequality implies that u(t, a, x) → u∗ uniformly

in C([0, a2]× Ω) as t→ +∞.

Now let us finish the proof of U∗, U∗ ∈ W 1,1((0, a2), C(Ω)). To this end, we

define

V (t, a, x) :=

∫ a

0

U(t, s, x)ds for all t > 0 and (a, x) ∈ [0, a2]× Ω.

Since U solves (1.1), direct calculation yields⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂tV = D

∫
Ω
J(x− y)V (t, a, y)dy −DV − ∫ a

0
μ(s, x)U (t, s, x)ds

−U(t, a, x) + f(
∫ a2

0 β(a, x)U (t, a, x)da), t > 0, x ∈ Ω,

V (0, a, x) =
∫ a

0
U(0, s, x)ds, x ∈ Ω.

By the monotone convergence theorem, one has V (t, a, x) ↗ ∫ a

0 U∗(s, x)ds
pointwise as t → +∞. Next integrating the first equality of the above sys-

tem with respect to t in [t − τ, t] for some τ > 0 and letting t → +∞, we

have

U∗(a, x) =D
∫ a

0

∫
Ω

J(x− y)U∗(s, y)dyds−D

∫ a

0

U∗(s, x)ds

−
∫ a

0

μ(s, x)U∗(s, x)ds+ f

(∫ a2

0

β(a, x)U∗(a, x)da
)
, x ∈ Ω,

where we have used the monotone convergence theorem in the integral terms.

Hence, we conclude that U∗(a, x) is Lipschitz continuous in a ∈ [0, a2] and
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that U∗ satisfies⎧⎨
⎩∂aU∗=D

∫
Ω J(x−y)U∗(a, y)dy−DU∗−μ(a, x)U∗(a, x), (a, x)∈(0, a+)×Ω,

U∗(0, x) = f(
∫ a2

0
β(a, x)U∗(a, x)da), x ∈ Ω.

Therefore, by using the same argument after Assumption 4.5, one has

that U∗ ∈ W 1,1((0, a2), C(Ω)) is a solution to (4.1). By the same argument

one can deduce that U∗ ∈W 1,1((0, a2), C(Ω)) is also a solution to (4.1), which

completes the proof.

5. Global dynamics in terms of diffusion rate and diffusion range

In this section we give a similar result on the global dynamics of (1.1) by using

the values of the diffusion rate D and diffusion range γ without and with kernel

scaling, respectively. For the kernel scaling, Assumption 4.5 will be modified

via replacing D by D
γm and K by Kγ,Ω.

Theorem 5.1: Let Assumption 4.5 hold. Assume that s(Al) coincides with

the principal eigenvalue of Al defined in (4.3). Then equation (1.1) admits a

unique positive equilibrium u∗ ∈ C([0, a2] × Ω) that is stable for each D > 0

sufficiently small if s(B1 + C) > 0, where s(B1 + C) = α2 and α2 satisfies

(5.1) max
x∈Ω

f ′(0)
∫ a2

0

β(a, x)e−α2aπ(0, a, x)da = 1.

Proof. Note that Al defined in (4.3) also satisfies all the properties of A dis-

cussed in Section 3. Then by Theorem 3.10, sD(Al) > 0 for allD > 0 sufficiently

small if s(B1+C) > 0. Thus, the result follows from Theorem 4.4, Theorem 4.6

and Theorem 4.11.

Theorem 5.2: Let Assumption 4.5 hold. Assume that s(Al) coincides with the

principal eigenvalue of Al defined in (4.3), then we have the following results:

(1) For each m > 0, assume that s(B1 + C) = α2 > 0. Then there exists γ1

sufficiently large such that for each γ > γ1 equation (1.1) with ker-

nel scaling defined in (3.9) admits a unique stable positive equilibrium

u∗ ∈ C([0, a2]× Ω).

(2) Suppose that J is symmetric, i.e., J(x) = J(−x), with

μ, β ∈ C2(RN , L∞
+ (0, a2)).
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For each m ∈ [0, 2), assume that s(B1 + C) = α2 > 0. Then there

exists γ2 > 0 sufficiently small such that for each γ ∈ (0, γ2) equa-

tion (1.1) with kernel scaling defined in (3.9) admits a unique stable

positive equilibrium u∗ ∈ C([0, a2]× Ω).

Proof. It follows from Theorems 3.11, 4.4, 4.6 and 4.11.

