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Abstract

The LF-Wasserstein distance Wy(k > 1) and the probability distance Wy, induced
by a concave function 1, are estimated between different diffusion processes with singu-
lar coefficients. As applications, the well-posedness, probability distance estimates and
the log-Harnack inequality are derived for McKean-Vlasov SDEs with multiplicative
distribution dependent noise, where the coefficients are singular in time-space variables
and (Wy, +W,,)-Lipschitz continuous in the distribution variable. This improves exist-
ing results derived in the literature under the W-Lipschitz or derivative conditions in
the distribution variable.
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1 Introduction
Let T > 0, and let = be the space of (a,b), where

b:[0,T] xR = RY  a:[0,7T] x R - R @ R?
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are measurable, and for any (¢, z) € [0, T] x R%, a(t, x) is positive definite. For any (a,b) € =,
consider the time dependent second order differential operator on R¢:

LYY= tr{a(t, )V} + b(t,-) -V, te[0,T].

Let (a;,b;) € 2,1 = 1,2, such that for any s € [0,T), each (L?"’bi)te[s;p] generates a unique
diffusion process (X;7)(.z)efsr)xre on R with X% = x. Let

Py = Ly
be the distribution of X;f. When s = 0, we simply denote
Xoy =X", Py =F".

If the initial value is random with distributions v € &2, where & is the set of all probability
measures on R?, we denote the diffusion process by X;7, which has distribution

S,

(1.1) P = / y(de), i=1,2, 0<s<t<T.
R4

By developing the bi-coupling argument and using an entropy inequality due to [1], the
relative entropy

_ dPlv’y
Ent(PL7|P%)) = / <log dPgdes{ﬁ, 0<s<t<T,y7j€P
R y

s,t

is estimated in [13], and as an application, the log-Haranck inequality is established for
McKean-Vlasov SDEs with multiplicative distribution dependent noise, where the drift is
Dini continuous in the spatial variable x, and the diffusion coefficient is Lipschitz continuous
in x and the distribution variable with respect to W.

In this paper, we estimate a weighted variational distance between Ptl’7 and Pfﬁ for
diffusion processes with singular coefficients, and apply to the study of singular McKean-
Vlasov SDEs with multiplicative distribution dependent noise, so that existing results in the
literature are considerably extended.

Consider the class

o = {1 [0,00) = [0, 00) is increasing and concave, (r) > 0 for r > 0}.

For any 1 € 7, the 1)-continuity modulus of a function f on R? is

@) - W)
o i=sp ==y

Then
2yi={ue o= [ wllahu(an) < oo}

2



is a complete metric space under the distance W, induced by :

Wy (p,v) := sup |u(f) —v(f)l,

[flp<1

where pu(f) == [ga fdp for f € L'(p). In particular, Wy, = W, is the L'-Wasserstein distance
if ¢ (r) = r, while W, with ¢» = 2 reduces to the total variational distance

11t = vlloar := sup |p(f) = v(f)]-
[fI<1

For any k > 0, the L*-Wasserstein distance is

WUSARY)

E
)= nt ([ e altatanan)
R4 xRd
where & (u, v) is the set of couplings for p and v. Then
P={pe?: - < oo}

is a Polish space under Wy. Since ¢ has at most linear growth, we have &, C &, and &
is complete under Wy, + W,

To characterize the singularity of coefficients in time-space variables, we recall some
functional spaces introduced in [17]. For any p > 1, LP(R?) is the class of measurable
functions f on RY such that

fll Lo may == (/]Rd |f(:1c)|pdx> ’ < 0.

For any p,q > 1 and a measurable function f on [0,7] x RY, let

: :
5 = 510 ([ Maea i eaptr)

z€R4
where B(z,1) := {z € R : |z — 2| < 1}. When s = 0, we simply denote || - 2z = - lz2 0.0y
Let

d 2
H = {(p,q)-p,qe(Q,OO), z_9+5<1}'

Let || - |oo be the uniform norm, and for any function f on [0, 7] x RY, let

[fllt00 := sup [f(E2)], [ fllrstoo = sup [|fllsoe, O<r <t <T.

xERd ES [th]

We make the following assumptions for the coefficients (a,b) € Z, where V is the gradient
operator on R



(A%®) There exist constants a € (0,1], K > 1,1 € N and {(p;, ¢;) }o<i<i C # such that the
following conditions hold.

(1) llalloo V lla~" | < K, and
(1.2) lat, ) = a(t,y)l| < K|z —y|*, t€[0,T],2,y € R".

