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Abstract

By investigating the regularity of the nonlinear semigroup P} associated to the
distribution dependent second-order stochastic differential equations, the Harnack in-
equality is derived when the drift is Lipschitz continuous in the measure variable under
the distance induced by the functions being 3(3 > 2)-Holder continuous on the de-
generate component and square root of Dini continuous on the non-degenerate one.
The results extend the existing ones in which the drift is Lipschitz continuous in L?-

Wasserstein distance.
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1 Introduction

The second-order stochastic differential equations (SDEs), as a classical degenerate model,
includes the kinetic Fokker-Planck equation (see [15]). In [4] the authors study the regularity
of stochastic kinetic equations. [5] investigates the Bismut formula, gradient estimate and
Harnack inequality by using the method of coupling by change of measure. [20] and [21]
focus on the derivative formula. [18] proves the the hypercontractivity. One can refer to the
references in the papers mentioned above for more related results.

*Supported in part by National Key R&D Program of China (No. 2022YFA1006000) and NNSFC
(12271398). Xiaochen Ma is the corresponding author.



On the other hand, the McKean-Vlasov SDEs, presented in [10], can be used to char-
acterize the nonlinear Fokker-Planck-Kolmogorov equations. Recently, there are plentiful
results on the study of McKean-Vlasov SDEs, including the well-posedness, Harnack in-
equality, Bismut derivative formula, exponential ergodicity, estimate of heat kernel, see
[1,2,6,7, 8, 11, 13, 14, 17, 19, 22] and references therein for more details. For the well-
posedness, the drifts can be not continuous in the measure variable under the weak topology,
for instance [8, 14, 19] and so on. However, with respect to the Harnack inequality, most re-
sults concentrate on the case that the coefficients are Lipschitz continuous in L?-Wasserstein
distance.

Quite recently, the first author and his co-author have established the log-Harnack in-
equality and Bismut derivative formula for non-degenerate McKean-Vlasov SDEs in [9],
where for the log-Harnack inequality, the drifts are only assumed to be Lipschitz continuous
under the distance induced by square root of Dini continuous functions, which allows the
drifts even being not Dini continuous in the L?-Wasserstein distance.

In this paper, we adopt the similar technique in [9] to study the Harnack inequality for
distribution dependent second-order SDEs, where the drift is Lipschitz continuous in the
measure variable under the distance induced by the functions being §(3 > %)—Hélder contin-
uous on the degenerate component and square root of Dini continuous on the non-degenerate
one. Compared with [9], we need to calculate the gradient estimate of the semigroup with
frozen distribution in non-degenerate and degenerate components respectively. Moreover,
the gradient estimate on the degenerate component of the semigroup acting on a function
only depending on the non-degenerate component is also derived, which is crucial in the
proof of the main result, see Theorem 3.1(2) below.

Let n € Nt and Z2(R™) be the set of all probability measures on R" equipped with the
weak topology. For & > 1, define

PR i= {u € PR = [ JoPulan) )" < oo}

Rn

P,(R") is a Polish space under the L¥-Wasserstein distance
%
) = it ([ eealtanan) e 2um,
TEE (V) R7 xR™

where €' (u, v) is the set of all couplings of p and v.

For any z € R? let () denote the first d components and (3 denote the last d
components, i.e. x = (), 2?) € R* with 2 € R? 4 = 1,2. Throughout the paper, fix
T > 0. Consider the following distribution dependent second-order SDEs on R%¢:

{dX,S” = XxPat,

(1.1) o
dXt = Bt(Xt, gxt)dt + Utth,

where W = (W})>0 is a d-dimensional standard Brownian motion with respect to a complete
filtration probability space (2, Z,{%}i>0,P), and o : [0,7] - R @ R? B : [0,T] x R* x
P (R??) — R? are measurable.



Recall that for two probability measures p,v € Z(R"), the relative entropy and total
variation distance are defined as follows:

Jgn (log g—;)du, if v is absolutely continuous with respect to p,

Ent(v|u) := {

0, otherwise;
and
[ = Vllvar == sup [u(f) —v(f)]-
[fI<1
By Pinsker’s inequality (see [12]),
(1.2) = v)2ar < 2Ent(v]n), p,ve PR

Throughout the paper, we will use C' or ¢ as a constant, the values of which may depend
on 7" and may change from one place to another. For a function f on R?? and i = 1,2, let
VO f(z) stand for the gradient with respect to z(.

The paper is organized as follows: In Section 2, we state the main results, i.e. the Harnack
inequality for distribution dependent second-order SDEs and the proof is provided in Section
3; In Section 4, the well-posedness for degenerate McKean-Vlasov SDEs is investigated, where
the drifts are assumed to be Lipschitz continuous in the measure variable under the weighted
variation distance plus the LF-Wasserstein distance.

2 Main Results
Let

o(r)?

