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Abstract

In this paper, by utilizing Wang’s Harnack inequality with power and the Banach
fixed point theorem, the weak well-posedness for McKean-Vlasov SDEs with inte-
grable drift is investigated. In addition, by Banach’s fixed theorem, the existence
and uniqueness of invariant probability measure for symmetric McKean-Vlasov S-
DEs and stochastic Hamiltonian system with integrable drifts are obtained.
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1 Introduction

Invariant probability measure is the equilibrium state in physics. There are plentiful
results on the invariant probability measure for linear semigroup Pt associated to classical
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diffusion process in Rd:
dXt = b(Xt)dt+ σ(Xt)dWt,

the infinitesimal generator of which is defined as

L =
1

2
Tr(σσ∗∇2) + b · ∇.

The existence of invariant probability measure can be studied by investigating the tight-
ness of the sequence of probability measures

1

n

∫ n

0

P ∗t δxdt, n ≥ 1,

see [12]. Meanwhile, a useful sufficient condition to obtain the existence of invariant
probability measure is Lyapunov’s condition, i.e.

LW1 ≤ C −W2

for some positive function W1 ∈ C2(Rd), positive compact function W2 and some constant
C > 0 can derive that Pt has an invariant probability measure µ satisfying µ(W2) ≤ C,
see [4] and references therein.

For the uniqueness, the classical principle is strong Feller property together with irre-
ducibility, see [12, Theorem 4.2.1]. Moreover, by Wang’s Harnack inequality [25, Theorem
1.4.1], the uniqueness can also be ensured. Furthermore, using couplings or generalized
couplings, [21] proved the uniqueness of the invariant measures. One can also refer to
[6, 5, 7] for conditions on the existence and uniqueness of invariant probability measure
by Lyapunov function V ∈ C2(Rd) with lim|x|→∞ V (x) =∞ and constants C,R > 0 such
that

LV ≤ −C, |x| ≥ R.

Recently, in [23], the existence and uniqueness as well as the regularity such as rela-
tive entropy and Sobolev’s estimate are derived by hyperboundedness or log-Sobolev’s
inequality.

However, all the above methods are invalid to obtain the existence and uniqueness
for distribution dependent SDEs (McKean-Vlasov SDEs or mean field SDEs), where the
associated semigroup P ∗t is nonlinear [17]. In [22], Wang obtained the existence and u-
niqueness of invariant probability measure and the exponential ergodicity in Wasserstein
distance by the method of basic coupling ([10, Definition 2.4]), see [16] for the McKean-
Vlasov SDEs with Lévy noise. Quite recently, [27] investigated the existence of invariant
probability measure by Schauder’s fixed point theorem, see also [1] for the existence of in-
variant probability measure of functional McKean-Vlasov SDEs by Kakutani’s fixed point
theorem. In addition, [24] proved the existence and uniqueness of invariant probability
measure for (reflecting) McKean-Vlasov SDEs by exponential ergodicity of the decoupled
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SDEs and Banach’s fixed point theorem. What’s more, by using log-Sobolev’s inequality
or Poincáre’s inequality for the invariant probability measure of decoupled SDE and the
Banach fixed point theorem, [3, 4] investigated the existence and uniqueness of the solu-
tion to stationary nonlinear and non-degenerate Fokker-Planck-Kolmogorov equations.

In this paper, we will prove the weak well-posedness for McKean-Vlasov SDEs with
drift being integrable in the spacial component with respect to some reference probability
measure by Banach’s fixed point theorem. The result extends the one in [23]. Since the
invariant probability measure of decoupled SDE is in general unknown when the drift is
only assumed to be integrable, the conditions in [3, 4] such as log-Sobolev’s inequality
and Poincaré’s inequality are not explicit. As a result, we only investigate the existence
and uniqueness of the invariant probability measure for symmetric and non-degenerate
McKean-Vlasov SDEs as well as distribution dependent stochastic Hamiltonian system,
where the drift is assumed to be of gradient form and integrable in the spacial component
with respect to some reference probability measure.

Let P(Rd) be the space of all probability measures on Rd equipped with the weak
topology. Consider the following distribution dependent SDE on Rd:

(1.1) dXt = {Z0(Xt) + σ(Xt)Z(Xt,LXt)}dt+ σ(Xt)dWt,

where (Wt)t≥0 is an n-dimensional Brownian motion on a complete filtration probability
space (Ω,F , {Ft}t≥0,P), LXt is the law of Xt,

Z : Rd ×P(Rd)→ Rn, Z0 : Rd → Rd, σ : Rd → Rd ⊗ Rn

are measurable. Compared with [23], Z can depend on the distribution of the solution,
see (AZ) below for the condition of Z on the measure component. When a different
probability measure P̃ is concerned, we use Lξ|P̃ to denote the law of a random variable
ξ under the probability P̃, and use EP̃ to stand for the expectation under P̃.