Moreover, there exist {1 < fi}1<i<; with 32 1 fill g2 () < K, such that

l
IVall <3 7
=1

(2) b has a decomposition b = b + b)) such that

sup [0 (2, 0)] + V0D [lo + 16| 720 () < K.
te[0,7)

Let o(t,x) := y/2a(t, x), and let W; be a d-dimensional Brownian motion on a probability
basis (Q, %, {F}iepm, P). By [11, Theorem 2.1] for V() := 1 + |z|?, see also [17] or [19],
under (A%?), for any (s,z) € [0,T) x R?, the SDE

(1.3) AX7, = b(t, X7,)dt + o(t, X7 )AW,, ¢ € [s,T]

is well-posed, so that (Ly ’b)te[sﬂ generates a unique diffusion process. Moreover, for any
k > 1, there exists a constant ¢(k) > 0 such that

(1.4) E| sup X ] < k)1 +1al"), (s,2) € [0,T] x R
tels,T

The associated Markov semigroup is given by
P& f(x) =E[f(X7,)], 0<s<t<T,zeR’feB(RY.
Since (po, qo) € &, we have

—1 —1 2
(m )Po A (m )% > 1, dm n m
m m po(m—1)  qo(m —1)

Mo ::inf{m>1: <2}e(1,2).
For a R? ® R? valued differentiable function a = (a”);<; j<4, its divergence is an R? valued

function defined as .

(diva)' == " 9", 1<i<d.
j=1

Our first result is the following.



Theorem 1.1. Assume (A%Y) for (a,b) = (as;,b;),i = 1,2. Then for any m € (mqg,2), there
exists a constant ¢ > 0 depending only on m,K,d,T and (p;,qi)o<i<i, such that for any
Ve o and v,y € P,

t— l t_ 3 - 7,00
c(( _5)2 W, (v, 5) "t —7)2)|lar — as

Vi—s r—s(t—r)

1.5 c EL((t = 1)) ]ar — asllr e .
( )+</< Vi—r >d>

l
b [Py — bl + i — )}, 0S5 <EST 27 P

Wy (P!, Py <

Moreover, for any k > 1, there exists a constant C > 0 depending only on k, K,d,T and
(Pi, @i )o<i<i, such that for any v,5 € P and 0 < s <t <T,

t t 1
(1.6)  Wy(P,), P < C{Wk(%a) +/ b1 — bal|r0edr + </ lay — agﬂioodr) }

Next, we consider the following distribution dependent SDE on R%:
(1.7) dX; = b (Xy, Lx,)dt + oy( Xy, Lx,)dW,, t € 0,7,
where Z%, is the distribution of X;, and for some k > 1,

b:[0,T] x R x &, - RY a:[0,7T] x R x &, — R? @ R

are measurable, each a;(x, 1) is positive definite and o = v/2a.
Let C([0,T]; &%) be the set of all weakly continuous maps p : [0,7] — & such that

sup (|- |*) < oo.
te[0,7

We call the SDE (1.7) well-posed for distributions in &, if for any initial value Xy with
Lx, € Py (correspondingly, any initial distribution v € Z), the SDE has a unique solution
(correspondingly, a unique weak solution) with (Zx,)iwcpo,r) € C([0,T]; Z%). In this case,
let Pfv := %, for the solution with £y, = v, and define

Pf(v):= | fd(Pv), ve P,tel0,T),f € BR.
R4
In particular, for £ = 2, the following log-Harnack inequality
(1.8) Plog f(y) <log P.f(7) + WZ(M, V), fe B (RY,te(0,T),pn,veE P,

for some constant ¢ > 0 has been established and applied in [6, 8, 12, 14, 15] for oy(x, u) =
oi(z) not dependent on u, see also [4, 5, 16] for extensions to the infinite-dimensional and
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reflecting models. When the noise coefficient is also distribution dependent and is Ws-
Lipschitz continuous, this inequality is established in the recent work [13] by using a bi-
coupling method.

In the following, we consider more singular situation where oy(x, ) may be not Wj-

Lipschitz continuous in pu, and the drift is singular in the time-spatial variables. For any
i€ Cr(0,T); 2y), let

a'(t,x) = ay(z, pe), O (t,x) = bz, ), te[0,T],z € R
Correspondingly to (A%?), we make the following assumption.
(B*) Let k € [1,00) and v € & with limy o9 (t) = 0

(1) (A**) holds for (a,b) = (a*,b*) uniformly in u € CF([0,T]; &), with drift decompo-
sition b* = (b*)©) 4 (b))

(2) There exists a constant K > 0 such that

Hat('/)/) - at('f;/)HOO < K(Wl/) +Wk)(77ry>’ te [07T]7’775/ € gzk

(3) There exist p > 2 and 1 < p € LP([0,T]), where p = 2 if fol Mdr < ooandp > 2
otherwise, such that for any ¢ € [0,T] and v, € Z,

16e(5 ) = be(s Moo + [[div(ac(-, ) = @l 7))o < pr(Wy + Wi )(7, 7).
Remark 1.2. We give a simple example satisfying (B*®) for some p € L*°([0,T]), where b

contains a locally integrable term b, and the dependence of b and o in distribution is given
by singular integral kernels. Let ¢ € of with lim;_,o1(t) = 0 and let