1
o = {go : [0, 00) — [0, 00) is increasing and concave, ¢(0) = 0, / dr € (0, oo)}
0

For 8 € (0,1], p € &, define
pop(t,y) = 2 =y + o(|a® —y@)), 2,y e R™.
Since ¢ € o, we conclude that (R*, ps ) is a Polish space. For a (real or vector valued)

function f on R% let
e s )= £
7 vty Ppp(T5Y)
Let

Py p(R*) = {pn € PR / (Jo17 + o(|l2®])) p(da) < oo},

R2d
Define the Wasserstein distance induced by pg:

Wso(p,v) = inf / oo, y)m(de, dy), p,v € P (R*).
R2d xR2d

WSACRY
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Then W, is a complete distance on P25 ,(R?*?). Moreover, we have the Kantorovich dual
formula (see e.g. [3, Theorem 5.10]):

Weo(p,v) = sup |u(f) —v(f)l, mve Py (R*).

[f]ﬁ,apgl

Noting that for any u,v € P ,(R*), {f : f € B(R*),[flp, < 1} is dense in {f : [f]p, <
1} under L'(u + v), we have

W o(p,v) = sup () = v(f)l, pv € Pp (R™).
1B (B2, f15,5<1

Furthermore, it follows from the concavity of ¢ and ¢(0) = 0 that
(2.1) o(rt) <rep(t), t>0,r>1,

see [9, (2.1)] for more details. By (2.1) for t = 1 and ¢(r) < ¢(1),r € [0,1], we conclude
that

(2:2) p(r) <)L +7), 720
It follows from (2.2) that for any k& > 1,

(2.3) S () = £O)] < [z + @(|eP]) < 2(p(1) + 1)(1 + [2]), = e R*™.
flg,<1

Therefore 2, (R*?) C P25 ,(R*) for k > 1 and

(2.4) Woo(16,v) <l = vlkwar = sup [pu(f) = v(f)l, p,v € Pu(®R™).

To obtain the Harnack inequality, we make the following assumptions.
(A1) o, is invertible and ||oy|| + ||o; || is bounded in ¢ € [0, T7.

(A2) Foranyt € [0,T],y € 25(R??), B;(-,~) is differentiable. Moreover, there exist Kz > 0,
p€ o and € (%, 1] such that

|VBt(ZE,’}/)| S KB:
|By(x,7) — Bi(z,7)| < Kp(Wa(v,7) + Wg,(7,7)),
1Bi(0,60)| < Kp, t€[0,T],x€R™ ~,75e PR

By (A2) and (2.4) for k = 1, there exist constants Cy, Cy > 0 such that

| Be(,7)| < C1(1 4[] + (Wa(7, 00) + W 4(7,00)))

2.5
(25) < o1+ 2]+ 1lla), ¢ € [0,T],0 € R¥,y € 2y(R2),
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So, according to Theorem 4.1 below, under (A1)-(A2), (1.1) is well-posed in P, (R%).
Denote the solution to (1.1) with Ly, = o € P2(R*) by X[°. Let P}uo = Lymo and

Puf(p) == BIFXE] = [ Fa{i o}

For simplicity, we denote X7 = X* and P,f(z) = Pif(,) for z € R*. The next result
characterizes the Harnack inequality for (1.1).

Theorem 2.1. Assume (A1)-(A2). Then the following assertions hold.

(1)

(2)

There exists a constant ¢ > 0 such that for any positive f € B,(R??),

- & - -
(26) By IOg f(f)/) < IOg Ptf(fy) + t_3W2(777)27 te (07 T]7777 S f-@Q<R2d>‘
Consequently, it holds

* * ~ * %~ 2¢ ~ ~
HIDt Y= Pt 7”12)a7’ < 2Ent<Pt ’7|Pt 7) < t_3W2<’77’7)27 le (O,TL’)/,’}/ € ‘QQ(RQd)'

There exists ¢ > 0 such that for anyp > 1, t € (0,T),7,7 € Po(R*?) and f € B, (R*?),

Wz(%’?)Q}

IO < Bre)ew { o2

(p—1)

. Ccp 2
x inf expl ———=|r — m(dx, dy).
[ e e

Remark 2.2. (1) In Theorem 2.1, we assume

(2)

(3)

sup IV By(z,7)] < oo,
te[0,T),z€R24 ye P75 (R24)

which coincides with the assumption in [5, Theorem 4.4] when B is distribution free,
see also [5, Theorem 4.5] for more general case in which VB can be unbounded.

In [9], the first author and his co-author derive the log-Harnack inequality for singular
distribution dependent SDFEs with non-degenerate and multiplicative noise, where the
drift is assumed to be Lipschitz continuous in the measure variable under Wy +W,, for
some ¢ € o . Compared with [9], in the present degenerate case, W, is replaced by
Wpg,, for some > % and ¢ € & due to the attendance of the degenerate component.

In addition, different from [9], where the power of the time variable in the log-Harnack
inequality is —1, the right hand side of (2.6) contains t > instead, which is caused by the
degenerate component. To illustrate this point, we consider the simplest second-order
model:

axt = xPat,
dx® = aw,, X, =z € R¥,
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Note that X; is a 2d-dimensional Gaussian process with covariance matrixz equal to

< %[dxd %Idxd ) .
Slixa  taxa

This means that it is reasonable for t=3 instead of t~" in (2.6).