Definition 1.1. (1) An adapted continuous process (Xt)t≥0 on Rd is called a solution
of (1.1), if X0 is F0-measurable,

(1.2) E
∫ T

0

{
|Z0(Xt)|+ |σ(Xt)Z(Xt,LXt)|+ ‖σ(Xt)‖2

}
dt <∞, T > 0,

and P-a.s.

Xt = X0 +

∫ t

0

Z0(Xs)ds+

∫ t

0

σ(Xs)Z(Xs,LXs)ds+

∫ t

0

σ(Xs)dWs, t ≥ 0.(1.3)

(2) For any µ0 ∈ P(Rd), ((X̃t)t≥0, (W̃t)t≥0) is called a weak solution to (1.1) starting
at µ0, if (W̃t)t≥0 is an n-dimensional Brownian motion under a complete filtration
probability space (Ω̃, F̃ , {F̃t}t≥0, P̃), (X̃t)t≥0 is a continuous F̃t-adapted process on
Rd with LX̃0

|P̃ = µ0 and X̃0 ∈ F̃0, and (1.2)-(1.3) hold for (X̃, W̃ , P̃,EP̃) replacing
(X,W,P,E).
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(3) We call (1.1) weakly well-posed for an initial distribution µ0, if it has a weak solution
starting at µ0 and any weak solution with the same initial distribution is equal in
law.

For the well-posedness of distribution dependent SDEs with singular drifts, one can
refer to [2, 9, 8, 13, 14, 15, 18, 20, 28] and references within.

The remaining part of the paper is organized as follows: In Section 2, we investigate
the weak well-posedness of (1.1) under integrable condition. The existence and uniqueness
of invariant probability measure are provided in Section 3.

2 Weak Well-posedness

For any µ, ν ∈P(Rd), the total variation distance between µ and ν is defined as

‖µ− ν‖TV = 2 sup
A∈B(Rd)

|µ(A)− ν(A)| = sup
‖f‖∞≤1

|µ(f)− ν(f)|.

To obtain the weak well-posedness of (1.1), we make the following assumptions, see [23,
Example 4.1, Example 4.3, Example 5.1, Example 5.2] and Section 3 below for the models
where (A) holds.

(A) The reference SDE

(2.1) dXt = Z0(Xt)dt+ σ(Xt)dWt

is strongly well-posed and has a unique invariant probability measure µ0.

(AZ) There exist constants ε > 0, KZ > 0 such that

µ0(eε|Z(·,µ0)|2) <∞,(2.2)

and

|Z(x, γ)− Z(x, γ̃)| ≤ KZ‖γ − γ̃‖TV , x ∈ Rd, γ, γ̃ ∈P(Rd).(2.3)

Let πt be the projection map from C([0,∞);Rd) to Rd, i.e.

πt(w) = wt, w ∈ C([0,∞);Rd).

For any γ ∈ P(Rd), we will prove that (1.1) has a unique weak solution with initial
distribution γ and the distribution of the solution Pγ satisfying

Pγ
(
w ∈ C([0,∞);Rd),

∫ t

0

|Z(ws,Pγ ◦ π−1
s )|2ds <∞, t ≥ 0

)
= 1.(2.4)

Firstly, modifying the proof of [23, Theorem 2.1], we can extend it to the time inhomo-
geneous case. More precisely, consider

(2.5) dXt = {Z0(Xt) + σ(Xt)Z̃t(Xt)}dt+ σ(Xt)dWt,

here Z̃ : [0,∞)× Rd → Rn is measurable. Then we have the following result.
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Theorem 2.1. Assume (A) and that there exists a constant ε > 0 such that

‖eε|Z̃|2‖L∞([0,t];L1(µ0)) <∞, t > 0.(2.6)

(i) For any γ ∈ P(Rd) with γ � µ0, (2.5) has a unique weak solution starting at γ
and the distribution Pγ satisfying

Pγ
(
w ∈ C([0,∞);Rd),

∫ t

0

|Z̃s(ws)|2ds <∞, t ≥ 0

)
= 1.

(ii) If in addition, the semigroup P 0
t associated to (2.1) satisfies the Harnack inequality,

i.e. there exists p > 1 such that

(P 0
t |f |)p(z) ≤ (P 0

t |f |p)(z̄)eΦp(t,z,z̄), f ∈ Bb(Rd), z, z̄ ∈ Rd, t > 0(2.7)

with ∫ t

0

{
µ0(e−Φp(s,z,·))

}− 1
p ds <∞, t > 0, z ∈ Rd,(2.8)

then the assertion in (i) holds for any γ ∈P(Rd).

Proof. See the Appendix below.

The main result in this section is the following theorem.

Theorem 2.2. Assume (A) and (AZ).

(i) For any γ ∈ P(Rd) with γ � µ0, (1.1) has a unique weak solution starting at γ
and satisfying (2.4).

(ii) If in addition, P 0
t satisfies (2.7) and (2.8), then for any γ ∈P(Rd), then (i) holds

for any γ ∈P(Rd).

