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Abstract

The couplings by change of measure are applied to establish log-Harnack inequal-
ity (equivalently the entropy-cost estimate) for conditional McKean-Vlasov SDEs and
derive the quantitative conditional propagation of chaos in relative entropy for mean
field interacting particle system with common noise. For the log-Harnack inequali-
ty, two different types of couplings will be constructed for non-degenerate conditional
McKean-Vlasov SDEs with multiplicative noise. As to the quantitative conditional
propagation of chaos in relative entropy, the initial distribution of interacting particle
system is allowed to be singular with that of limit equation. The above results are also
extended to conditional distribution dependent stochastic Hamiltonian system.
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1 Introduction

Distribution dependent stochastic differential equations(SDEs) can be viewed as the limit
equation of a single particle in the mean field interacting particle system as the number of
particles goes to infinity, see [29]. It is applied extensively in mean field games [22]. It is also
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called a McKean-Vlasov SDE in the literature due to the work in [23]. Different from the
classical Ito stochastic differential equation, the distribution of McKean-Vlasov SDEs solves
a nonlinear Fokker-Planck-Kolmogorov equation. When there exists a common noise in the
mean field interacting particle system, which is independent of the private noise of all par-
ticles, the limit equation of a single particle turns into a conditional distribution dependent
SDE, which is called conditional McKean-Vlasov SDE, see [5]. Moreover, the conditional
distribution of the solution with respect to the common noise is a probability measure-valued
stochastic process, which solves a stochastic nonlinear Fokker-Planck-Kolmogorov equation,
see for instance [5, 21]. Compared with the McKean-Vlasov SDEs, there are fewer results
on conditional McKean-Vlasov ones. One can refer to [1, 3, 4, 5, 7, 13, 19, 21, 26, 27, 33| for
well-posedness, [7, 17, 19] for the study of stochastic nonlinear Fokker-Planck-Kolmogorov
equations and [1, 3, 6, 10, 17, 26, 27, 28, 30] for conditional propagation of chaos.

Let Z(R?) be the space of all probability measures on R? equipped with the weak
topology. For k > 1, let

P(RY) = {p € PR : |l = p(] - )% < 00},

which is a Polish space under the L*-Wasserstein distance
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We(p,v) = inf </ \x—y\kﬂ(dx,dy)) , v € PZL(RY),
TEE (1,v) RdxRd

where €'(u, v) is the set of all couplings of u and v. The relative entropy of two probability

measures is defined as

v(log(L)), v < p
Ent = du’?” ’
e (v|1) { 0, otherwise.

Fix T > 0. As in [5, Section 2.1.3], let (', %" (F})>0,P"),i = 0,1 be two complete
filtration probability spaces and (€2, .#, (% )+>0, P) be the completion of the product structure
generated by them, i.e. Q = Q% x Q' .Z and (%;);>0 are the completions of Z° ® ! and
(F) @ FZ1)i>0 with respect to the product measure P = P? x P!, Denote E the expectation
associated to P. W, is a dy-dimensional Brownian motion on (Q', Z!, (#}!);>0, P') while
B, is a dp-dimensional Brownian motion on (Q°,.%°, (Z);50,PY). Let {#F }icor) be the
completion of o{By, s € [0,¢]} @ {0,Q'},t € [0, T] with respect to P. Consider conditional
McKean-Vlasov SDEs:

(11) dXt = bt(Xt7 gXt‘gtB)dt + Ut(Xta Q%X“th)dm + 5‘t(Xt, gxt‘th)dBt,

where Z, z» stands for the regular conditional distribution of X; with respect to FpB
under P, b : [0,7] x R? x Z(RY) — R o : [0,7] x R x Z2(R?) — R? @ RW and
5 :[0,T] xR x Z(R?) — RI®RI are measurable and bounded on bounded set. The noise
By is usually called the common noise while W, is the private noise. Throughout the paper,
we assume that the initial value X is (', %7 )-measurable. Note that when (1.1) is well-
posed, see Definition 1.1 below, [5, Proposition 2.9 and Lemma 2.5] tells that {th‘ 7B beepom
is a version of {£'(X})}epor in [5, (2.6)]. For more other assumptions on the initial value
Xy, one can refer to [5, Remark 2.10].



Definition 1.1. For any ¢ € L?(Q! — RY, . Z},P), we call a continuous and (.%;);>¢-adapted
process (X;)i>o with Esup,co 7 [X;> < 00, T > 0 a solution to (1.1) with initial value &, if
Zx,|#p 1s a continuous, ZPB-adapted and Py(R?)-valued process and it holds

T
E/ {16e(Xs, Ly, 75| + lloe(Xe, Ly z5) s + 15:(Xe, Ly, 178 | st < 00, T >0
0
and P-a.s.
Xs = 5 +/ bt(Xtngﬂg‘tB)dt +/ O't(Xt,gXtLgtB)th +/ 6-t(Xt7$Xt|,9‘tB>dBt7 S 2 0
0 0 0

We call (1.1) is well-posed, if for any ¢ € L*(Q' — R .Z4 P'), it has a unique solution
starting from & which will be denoted by Xf in the sequel.