3 Proof of Theorem 2.1

Before moving on, we give a brief outline of the strategy for proving Theorem 2.1. Observe
that B is singular in the measure variable, i.e.

|Bi(x,7) = B, 7)| < Kp(Wa(7,7) + Ws(7,7))-

To derive the log-Harnack inequality (2.6), it is naturally for us to prove a regularity estimate
like

(3.1) W o (P, Pry) < g(t)Wa(y,7), te(0,7]

for some reasonable function ¢ : (0,7] — (0, 00), which is the main result of Lemma 3.5
below. To this end, the gradient estimate implied by the Bismut formula for distribution
independent second-order SDEs is required. Once (3.1) is in hand, one can adopt the coupling
by change of measure to derive the Harnack inequality in Theorem 2.1, see Proof of Theorem

2.1 below for more details.

3.1 Bismut formula for distribution independent second-order S-
DEs

The Bismut derivative formula in the first assertion of the following theorem has been estab-
lished in [5, 16, 20, 21}, where the Malliavin calculus or coupling by change of measure plays
an important role. The second one is new and will be helpful in the proof of Lemma 3.5
below. For reader’s convenience, we will use the coupling by change of measure to complete
the proof.

Theorem 3.1. Assume (A1)-(A2) and B(z, 1) does not depend on . Then the following
assertions hold.

(1) Let

(32) '-Ys,t(h) — (t — 8) _ 38@ — S) h(g) . 6S(t — 8)

t 2 t3

R, 0<s<t<T.
Denote 7, ,(h) the derivative of ~s.(h) with respect to s. Then for any f € ,(R*), it
holds

ViPif(x) = E[f(X7)Ny(h)], 2,h € R* t € (0,T)
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with

N = [ (ot [72060) (104 [ et 7)) =21, ).
and
e < (B2 + 11RO, ()] < et AP+ 72 R0]), s € [0,1]
for some constant ¢ > 0.

(2) For any f € B,(R*) with f(zV,2@) independent of V),

t

(3.3)  VIPf(z) =E[f(X)?) /0 (o' VI B(XE),dW,)], veRte[0,T).

Consequently, for any f € By(R?*?) with f(zM),2®) independent of 2™,

(3.4) VOPf(x)] < C EIF(XDP)) 2, t€[0,T]
for some constant C' > 0.

Proof. (1) Fix t € (0,T]. For any € € (0,1], h € R*, let (V;(¢))sepo,q solve the equation

(3.5) d(Va(2)W = (Y;(2))@ds,
: d(Y:(2))® = B,(X?)ds + o,dW, + &7, (h)ds, Yy(e) =z + ¢h.

Then it is easy to see that
(3.6) Y(e) = X7 + (5h(1) +e / Yuz(h)du, ms,t(h)) s [0,4],

0
In particular, Y;(¢) = X[ due to (3.2). Let

(I)i = BS(Y<<5)) - BS(X:) - 5'7;,t(h)v s € [Oat]'
Then (A2) and (3.6) imply
1) 105 < K [t ¢ [l el + Ll se .
0

Observing (A1) and
(3.8) se(h)] < e(IR®]+ 71RO, i u(R)] < et AP+ 72 R0)), s € [0,4]

for some constant ¢ > 0, Girsanov’s theorem implies that

W, =W, —/ o, ' ®du, s €0,
0
7



is a d-dimensional Brownian motion on [0, ¢] under Q = RSP, where

t 1 t
R = exp {/ (10 dW,,) — 5/ |a;1®2|2du].
0 0

Then (3.5) reduces to

d(Ys(e)W = M(Yi(e))Pds,
d(Y,(£))® = B,(Yi(e))ds 4 o, dW,, Yo(e) = = + ¢h,

which yields that the law of Y;(¢) under @ coincides with that of X7™" under P. As a
result, we get

Pof(x +eh) = E% f(Y()) = E¥ f(X7) = E[R; f(X])], f € Bp(R™).

It follows from (3.7) and (3.8) that

R — 1] E[(R;)? — 1
ap [F=2— p B
c€(0,1] € c€(0,1] <
esssupg, exp {fo o 1®e \2du}
< sup 2
e€(0,1] €

. fo lo 1 @2 |2du
< sup esssupg 4 exp |0 @< |2 du 5 < 00
e€(0,1] <

which implies th ! c(0,1] is uniformly integrable. As a result, by the dominated
convergence theorem, (A1)-(A2) and (3.6), we have

(3.9) lim E

which derives
ViP.f(x) = E[f(XT)Ni(h)], | € By(R*).

This combined with (3.8) completes the proof.
(2) For any = € R? v € R let X = ((X*)®) + ev, (X*)@). Then it is clear that

d(X5)D = (X2)@ds,
d(XsE)(Q) = By(X?)ds + o, dWj, Xg = (V) 4 v, 2®@).

Rewrite it as

A(X5)D = (X5)@ s,
(3.10) o
d(X5)® = Bs(Xi)dS + o, dW,,  X§ = (2 + v, 2@).
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with R R
dW, = dW, — 0, [Bs(X?) — B,(X7)]ds.

Let
- € z e ' € I e
= o B - B B = e | [ w5 [ ia.
0 0

Girsanov’s theorem yields that (WS)SG[M is a d-dimensional Brownian motion under @§ =

RSP and hence (3.10) implies that the law of X¢ under Q¢ coincides with that of Xt(x(1>+£v,x(2>)
under P, which together with (X7)® = (X#)@ yields that for any f € %,(R*!) with
f(z™, 2®?) independent of 21,

Pf(zV + ev,2®) = Y% f((X7)®) = E¥ f((X7)®) = E[R; f((X7)@)).