At the end of this section, we investigate the asymptotic behavior of the

equilibrium u∗ in terms of D without kernel scaling and in terms of γ with

kernel scaling respectively. In order to highlight the dependence of u∗ on D

or γ, we denote u∗ by u∗D or u∗γ . Before proceeding, we first give a lemma about

the solution of (4.1) without nonlocal diffusion, that is,

(5.2)

⎧⎨
⎩∂av(a, x) = −μ(a, x)v(a, x), (a, x) ∈ (0, a2)× Ω,

v(0, x) = f(
∫ a2

0
β(a, x)v(a, x)da), x ∈ Ω.

To proceed , we first define two sets as follows:

(5.3)

Q> :=

{
x ∈ Ω : f ′(0)

∫ a2

0

β(a, x)π(0, a, x)da > 1

}
,

Q= :=

{
x ∈ Ω : f ′(0)

∫ a2

0

β(a, x)π(0, a, x)da = 1

}
.

Lemma 5.3: Assume that Q> is nonempty. Then for any x ∈ Q>, the equation

(5.4)

⎧⎨
⎩∂av(a, x) = −μ(a, x)v(a, x), a ∈ (0, a2)

v(0, x) = f(
∫ a2

0
β(a, x)v(a, x)da)

has a unique positive solution, denoted by v∗(a, x), which belongs toW 1,1(0, a2).

Moreover, the function x→ v∗(·, x) is continuous from Q> to W 1,1(0, a2).

Proof. For any fixed x ∈ Q>, the existence of solutions of (5.4) is transformed

into finding solutions of the following equation:

v(0, x) = f

(∫ a2

0

β(a, x)π(0, a, x)v(0, x)da

)
.

It follows by x ∈ Q> that one has

(5.5)
f(v(0, x)

∫ a2

0 β(a, x)π(0, a, x)da)

v(0, x)
∫ a2

0 β(a, x)π(0, a, x)da
=

1∫ a2

0 β(a, x)π(0, a, x)da
< f ′(0).

Due to Assumption 1.3(iii) on f , we can conclude that there exists a unique num-

ber h(x) > 0 such that h(x) = v(0, x)
∫ a2

0 β(a, x)π(0, a, x)da.Thus the unique
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positive solution of (5.4) is given as follows

v∗(a, x) =
h(x)π(0, a, x)∫ a2

0
β(a, x)π(0, a, x)da

.

It is obvious that v∗(·, x) ∈ W 1,1(0, a2). Moreover, define g(u) := f(u)
u , then by

Assumption 1.3(iii) again, the inverse of g exists and is continuous over [0, f ′(0)].
It follows by (5.5) that

h(x) = g−1
( 1∫ a2

0
β(a, x)π(0, a, x)da

)
is continuous with respect to x ∈ Ω due to the assumptions on β and μ. Hence,

we have that x → v∗(·, x) is continuous from Q> to W 1,1(0, a2). Thus, our

proof is complete.

Before showing the asymptotic behavior of the positive equilibrium with re-

spect to the diffusion rate and diffusion range, we show that the unique solution

of (5.4) is zero when x /∈ Q>.

Lemma 5.4: Assume that x /∈ Q>. Then the unique solution of (5.4) is zero.

Proof. Case 1. x /∈ Q> ∪Q=. In this case, we have

f ′(0)
∫ a2

0

β(a, x)π(0, a, x)da < 1.

Consider the linearized equation of (5.4) which is rewritten as follows:

(5.6)

⎧⎨
⎩∂aw(a, x) = −μ(a, x)w(a, x), a ∈ (0, a2),

w(0, x) = f ′(0)
∫ a2

0 β(a, x)w(a, x)da.

Recall by Assumption 1.3 that f(u) ≤ f ′(0)u; we have v∗(a, x) ≤ w(a, x) for

all a ∈ [0, a2] × Ω. But by the second equation of (5.6), if v∗(0, x) �= 0 for

some x /∈ Q> ∪Q= is positive, one has

w(0, x) = f ′(0)
∫ a2

0

β(a, x)π(0, a, x)daw(0, x) < w(0, x),

which is a contradiction. Thus, v∗(a, x) ≡ w(a, x) ≡ 0 when x /∈ Q> ∪Q=.

Case 2. x ∈ Q=. We have

v(0, x) = f

(∫ a2

0

β(a, x)v(a, x)da

)
≤ f ′(0)

∫ a2

0

β(a, x)v(a, x)da = v(0, x).