When (1.1) has a solution, It6’s formula implies that the conditional time-marginal dis-
tribution p; = Zx,, #p solves measured-valued stochastic evolution equation, i.e. for any

f € Cg°(R?), the smooth functions with compact support on R?,
d(:ut(f)> = :ut(Lt’,lltf)dt + //“t<<&t('7 :Mt>7 vf>)dBt/

where Ly, f(x) := itr[(ovo] + 6,67 ) (@, p) V2 f ()] + (be(2, ), Vf(2)) and p(f) = [pu fdpu,
the study of which can be dated to [8], see also [5, 21]. Since then, it has been intensively
investigated. [3] derived the well-posedness of mean reflected forward and backward SDEs
and obtained the propagation of chaos in Wasserstein distance for the associated interacting
particle system. Moreover, in the forward case, the conditional mean reflected SDEs and
conditional propagation of chaos in Wasserstein distance are also studied; [4] studied a
systemic risk control problem by the central bank, which stabilizes the interbank system
with borrowing and lending activities and the mean field optimal control is shown to satisfy
a stochastic Fokker-Planck-Kolmogorov equation driven by the common noise; In [19], the
uniqueness for the stochastic nonlinear Fokker-Planck-Kolmogorov equation is proved in the
class of solutions with squarely integrable density with respect to the Lebesgue measure; In
[7], the uniqueness is shown by means of a duality argument to a backward stochastic PDE
and [9] verifies the uniqueness of solutions by a dual method, coupling arguments as well
as the Krylov-Rozovskii variational approach to SPDE. In [21], the superposition principle
and mimicking theorem for conditional McKean-Vlasov SDE are derived, which establish the
correspondence between conditional McKean-Vlasov SDE and stochastic nonlinear Fokker-
Planck-Kolmogorov equation under reasonable condition and also show that the conditional
time-marginals of an Ito process can be constructed by those of the solution to a conditional
McKean-Vlasov SDE with Markovian coefficients. This provides a probability method to
investigate stochastic nonlinear Fokker-Planck-Kolmogorov equation.

In recent years, the study of (1.1) attracts much attention. [13] proved that (1.1) is well-
posed if (1.1) with b = 0 is well-posed, ¢ and & are distribution free and ¢~!b is bounded
and Lipchitz continuous under total variation distance. In [17], the quantitative conditional
propagation of chaos in weak convergence is provided, where o and ¢ are distribution free
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and all the coefficients are regular enough in spatial-measure arguments. [6] proved con-
ditional propagation of chaos in Wasserstein distance when o = 0, by(x, u) = pu(f(z — )
for some Lipschitz function f. [10] investigated conditional propagation of chaos for one
dimensional SDEs driven by Poisson random measure and common Brownian motion noise,
where & = \/u(f) for some positive Lipschitz function f. For moderately interacting parti-
cle systems with environmental noise and singular interaction kernel such as the Biot-Savart
and repulsive Poisson kernels, [12] proved that the mollified empirical measures converge in
strong norms to the unique (local) solutions of nonlinear Fokker-Planck-Kolmogorov equa-
tions. [33] studied the well-posedness in the case ¢ = 0 by constructing image dependent
SDE. In [30], the quantitative conditional propagation of chaos in the sense of Wasserstein
distance is studied for stochastic spatial epidemic model, where the evolution of infection
states are driven by the Poisson point processes and the displacement of individuals contains
a common noise. Quite recently, adopting the technology of disintegration and the entropy
method developed by [15], [28] established quantitative conditional propagation of chaos in
relative entropy for the stochastic 2-dimensional Navier-Stokes equation in torus. One can al-
so refer to 26, 27] for the (conditional)propagation of chaos for (conditional)McKean-Vlasov
SDEs with regime-switching.

The propagation of chaos is a hot topic in the McKean-Vlasov frame(6 = 0). The
quantitative propagation of chaos in strong sense is studied in [29] by using synchronous
coupling argument, where the coefficients are assumed to be Lipschitz continuous and the
initial value of interacting particle system coincides with that of the limit equation. [2, 15, 16]
apply the entropy method to derive the quantitative propagation of chaos in relative entropy
with additive noise and singular interaction, for which the initial distribution of interacting
particle system is assumed to be absolutely continuous with that of limit equation. In [20],
the authors give the sharp rate of propagation of chaos for some models such as bounded
or uniformly continuous interaction by BBGKY hierarchy. We should also mention that
in [24], the (uniform in time)quantitative propagation of chaos for genetic-type interacting
particle system approximating model in the sense of relative entropy as well as L, (« € [1, 00])
estimate and thus in the sense of total variation distance are obtained.

As far as we know, the regularity estimate of conditional McKean-Vlasov SDEs with
respect to the initial value such as the entropy-cost estimate is still open. In this paper, we try
to construct the coupling by change of measure for conditional McKean-Vlasov SDEs (1.1).
We will present two different couplings in the case with non-degenerate and multiplicative
noise to derive the log-Harnack inequality, which is equivalent to entropy-cost estimate.
In the distribution independent case, the log-Harnack inequality associated to a Markov
semigroup P, is formulated as

Plog f(z) <log P.f(y) + c(t)|z — y|*, f€ B (R, te(0,T],z,y R

for some nonnegative function ¢ with lim;_,q c(t) = oo, which implies the gradient-L? esti-
mate:

|VPtf|2 S C(t)Pt|f|27 te (O’T]



In the case of non-degenerate diffusion, it is also equivalent to the gradient-gradient estimate:
VPSP < CRIVE, tel[0,T]

for some constant C' > 0. One can refer to [32, Chapter 1] for more details.

Different from the McKean-Vlasov frame, the conditional distribution with respect to
the common noise is a functional of common noise so that we have to overcome essential
difficulties produced by this crucial difference. For instance, in the procedure of constructing
coupling processes, we usually view the conditional distribution with respect to the common
noise as a known functional of common noise so that the common noise need also be fixed.
Hence, we can only construct a new private noise in coupling process. Moreover, since the
private noise and the common noise are independent, when we calculate the expectation
for a functional of (W, B), we can firstly take conditional expectation with respect to the
common noise in which the common noise can be viewed as a constant and then use the
tower property of conditional expectation to realize this goal.

We will also investigate the quantitative conditional propagation of chaos in the sense
of Wasserstein distance, which together with coupling by change of measure implies the
quantitative conditional propagation of chaos in relative entropy. Different from [2, 15, 16,
the initial distribution of interacting particle system is allowed to be singular with that of the
limit equation. The main tool is an entropy inequality in [25, Lemma 2.1] as well as Wang’s
Harnack inequality with power, see for instance [31] and the monograph [32]. Furthermore,
the associated assertions are derived by the method of coupling by change of measure for the
conditional distribution dependent stochastic Hamiltonian system and mean field interacting
stochastic Hamiltonian system with common noise.