(o) = B + /6( y)uldy),

\/)\I —l—/ 7:67) (-, y)u(dy), (t,p) €[0,T] x Py,
R4
where X > 0 is a constant, b : [0,T] x R? — R? satisfies ||b(0)\|1358(T) < oo for some
(posqo) € H#, b:[0,T] x R4 x RY — R is measurable such that
b, y) = be(,9) < K (Jo — 2| +0(ly = §D), 2,%,9,9 €R% L €[0,T]

holds for some constant K > 0, and & : [0,T] x R¢ x R? — R? @ R? is measurable and
bounded such that

15+(z,y) — 60(Z, Pl < K (v — 2] +(|ly — 31)),
V6,(y)(@) = Vo, (- 9)(x)| < Ky = gl), =&y, € Rt € [0,T].



We have the following result on the well-posedness and estimates on (W,,, W},) for P
Theorem 1.3. Assume (B*"). Then the following assertions hold.

(1) The SDE (1.7) is well-posed for distributions in &y. Moreover, for any n € N, there
exists a constant ¢ > 0 such that any solution satisfies

(1.9) E[ sup | X"

t€[0,T

o*} < c(1+ | Xo|™).

(2) If v is a Dini function, i.e.

(1.10) /01 MSS)

then there exists a constant ¢ > 0 such that

%”wl(v 3) + W7, ),

Wi (P, Py) < cWi(v,7),  te(0,T], 7,5 € P

WilJ(Pt*PY? P:V) <

(1.11)

Remark 1.4. Theorem 1.3(1) improves existing well-posedness results for singular McKean-
Viasov SDEs where the coefficients are either (Wy+W,)-Lipschitz continuous in distribution
for some a € (0,1] and k > 1 (see [7, 3] and references therein), or satisfy some derivative
conditions in distribution (see for instance [2]).

To estimate W, (P, P;¥) for worse 1 not satisfying (1.10), and to estimate the relative
entropy Ent(P;y|FP;¥), we need the drift to be Dini continuous in the spatial variable.

Theorem 1.5. Assume (B*") with ||p||. < oo and fol @dr < 00, and there exists ¢ € o
satisfying (1.10) such that

sup  {[1(0") oo + (") )¢ + V@l } < o0.
peCy([0,17;2%)

Then the following assertions hold.

(1) If(r)?log(1+771) — 0 as r — 0, then there exists a constant ¢ > 0 such that (1.11)
holds, and for any t € (0,T],~v,7 € P,

Ent(Py| ) < AL
(+12) LR ()
R )
0



(2) If either ||b||oc < 00 or

(1'13) sup (||V2bt<7p“)||oo + ||vio-t('7:u)||00) <oo, 1=12,
(t,n)€[0,T]x P,

then there exists a constant ¢ > 0 such that (1.11) holds, and

(1.14) Ent(Pv[P/7) < CW2<ZW> ch / vl r, t€ (0,T],v,5 € Z.

Remark 1.6. When k < 2, (1.8) follows from (1.14) or (1.12). This improves [13, Theorem
1.2], where the Wo-Lipschitz condition on the coefficients (a,b) is relazed as the (W, +Wy)-
Lipschitz condition.

2 Proof of Theorem 1.1

We first present a lemma to bound W, by the total variation distance and W;.
Lemma 2.1. For any ¢ € </,

dy(V't)
Vit

Proof. Since v is nonnegative and concave, we have

Wy (7,9) < VAV 7 = Allvar + Wi(7,%), 7,7 € 1.

(2.1) U(Rr) < RY(r), r=0,R>1
For any function f on R? with [f], <1, let
filx) ==E[f(x+ By)], t>0,2z€R,

where B; is the standard Brownian motion on R? with By = 0. We have E[|B;|*] = dt. By
[f]y <1, Jensen’s inequality and (2.1), we obtain

|fi(@) — f(x)] E[(B])] < o(EB) < w((dt)?) < Vdu(ts), t>0,z€R%
So,

(2.2) sup |v(fr — 1) = 3(fi = £)] < VAS(E2)[1y = Allvars

[flyp<1
Next, for [f], < 1, by Jensen’s inequality, (2.1), E|B,|> = dt and E|B,| < Vdt, we obtain

VA =V [ en -t S ) - £

Z=T



|z —

<)t [ E2M0) - stale " ay < GBI (B

E|B/|  (E[B*\ _E|Bi|  ((dE|B,*)> 1
< = t < dt zY(t
=77 ¢<E|Bty> 7o E|B,| ) < dimhu

Combining this with (2.2) and noting that

NI
NI

), t>0.