It implies that v(a, x) ≡ 0 by the assumptions on β and f . Hence, the proof is

complete.
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Corollary 5.5: The function v∗ provided by Lemma 5.3 is continuous

in Q> ∪Q=.

Proof. By Lemma 5.3, we know that x→ v∗(·, x) is continuous inQ>; it remains

to show that x→ v∗(·, x) is continuous in Q=. With this aim, choose x0 ∈ Q=

and a sequence xn → x0 as n → ∞, where {xn}n≥1 ⊂ Q>. Observing the first

equation of (5.4), one has

‖∂av∗(·, xn)‖L1(0,a2)
≤ C,

where C > 0 denotes some constant that may vary from line to line but is

independent of n ≥ 0. It follows that the sequence {v∗(·, xn)}n≥0 is bounded

in W 1,1(0, a2) which is continuously embedded into L∞(0, a2) so that

‖v∗(·, xn)‖L∞(0,a2)
≤ C.

Again by the first equation of (5.4), one has

‖∂av∗(·, xn)‖L∞(0,a2)
≤ C.

Thus, we have ‖v∗(·, xn)‖W 1,∞(0,a2)
≤ C. By the compact Sobolev embedding,

we can find a limit, denoted by v̂∗(·) ∈ C([0, a2]), up to a subsequence such that

v∗(·, xn) → v̂∗(·) uniformly on [0, a2].

Since x→ μ(·, x) is continuous from Ω to L∞(0, a2), one has μ(·, xn) → μ(·, x0)
in L∞(0, a2), and thus

μ(·, xn)v∗(·, xn) → μ(·, x0)v̂∗(·) in L∞(0, a2).

Applying the same argument to β and then passing to the limit on (5.4), one

obtains

(5.7)

⎧⎨
⎩∂av̂

∗(a) = −μ(a, x0)v̂∗(a), a ∈ (0, a2),

v̂∗(0) = f(
∫ a2

0 β(a, x0)v̂
∗(a))da,

with v̂∗ ≥ 0. Next recalling Lemma 5.4, we have that when x0 ∈ Q=, the

unique solution of (5.7) is zero. It follows that v̂∗(·) ≡ 0. Thus, v∗(·, xn) → 0

uniformly in [0, a2] as n → ∞ and the function x → v∗(·, x) is continuous in

Q=. Hence, the proof is complete.

Theorem 5.6: Let Assumption 4.5 hold. Assuming that s(Al) coincides with

the principal eigenvalue of Al defined in (4.3), and v∗ is from Lemma 5.3, we

have the following asymptotic results:
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(i) Assume u∗D(a, x) is given by Theorem 5.1. Then

(5.8) lim
D→0+

u∗D(a, x) =

⎧⎨
⎩v

∗(a, x) locally uniformly in [0, a2]×Q>,

0 locally uniformly in [0, a2]× Ω \Q>.

(ii) Assume u∗γ(a, x) is given by Theorem 5.2, m ∈ [0, 2) and J is symmetric,

i.e., J(x) = J(−x). Then

(5.9) lim
γ→0+

u∗γ(a, x) =

⎧⎨
⎩v

∗(a, x) locally uniformly in [0, a2]×Q>,

0 locally uniformly in [0, a2]× Ω \Q>.

(iii) Assume u∗γ(a, x) is given by Theorem 5.2 and m > 0. Then

(5.10) lim
γ→∞u∗γ(a, x) =

⎧⎨
⎩v

∗(a, x) locally uniformly in [0, a2]×Q>,

0 locally uniformly in [0, a2]× Ω \Q>.

Proof. We first prove (iii).

Case 1: Converging to v∗(a, x). We choose any nonempty set W ⊂ Q> such

that W ⊂ Q>. Then it suffices to show that for each 0 < δ = δ(W ) � 1, there

exists γδ = γδ(W ) > 0 such that for each γ ∈ (γδ,∞)

(1− δ)v∗(a, x) ≤ u∗γ(a, x) ≤ (1 + δ)v∗(a, x), (a, x) ∈ [0, a2]×W.

We here outline the proof of the upper bound and the lower bound that follows

from similar arguments. Denote

v := (1 + δ)v∗

and define Fγ : C([0, a2]×W ) → C([0, a2]×W ) as follows:

Fγ(ψ) :=
D

γm

[ ∫
W

Jγ(x− y)ψ(a, y)dy − ψ(a, x)

]
.

By the same argument as in Theorem 3.11(i) (see Ducrot et al. [5] for more

details), one can show that

(5.11) ‖Fγ‖L(C([0,a2]×W )) → 0, as γ → ∞ uniformly in W ⊂ Q>.