Remark 2.3. Compared with the localized integrable condition of the drift on the spacial
component for the weak well-posedness in [28, Theorem 3.9], the drift Z in Theorem 2.2
is allowed to be of some growth. For instance, taking n = d, Z0 = −x, σ =

√
2Id×d, if Z

satisfies
|Z(x, µ0)| ≤ c(1 + |x|),

then (2.2) holds with c2ε < 1
2
. Moreover, (1.1) can be degenerate, see [23, Example 4.3]

and Example 3.2 below.

To prove Theorem 2.2, it is sufficient to prove that for any T > 0, (1.1) is weakly
well-posed on [0, T ]. So, we fix T > 0 in the following. For any γ ∈ P(Rd), µ ∈
B([0, T ]; P(Rd)), consider

(2.9) dXt = {Z0(Xt) + σ(Xt)Z(Xt, µt)}dt+ σ(Xt)dWt

with initial distribution γ.

5



Proof of Theorem 2.2. Since the proofs of (i) and (ii) are completely the same, we only
prove (ii).

Note that (AZ) implies that for any t ∈ [0, T ],

‖e
ε
2
|Z(·,µ·)|2‖L∞([0,t];L1(µ0)) ≤ µ0(eε|Z(·,µ0)|2+4εK2

Z ) = µ0(eε|Z(·,µ0)|2)e4εK2
Z <∞.

This together with (A), (2.7), (2.8) and Theorem 2.1(ii) for Z̃t = Z(·, µt) yields that for
any γ ∈P(Rd), (2.9) has a unique weak solution starting at γ and the distribution Pγ,µ
satisfying

Pγ,µ
(
w ∈ C([0, T ];Rd),

∫ T

0

|Z(ws, µs)|2ds <∞
)

= 1.(2.10)

Let ({X̃γ,µ
t }t∈[0,T ], {W̃t}t∈[0,T ]) in (Ω̃, F̃ , {F̃t}t∈[0,T ], P̃) be a weak solution to (2.9) with

LX̃γ,µ
0
|P̃ = γ. Then we have

(2.11) dX̃γ,µ
t = {Z0(X̃γ,µ

t ) + σ(X̃γ,µ
t )Z(X̃γ,µ

t , µt)}dt+ σ(X̃γ,µ
t )dW̃t.

Define Φγ
t (µ) = LX̃γ,µ

t
|P̃, t ∈ [0, T ]. For ν ∈ B([0, T ]; P(Rd)), let

ξs = Z(X̃γ,µ
s , νs)− Z(X̃γ,µ

s , µs), s ∈ [0, T ],

R(t) = exp

{∫ t

0

〈ξs, dW̃s〉 −
1

2

∫ t

0

|ξs|2ds

}
, t ∈ [0, T ],

W µ,ν
t = W̃t −

∫ t

0

ξsds, t ∈ [0, T ].

Then (2.11) can be rewritten as

dX̃γ,µ
t = {Z0(X̃γ,µ

t ) + σ(X̃γ,µ
t )Z(X̃γ,µ

t , νt)}dt+ σ(X̃γ,µ
t )dW µ,ν

t .

Since |ξs| ≤ 2KZ due to (2.3), Girsanov’s theorem yields that under the probability
dQ = R(t)dP, the process W µ,ν

t is an n-dimensional Brownian motion. Then, we have

Φγ
t (ν)(f) = E(R(t)f(X̃γ,µ

t )), f ∈ Bb(Rd), t ∈ [0, T ].

Applying Pinsker’s inequality [11, 19], we obtain

‖Φγ
t (ν)− Φγ

t (µ)‖2
TV ≤ E(|R(t)− 1|)2 ≤ 2E(R(t) logR(t)).

This together with (2.3) implies

(2.12) ‖Φγ
t (ν)− Φγ

t (µ)‖2
TV ≤

∫ t

0

K2
Z‖µs − νs‖2

TV ds.
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Take λ = K2
Z and consider the space ET := {µ ∈ B([0, T ]; P(Rd)) : µ0 = γ} equipped

with the complete metric

ρ(ν, µ) := sup
t∈[0,T ]

e−λt‖νt − µt‖TV .

It follows from (2.12) that

sup
t∈[0,T ]

e−2λt‖Φγ
t (ν)− Φγ

t (µ)‖2
TV ≤ sup

t∈[0,T ]

∫ t

0

K2
Ze−2λ(t−s)e−2λs‖µs − νs‖2

TV ds

≤ sup
s∈[0,T ]

e−2λs‖µs − νs‖2
TV sup

t∈[0,T ]

∫ t

0

K2
Ze−2λ(t−s)ds

≤ 1

2
sup
s∈[0,T ]

e−2λs‖µs − νs‖2
TV .

Then Φγ is a strictly contractive map on ET , so it follows from the Banach fixed theorem
that the equation

Φγ
t (µ) = µt, t ∈ [0, T ]

has a unique solution µ ∈ ET . This combined with (2.10) completes the proof.