Wi(y,7) = S () = (9)l;

we derive that for any f with [f]y, <1,
V() =3O < (e = 1) =3 = O]+ () = 3]
VA = Alluar + dEFHEW(7,7), £ > 0.
Then the proof is finished. O

Next, we present a gradient estimate on Py ’tb. All constants in the following only depend
on T, K, d and (pz, Qi)OSiSl'

Lemma 2.2. Assume (A%%) without (1.2). Then there exists a constant ¢ > 0 such that for
any Y € A,

N

Sup [[VPI e < et = 5) 720 ((t = 9)

), 0<s<t<T.
[fly<

Proof. (a) By [17, Theorem 1.1] or [15, Theorem 2.1], there exists a constant ¢; > 0 such
that for any 0 < s < t < T and = € R?, the Bismut formula

(2:3) VL (@) = B[F(X5)M;,]

holds for some random variable MZ, on R with

(2.4) E[MZ] =0, E|MZ2 <t —s5)".

So, for any z € R? and a function f with [f], <1,

VP f ()] = ’]E[{f(Xf,t) — JIM]| S E[Y(XT, — 2)IME].

|Mg 4P
E|Mg, |’

o
)

we obtain

By Jensen’s inequality for the weighted probability

E
VP ()] < JE[IM;”,tHw(

(E[|Mg,[)2)2
E[| M)

N

< E[\M;tuw( (EIX, - =P)



Combining this with (2.1) and (2.4), we obtain

(2.5)  sup |VPYF(2)| < et —s)2 infd¢<{E|Xft - z|2}%>, 0<s<t<T,zecR%
[fls<1 ’ 2€R ’

(b) To estimate inf,cps E|X?, — 2|?, we use Zvonkin’s transform. By [19, Theorem 2.1],
there exist constants 8 € (0,1) and A, C' > 0 such that the PDE

(2.6) (8 4+ LY — Nuy = =00t ), te€[0,T],ur =0
for u : [0,7] x R — R? has a unique solution satisfying

27 o+ [Vl +sup V2D = T 2

w#y |z —yl?

23) 192l 30 + 100+ 5 - F)ulgacr < C:
By Ito’s formula, Yy, := ©(XY,), where ©;(y) := y + u:(y), solves the SDE
AYys = b(t, Yo )dt + o(t, Ys)dWs, t € [s,T], Y, = &+ ug(x),

where

(2.9) bt,-) == Aug +bM) o071, G(t,-) == {(VOy)o,} 0O/
By (2.7), we find a constant ¢; > 0 such that
(2.10) bt y) = b(t, 2)| < eily —2l, oty < e, te€ls,Tly 2 €R

Let q
ae&t = b(t, 957,5)), te€[s,T],0ss=Yss =+ us(x).

By It6’s formula and (2.10), we find a constant ¢ > 0 and a martingale M; such that
d|Ys: — es,t|2 = {2<Ys,t — 054, B(t7 Yei) — [_)(tu es,t>> + || (t, Ys,t)”?{s}dt + dM,
< eof[Yor = O+ 1}dt+ My, tE [5,T), [V — 04 = 0.

Thus,
E[[Yy: — b54)’] < coe®"(t—s), 0<s<t<T.

Taking z,; = O; '(0s,) and noting that |[VO™!||s < co due to ||[Vu < 1 in (2.7), we find
a constant ¢z > 0 such that

E[| X2 — zl?] = E[10; ' (Yey) — O (0s0)*] < cs(t—s), 0<s<t<T.

Combining this with (2.5) and (2.1), we finish the proof. O
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Moreover, we estimate Vyp‘;’f (z,y), where V, is the gradient in y and p?f (x,-) is the
density function of £x= . For any constant x > 0, let

2

e w, r>0,zeR?

d _ |z
2

gu(r, 2) = (mRr)~
be the standard Gaussian heat kernel with parameter .

Lemma 2.3. Assume (A%). Then for any m € (my,2) there exists a constant c¢(m) > 0
such that for any t € (0,7] and 0 < g., € A([0,1]),

gr,t
\/Trdr/ Vypiy (2, y)|dy
(2.11)

-

/mdr+c )(/t<\/%>mdr) s 0.1,

Consequently, there exists a constant ¢ > 0 such that
(2.12) /t—r 2d7’/ IVypil(z,y)ldy <ec¢, 0<s<t<T.

Proof. Let u; be in (2.6). By (A%?), 0 = v/2a, (2.7) and (2.9), we find a constant ¢; > 0
such that

|B(t7$) - B(tay” < Cl|x - y|7 ||5'(t,l’) - 6(t,y)|| < Cl|x - y|a/\ﬁ’ le [O,T],:L‘,y € Rd-

Let ps+(x,y) be the density function of %, ,. According to [10, Theorem 1.2], there exists a
constant £ > 1 and some 0, : R¢ — R such that

(2.13) |V;ﬁsjt(x,y)| < k(t — s)_%gﬁ(t —8,0.4(x) —y), 0<s<t<T,z,ycRYi=0,1,
where VOf := f. Noting that X7, = ©;"(Y;,), we have

(2.14) P53 (2,9) = Paa(O:(2), O1(y)) | det (VO (y)|.