When the conditional distribution is involved, an inequality is often used:

EWs(Lew, Low)® < E{E(|E —nl*|9)} =El§ —nf

for any random variables &, n with finite second monents and any sub-c-algebra 4 C .%.
Using Banach’s fixed point theorem and repeating the proof of [5, Proposition 2.11], it is
standard to obtain Lemma 1.1 below under the following monotonicity condition (H), see
for instance [18, Theorem 2.1]. One can also refer to [33] for image-dependent SDE, a
special type of conditional McKean-Vlasov SDE aforementioned. When (1.1) is well-posed
and for any v € Z(R?) and any £,€ € L2(Q' — R4 .Z}, P with % = Z; = 1, it holds

fxtg = "%Xf’ then we denote Py = gxf and

RIO) = [ F@E(). | e B®,

(H) For any t € [0,T], b, 01,0, are continuous in R? x Z2(RY). There exists a constant
K > 0 such that

los(z, ) = ooy, V)lirs + 15e(x, 1) — Ge(y, v)|[as + 2be(@, 1) — bily, v), 2 — y)
< K(lz —y|? + Wa(u, v)?), t€[0,T], 2,y € R, v € Py(RY).



Lemma 1.1. Assume (H). Then (1.1) is well-posed and Lys\gp = .L”Xg‘)@B
values €,€ € L*(Q' — RE.ZL P with £ = L. Moreover, there exists a constant Cp =
KT such that for all s € [0,T], and £,€ € L*(Q' — R, %}, PY),

EWQ(XX&?SB,X )2+W2($X§,$X§)2 < CTWQQZ%,D%E)Z.

X578

for any initial

When there are different probability measures on (£2,.%), we use .,ZEP and .ﬁfgﬁ; to denote
the distribution and regular conditional distribution of a random variable £ with respect to
sub-c-algebra ¢ C .% respectively under probability measure P.

The remaining of the paper is organized as follows: In section 2, we establish the log-
Harnack inequality and thus the entropy-cost estimate for conditional McKean-Vlasov SDEs
with non-degenerate and multiplicative noise and two different cases are considered. More-
over, we investigate the quantitative conditional propagation of chaos in Wasserstein distance
and relative entropy. The corresponding results are derived in Section 3 for conditional dis-
tribution dependent stochastic Hamiltonian system and mean field interacting stochastic
Hamiltonian system with common noise.

2 Non-degenerate case

2.1 Log-Harnack inequality

To apply the coupling by change of measure to establish the log-Harnack inequality for
conditional McKean-Vlasov SDEs, we assume o is distribution free and consider

(21) dXt — bt<Xt7 gXﬂﬁtB)dt + Ut(Xt)th + &t(Xt, gXﬂftB)dBt

In the following, we will investigate two different cases and construct corresponding couplings
by change of measure to derive the log-Harnack inequality for (2.1).

2.1.1 State-dependent case: &,(z, u) = 74(x)

(A) For any t € [0,T],z € R?, (007 )(x) is invertible and b; is continuous in R? x F5(R?).
There exist A € (0,1] and K, K > 0 such that

A > (aof) (@) 2 A, low(@) = ou(y) s < Kl —yl?,
<bt<x7ﬂ“) - bt(y7 V),.I’ - y> S K(|ZE - y|W2(:u7 V) + |$ - y|2)7
|150(2) = Gyl < Kle —yl?, t€[0,T], z,y €RY, p,v € Pa(R?).

Theorem 2.1. Assume (A). Then there ezists a constant ¢ > 0 such that

(3K + K)

Pilog f(vy) <log P, f(po) +c {m

0 < f € BRY, po, v € Po(RY),t € (0,T).

+ t} Wy (10, 0),



Proof. We will follow essentially the line of [31, Theorem 1.1(1)] to complete the proof of
Theorem 2.1. Let X/°, Xi° be (Q', %) )-measurable such that

(22) ngO = Mo, "g’ﬂXgO = 1, E‘Xél«o — X(I)/O|2 = WQ(IM(),V())Q.

Let X/ and X;° solve (2.1) with initial values X}° and X° respectively. Denote
(2.3) vy = Lywzey He=Lypozn, tE€[0,T].

Then it holds

(24) dXLHO = bt(X#O, /,Lt)dt + O't(Xin)th -+ &t(X#O)dBt, t e [0, T]

Let to € (0, 7] and & = 3K1+f<(1 — eBE+E)(—10)) ¢ € [0, #,], which satisfies

(2.5) —&+(BK 4+ K)¢ =1.

Consider the following SDE:
dY; = b(Yy, v)dt + oy (Yy)dW, + 6,(Y;)d B,

(2.6) o Xk _y, ,
+01(Yi)[o} (007) 1](Xt“°)t§+tdta t €0,t0), Yo = Xg°.
¢
Let 7, = to Ainf{t € [0,%9), | X}°| V [Y:| > n}. Then P-a.s. 7, Tty as n 1 oco. Let
Y — X{°

e = [o7 (o07) (X)) R

t
(2.7) W, =W, — / veds, Ry := oo i dW) =4 Ji |%|2d7“7
0

Qt = Rt]P), t e [07t0)

Fix s € [0,%9). According to Girsanov’s theorem, under the weighted probability Qgnr,, ,
(Wi, By) is a (dw + dp)-dimensional Brownian motion up to time s A 7,.
Then (2.4) and (2.6) can be rewritten as

Y, — X/

AX" = B(XE°, )t + 0 (XEO)AIW, + 6 X[ By + =
t

dt, t€[0,s AT,
and
d}/t = bt(}/:‘,a Vt)dt + Ut(n)th + 6’t(}/t)dBt, t e [O, SN\ Tn], % = XOVO