3 Existence and Uniqueness of Invariant Probability

Measure

In this section, we will consider two cases: one is the symmetric case and the other
one is stochastic Hamiltonian system. We will consider the class of invariant probability
measures of (1.1) absolutely continuous with respect to µ0:

P̃Z = {ν = ρνµ
0 : ν is an invariant probability measure of (1.1)},

where ρν is the Radon-Nikodym derivative. For any µ ∈P(Rd), consider

(3.1) dXt = {Z0(Xt) + σ(Xt)Z(Xt, µ)}dt+ σ(Xt)dWt,

and denote

Pµ
Z = {ν = ρνµ

0 : ν is an invariant probability measure of (3.1)}.

3.1 Symmetric Case

In this section, let

Z0 =
1

2

d∑
i,j=1

{∂j(σσ∗)ij − (σσ∗)ij∂jV }ei
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for some V ∈ C2(Rd). Define

E0(f, g) = µ0(〈σ∗∇f, σ∗∇g〉), f, g ∈ C∞0 (Rd).

Let H1,2
σ (µ0) be the completion of C∞0 (Rd) under the norm√

E1(f, f) := {µ0(|f |2 + |σ∗∇f |2)}
1
2 .

Then (E0, H
1,2
σ (µ0)) is a symmetric Dirichlet form on L2(µ0).

Moreover, we shall introduce the condition (H) in [23] and one can refer to [23,
Example 5.1, Example 5.2] for the models satisfying (H).

(H) Assume that µ0(dx) = e−V dx is a probability measure. There exists k ≥ 2 such
that σ ∈ Ck(Rd,Rd ⊗ Rn) and vector fields

Ui =
d∑
j=1

σji∂j, i = 1, · · · , n

satisfy the Hörmander condition up to the k-th order of Lie brackets. Moreover,
1 ∈ H1,2

σ (µ0) with E0(1, 1) = 0, and defective log-Sobolev inequality

µ0(f 2 log f 2) ≤ κµ0(|σ∗∇f |2) + β, f ∈ C∞0 (Rd), µ0(f 2) = 1

holds for some κ > 0 and β ≥ 0.

Theorem 3.1. Let F : Rd ×P(Rd)→ R and F̄ : Rd → R be measurable and differential

in spatial variable. Let Z(x, µ) =
√

2
2

(∇F (x, µ) + ∇F̄ (x)), x ∈ Rd, µ ∈ P(Rd) and σ =√
2Id×d in (3.1). Assume (H) and that there exist constants ε > κ,C > 0 and δ ∈ (0, log 2

2
)

such that

µ0(eF (·,µ0)+F̄ ) + µ0(e
ε
2
|∇F (·,µ0)+∇F̄ |2) <∞,(3.2)

|∇F (x, µ)−∇F (x, ν)| ≤ C‖µ− ν‖TV , µ, ν ∈P(Rd), x ∈ Rd,(3.3)

and
|F (x, µ)− F (x, ν)| ≤ δ‖µ− ν‖TV , µ, ν ∈P(Rd), x ∈ Rd.

Then (1.1) has a unique invariant probability measure in P̃Z.

Note that (3.2) and (3.3) imply (AZ). Moreover, we give a simple example where the

conditions in Theorem 3.1 holds. Taking V = |x|2
2

+ d log(
√

2π), then µ0 = 1
(2π)d

e−
|x|2
2 dx

and (H) holds for κ = 2, β = 0. Let ε > 2 and 0 < c < (8ε)−
1
2 < 1

4
. Set

F (x, µ) =

∫
Rd
F̃ (y)µ(dy), F̄ (x) = c|x|2, x ∈ Rd, µ ∈P(Rd),

where F̃ : Rd → R is a bounded measurable function with supx∈Rd |F̃ |(x) < log 2
2
.

8



Proof of Theorem 3.1. For any ε̃ ∈ (0, ε), it follows from (2.3) that

µ0(eε̃|Z(·,µ)|2) ≤ µ0(eε̃(|Z(·,µ0)|+KZ‖µ−µ0‖TV )2)

= µ0(e
ε̃|Z(·,µ0)|2+2ε̃

KZ‖µ−µ
0‖TV√

ε−ε̃
√
ε−ε̃|Z(·,µ0)|+ε̃K2

Z‖µ−µ
0‖2TV )(3.4)

≤ µ0(eε|Z(·,µ0)|2)eK
2
Z

εε̃
ε−ε̃‖µ−µ

0‖2TV <∞.

[23, Theorem 5.2] implies that for any µ ∈P(Rd), (3.1) has a unique invariant probability
measure in Pµ

Z , which is denoted by Γ(µ). Therefore, Γ construct a map from P(Rd) to
P(Rd). Moreover, it is clear that

dΓ(µ)

dµ0
=

eF (·,µ)+F̄

µ0(eF (·,µ)+F̄ )
.