Combining this with (2.7), (2.10) and (2.13), we find a constant ¢ > 0 such that

Vet (2, 9)] < carlt = )72 gult = 5,00,4(0,()) — Ou(y)|det (VO (y))|

(2.15) . ) )
+ || Vi (y) |p5) (z,y), 0<s<txyecR"

Since (po, qo) € £, for any m > my, we have

1 d 2
(2.16) = tm=lpo oo M=oy 4 2 o

11



By Krylov’s estimate, see [19, Theorem 3.1], we find a constant ¢ > 0 such that

/ ar / 1%, ()| 725 22, ) dy

(2.17)
= E/ V20 |71 (X )dr < el V2ull = |z = UV ull 20 o)) 77

This together with (2.8), (2.14) and (2.15) implies that for any m € (mg, 2), there exists a
constant ¢(m) > 0 such that

¢ ¢
/ Irt dr/ ]Vyp”x Yy |dy<c2f£/ Gri(t —1)7
n "L’,;l
m(/( i ) ([ [ Ivulsie.nn)
s t—r

/md”c ([ (=) dr>m‘

So, (2.11) holds. Letting g, =1 and m = mOTH, we find a constant ¢ > 0 such that (2.11)
implies (2.12).

(r — s)_%dr

N

]

Proof of Theorem 1.1. By (1.1), it suffices to prove for v = 4,,5 =, z,y € R%.
(a) We first consider z = y. Let f € CZ(R?) with [f], < 1. By It6’s formula we have

t
Pzi’be(x) = f(x) +/ P;fi’bQ(L?Q’bzf)(x)dr, 0<s<t<T.
This implies the Kolmogorov forward equation
(2.18) PEYf = PE(Lf), ae te[s,T).

On the other hand, for (p,q) € 2 and t € (0,7, let Wfpb(l)(o,t) be the set of all maps
»q,09
u: [0,1] x RY — RY satisfying

1
lllo-stc0 + IVetllostoo + 1Vl 3 + 105 + 057 - V)ull gy < oo
By [19, Theorem 2.1], the PDE
(2.19) (05 + L2y, = —L%2%2f s € [0,t],u, =0

has a unique solution in the class Wf”’b(l)(o, t). So, by It6’s formula [19, Lemma 3.3],
»4,09
du, (X2F) = —L2» f(X2F) + dM,, r € [s,1]

12



holds for some martingale M,. This and (2.18) yield

t
0= ]Eut(XSQf) — US(I) _ / (Psi,szgg,bgf)dr

s

t
d
= uy(z) — / 5(P;i’b2f)d7" = ug(x) — Pgﬁ’@f +f, 0<s<t<T.

Combining this with (2.19), we derive P> f ¢ Wf’pbm(o,t) for t € (0,7] and the Kol-
) ,q,bs

mogorov backward equation
(2.20) O, P f = Ogug = — L% (ug + f) = —L22 P22 f 0<s<t<T.
By Ito’s formula to P bzf(Xslf) for r € [s, ], see [19, Lemma 3.3|, we derive
t
K?V@%Jﬁ“ﬂ@ZE/(a L) P (X
/ dr [ ) (L0 = L) P )y
By the integration by parts formula, we obtain

‘/ Py () [tr{ (a1 — a2) (r,y) VP f(y)}]d ‘

/R , <(a1 — a2)(r,y)Vyp P (2, y) + p2 P (2, y)div(ar — a2)(r,y), VP2 f (y)>dy‘-

Combining these with Lemma 2.2 and Lemma 2.3, for any m € (mg,2), we find constants
c1,co > 0 such that

a1,b1 a2,b2 wt_r%a a“TOO a1,b1
’Ps,tﬁ f( ) Pstb f .Z') S / \/)H—lr 2|| |Vypsrb I’ y)‘dy

N

M — w(a; —a T
+QL'(t S (I = bl + div(an = a2)e)d

Hal a2Hroo

[

(- m%mn—@mm "N
+ ¢ (/s< Jior > dr) =: I,

Therefore,

SCz

T (1b1 = blse + [[div(ay — a2>ur,oo) ar

(2.21) Wy (P PAY) < Iy, 0<s<t<T, zeR%.