By (A1)-(A2) and the same argument to derive (3.9), we may apply the dominated con-
vergence theorem to derive

R —1
£

t
— / (07 VIV B(XT), dW,)| = 0,
0

which derives (3.3). Finally, (3.4) follows from (3.3), Cauchy-Schwarz’s inequality and (A1)-
(A2). O
3.2 Proof of Theorem 2.1

For any v € %,(R??), consider the decoupled SDE:

(3.11)

{d(XW” = (X77)@dr, S
[V )

d(X;M)® = By(X;, Bfy)dt + 0,dW,

where as in Section 2, Py = Zx~» for X;' being the solution to (1.1) with Zx, = 1.
In view of (2.5), (A1)-(A2) implies (C1)-(C2) below for k = 2. So, it follows from
Theorem 4.1 below that

(3.12) 1P7yllz < Co(1+Iv112), t€[0,T],

for some constant C; > 0. This together with (A1)-(A2) implies that SDE (3.11) is well-
posed and for any p > 1, there exists a constant C'y > 0 such that

(3.13) E sup [X{7P < Co(1+ |2f” + [1v]I5)-
te[0,7)

Let P] be the associated Markov semigroup, i.e.

P) f(x) = E[f(X")], t€[0,T],z € R*, f € B,(R*).



Then it holds

(3.14) Bif() = (@) (Py)(dz) = / P f(z)y(dx), [ € Bp(R™).

R2d R2d
For any v € Z,(R?*?), consider the flow
! oY (z,5) = 0 (x,7)dt,
(3 5) (2) o * J— 2d
det (%7) - Bt<8t(x7ry)7pt V)dta te [07T]760(a’177> =T c R

Lemma 3.2. Assume (A1)-(A2). Then for any p > 1, there exists a constant ¢, > 0 such
that

(3.16) E|(XZN D — g (2, )P < et T, te[0,T],z € R™, € PR,
(3.17) E sup [(X21)® =60 (z, )P < cpt?, t€[0,T],z € R*, vy € P(R™).
s€[0,t]

Proof. Observe that

(X)W = 6@, 7) = LX) = 67 (@, 7)]ds,
(XP )@ =017 (2,7) = [y[BAX2Y, Pry) = Bo(B(x,7), Pry))ds + [y o,dW..

So, it is sufficient to prove (3.17). By BDG’s inequality and (A2), we find constants
c1(p), ca(p) > 0 such that

E sup [ X7 = 0,(z, 7))
s€[0,t]

t
< a(p) / E sup [X%7 — 0,(z,7)Pdr + er(p)E sup
0

s€[0,r] s€[0,t]

t
< c(p) / E sup [ X2 — 0,(z,7)[Pdr + ca(p)te.
0

s€0,r]

p

/ o dW,
0

So, we derive from (3.13) and Gronwall’s inequality that

E sup | X% — 0,(x,7)]P < ca(p)e2®Tt2, 0<t<T.
s€[0,t]
Therefore, the proof is completed. O]
Lemma 3.3. Assume (A1)-(A2). Then there ezists a constant ¢ > 0 such that

t
(3.18) Wa(Pry, PA) < cWa(,7) + ¢ / Wy (Pry, P)s, &€ [0,T),7,7 € Po(R).
0

10



Proof. Take #y-measurable random variables X, Xg such that
(3.19) Ly =7, Ly =7 Wa(v,9) =EIX] - XqI%.
By (A2), we find a constant ¢; > 1 such that

E| sup [X] - X] || < e/ BIXG - X3P
s€[0,¢]
2

t
e ([ WP P 4 WP, 7))
0
t
+C1E/ |X7 — X7 ’ds, t€[0,T).
0

So, it follows from the inequality Wy (P}, Pr4)? < E|X7 — X7|* and Gronwall’s inequality
that (3.18) holds. O

The following Holder inequality for concave functions comes from [9, Lemma 2.4].

Lemma 3.4. Let a : [0,00) — [0,00) be concave. Then for any non-negative random
variables & and n,

(3.20) Elo(€)n] < Inlmeo(ll, 2 ). =1

The following Lemma is crucial in the proof of the desired Harnack inequality.

Lemma 3.5. Assume (A1)-(A2). Then there ezists a constant ¢ > 0 such that

p(t2)

Vit

Consequently, there exists a constant ¢ > 0 such that for any 7,5 € P5(R?*?),

% * ~ ~ 3(B=1) -
(3:21) Wy (B BA) < W3 {52 + 0570 e (0,7],7,7 € 2R,

(3.22) sup Wy (P, Py) < ¢Wa(7,7).
te[0,7

The idea of the proof is from [9, Lemma 2.5], where the noise is non-degenerate. We
outline it in the following. In view of the triangle inequality, it holds