In fact, in this case, under assumption (H), (3.1) degenerate to

(3.5) dXt = ∇{F (Xt, µ) + F̄ (Xt)− V (Xt)}dt+
√

2dWt,

which has invariant probability measure with the following form

Γ(µ)(dx) =
exp{F (x, µ) + F̄ (x)− V (x)}dx∫∞
−∞ exp{F (x, µ) + F̄ (x)− V (x)dx

=
exp{F (x, µ) + F̄ (x)− V (x)}dx∫∞

−∞ eF (x,µ)+F̄ (x)µ0(dx)

=
eF (x,µ)+F̄ (x)−V (x)dx∫∞
−∞ eF (x,µ)+F̄ (x)µ0(dx)

=
eF (x,µ)+F̄ (x)e−V (x)dx∫∞
−∞ eF (x,µ)+F̄ (x)µ0(dx)

.

Then
Γ(µ)(dx)

µ0(dx)
=

Γ(µ)(dx)

e−V (x)dx
=

eF (x,µ)+F̄ (x)∫∞
−∞ eF (x,µ)+F̄ (x)µ0(dx)

.

By Taylor’s expansion, we arrive at

∣∣eF (x,µ) − eF (x,ν)
∣∣ ≤ eF (x,ν)

∞∑
k=1

|F (x, µ)− F (x, ν)|k

k!

≤ eF (x,ν)

∞∑
k=1

δk‖µ− ν‖kTV
k!

≤ eF (x,ν)‖µ− ν‖TV
∞∑
k=1

δk2k−1

k!
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= eF (x,ν)‖µ− ν‖TV
e2δ − 1

2
.

As a result, it holds

‖Γ(µ)− Γ(ν)‖TV

=

∫
Rd

∣∣∣∣∣ eF (·,µ)+F̄

µ0(eF (·,µ)+F̄ )
− eF (·,ν)+F̄

µ0(eF (·,ν)+F̄ )

∣∣∣∣∣µ0(dx)

=

∫
Rd

∣∣∣∣∣eF (·,µ)+F̄µ0(eF (·,ν)+F̄ )− eF (·,ν)+F̄µ0(eF (·,µ)+F̄ )

µ0(eF (·,µ)+F̄ )µ0(eF (·,ν)+F̄ )

∣∣∣∣∣µ0(dx)

≤
∫
Rd

∣∣∣∣∣eF (·,µ)+F̄
(
µ0(eF (·,ν)+F̄ )− µ0(eF (·,µ)+F̄ )

)
µ0(eF (·,µ)+F̄ )µ0(eF (·,ν)+F̄ )

∣∣∣∣∣µ0(dx)

+

∫
Rd

∣∣∣∣∣
(
eF (·,µ)+F̄ − eF (·,ν)+F̄

)
µ0(eF (·,µ)+F̄ )

µ0(eF (·,µ)+F̄ )µ0(eF (·,ν)+F̄ )

∣∣∣∣∣µ0(dx)

=

∫
Rd

∣∣µ0(eF (·,ν)+F̄ )− µ0(eF (·,µ)+F̄ )
∣∣

µ0(eF (·,ν)+F̄ )
µ0(dx) +

∫
Rd

∣∣eF (·,µ)+F̄ − eF (·,ν)+F̄
∣∣

µ0(eF (·,ν)+F̄ )
µ0(dx)

=

∫
Rd

∣∣µ0(eF (·,ν)+F̄ − eF (·,µ)+F̄ )
∣∣

µ0(eF (·,ν)+F̄ )
µ0(dx) +

∫
Rd

∣∣eF (·,µ)+F̄ − eF (·,ν)+F̄
∣∣

µ0(eF (·,ν)+F̄ )
µ0(dx)

= 2

∣∣µ0(eF (·,ν)+F̄ − eF (·,µ)+F̄ )
∣∣

µ0(eF (·,ν)+F̄ )

≤ 2
µ0
(

eF (·,ν)+F̄‖µ− ν‖TV e2δ−1
2

)
µ0(eF (·,ν)+F̄ )

= ‖µ− ν‖TV (e2δ − 1).

So, when δ ∈ (0, log 2
2

), Γ is a strictly contractive map on (P(Rd), ‖ · ‖TV ). By Banach’s
fixed point theorem, we prove that (1.1) has a unique invariant probability measure in
P̃Z .

3.2 Stochastic Hamiltonian system

Let Z0(x, y) = (y,−x − y), σ =

(
0d×d 0d×d
0d×d

√
2Id×d

)
and Z(x, µ) =

√
2

2
(0,∇H(·, µ)(x) +

∇H̄(x)), x, y ∈ Rd with H : Rd ×P(R2d)→ R, H̄ : Rd → R. Consider{
dXt = Ytdt

dYt = (−Xt − Yt)dt+∇H(·,L(Xt,Yt))(Xt)dt+∇H̄(Xt)dt+
√

2dWt,
(3.6)

By [26, Example 5.1], (A) holds and µ0(dx, dy) = 1
(2π)d

e−
|x|2+|y|2

2 dxdy and

‖P 0
t0
‖L2(µ0)→L4(µ0) = 1
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for some t0 > 0.