It follows from It0’s formula that

P! — X{°)?
&
_ &l —2Xtuo|2dt n 2(be (Y, 1) — be (X3, ), Ve — Xt“0>dt ol §#0|2dt
(2 8) gt gt gt
n 2([o4(Yy) — oo (X)) AW, + [6:(Y2) — 62(X7°)]d By, Y — XT°)
&
N loe(Ye) — oe(X7)[rs + [loe(Ye) — &t(X#O)”%{Sdt’ te (0,5 AT,

&



In view of (A) and the inequality ab < 1a” 4 £b* a,b € R, we conclude that

2<bt(Y2> Vt) - bt<X#Oa Mt), Y, — X#O>

&
2K1Y, = Xi\Wo(p, ) | 2KY; — XP°P
< +
& &
1Y, — X}°|? 2K&|Y, — X[
< _% +2K2W2(Nt7Vt)2+ £t| t2 t ’ , te [0’8/\7_”]’
2 & i
and
o) = oKy 19:04) = 51 CXE s <K+f(>a§g@ SXEE s,
t t

This together with (2.8) gives

Yoo X6+ BE 4 K)G - )Y - X
(2.9) & &
+ 2K Wy (py, 1) 2dt + dM,, t € (0,5 AT,

where .
aug, = Hlo¥) = oy (X{)JdW: + [6:(Y) — 64(X(°)]d By, Y, — X{7)
t_ .
&

Since W is independent of B, we have
E(Ropr, | 7,7) = 1,

which together with (2.3), the definition of s, 14 and Lemma 1.1 implies

SATh,

EQS/\Tn WQ(/’LtJ Vt)2dt
0

< E{B(Rn72) [ Wttt}
0
= IE/ Wo(pg, v)2dt < CsWa(po, o).
0
Combining this with (2.5) and (2.9), we derive
SN\Tn, Y, — XMO 2 Y, — XMO 2 SN\Tn,
EQS/\‘rn / %dt S 2E@sArnM + EQS/\Tn / 4K2W2(lut7 Vt)2dt
0 & €o 0
W 2
S QM + 4K203W2(,u0, l/0>2.
0
Hence, by (2.7) and (A), we find a constant ¢; > 0 such that

1 SN\Tp,
E[RSATn ]'Og RS/\Tn] = ]EQS/\Tn [log RS/\TTL] = EEQS/\TW, / |’Yt|2dt
0
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Wz(,uo, V0)2
o

Consequently, { Rsar, }rn>1 is a uniformly integrable martingale under P, which together with
the martingale convergence theorem and Fatou’s lemma implies that

Wl 1o, v0)?
% +01$W2([L0,I/0)2, S € [O,to)
0

This means that { R}, is a uniformly integrable martingale under P and Girsanov’s the-
orem yields that under the weighted probability Qy,, (Wi, By)iejo.ro] i & (dw+dp)-dimensional
Brownian motion. Moreover, Q-a.s. Y;, = X[ by (2.10) for s = t; due to Fatou’s lemma.
On the other hand, consider the conditional McKean-Vlasov SDE

< + c18Wy (110, o).

1 S
@10)  3Bo [ hfdt=ElR.logR) < o
0

(2.11) dY; = by(V;, L2 At + 0y (Y)W, + 64(Y,)dB,, ¢ € [0,4], Yo = X2.

V|7

According to [5, Proposition 2.11}, we derive v, = Z}%Oﬁ and (ZE:O = tho so that (2.11)

can be rewritten as
(2.12) dY, = b(Yy, v)dt + 0, (Y,)dW, 4 64(Y;)dB,,  t € [0,t], Yo = X2,

The strong uniqueness of (2.12) implies Y; = Y;,t € [0,%o]. In fact, (2.12) is an SDE with
random coefficients, the well-posedness of which can be proved by standard argument under

the assumption (A). Therefore, .,?S f}f = fgtuo'gtjg =1, and .,2”5% 0= XEZD' Combining this

with Young’s inequality and (2.10) for s = ¢y due to Fatou’s lemma, we derive
Pto log f(VO) = E@to [log f(Y;o)} = E[Rto log f(Xg)O)]
<log E[f(X})")] + E[, log Ry,]
Wa (o, v0)?
€o

Therefore, we complete the proof by the definition of &. n

<log P, f(uo) + c1 + c1toWo (1o, V0)2, 0< fe ,%’b(]Rd).

2.1.2 Measure-dependent case: 7;(x, ) = a,(p)

In the second case, we assume that ¢ only depends on the time-distribution arguments, i.e.
consider

(213) dXt - bt(Xt;gXt‘ﬂ‘tB)dt + Ut(Xt)th + &t(gXt\ﬂtB)dBﬁ t € [O,T]

To establish the log-Harnack inequality, we make the following Lipschitz assumption on b
instead of the monotonicity condition on b in (A).



(B) Foranyt € [0,T],z € R?, (0,07)(z) is invertible and there exist A € (0,1] and K, K > 0
such that

AT > (g0f) (@) 2 A, low(@) = ou(y) | Frs < Kl —yl?,
bz, 1) = be(y, V)| < K(|lz — y[ + Wa(p,v)),
||5t(:u) - 615(”)”?15 S KWQ(/“Lv V)27 te [O,T], T,y € Rd? w, v e <922(]Rd)

In (A), ¢ is only allowed to depend on the time and spatial variables while & only depends
on time and measure variables in (B) and the condition for b in (B) can derive that for b in
(A). Since assumption (B) implies (H), Lemma 1.1 holds for SDE (2.13) replacing (1.1). In
the case that &,(z, u) = 6¢(u), the coupling used in Section 2.1 is unavailable so that we need
to construct a new coupling by change of measure which involves in conditional probability
with respect to Z7.

Theorem 2.2. Assume (B). Then there exists a constant ¢ > 0 such that for any 0 < f €
PBy(RY), po, o € Po(RY),t € (0,T] and &, & € L*(" — R, .F5, PY) with L = po, Lz = w,

4K b 4Ks
]WMW%wﬁ$¢w”S%T:§E+Ait;ﬁﬂ%““WWﬂ

and consequently,

4K b 4Ky
(214) Pt log f(Vo) < 10g Ptf(/,l/(]) +c {m + /0 mdr} WQ(,LLQ, V(])Q.