1
* k ~ d * * €
WB@(Pt v, Piy) < / ‘&Wﬁvﬂpt v, Pf°)|de
0

1
P* P* e+ry __ P* P* c
</ lim sup (W o (BFy, PEy™) — We o (B, B )|d€
0

rl0 r
1 -
W P* c’ P*,\€+T’
S / lim sup B#’( t i t Y )d{*:,
0 rl0 r

11



where 7° := 2+, £ € [0,2] with X = X7 +¢(Xy — XJ) and X and X{ being in (3.19).
By the definition of W4, and (3.14), for any e, r € [0,1] and ¢ € [0, 7], we have

W o(P/y*, Prye)? = sup |Pf(¥*") = Pof (7))
FeB(R24) [f]5,,<1

<2 sup Rt
(3.23) fe#,(R2),[fl5,,<1

+2 sup (P ) = A (P )
ey (B24) [f]5 <1

e+r

f=P

Therefore, to prove Lemma 3.5, it is sufficient to derive the estimates for I;(t) and Iy(t),
which will be provided in Lemma 3.6 and Lemma 3.7 below respectively. /() involves in the
Wpg -distance for two diffusion processes with the same initial values but different drifts and
it can be dealt with by Girsanov’s transform. As to I5(t), it requires the gradient estimate of
the decoupled SDE (3.11), which is in fact a distribution independent SDE with parameter
7 in drift so that Theorem 3.1 is available. Moreover, to utilize [f]s,<1, we will replace f
with f — f(0:(xo,7)) for any fixed xq € R??, where the flow 0;(z¢,7) solves (3.15) with 2 in
place of x.

Lemma 3.6. Assume (A1)-(A2). Then there exists a constant ¢ > 0 such that

t

(3.24) h(t)Scms,r)(ﬂwgw,w% / Wﬁ,@<P:f,P:vf“>2ds), te[0.7],
0

where

(3.25) Ble, r) = e W0 e fi W o (PI75,PiyeT) s

Proof. Firstly, by the definition of 4*, we have

(3.26) 17113 < 8vII5 + 8lIF1l3, € € [0,2],
and
(3.27) Wo(v5,7°7)? < r?Wa(v,9)?, &, € [0,1].

For any ¢ € [0, 2], consider the SDE

A(XTHW = (X777 @,
(328) x.~C x.~E v d
d(X77)® = B(X[, Pryf)dt + o dW,, X7 =2 € R¥ t € [0, 7).

For any r,¢ € [0, 1], define

Uf’r = Ut_l[Bt(X?ve? Pt*’VE—H,) - Bt(X?’yi ]Dt*’}/a)]’ le [07 T]
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By (A1)-(A2), (2.4) for k =1, (3.12) and (3.26), there exist constants c1,co > 0 such that

’nz:,r| S CI{W6,¢<P7§*787 Pt*,_ya—i-r) + W2(Pt*')/a, Pt*,ya-i-r)}

3.29 N
(3.29) < o1+ [l + [ll), e € [0,1],¢ € (0,7

It follows from Girsanov’s theorem that
t
Wy =W, —/ no'ds, te€0,7T]
0

is a d-dimensional Brownian motion under the probability Q*" := RZ"P with

o ::exp{/ms Ay ——/ e |2ds}, Le0,7].

Therefore, (3.28) can be reformulated as

X)W = (X777 @,
A(XPY@ = B(X, Pryet)dt 4+ o, dWET, X570 =2 e R¥ t e [0, 7).

Recall that 6;(z,7%) solves (3.15) with 4° in place of 7. So, for any f € %,(R?*), it holds
Pl f(x) = P f(x)
—E | f(XFT) (R = 1))
—E |[f(XF7) = [(Ole )R = 1)|, er e (0.1),t € [0,T)z € R

e+r

Moreover, by (3.29), (3.18) and (3.27), we obtain

E|R;" — 1| = E[(R;")* — 1] < esssupg, (efo In="Pds _ 1)

< esssupq, (efo s |2ds/ " 2ds)

(3.30)
Sw( / {W,Bgo P*’YE P*,}/E—i—r) —|—W2(P*’}/E P* 5+r }dS

< cienr) (ﬂwgmf i / Wy, (P1F, P:W‘fds) te[0,T]
0

for some constant c3 > 0. By (3.29), we have

(3.31) Y= sup ¢(e,7y) < oo

e,r€l0,1]

Combining (2.3) for k& = 1, the Cauchy-Schwarz inequality and (3.30), we arrive at

r €+'r
sup T = PP
feB(R24),[f],,<1
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ot (dx)) i

E[(F(XP) = (00 ))(RET = 1)]

([
R24 feﬁb(RQd)v[.ﬂﬁ,wgl

: ( |, (200D + DYEQ+ X7~ Qt(x,7€)|2)}57€+r(da:))

< supE[|R;” ~ 111
< ([ 22000+ 0B+ X2 = 00 P

t
X c31)(e,r) <r2W2(’y,’y)2 +/ W (P E,P;fyg”)st) , te0,T].
0

This together with (3.16) and (3.17) implies that (3.24) holds for some constant ¢ > 0. [

Lemma 3.7. Assume (A1)-(A2). Then there ezists a constant ¢ > 0 such that

(3.32) &@)S(W%WAVJWQ(§WU+- ;

),te(&ﬂ.