13



(b) Let z,y € R? and 0 < s < ¢t < T. By the triangle inequality for Wy, (2.21) and
Lemma 2.1, we obtain
W (Psltm7p2y) W¢(Psltm7p2 fL") +W¢(Ps2txap2 y)
P((t = 5)%> 2,0 2
———==W (P}, P}
\/m ( s,t )

By [15, Theorem 2.1] or [17, Theorem 1.1}, (A%?) for (a,b) = (ag,by) implies that for some
constant cg3 > 0,

(2.22)
< Loy + 9 ((t = 8)2) [P — P2 llvar +

W(PQCC P2y)<03|x_y|’ ”sz_PQvaar

s,t

< J—Iﬂs—y|

holds for any 0 < s < ¢t < T and z,y € R%. Combining this with (2.22), we derive (1.5) for
v =0, and ¥ = 0.
(¢) It remains to prove (1.6). Let u be in (2.6) for (a,b) = (a1, b). Let ©,(y) := y+u(y),
and
Yot = 0uX), YE =0uXZ), telsT).

By It6’s formula [19, Lemma 3.3], we obtain
dy,;" = {b )+ A H (XAt + {(VO)o (¢, ) HXLT) AW,
Ay = {b§1>< t) 4 A H(XZP) At + {(VO:) (ba — by) + trl(as — ar)(t, ) Vu] H(X2P)dt
+ {(V@t)O-Q(ta )}(Xg,%y)dwta te [87T]’ Ytsl,:sx = GS(m)7 }/j;y = ®S(y>

For any non-negative function f on R?, let

A f(x) ;== sup \B:Er ’/ dy, zeRY B(z,r):={yeR: |y—a| <r}.

re(0,1]

By (A*?) for a = a;, 0; = \/2a;, (2.7), the maximal inequality in [17, Lemma 2.1], and Itd’s
formula, for any £ > 1 we find a constant ¢; > 1 such that

(2.23) X = XIPR < &= (YT - YRR < el X - X3P

2k—1

(2.24) d& < &1+ my)dt + 1€ % v dt + clft ’“ lar — as|f} o dt + dM;,

where M; is a martingale and

Ve = Hb1 - b2||t,oo + ”al - a2\|t,oo||V2UtH(Xi’f),
mi= A Vor|f e + V2P (X + A (Vo[ + V2l (X2).

Note that for ¢ € (%, 1),

E{(Sup &) [l - aal e P (200 }
rE(s,t]
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2kq—2k+1
2k—1 ok 2kq—2k+1

, , Thg o TT ke
< (E sup & (/|m1 sl [ V20, [ (X22)d )
re(s,t]
2kq
s ¢ (/nm—@mmw>
rE(s,t]
2kq—2k+1

2(m—1)kq 2kq

9 9 m(2kq—2k+1)
<= ([ vl o) w1

So, by the stochastic Grownwall inequality [18, Lemma 2.8] for ¢ € (2-,1), [17, Lemma
2.1], and the Krylov estimate in [19, Theorem 3.1] which implies the Khasminskii inequality
in [18, Lemma 3.5], we find constants cg, c5 > 0 such that

1

t ok k=1
E sup ¢ §c2|a:—y|2’“+CzE/ (&7 pdr + 67 [l = asff7oc fr

rE(s,t]

2k—1 t
g@m—wmmﬂﬁamsy“/%m+ sup €2) /wm—@m&ﬂ

re(s,t] re(s,t]

1 2k
<o o+ 38 sw & ([l aalpar) s [l
rels s

2kq—2k+1
k 2(m—1)kq

¢ % , , ieireor=y) !
o [ o= aalizear)” (2 [ 19 o) w1
S

Noting that [11, Theorem 2.1(3)] implies

[]E sup 57?] < 00,

rels,t]

we obtain

1 ¢ k
[E sup {3] ‘< 2co|z — y|2k + 203(/ llar — a2||fvoodr>

re(s,t]

t 2k
(2.25) + 263 </ Hbl - b2||r,oodr>
2(m—1)kq q

¢ i(2kg 2k +T)
%ﬁ%</Hm—ﬂm%ﬂ0 (/uv%um1X“>)

Recall that (p, q) is defined in (2.16). By (2.8), [19, Theorem 3.1] and [18, Lemma 3.5] , we
find a constant ¢4 > 0 such that

2kq—2k+1

3R

2(m—1)kq

9 9 m(2kq—2k+1)
(/HVuHley)>
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2(m—1)k 2k
< a2l 75 50 ) TR = 4|92 139 01r) T < 0.

Combining this with (2.25), we find a constant ¢5 > 0 such that

1 ¢ 2%k
(E|Ysltx - Yf,iy|k)2 < [E sup 5?] " <eslw -y + 05(/ 161 — b2||r,ood7’)

re(s,t]

t 2k t k
+ 05(/ |las — ag\moodr) + c5</ l|ay — aQHioodr) )
S S

Noting that (2.23) implies
Wi(P, o)t < VaBlY - Y,

s,t

by Jensen’s inequality we derive (1.6) for some constant C' > 0 and vy = d,,7 = 6.