On the other hand, thanks to Assumption 4.1 on β, one has∫ a2

0

β(a, x)v∗(a, x)da > 0, ∀x ∈ W.
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Since for each (a, x) ∈ [0, a2]×W ,

f

(∫ a2

0

β(a, x)v(a, x)da

)
− (1 + δ)f

(∫ a2

0

β(a, x)v∗(a, x)da
)

=

∫ a2

0

β(a, x)v(a, x)da

[
f(
∫ a2

0
β(a, x)v(a, x)da)∫ a2

0
β(a, x)v(a, x)da

− f(
∫ a2

0
β(a, x)v∗(a, x)da)∫ a2

0
β(a, x)v∗(a, x)da

]
<0,

where we used Assumption 1.3(iii), there exists a sufficiently small positive

constant c = c(δ,W ), which satisfies c(δ,W ) → 0 as δ → 0, such that

(5.12)
sup

[0,a2]×W

[
f

(∫ a2

0

β(a, x)v(a, x)da

)
−(1+δ)f

(∫ a2

0

β(a, x)v∗(a, x)da
)]

≤ −c < 0.

This implies that for any δ > 0, we can find γ = γ(δ) > 0 such that

|Fγ(v)| ≤ c(δ,W )

for each γ ∈ (γ(δ),∞).

Now fix this γ(δ), and let us show that for each γ ∈ (γ(δ),∞) we have

u∗γ(a, x) ≤ v(a, x) for all (a, x) ∈ [0, a2]×W.

To do that, fix any γ ∈ (γ(δ),∞) and define

α∗ := sup{α > 0 : αu∗γ(a, x) ≤ v(a, x) in [0, a2]×W}.

Since min[0,a2]×W u∗γ > 0 and v(a, x) is bounded, the number α∗ is well defined

and positive. Due to the continuity of v(a, x) and u∗γ(a, x), v(a, x) ≥ α∗u∗γ(a, x)
for all (a, x) ∈ [0, a2]×W .

Clearly, if α∗ ≥ 1, then we are done. So we assume that α∗ < 1. Set

w := v − α∗u∗γ , then w ≥ 0. Further, set

a0 := min{a ∈ [0, a2] : ∃x ∈ W, s.t. w(a0, x) = 0}.

Such a0 exists due to the definition of α∗. It follows that there exists x0 ∈ W

such that w(a0, x0) = 0.
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Sub-case 1. If a0 = 0, that is, w(0, x0) = 0, one has by (5.12) that

v(0, x) =(1 + δ)f

(∫ a2

0

β(a, x)v∗(a, x)da
)

>(1 + δ)f

(∫ a2

0

β(a, x)v∗(a, x)da
)
+ f

(∫ a2

0

β(a, x)v(a, x)da

)

− (1 + δ)f

(∫ a2

0

β(a, x)v∗(a, x)da
)
+
c

2

=f

(∫ a2

0

β(a, x)v(a, x)da

)
+
c

2
.

Thus, w(0, x0) satisfies

w(0, x0) = v(0, x0)− α∗u∗γ(0, x0)

> f

(∫ a2

0

β(a, x0)v(a, x0)da

)
+
c

2
− α∗f

(∫ a2

0

β(a, x0)u
∗
γ(a, x0)da

)

> f

(∫ a2

0

β(a, x0)v(a, x0)da

)
+
c

2
− f

(∫ a2

0

β(a, x0)α
∗u∗γ(a, x0)da

)

≥ c

2
,

where we used Assumption 1.3(iii) and α∗ < 1. It is a contradiction with

w(0, x0) = 0.

Sub-case 2. If a0 ∈ (0, a2], observe that w satisfies

∂aw(a, x) =
D

γm

[ ∫
W

Jγ(x− y)w(a, y)dy − w(a, x)

]
− μ(a, x)w(a, x)

− D

γm

[∫
W

Jγ(x − y)v(a, y)dy − v(a, x)

]

=
D

γm

[ ∫
W

Jγ(x− y)w(a, y)dy − w(a, x)

]
− μ(a, x)w(a, x) − Fγ(v).