Proof. For fixed pg,vo € P2(RY), let X5°, X}° be chosen in (2.2). Let X} and X} solve
(2.13) with initial value X} and X° respectively and p; and 14 be defined in (2.3). Define

t
(2.15) nﬁz/éwwﬂktemfk
0

By (B), BDG’s inequality and Lemma 1.1, we find a constant C; > 0 such that

T
(2.16) E[mﬂﬂ—ﬂﬂﬁK%/%%%wm@saK%Wmmw%
0

te[0,7]
and
(2.17) Elnty — nfy — (f, — i) [* < CLE*Wa(po, v0)?[t — tal, t1, 12 € [0, 7.
Moreover, we derive from (2.3) that
AXH0 = b, (XP0, )t + oo XI)AW, + 64()d B, t € [0, 7).
Then X/ := X/ —pl'. ¢ € [0,T] solves

(2.18) AX[ = b (X[ + ', pe)dt + oo(X[° +f)dWs, t € [0, T7.
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Let to € (0,7] and & = (1 — e**(*=%)) and it holds
(2.19) —& +4KE = 1.
Now, we construct the coupling process:
AY = b(Y) + iy, v)dt + oy (VY + ) )dW,
(XF° +mpy) — (Y + 1)

(2.20) + (VY +0))of (o007) (X + ) 3 dt,
tel0,ty), YV =X,

Define

(2.21) PP .=P( - |#F), EP =E(-|FF).

Set 7, = to A inf{t € [0,t0), | X/ + me v Yy + ny| > n}. Then we have PP-as. 7, 1t as
n T oo. Let

(V) + ) — (X2 + mpy)
& ’
t
(222) Wt = Wt — / /Bsds, Rt = ef() <6T’dWT>7%f0 "BTleT7
0

By = [o7 (0007) (XL +f)

QF .= RPB, t<€0,t).

Fix s €~[07t0). Girsanov’s theorem yields that under the weighted conditional probability
QB | W, is a dy-dimensional Brownian motion on [0, s A 7,,]. Hence, (2.18) and (2.20) can

SATR?

be reformulated as
d[X#O + b — 1)) = bt(X#O + 01, pe)dt + Ut(X#O + nf)th

(YY +n1) — (XF° + )

+ dt, te€0,s AT,

&t
and
(2.23) AYY = b,(YY + 07, v)dt + o, (YY +0))dW,,  te[0,s AT, Y = X[,
By 1to’s formula, we obtain
R AR
&t
_ SO ) — (X )P
- 2
&
(2.24) n 2(b: (YY" +ny ve) — be( X7 + 77? pe), (Y + i) — (X{° + 775))>dt
t

11



N 2([oy (Y +nY) — oo (X[ + u)]dW,, (Y +nt) — (X[° +1il))

&t
(% ) —Q(Xé“) ),
&
}A/V v\ _ XHO MY (12
+ ”Ut( ¢ +77t) gt( ¢ +nt>HHSdt, e [O,S/\Tn].
t

(B) implies that

2(by (Y + Yy v) — be(XE + s o), (VY +1) — (XE° + )

&t
_2K| ) — (XE + )P
- &t
N 2K W (v, ) + |y —m, — (o — i)Y + ) — (XF° +nlt )|
&
2K& + 311V + ) — (XE° + )P

<

< o + 2K Wy (v, i) + |y — iy, — (i — mi)|1?,
t

and

oo (Y +ny) — 0o XE° + 1) Iz
&
o ZEE\Y ) — (X + )P 20y — g — (= )
N & &
This together with (2.24) yields that

(V2 + ) — (XE0 +nft )2

&t
_ ARG = IO ) — (XE +f)I?
- &
+ 2K (Wa (v, ) + |y — nt, — (0 — gy ) |)7dt
N 2K} —nt, — (' — i)

&t

N 2[00 (Y + ) — on( X[+ n#)gth, (V¥ +m0) — (X + i)
t

Combining this with (2.19), we deduce

d

dt

dt

, t€[0,s8A T,

By, [ IO )~ (G )R
g

SATn

12



QEB|(YY 4 n¥ ) — (XK 4 pl')|? ’
< B ”’*0)5 X" )l g2 / Wa (v, o)t
0 0

SAK|ny —ny — (nf —nl)|?

b [ 8K =~ = P+ [ dt.
0 0 &
As a result, it follows from (2.22) and (B) that
1 SA\Tp,
B9 [Run, lo& Runs,] = Eqp, 108 Rurc,] = 5Eqs / 1B, |2dt
n SATn 0

BRI+ ) — (XE )P
&

PR [ a2 [T
0 0

<A

-+ 4)\71K2 / Wg(Vt, /,Lt>2dt
0

— (i —niy)|?
&t

This means that { Rgar, }n>1 i8S @ uniform integrable martingale under P? so that we derive
from the martingale convergence theorem and Fatou’s lemma that

dt.

1 S
5o /0 |B:|2dt = EP[R,log R,
BP0 ) — (X + )|
€o
SN [ = Gt = )P
0

+2A1K/S Iy —ny, — (i — k) ?
0 &t

This combined with (2.17) implies that {Rs}scjo,¢ is a uniform integrable martingale under
PP and Qp-a.s. Yt’; + = X{é‘) + 7t in view of the definition of f; and & and (2.25) for
s = to due to Fatou’s lemma. It follows from the weak uniqueness to (2.23) on [0, ¢y] due to
(B) that

(2.25) <A + 4N TR / Wo(vy, pe)*dt
0

dt, ENS [O,to)

(2.26) 7

B
}Afty :ggtuo, t 6 [O,t():l,

where X0 = X — ¥t € [0,T] solves
dXtVO = bt(XtVO + 7’]2/, I/t)dt + O_t(XtVO + n;)th, t e [O,T]

Let Y := Y¥ + Y.t € [0,to]. Since 1, is measurable with respect to .Z.5, it follows from
(2.26) that