Proof. Note that by Theorem 3.1, for any p > 1, there exists some constant ¢; > 0 such that
for h € R,
1 1

(3.33) (BIN,(hD,0)[P)7 < e [aD]t2, (BIN,(0, AP P)? < ey|[n®@|t72, ¢ € (0,T).
Recall that 6;(x,v%) solves (3.15) with 4 in place of . For any o € R?? ¢ € [0,1],t € [0, T
and any f € %,(R*?), let

Fre (@) = f(@) = F(O1 (w0, 77), ),

Fipe (@) = FO (20,7), 22) = f(Bu(w0, 7)),

£ e (@) = f(x) = f(Ou(20,77)), = € R

By Theorem 3.1(1), (3.16), the first inequality in (3.33) and Holder’s inequality, for any
p > 1, we have

sup [V 1 (o)
F€B,(R2),[f]5,,<1
Bp p;l 4 3(8-1)
(3.34) < {E )(ng“’“f YD — 0D (24, +9) } 72 <t 7, te(0,7]

for some constant c; > 0. By (3.4), (3.17) and (2.2), we can find constants c3, cs > 0 such
that for any ¢t € [0, 77,

[N
~
IS
IA
~
iy

e %(1 0,7 2 S
(333) _, swp _IVOE Frohoel(@o) < es{1 +EI(X7)® — 62 (wo, )"} 2t
c By W18, S

14



Moreover, by Theorem 3.1(1), the second inequality in (3.33), (3.16), (3.17), (3.20) and
(2.1), we conclude

sup VAP 2 | (x0)

) z0,t,7%
FE€BL(R2),[f]5,,<1

< s B{[07)0 - 60

veR4 |v|<1

B
| N0, v|}

(3.36) o
+ sup ELp((X77) = 6 (w0, 7)) V(0,01 }
veRY |v|<1
351 tl
< e (th + 99(12>> . te (0,7
t2

for some constant ¢ > 0. Since

VOP f=vOP 0, vOP Y, L VAP =P D, e B(RY),

zo,t,y 0,0,7%? 0,t,7%?

we derive from (3.34) and (3.35) and 3 € (2, 1] that

(3.37) sup VIR fl(wo) St 7, te (0T
' FEB(R?),[f]5,,<1
and from (3.36) that
5 38—1 t;

(3.38) el VP fl(x0) < ¢ (t Tt "”if))

.eqb Z,’.[1¢§1 B)
for some constant c¢g > 0. Observe that

T d, £ e+6 2
feBy(R2),[fp,,<1 0

2
=2 sup .
fe#y(R2),[f]p,,<1

E/ {ng—xgpff(Xgaw)}dQ'
0

36—1

Combining this with (3.37), (3.38), (3.19) and the fact ¢tz
constant ¢; > 0 such that

< Tt@,t € (0,T], we find a

r 2
LB <2 s (E[\X&—X&f\ / \VP;f?f(XJ””)\de])
0

FEBL(R2),[f]5,,<1

- " [ s6-1» gp(t%) 2
< eofig gl [ (1 + 2 as)
0 2

1
‘ t2)?
< ey, 3 (200 4 00,

t
Then (3.32) holds. O



Now, we are in the position to prove Lemma 3.5.

Proof of Lemma 3.5. Firstly, by ¢ € o/ and § € (2,1], we conclude that

T Lyo T3 2 T

t

(3.39) / plt2) dt = 2/ #(s) ds < o0, / #-Ddt < oo.
0 13 0 S 0

(3.32) together with (3.24) and (3.23) yields
Wﬂ#(Pt*,ya./ Pt*,ys—&—r)Z

t
(3.40) < ciple,r) /0 W, (PI°, PiytT)%ds

1

2
. t2
+er®W(v,7)° <w<e, r) 4+ 207D 4 ”9(t)> t e (0,7].

Let .
Ft(€7T> ;:/ Wﬁ,go(Ps*”)/EJPs*”YHT)ZdS'
0

So, it follows from (3.40) that

Li(e,r) < er®Wy(y,7)H (e, r) + cw(a,r)/ [y(e,r)ds, te€[0,T],
(3.41) y

13

H(e,r):= /OT lw(a,r) + 30870 4 99(75)] dt, e,r€][0,1].

By Gronwall’s inequality and (3.41), for any ¢, r € [0, 1] we have
(3.42) Ty(e,7) < er®Wy(y,7)2H (e, r)e?EE € [0,T).
Substituting this into (3.40), we get

WB,W(P]E*A/E7 Pt*’75+r)2
(3.43) | ‘ tz)°
< er®Wao(vy, 7)) | ep(e, ) H (e, r)e? Nt 4ap(e, r) + 367D 4 <P(t)] :
Note that (3.31), (3.25), (3.41) and (3.42) imply that (e, r) is bounded in (g,7) € [0, 1?
with ¢(e,7) — 1 as r — 0, so that by (3.43) and the dominated convergence theorem we
find a constant C' > 1 such that

p P* 5‘ P* e+4r
(3.44) lim sup W (B FEy)
rl0 r

o(t?) s }

By the triangle inequality,

}W@W(Pt*’% Pt*’ya) - W,BAO(Pt*’}/? 1315*78+T)| < Wﬁ#ﬁ(Pt*’VE? Pt*’ya+r)v SRS [0’ 1]7
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(3.44) implies that for any ¢ € (0,7, Wy, (F;y, P}v°) is Lipschitz continuous (hence a.e.
differentiable) in € € [0, 1], and
d W o (B By ™)

—Wg (P}, Pf+)| < limsup
de ™ rl0 7

( f% B—1
gcwm,y){‘”(ﬁ) 5 >}, e e0,1].