Theorem 3.2. Assume that there exist constants ε > 5
2
t0, C > 0 and δ ∈ (0, log 2

2
) such

that

µ0(eH(·,µ0)+H̄) + µ0(e
ε
2
|∇H(·,µ0)+∇H̄|2) <∞,(3.7)

|∇H(x, µ)−∇H(x, ν)| ≤ C‖µ− ν‖TV , µ, ν ∈P(R2d), x ∈ Rd,(3.8)

and
|H(x, µ)−H(x, ν)| ≤ δ‖µ− ν‖TV , µ, ν ∈P(R2d), x ∈ Rd.

Then (3.6) has a unique invariant probability measure in P̃Z.

Observe that (3.7) and (3.8) imply (AZ). Similar to Section 3.1, we give an example

in which the conditions in Theorem 3.2 hold. Let ε > 5
2
t0 and 0 < c < min(1

2
, (8ε)−

1
2 ).

Consider

H(x, µ) =

∫
R2d

H̃(z)µ(dz), H̄ = c|x|2, x ∈ Rd, µ ∈P(R2d)

for some bounded measurable function H̃ : R2d → R with supz∈R2d |H̃|(z) < log 2
2

.

Proof of Theorem 3.2. For any µ ∈ P(Rd), substituting L(Xt,Yt) with µ in (3.6), we
rewrite (3.6) as following{

dXt = Ytdt

dYt = (−Xt − Yt)dt+∇H(·, µ)(Xt)dt+∇H̄(Xt)dt+
√

2dWt.
(3.9)

Due to (3.9) is a special case of (3.1), using (3.4) for Z(x, µ) = ∇H(x, µ) +∇H̄(x) and
ε̃ ∈ (κ0, ε) with κ0 = 5

2
t0 and applying [23, Theorem 3.1, Theorem 4.1], we conclude that

(3.9) has a unique invariant probability measure in Pµ
Z and we denote it as Γ(µ), which

satisfies

(3.10)
dΓ(µ)

dµ0
=

eH(·,µ)+H̄

µ0(eH(·,µ)+H̄)
.

In fact, the infinitesimal generator of (3.9) is

Lf(x, y) = y∇xf + (−x− y +∇H(x, µ) +∇H̄(x))∇yf +∇2
yf, f ∈ C∞0 (R2d),

which yields∫
R2d

Lf(x, y) exp

{
−|x|

2

2
− |y|

2

2
+H(x, µ) + H̄(x)

}
dxdy

= −
∫
R2d

〈
∇xf,∇y exp

{
−|x|

2

2
− |y|

2

2
+H(x, µ) + H̄(x)

}〉
dxdy

11



+

∫
R2d

〈
∇yf,∇x exp

{
−|x|

2

2
− |y|

2

2
+H(x, µ) + H̄(x)

}〉
dxdy = 0, f ∈ C∞0 (R2d).

Therefore,

Γ(µ)(dx, dy) =
exp

{
− |x|

2

2
− |y|

2

2
+H(x, µ) + H̄(x)

}
}dx∫

R2d exp{− |x|2
2
− |y|2

2
+H(x, µ) + H̄(x)dxdy

=
(2π)dµ0(dx, dy)eH(x,µ)+H̄(x)

(2π)d
∫
R2d eH(x,µ)+H̄(x)µ0(dx, dy)

=
µ0(dx, dy)eH(x,µ)+H̄(x)∫

R2d eH(x,µ)+H̄(x)µ0(dx, dy)
.

Then the claim (3.10) holds. Repeating the proof of Theorem 3.1, we know that Γ is a
strictly contractive map on (P(Rd), ‖·‖TV ), which proves that (3.6) has a unique invariant
probability measure in P̃Z .

4 Appendix

In this section, we give the proof of Theorem 2.1.

Proof of Theorem 2.1. Since the proof of the weak uniqueness can be completely repeated
according to [23, Proof of Theorem 2.1(2)], we only prove the weak existence in the
following.

(i) For any t0 ≥ 0, let

Rµ0

t0 (t) = exp

{∫ t

0

〈Z̃s+t0(Xµ0

s ), dWs〉 −
1

2

∫ t

0

|Z̃s+t0(Xµ0

s )|2ds

}
, t ≥ 0,

where µ0 is the unique invariant probability measure of the reference SDE (2.1), Xµ0

t

is the solution of (2.5) started from the initial distribution µ0. For any ξ ∈ Rd, Rξ
t0(t)

is defined in the same way by replacing µ0 with ξ. For simplicity, we denote Rµ0(t) =

Rµ0

0 (t), Rξ(t) = Rξ
0(t), t ≥ 0.

We first prove that for µ0-a.e. ξ, (Rξ(t))t≥0 is a martingale and divide the proof into
the following three steps.

Step 1: For µ0-a.e. ξ, (Rξ(t))t≥0 is a supmartingale.
Note that (2.6) implies that

E
∫ T

0

|Z̃s(Xµ0

s )|2ds =

∫ T

0

E|Z̃s(Xµ0

s )|2ds =

∫ T

0

µ0(|Z̃s|2)ds <∞, T > 0.

Let

τn := inf{t ≥ 0 :

∫ t

0

|Z̃s(Xµ0

s )|2ds ≥ n}, n ≥ 1.