3 Proof of Theorem 1.3

Once the well-posedness of (1.7) is proved, the proof of [7, (1.5)] implies (1.9) under (B®*?).
We skip the details to save space. So, in the following we only prove the well-posedness and
estimate (1.11).

(a) Let Xy be Zy-measurable with v := Zx, € Z. Let

¢ = {neC(0,T]; ) : po=1}-
For any A > 0, C7 is a complete space under the metric

PA(p, f1) == S[UI;} e MWy (e, i) + Wi (pae, fie) }-
tel0,

For any u € C([0,T]; P%), let
b (x) = be(w, o), of () = ool ), (t,2) € [0,T] x R™.
According to [11, Theorem 2.1], (B*?) implies that the SDE
dX{ = b (XP)dt + o (X7)dW,, ¢ € [0,T], Xy = Xy
is well-posed, and
E[ sup ]Xt“|k] < 0.
s€[0,T7

So, we define a map

6 =6 = {7 = L}y
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According to [9, Theorem 3.1], if ®” has a unique fixed point in €7, then (1.7) is well-posed
for distributions in &Z,.

(b) Let 4 € &, which may be different from ~, and let g € ‘K; . We estimate the py-
distance between 7y and ®7ji. By Theorem 1.1 and (B*?), for any m € (mq, 2), there exist
constants ¢, co > 0 such that

Wy (D7), (D7 1)1) + Wi (97 1)y, (®7f2), )

ﬂ’(tl) :
Cl 2 ~ 02

< W7, A / I M2 _d

\/% k( ) 01< 0 || “ H ’ T)

(=Dl — )\
+61<A< —t—r ) d?“)

t 1 -
Cl¢(<t_7’)2) HG'LL—CL”HTOO h . ~
5 b,u_b“ oo d Ho_ a0 oo d
+Cl/0 Vier ( 7 T Iroo + [Idiv(a” —a*)]s, >7“

Wie(7,7) + c2 /0 <W¢(,U/r; i) + Wi (g, ﬂr))QdT) '
¥

011/1(75%)
Vit

L= 1)) Wi )+ W o) )™\
+CQ</< —t—r > dT)

/w tt—Té 1+\/7_~pr)<w¢(pr,ﬂr)+Wk(:u7”a/1r>>dr

—r

<

Let v = 4. We obtain
PA(®7 1, @7 1) < 5(A)palp, ),
where by (B%*) and m € (my,2), as A — oo we have

=

1

Y((t —7r)2)e ) 1 ! —oX(t—r) :
a(N) _cgtggpﬂ{/ t—r (\/;—i-pr)dr—l—(/oe dr) }
o= nhe )" N
—I—CQ</O< Jr— dr — 0.

So, ®7 is py-contractive on €7 for large A > 0, and hence has a unique fixed point. This
implies the well-posedness of (1.7) for distributions in Z.

(c) For s € [0,T), let P}y = Zx7,, where X, solves (1.7) for t € [s,T] and Ly, = 7.
By (1.9) for s replacing 0, we have

sup (Pr)(] - [*) <00, 7€ P
tels,T)
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Since ¢ has growth slower than linear, and (2.1) implies the boundedness of el for r € [0, T7,
this implies that for any v,5 € & and s € [0,7T),

(3.1) sup (Wy, + Wy) (P, Ps,7) < oo, te[s, T,
rE[s,t]
(3.2) [yt := sup - (Wy + W) (P] 0y, Pr7) < oo, telsT].

Let

ar(t, ) :== a;(w, P;y), bi(t,x) == b
as(t, ) := a(w, P;7), bi(t,x) = b

~—~

z, Ps*,tfy)u
z, PlA), (t,z) € [s, T] x R”.

~—~

Then P}y = P,;, P;7 = P2, and (1.1) implies

s,t s,t

(33) Pio= [ Piiaa, Pia= [ PEA)
R R
Thus, by Theorem 1.1 and (B*%), for any m € (myq, 2), we find a constant kg > 0 such that

* * ~ o k w t—s %
Wlﬂ(Ps,tr%P,t/Y) = Wlﬁ(Plﬁ PSQ,;S’Y) S %

Bl st

Wl (77 ’?)