Noting that 4! = 7, this implies the desired estimate (3.21), which combined with (3.18)
yields (3.22). O

Finally, we intend to prove Theorem 2.1.

Proof of Theorem 2.1. Let t € (0,T] be fixed. Consider

AXE) O = (X77)@ds,
d(X2)® = B(X27, Pry)ds + o, dW,, X3 =z € R*, s € [0,1].
Recall that v, (h) is defined in (3.2). Let X, solve

dx{ = xPds
3.45 iy C .
(3.45) X = B,(X*7, P*y)ds + o,dW, + Vi ly —x)ds, Xog=yeR* sel0,t].

Then it holds

X, = X" + (y(l) — M +/ Yur(y — x)du, vs1(y — £L‘)> , s€l0,t].
0

In particular, X; = X7 due to (3.2). Let

7757’% = US_I[BS(X& Ps*’?) - BS(X§777 P:’Y) - ’7;7t(y - fL’)], 5 [0’ t]’

RY7Y = oot T AW =5 3 I s

(A1)-(A2) imply

] < co(m,t(y =)+ =20+ [y = o)l
(3.46) 0
W (PP, PE) + Wi (Pry, PA) + Iy — x>|), se 0.

for some constant ¢y > 0. By (3.39) and Lemma 3.5, there exists a constant ¢; > 0 such
that

T
/ {Wg (P, Pr3)? + Wy ( Py, Pr9)* hds < oWy (v,9)>
0

17



This together with (3.46) and (3.8) gives

t , .2
(3.47) / s < E= W L vy, 9)2
0

tS
for some constant c; > 0. As a result, Girsanov’s theorem implies that

W7 =W, —/ ndu, s €0,
0

is a d-dimensional Brownian motion under the probability measure Q] = R}"'P. So, (3.45)
can be rewritten as

dxV = XPqs
dX? = B,(X,, P*3)ds + o,dW27, X, =y,

which derives

Pl f(y) = B¥ f(X,) = BY f(X;7) = B[R}V f(X7)], | € By(R™).
By Young’s inequality, we have

P log f(y) <log P f(z) + E(R]" log R;"7)

s ! 5 5 1 VY ! B
(3.48) <log P f() + B9 [0 w4 SB[ s
0 0

1 Y ¢ 5
glogpgf(:p)+§ﬂ-«:@t /|ng’7|2ds, f e B (R, f>0,
0

where in the last step we have used the fact that the stochastic integral is a martingale under
the probability measure Q;"” since {W7}c04 is a d-dimensional Brownian motion under
Q7. Moreover, Holder’s inequality yields that for any p > 1,

(PYf(y)P < P fP(x) (E(R; )7 )P

1
t
(3.49) smf%)esssupgexp{ﬁ / Inl’ﬂsz}, f € B} (R,
- 0

Applying (3.47), taking expectation in (3.48) and (3.49) with respect to any = € €(v,7)
and then taking infimum in m € €(,7), the proof is completed by Jensen’s inequality and
(1.2). [
4 Appendix: Well-posedness

In this section, we consider a general version of (1.1). For any z € R™*%, let 2(!) denote the
first m components and z(?) denote the last d components, that is z = (z(V), 2(2)) € R™*4
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with ) € R™ and z® € R?%. Fix T > 0 and let & > 1. Consider the distribution dependent
SDEs on R™t4:

dX? = By(X;, Zx,)dt + o,(X,)dAW,,

where b : [0, T]xR™4 — R™ B : [0, T]xR™ 4 x Z(R™4) - R? o : [0, T|xR™4 — RIQR?
are measurable and W, is a d-dimensional Brownian motion on some complete filtration
probability space (Q,.Z, (% )i>0,P). Let C(]0,T]; &) denote the continuous maps from
0,77 to (P, Wy). Recall that

e = vlkpar = sup |u(f) =v(f)l, pve Pp(R™).
|FI<14]-*

Definition 4.1. The SDE (4.1) is called well-posed for distributions in &2, (R™"9), if for any
Fo-measurable initial value Xy with Zx, € 2 (R™"?) (respectively any initial distribution
v € P2 (R™)), it has a unique strong solution (respectively weak solution) such that

Ly € C(0,T); Z4R™)).

We make the following assumptions.
(C1) For any t € [0,T],z € R™"* y(z) is invertible and ||o~!|| is finite.
(C2) There exists K > 0 such that

[b:(2) = 0i(2)] + [ou(2) — 01(7)| < Kl — 7,
|Bi(w,7) = Bi(%,7)| < K(lz — 2| + We(v,7) + |7 = Yk var),
B (0)] + |02 (0)] < K, |B(0,79)] < KL+ [llk), 2,7 € R™, 5,5 € Zp(R™).

For any p € C([0,T], 2. (R™*?)), consider

AX? = By(Xy, 1) dt + o(X,)dW,.