12



Then P-a.s. limn→∞ τn =∞. By Girsanov’s theorem, for each n ≥ 1,

Rµ0(t ∧ τn) := exp

{∫ t∧τn

0

〈Z̃s(Xµ0

s ), dWs〉 −
1

2

∫ t∧τn

0

|Z̃s(Xµ0

s )|2ds

}
, t ≥ 0,

is a martingale. Applying Fatou’s lemma, we arrive at

E(Rµ0(t)|Fs) = E
(

lim inf
n→∞

Rµ0(t ∧ τn)|Fs

)
≤ lim inf

n→∞
E
(
Rµ0(t ∧ τn)|Fs

)
= lim inf

n→∞
Rµ0(s ∧ τn) = Rµ0(s), t ≥ s ≥ 0.

Then, (Rµ0(t))t≥0 is a supmartingale. Since

E
∫ T

0

|Z̃s(Xµ0

s )|2ds =

∫
Rd

E
∫ T

0

|Z̃s(Xξ
s )|2dsµ0(dξ) <∞, T > 0,

then E
∫ T

0
|Z̃s(Xξ

s )|2ds < ∞, T > 0 for µ0-a.e. ξ. By the same argument as in step 1, we
conclude that the claim holds.

Step 2: ERµ0(t) = 1, t ≥ 0.
For any t0 ≥ 0, by Jensen’s inequality and (2.6), we obtain

Ee
1
2

∫ 2ε
0 |Z̃s+t0 (Xµ0

s )|2ds ≤ 1

2ε

∫ 2ε

0

Eeε|Z̃s+t0 (Xµ0

s )|2ds =
1

2ε

∫ 2ε

0

µ0(eε|Z̃s+t0 |
2

)ds

=
1

2ε

∫ 2ε+t0

t0

µ0(eε|Z̃s|
2

)ds <∞.

It follows from Novikov’s condition that for any t0 ≥ 0, (Rµ0

t0 (t))t∈[0,2ε] is a martingale.
Note that

Ee
1
2

∫ 2ε
0 |Z̃s+t0 (Xµ0

s )|2ds =

∫
Rd

Ee
1
2

∫ 2ε
0 |Z̃s+t0 (Xξ

s )|2dsµ0(dξ) <∞,

a same argument yields that for any t0 ≥ 0, µ0-a.e. ξ, (Rξ
t0(t))t∈[0,2ε] is a martingale. As

a result, for any t0 ≥ 0, we get µ0-a.e. ξ,

(4.1) ERµ0

t0 (t) = ERξ
t0(t) = 1, t ∈ [0, 2ε].

Now we assume that ERµ0(t) = 1, t ∈ [0, 2kε] for some k ≥ 1, it remains to prove
ERµ0(t) = 1, t ∈ [2kε, 2(k + 1)ε]. Indeed, let t1 = 2kε and

W̃t = Wt+t1 −Wt1 , t ≥ 0.

Then W̃ (t) is a Brownian motion on the same probability space (Ω,F ,P) with respect
to filtration (Ft+t1)t≥0. Consider

(4.2) dX̃t = Z0(X̃t)dt+ σ(X̃t)dW̃t.
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By Assumption (A), (4.2) is strongly well-posed. Let X̃ξ
t be the unique solution with

X̃ξ
0 = ξ. Observing that

Xξ
t1+t−t1 = Xξ

t1 +

∫ t

t1

Z0(Xξ
s )ds+

∫ t

t1

σ(Xξ
s )dWs

= Xξ
t1 +

∫ t−t1

0

Z0(Xξ
s+t1)ds+

∫ t−t1

0

σ(Xξ
s+t1)dW̃s, t ≥ t1,

we conclude that Xξ
t = X̃

Xξ
t1

t−t1 by the strong well-posedness of (4.2). Therefore, we derive

Γ(t) : = E
(

e
∫ t
t1
〈Z̃s(Xµ0

s ),dWs〉− 1
2

∫ t
t1
|Z̃s(Xµ0

s )|2ds

∣∣∣∣Ft1

)
= E

(
e
∫ t−t1
0 〈Z̃r+t1 (Xµ0

r+t1
),dW̃r〉− 1

2

∫ t−t1
0 |Z̃r+t1 (Xµ0

r+t1
)|2dr

∣∣∣∣Ft1

)
= E

(
e
∫ t−t1
0 〈Z̃r+t1 (X̃

X
µ0

t1
r ),dW̃r〉− 1

2

∫ t−t1
0 |Z̃r+t1 (X̃

X
µ0

t1
r )|2dr

∣∣∣∣Ft1

)

=
{
E
(

e
∫ t−t1
0 〈Z̃r+t1 (X̃ξ

r ),dW̃r〉− 1
2

∫ t−t1
0 |Z̃r+t1 (X̃ξ

r )|2dr
)} ∣∣∣∣

ξ=Xµ0

t1

= ERξ
t1(t− t1)|

ξ=Xµ0

t1

, t ∈ [t1, t1 + 2ε].

Since the law of Xµ0

t1 is µ0, (4.1) with t0 = t1 implies that P-a.s. Γ(t) = 1, t ∈ [2kε, 2(k +
1)ε], which yields P-a.s.