B B
(2.27) Lo = g
to

B B
- - D%IAPVO - D%PVO .
1/lf(] +T]é’0 Xto Xto

+ny,

13



Again by (2.25) for s = tg, (2.27), the fact QF-a.s. V! = }A/;g +np = X[+t = X[ and
Young’s inequality, we conclude that
E”[log f(X;7)] = Eqg [log f(Yy;)]
= EP[Ry, log f(X[")] < 1og EP[f(X;7)] + EP[ R, log Ry
EE| (Y5 + miy) — (X§ + k)|
€o
to
S [l = o = o)
0
+2A_1K/t° [ = i — (" — mig)I”
0 &

So, by [32, Theorem 1.4.2(2)], Lemma 1.1, (2.16), (2.17) and (2.22), we find a constant ¢ > 0
such that

< log B [f(X}7)] + A7

to
+ 4)\_1K2 / WQ(Vt, /Lt>2dt
0

dt =: log EP[f(X}[0)] + @4y, 0 < f € B(RY).

1 _ e—4Kt0 1 _ e—4Kt

4K b 4Kt
E{Ent(Lyro) 5Lt 75)} < By < ¢ {— + / —dt} Wa(pto, v0)?.
0

This together with the fact
(2.28) Ent(fxtvo |$th&0) < ]E{Ent (gXtVo 7B |$X50 |7 B )}

implies (2.14), which combined with [32, Theorem 1.4.2(2)] completes the proof. O

2.2 Conditional propagation of chaos

Fix T > 0. Let (', Z" (F})i>0,P"),i = 0,1 and (Q,.Z, (F)i>0,P) be defined in Section 1.
Let N > 1 be an integer, (W})1<;<x be N independent dy--dimensional Brownian motions
on (Y F1 (F)i0,P!), B; be a dg-dimensional Brownian motion on (Q°, Z° (£#?)>0,PY),
and (X})1<i<y be iid. (Q', . Z4)-measurable R%valued random variables. Let b : [0,7] x
R x 2(RY) — R4, 0 :[0,7T] x R4 x Z2(R?) — RT@RW and 7 : [0,7] — R? @ R be
measurable. Consider conditional McKean-Vlasov SDEs

(2.29) dX] = b (X}, Lyi zp)dt + 00(X], Lyi|zp)AW] + 6,dB;, 1<i <N,
and the mean field interacting particle system with common noise
(2.30) AXPN = b(XPN, pMydt + o(XPN, pN)AW] + 6,dB;, 1<i < N,

where for any 1 < i < N, Xg" is an (Q',.%})-measurable R%valued random variable, the
distribution of (X&’N, XS’N, e ,Xév ’N) is exchangeable and /¥ is the empirical distribution
of (X?N)ISZ'SN) 1.e.

| N
"N
Hy = NE :5th’N‘
i=1

14



Theorem 2.3. Assume that there exists a constant K > 0 such that

104(0,00)| + [|0¢(0, 00)[| s + loe]l s < K, T €[0,T7,
(2.31) |be(2, ) = be(y, V)| + lloe(z, ) = ou(y, V)| s
S K(|ZL‘ - y| +W2(:u7 V))v te [O,T],I,y € ]Rduluay € 4@2(Rd)

Then the following assertions hold.

(1) Assume that E|X;™ > < oo and E|X|9 < oo for some q > 2. Then there exists a
constant C > 0 depending only on d, T and E|X}|? such that
sup EW (i1, L1 22)°
te[0,T] L
(2.32) .
< CNW2<-=2ﬂ(Xg,Xg,m,XéV)v-iﬂ(X(}N XN XN’N))2 + CRaq(N),

A0 T

and

P P 2
EW, (£ 7By L
2( (thvXt27"'7Xf)|gtB’ (th,NzxtQ)Nf"7X57N)|'gt3)

k
(2.33) < O WalZixy xz. x4

(Xé’N,Xg’N,---,XéV’N))Z + Ck?Rd’q(N), 1<k<N,

where
N5 ¢+ N7, d<4,q44,
Rig(N) = N-2log(1+ N)+ N5, d=4,q#4,
N3+ N, d>4,q# .

(2) If in addition, oi(x, ) does not depend on p and \=* > oo* > X for some A € (0,1],
then for any k > 1 and k < N and t € (0,71, it holds

P P
EEnt(D%XS’N,Xf’N,"‘ 7){tlc,N)IgztB ‘D%th,XtQ, 7Xf)|=¢t3>

C k
(2.34) < CkRqq(N) + 1 — o (K212K)t NWQ("ZX&XS,“"X@’)’ zXé’N,XS’N,...,XéV»N))Z-

Proof. (1) Let PB,EP be in (2.21). Tt is standard to derive from (2.31) that

s q
0
for some constant ¢; > 0 depending on ¢, 7. Denote ué = ffgi‘ﬂB,i > 1. Since (2.29) is
t t

well-posed under (2.31) due to Lemma 1.1, ui does not depend on ¢ and we write p; = i, 1 <
i < N. Letting iy = % Zjvzl ) xi» We obtain from the triangle inequality that

(2.35) EP[ sup |X}|9) < e | 1+E|[X3|7+ sup
te[0,T] s€[0,T7]

Wafil, o) < Wafil, o) + Wa(iil), ps)

1

2

N
- <N Z |X5’N - Xs‘2> + WQ(M?? Ms)
=1

15
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By BDG’s inequality, (2.31) and (2.36), there exists a constant ¢o > 0 such that
N N } ¢ N
D EP sup [ XDV - XIP <Y EIXGY - X0+ cz/ EZY XN - XiPds
i=1 €[] i=1 0 i=1

t
+ ¢, NEP / Wo (i, ps)?ds.
0

By Gronwall’s inequality, we can find a constant c3 > 0 such that
N N ' t

(237) D EP sup [XIV - XIP <> EIXGY - X+ 03NIEB/ W (i, p1s)2ds.
i—1 s€[0,t] i—1 0

By [11, Theorem 1] for p = 2 and (2.35), there exists a constant Cy > 0 depending only on
q, d such that

EBW2(/1£VaMs>2 < Cy <EB[ sup ‘th‘q]> Rd,q(N)

t€[0,T]

/ 6tdBt
0

So, we derive (2.33) by combining with (2.37) and the fact

(2.38) < Cocf (1 +E|X]|7 + sup
s€[0,7

q) 5 Raq(N), s€0,T].