Again by the constant of variation formula (2.9) and recalling (3.9), one has

(5.13)

w(a, x) =e−
D

γm aπ(0, a, x)w(0, x)

+
D

γm

∫ a

0

e−
D

γm (a−l)π(l, a, x)[Kγ,Ww](l, x)dl

−
∫ a

0

e−
D

γm (a−l)π(l, a, x)[Fγ(v)](l, x)dl.
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Recall from Sub-case 1 that w(0, x) > c(δ,W )
2 . Now considering the above in-

equality (5.13) at (a0, x0), w(a, x) > 0 for all (a, x) ∈ [0, a0)×W implies that

e−
D

γm aπ(0, a, x)w(0, x) ≥ c(δ,W )

4
e−

∫ a2
0 μ(s)ds,

D

γm

∫ a

0

e−
D
γm (a−l)π(l, a, x)[Kγ,Ww](l, x)dl → 0

as γ → ∞, uniformly in (a, x) ∈ [0, a2]×W.

These inequalities combining with (5.11) (up to increasing γ if necessary) imply

that the right hand side of (5.13) is positive. But the left hand side w(a0, x0) = 0

induces a contradiction. Thus, α∗ ≥ 1. Since W ⊂ Q> is arbitrary, the proof

of case x ∈ Q> in (iii) is complete.

Case 2: Converging to 0. We use a similar argument as in Proposition 4.7.

Choose any W ⊂ Ω \ Q> satisfying W ⊂ Ω \ Q>. Remember that the same

argument in Theorem 3.11(i) gives us

(5.14) ‖Fγ‖L(C([0,a2]×W )) → 0 as γ → ∞ uniformly in W ⊂ Ω \Q>.

Now let us recall that for any 0 ≤ τ ≤ a ≤ a2, one has

U(τ, a) = Π(τ, a) +

∫ a

τ

Π(l, a)[Fγ(U)](τ, l)dl,

which implies that

(5.15) ‖U(0, ·)−Π(0, ·)‖L(C(W )) → 0 as γ → ∞, uniformly in a ∈ [0, a2].

On the other hand, recalling x ∈ W ⊂ Ω \Q> implies that

r

(
f ′(0)

∫ a2

0

β(a, ·)Π(0, a)da
)

= max
x∈W

f ′(0)
∫ a2

0

β(a, x)π(0, a, x)da ≤ 1.

It follows from (5.15) that for any sufficiently large γ, one has

(5.16) r

(
f ′(0)

∫ a2

0

β(a, ·)U(0, a)da
)

≤ 1.

Then the principal eigenvalue of Al, defined in (4.4), satisfies λ1(Al) ≤ 0.

Now assume by contradiction that u∗∞ := limγ→∞ u∗γ(a, ·) is positive somewhere

in W . Then the remaining proof is the same with Proposition 4.7, so we omit

it. Hence, we have finished the proof of (iii).
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For (i) we follow the lines as in the proof of (iii) except that we need to

set γ = 1 and replace the limit

F1(v) =
D

γm

[∫
W

Jγ(x− y)v(a, y)dy − v(a, x)

]
→ 0

as γ → ∞, for any v ∈ C([0, a2]×W )

uniformly in (a, x) ∈ [0, a2] ×W with both W ⊂ Q> and W ⊂ Ω \Q> by the

following limit:

F1(v) = D

[ ∫
W

J(x − y)v(a, y)dy − v(a, x)

]
→ 0 as D → 0+,

for any v ∈ C([0, a2]×W )

uniformly in (a, x) ∈ [0, a2]×W with bothW ⊂ Q> andW ⊂ Ω\Q>, and (5.13)

is replaced by the following equality:

w(a, x) =e−Daπ(0, a, x)w(0, x) +D

∫ a

0

e−D(a−l)π(l, a, x)[K1,Ww](l, x)dl

−
∫ a

0

e−D(a−l)π(l, a, x)[F1(v)](l, x)dl.

Then the remaining proof is the same as for (iii).

For (ii), note by the argument in Theorem 3.11(ii) (see Ducrot et al. [5] for

more details) that

Fγ(v) =
D

γm

[ ∫
W

Jγ(x− y)v(a, y)dy − v(a, x)

]
≤ Cγ2−m ‖v‖C2(W,C([0,a2]))

uniformly in (a, x) ∈ [0, a2]×W with W ⊂ Q> and W ⊂ Ω \Q>, where C is a

positive constant independent of γ. Next we revisit (5.13). Observe that

D

γm
Kγ,Ww ≤ Cγ−m ‖w‖C([0,a2]×W )

uniformly in (a, x) ∈ [0, a2] ×W with W ⊂ Q> and W ⊂ Ω \ Q>. Then the

remaining proof is the same as for (iii), so we are finished.
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