Lot —r)7) .
(3.4) + ko/s D) (1 + oV — 8) (Wy + W) (P, Pr,7)dr

t ¢((t — T>%) (qu T Wk) (PS*J"’)/’ Ps*ﬂ’,?) " %
+ ko </s ( Ji—r > d?") ’

Wi (P, Poyy) = Wk(PM Pfj) < koW (7, 75)

B st

) )

(3.5) ¢ ) t ) ) 1
+ ko / pr(Wy + W) (P, Py, A)dr + ko ( / (Wy + W)™ (P, Pr ﬂ)dr) :
By combining these with the definition of I'y; in (3.2), we find a constant k; > 0 such that

Ut < EiWi(v,9) + kilsih(t —s), 0<s<t<T,

- Vi [ orhe(s = )b
e - (s,@)E(O,t]E[O,T—t] w(s%) /0 r(s—r) (

(3.6) Vi [ w<<s—r>%>w<r%>>’" )
Ry (/< vivs—r ) ¢

+ (/Ot (wﬁ))er>é7 t e (0,7].
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+ p9+r> dr

"

3=




Note that

¥(s2) Jo o
VE ([t v, [Tt VUi
(3.7) S@Zi(ﬁ)( ; 2 " d +/§ s _r s/2 >
2+\/—/ P(rz2) _2(2+\/§)/ Sm@m«.

(39) = \/_ ( Qi}/(s—2> wf/j po+rdr + w\;%) \/;7\(/{2)09+rdr)

<2f/ — )§)>p9+rdr<4\/_< G ) (/OTpfdr);.

Combining these with (1.10), we conclude that h(t) defined in (3.6) satisfies h(t) — 0 as
t — 0. Letting ro > 0 such that kih(t) < 1 for ¢ € [0,7,], we deduce form (3.2) and (3.6)
that

Vit—s
Y((t - s)7)
holds for all s € [0,7") and t € (s, (s + r9) A T]. Consequently,
2k ((t —

N=T
€0,7),t € (s,(s+ 1) ANT|, 7,7 € .

(Wﬂ) + Wk)(Ps*,t’% Ps*,t;)’/) S Fs,t S 2k1Wk(’?7 7)

(W + W) (P, Pr) < D), .5,

Combining this with the flow property
P =PI, P;

S,

0<s<r<t<T,
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we find a constant ks > 0 such that

310) W+ WP P) < P w03, te (1) € 2

By the conditions on ¢ in (B*%)(3) and (1.10), we have
o I 1o ([ (452
(L () o) e

Therefore, substituting (3.10) into (3.4) and (3.5), we derive (1.11) for some constant
c>0.

4 Proof of Theorem 1.5

(a) We use the notations in step (c) in the proof of Theorem 1.3. By Pinsker’s inequality,
13, (1.3)] and (B*?) with [|p||s < 0o, we find constants e € (0, 3],¢; > 0 such that

| P — P2 < o/ 2Ent(PLP2Y)

cilr —y| 1 2

t
Vi—s \/t_s( / <Ww+Wk>2(P;n,Pm)dr>

+olog(l+(t—s)"1)  sup  (Wy +Wy)2(Pr, P;"’T’y)dr), telsT].
r€[ste(t—s),t]

Combining this with (3.3) and Lemma 2.1, we obtain

)

D=

o ey =)
WQ/)(Ps,t/% Ps,t’)/) \/—S
(4.1) p((t — s)

<IN o mpir g p )
—|—c1'¢((t % \/log 1—|—(t—$) ) sup Ww—i_wk)(Pfr’Y?P:f&)

r€[st+e(t—s),t] °

s ;
= W(B PL) S (= 8)2) |1 Pay — P lluar

D=

for t € [s,T]. On the other hand, since b is bounded, |6\ || £70(r) < oo holds for any
Do, qo > 2, so that (1.6) holds for m = 2. Then there exists a constant ca > 0 such that

Wi(P.)", Po) < Wi(Py), P

s,t

(4.2)

2

t
S CZWk(’% 5/) + C2 (/ (W’L/) + Wk)z(Ps*,r’% Ps*,r’?)dr) .

20



Combining this with (4.1), we find a constant c3 > 0 such that instead of (3.6) we have

Ly < esWi(y, 7) + CQh(t — )y, 0<s<t<T,
(4.3) ¢ : ) -
ds + sup ¥(r2)y/log(l+r=1), t>0.

re(0,t]

Since fol @dr < 0o, we have h(t) — 0 as t — 0 if lim,_,o 1 (r)?log(1 + 1) = 0, so that
(1.11) follows as explained in step (c) in the proof of Theorem 1.3.
(b) Next, by (3.3), [13, (1.3)] and (B**) with ||p||s < 0o, we find constants e € (0, 3], ¢; >
0 such that for any v,5 € %,
22

W 7 * *
Buc(Falpin) < T2OIE 4 & [ v, P

+erlog(1+t71) sup (Wy, +Wy)* (P, Pr3), te(0,T].

relet,t]

Combining this with (1.11), we find a constant ¢ > 0 such that (1.12) holds.
(c) If either ||b||c < 0o or (1.13) holds, then we may apply [13, (1.4)] to delete the term

log(1 + (t — s)™') from the above calculations, so that h(t) in (4.3) becomes (fot @ds) 2
which goes to 0 as t — 0. Therefore, (1.11) and (1.14) hold for some constant ¢ > 0 as
shown above.
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