(4.3) E[Rµ0(t)|Ft1 ] = Rµ0(t1)Γ(t) = Rµ0(t1), t ∈ [2kε, 2(k + 1)ε].

This together with ERµ0(t) = 1, t ∈ [0, t1] implies

ERµ0(t) = E(E[Rµ0(t)|Ft1 ]) = E(Rµ0(t1)) = 1, t ∈ [2kε, 2(k + 1)ε].

Step 3: For µ0-a.e. ξ, (Rξ(t))t≥0 is a martingale.
Combining Step 1 and Step 2, we conclude that (Rµ0(t))t≥0 is a martingale. Since

for µ0-a.e. ξ, (Rξ(t))t≥0 is a supmartingale due to Step 1, then µ0-a.e. ξ, E(Rξ(t)) is
decreasing in t and E(Rξ(t)) ≤ E(Rξ(0)) = 1. Noting that

1 = ERµ0(t) =

∫
Rd

E(Rξ(t))µ0(dξ), t ≥ 0,

we conclude that for any t ≥ 0, µ0-a.e. ξ, ERξ(t) = 1, which together with the fact that
E(Rξ(t)) is decreasing in t implies that for µ0-a.e. ξ, ERξ(t) = 1, t ≥ 0. So, for µ0-a.e. ξ,
(Rξ(t))t≥0 is a martingale.
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As a result, applying Girsanov’s theorem, for µ0-a.e. ξ,

W̄ ξ
t = Wt −

∫ t

0

Z̃s(X
ξ
s )ds, t ∈ [0, T ]

is a d-dimensional Brownian motion under the probability measure Qξ on F∞ defined by

Qξ(A) := E(1AR
ξ(T )), A ∈ FT , T > 0,

which is well-defined in view of the martingale property of Rξ(t). Now, we rewrite (2.1)
as

dXξ
t = (Z0(Xξ

t ) + σ(Xξ
t )Z̃t(X

ξ
t ))dt+ σ(Xξ

t )dW̄ ξ
t .

Therefore, for µ0-a.e. ξ, ({Xξ
t , W̄

ξ
t }t≥0,Qξ) is a weak solution of (2.5), which tells that

for any γ ∈P(Rd) with γ � µ0, γ-a.e. ξ, ({Xξ
t , W̄

ξ
t }t≥0,Qξ) is a weak solution of (2.5),

then (2.5) has a weak solution starting at γ. Combining the weak uniqueness of (2.1) as
mentioned at the beginning of the proof, we complete the proof.

(ii) Adopting the same argument of obtaining (4.3) in the proof of (i), it is sufficient to
find some constant τ > 0 such that for any t0 ≥ 0, ξ ∈ Rd, {Rξ

t0(t)}t∈[0,τ ] is a martingale,
which can be ensured if

Ee
1
2

∫ τ
0 |Z̃s+t0 (Xξ

s )|2ds <∞.(4.4)

By the Harnack inequality (2.7), we have

µ0(e−Φp(s,ξ,·))(P 0
s e

ε
p
|Z̃t0+s|

2

)p(ξ) ≤ µ0(eε|Z̃t0+s|
2

).

Combining this with (2.6) and (2.8), for any λ > 0, it holds

Eeλ
∫ ε
pλ
0 |Z̃t0+s(X

ξ
s )|2ds

≤ pλ

ε

∫ ε
pλ

0

Ee
ε
p
|Z̃t0+s(X

ξ
s )|2ds

≤ pλ

ε

∫ ε
pλ

0

{µ0(e−Φp(s,ξ,·))}−
1
p{µ0(eε|Z̃t0+s|

2

)}
1
pds

≤
(
‖eε|Z̃|2‖L∞([0, ε

pλ
+t0],L1(µ0))

) 1
p pλ

ε

∫ ε
pλ

0

{µ0(e−Φp(s,ξ,·))}−
1
pds <∞, t0 ≥ 0, ξ ∈ Rd.

This yields that (4.4) holds for some τ > 0.
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[6] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, The Poisson equation and es-
timates for distances between stationary distributions of diffusions, J. Math. Sci.
232(2018), 254-282.

[7] O. Butkovsky, Subgeometric rates of convergence of Markov processes in the Wasser-
stein metric, Ann. Appl. Probab. 24(2014), 526-552.

[8] P.-E. Chaudru de Raynal, Strong well-posedness of McKean-Vlasov stochastic dif-
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1665-1701.

[17] O. Manita, M.Romanov, S. Shaposhnikov, On uniqueness of solutions to nonlinear
Fokker-Planck-Kolmogorov equations, Nonlinear Anal. 128(2015), 199-226.

[18] Yu. S. Mishura, A. Yu. Veretennikov, Existence and uniqueness theorems for solu-
tions of McKean-Vlasov stochastic equations, arXiv:1603.02212.

[19] M. S. Pinsker, Information and information stability of random variables and pro-
cesses, Holden-Day, San Francisco, 1964.
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