2
WZ(DZXg7XE""7th)“gtB7O%(XtLNaXtZN’”'aXfﬁN)‘th)
< K,z Z )?
=N X X L XN XPN e XV 7B

Finally, (2.38) together with (2.37) and (2.36) derives

N
X 1 i ;
EBW, (4, ps)? < Ciy Y EIXgY - X

i=1

+ 4 (1 +E|X;|?+ sup
$€[0,T

/ 5-tdBt
0

for some constant C; > 0 depending on d, T, which yields (2.32) by taking expectation with
respect to P.
(2) (Step (i)) We first assume that b is bounded. Define

q) q Raq4(N), s€]0,T7,

(2.39) PP =P(- | FF\ F), BPO:=E(-|F’\ F)
Consider

(2.40)  dAX] = b(X}, pe)dt + 0y (X)AW + 6,dB,, t€[0,T), X=X, 1<i<N.

16



Rewrite (2.40) as

AX? = by( X;, DAt + oy (XAW; +5dB,, te[0,T],1<i<N.

||Mz

where for 1 < < N,
t
Wi =W, — / 7ids,
0

Vi = o7 (oof) (X} <bt X! — Zéxl — by( t,,ut)) , tel[0,T].

Fix to € [0, 7). Let
T = (’7161771327 7’VtN)7 Wt = (Wt17Wt2a"' 7WtN)7
— efo ivl /YT dWZ _7f0 Zivll'Yv‘sz

= Rt]P)B’O, t e [0, to]

Since b is bounded, we can apply Girsanov’s theorem to conclude that {Wt}te[o,to] is an
(N x dw)-dimensional Brownian motion under the weighted conditional probability Qf}’o
So, we have

B,0
Qt() o PB.0

Z

{Xih<isn.Boicog ({XZ'N}1§igN,Bz)te[o,t0]'
This gives

N

to
Bgso | Waloe 7 Z =220 [ i,

which together with (2.31), A < oo* < A7! and Young’s inequality implies that

EP%log F(X N, X2N, -, X0Y)

to
<log EPY[F (X}, X2 X))+ IEB’O(RtologRtO)

LX2 ..
(2.41) <logEP[F(X}, X2, X ZEQFO / BARET

<log EPY[F (X}, X2 X

to? PR

+ clN]EB’O/ Wo (g, i )2dt, 0 < F € By((RHM).
0

for some constant ¢; > 0. On the other hand, let

t t
b (x) = b, (x +/ 5sst,Mt) , ol(z) = o (x +/ 6sst) , t€0,T),z € R
0 0

17



Consider

Ay, = b P (V) + o (V) AWy, Yy = X, 1 <i < N,
and

AY; = WP (V) + o (VWS Vi = XN 1<i< .

By [32, Theorem 3.4.1] and (2.31), for large enough p > 1, we get Wang’s Harnack inequality
with power p for some constant ¢(p) > 0:

(]EB’O[F(YQI,Y?,'” 7}7tN)])P S EB’O[F(Ytl,Yt2,~" 7YtN)p]

N N 712 3
X exp {C(p) i Xy — Xl } . FeBH(RYY),te (0,T).

1 — e—(K2+2K)t

In view of X; = Y/ + [} 6,dB, and X} = Y; + [, 5,dB,, we conclude that
(EPOF(XG, X7, X)) < BPOR(XG XE - X))

c(p) Yoy [ X" = X5
X exp{ = e{(KQHK)t O, FeBH((RYY),te (0,T)

This together with (2.41), [32, Theorem 1.4.2(1)-(2)] and [25, Lemma 2.1] implies that

EP%log F(X, N, X2N, -, X0Y)

to <o

to
(242) < log EBVO[F(thm Xt2ov e 7Xt](\)[)] + CleEB’O / W2(P“t7 ﬂi\[)th
0

N i, N i
c(p) Zi:l | X0 — X0|2
1 — o (K2+2K)to

+ , 0< F e %b((Rd)N)

Taking expectation with respect to E? on both sides and using Jensen’s inequality, we derive

EP log F(X.N, XoN, - XN

to to
to
243 SIogEPIFCXLXE, o X))+ VB [ W i e
0

c(p) S, EIXG™ — XGP°

+ 1— ef(K2+2K)t0

, 0 < F e %B(RHYY).

For any 1 <k < N and 0 < f € %,((RY)*), take

Fy(zy, @, 7xL%Jk) = f(@ibs1, Tingo, o+ Tikyr),



where L%J stands for the integer part of % Since (thc;N,XfO’N, e ,Xt];[ ’N) is exchangeable

and X} X2 -+ X} areiid. under PP and [£]7' < 221 <k < N, we derive from (2.43)
for F' = F that

EP log f(X.N, X2N, - XN

N
2¢(p)k 1 ; ;
(2.44) < log EP[f(Xiy, X5y, X))+ e iy 2 BN — Xaf
=1

to
+ 2¢1pkE? / W, i) )?dt, 0 < f € Bp((RHF).
0

Again using [32, Theorem 1.4.2(2)], we derive (2.34) from (2.32) and (2.44).
(Step (ii)) In general, let 6™ = (—n V b’ A n)i<i<q,n > 1. Noting that (2.31) holds for
b™ in place of b, (2.34) follows from Step (i) and an approximation technique. O

Remark 2.4. (1) Note that in the present case, the coefficients are only assumed to be
Lipschitz continuous in Wy-distance with respect to the measure variable so that [11, Theorem
1] for p = 2 is used to estimate the convergence rate of conditional propagation of chaos,
which depends on the dimension d and seems a little complicated. One can also refer to [5,
Theorem 2.12] for the case ¢ > 4 and Xé’N = X},1 <i < N. However, if we only consider
the special case:

o) = [ bedn(dn), oo = [ e pulay

for some Lipschitz continuous functions b, uniformly in time variable t, the convergence

rate in Theorem 2.3 and Theorem 3.2 below can be improved to be Ryq(N) = + and q = 2.