Under (C2), for any .Z;-measurable random variable X, with .Zx, € 2,(R™9), let X;
be the unique solution to (4.2) with initial value Xy. It is standard to derive from (C2) that

(4.3) E( sup |X;0M["|.F) < e(n)(1+|Xo|"), n>1.
t€[0,T]

Define the mapping ®*° : C([0,T], 2, (R™)) — C([0,T], 2, (R™4)) as

@iXO(M) = ng(O,M7 t G [O,T]

The following theorem provides the well-posedness for (4.1) and the proof is similar to that
in [19, Theorem 3.2].
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Theorem 4.1. Assume (C1)-(C2). Then (4.1) is well-posed in P, (R™ ). Moreover,
there exists a constant C > 0 such that

(4.4) 1Pyl < CA+IyllE), ¢ €[0,T].

Proof. Since (4.4) is standard by (C2) and the BDG inequality, it is sufficient to prove that
(4.1) is well-posed in 2, (R™). It follows from (C2) that

k

¢ t
|X£XO’V — Xi)(o’uyk < CO (/ [Wk(,uwys) + ||1u5 - VSHk,vaT]ds) + OO/ ’X§07V - X‘;Xonulkds
0 0

k

(4.5) +C, /0 [os(XX0) — o (XXM AW,

for some constant Cy > 0. By (C2) and the BDG inequality, there exist constants C,Cy > 0
such that

k
CoE sup

t€[0,r]

(4.6) < C,E (/ |X§(0,u _ ng,u,st)
0

t
/ o (X X0 — g (X K0V )W,
0

2

1 T
< SE sup [X70 — X 4 CQE/ | X For — X Yo R s,
0

te[0,r]

(4.6) together with (4.5), (4.3) and Gronwall’s inequality yields

t
Wi(DX0 (1), @0 (1)) < (B sup [ XXor — X Xov k)i < 03/ (Wi (s, vs) + [l1ts — Vs|l,var|ds
0

s€[0,¢]

for some constant C'3 > 0. Therefore, for any A > 0, we have

C _
(4.7) sup e MWy (07 (1), 97 () < =2 sup e MWy (e, 1) + 1t = vl ar)-
te[0,T] t€[0,T]

Next, let
G = U;I(Xg(oyu)(BS(Xon’uv Vs) — Bs(Xi(OM’Ms))a s € [Oa T]a
t 1 t
ro =ew{ [(Goawy -3 [apas}, eepr
0 0
t
Wi = W, — / (ds, t€[0,7).
0
Then we have
(XMW = by (XMt
d(XOM)@ = By(X7OH, v dt + oy (X0 AW
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Noting that || < K||o™ oo (Wr(pts, vs) + [[its — Vsllkwar) due to (C1)-(C2), Girsanov’s
theorem yields

O (1) (f) = E(R(D) F(X7"), | e B(R™),t € [0,T].
Therefore, by the Cauchy-Schwarz inequality for conditional expectation, we obtain

197 () = D3 (1) [ ar
(4.8) = E[|R(t) — 1(1 + X" |")

<E ([E(R(®) - 12170) FE((1L+ | X742 o))
Observe that

[E(|R(t) — 17| 7)]2

t
< {eXp {C/ (Wi (s, vs) + || s — Vs||k,var)2ds} - 1]
0

1
2

(4.9) e )
S €exp 5 (Wk(,usy Vs) + ||,us - Vs”k,var) ds
0

1
2

t
X /e ( / (Wi, ) + s — usy|k,m>2ds)
0

for some constant ¢ > 0. For any N > 1, let

(410) Py, = {n € C(0.T], ZLR™), no = Lo, Sﬁp]e*Nt(l + (|- ") < N}
tel0,T

Then it is clear that as N 1 oo,
Py T Pixy = € CUO.T) P B™), o = i, ).

So, it remains to prove that there exists a constant Ny > 0 such that for any N > N,, ®*°
is a contractive map on @,ﬁv )g; .
Firstly, it follows from (C2) and the BDG inequality that there exists a constant ¢; > 0

such that for any p € c@,iVXTO,

t
e NE(L 4 | XXM F) < B(1+ |Zof) + cro / E(1 + | Z70%|*)ds
0

t
o™ / (14 (] - [M))ds
0

<E(L+|Zo) + 2 sup e ME(L + |ZZ01F) 4 ¢y
N sefo
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Aa a result, there exists a constant Ny > 1 such that for any N > Ny, ®X° maps ,@,iv XTO to
e@év)?o Next, we derive from (4.8), (4.3) and (4.9) that

2

t
1829(v) = B ()l lar < Co(N) ( / <Wk<us,us>+||us—us||k,w>2ds) e PN
0

for some constant Cy(/N) > 0, which implies that

C(N) =~
(4.11) sup e 0 (1) — &7 (1) | var < LWk,x(u, v),

+e[0,T] VA

here for any A > 0,

Wia (i, v) == s[up]e‘”(HVt — fiellkar + Wi 1)), pv € PLy,.
te[0,T

Combining (4.11) with (4.7), we conclude that for any N > N, there exists a constant
A(N) > 0 such that ®%¢ is a strictly contractive map on (Wg;?;,WkNN)). Therefore, the
proof is completed by the Banach fixed point theorem and (4.10).

]
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