(2) In Theorem 2.3(2), the coefficients before the private noise can depend on the spatial
variable and the initial distribution of interacting particle system (2.30) is allowed to be sin-
gular with that of the conditional McKean-Viasov SDEs (2.29) since (2.34) only involves in

%Wz(og/ﬂ(xé7xg7,,.7xé\7),cg/ﬂ(Xé7N7X2,N7m7Xé\f,N)>2. See also [2, 15, 16] for the quantitative propaga-

0
tion of chaos in relative entropy by the entropy method in the additive noise case and under
the assumption
B e x| g x40
lim = 0.
N—o0 N

3 Conditional distribution dependent stochastic Hamil-
tonian system

In this part, we consider conditional distribution dependent stochastic Hamiltonian system
with additive noise, which is a type of degenerate model. More precisely, we consider

W _ fay® @
51) {dXt = {AXY + MxP}dt,

dXt(Q) — bt(Xta jxt‘gztB)dt + O'thVt + 6t($Xt‘ﬁtB)dBt7 t 6 [O, T],
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where X, = (X", X?), W,, B, are given in Section 1, b : [0,T] x R™4 x g(Rm+d) —
RY o:[0,7T] = RIQRW, 5 :[0,T] x Z(R™) — R?@RI are measurable and bounded
on bounded sets, A is an m X m matrix and M is an m X d matrix.

3.1 Log-Haranck inequality

To establish the log-Harnack inequality, we make the following assumption.
(C) (ov07)" is bounded in t € [0, 7], and there exist constants K, K > 0 such that

(e (2, 1) = iy, V)| < K(Jz = y| + Walp, v)),
16:(1) = G0(¥) s < KWo(p,v), t€[0,T], z,y € R™, p,v € Pp(R™).

Moreover, the following Kalman’s rank condition holds for some integer 1 <[ < m:

Rank[A'M,0<i<[—1] =

By Lemma 1.1, (C) implies that (3.1) is well-posed. As in [14], for any ¢ > 0, we consider
the modified distance

p(x,y) \/t 2120 — yD|2 4 |2 — y@)]2] x_((l) ())y_(y(l)’y(Q))eRmed’

and define the associated L2-Wasserstein distance

TEE (V)

1
Wo(p,v) == inf (/ pt(x,y)QW(dx,dy)) . v € Py(R™Y,
Rm+dxRm+d

The next theorem characterizes the log-Harnack inequality and the proof is similar to that
of [14, Theorem 3.1] since [; (Zx,##)dB; is deterministic given B. Hence, we will give
an outline of the procedure in the following.

Theorem 3.1. Assume (C). Then there exists a constant ¢ > 0 such that for any 0 <
f € By(R™) o, v € Po(R™)t € (0,T) and &,6 € L2(QY — R™H ZL P with
% = Ko, ';Z% = W,

c(1vT?
(32) E{Ent( XE\?B‘ £|¢B)} S o 3W2t(,U07V0>2 < %WQ(,UOJ/O)%

and consequently,

c(1vT?
(3.3) P;log f(vo) — log P f(p10) < = 3W2t(M07V0) < %Wﬂﬂoﬂm)?
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Proof. For any tg € (0,T] and pg, vy € Po(R™4), let X)°, X° be (Q!, .F4)-measurable such
that

(3.4) Lo = o, Ly =10, Elpr (X5, X5°)?] = Wa, (110, 0)*.

Let X}/ and X;° solve (3.1) with initial value X/ and Xg° respectively and let pu, v, n* be
in (2.3) and (2.15). Then (2.16) and (2.17) still hold. For fixed t, € (0,77, let

t
t— .
Q= / S(t—zs)e—“‘MM*e—sA ds, 1€ (0.t
0

v = X(I]JO _ ‘X’(,L]to7
to
v —r to - T T y )
(35) ‘/;IOL’ - / ¢ AM{t—U(Q) + t_(ng) - 77150) + Ny — nﬁ}d'ﬁ
0 0 0
s v
ay (5) == t—(nﬁ) —np —v?)
0
5(to = 8) 2 v —sar - .
- = MO Y V), s et

Denote Y; = (Yt(l), Yt(2)) the solution to the SDE:

(3.6) vV = {4y, + MY, e,
AV, = {b (X[, ) + l, (6) }dt + 0 dW, + G (n)d By, Yy = X(°.

which combined with (3.5) yields Y3, = X/ Let
Vs = 05 (050%) T H{bs(Ys, vs) — b (X1, ) — oy (s) }, s € [0, L)
By (C) and [14, (3.17)], there exists a constant ¢; > 0 uniformly in ¢, € (0,7 such that

4(1-1 7 4(1-1 v
|’75|2 SCI{WQ(MSaVS)2+tO( )pto(XSLOaXOO)2+tO( ) S[U_p] |77# _nt|2}
te|0,to

+ el (o (X5 X+ sup o o). s €100
t€|0,to

(3.7)

Recall that P20 is defined in (2.39). By Girsanov’s theorem,

t
M/t::m_/’ysd57 te[oatﬂ]
0

is a dy-dimensional Brownian motion under the weighted conditional probability measure
dQP? := RAPPY where
R — olo®(sdWe)=35 [0 |ys|?ds

By (3.6), Y; := Y; — (0,7") solves the SDE
avM = {avY + MY 4 My dae,
AV, = b, (Y; + (0,17), v)dt + o:dWy, t € [0, 1], Yo = Yo.
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Observe that Xt” := X/ — (0,7}) solves the same equation as Y; for W, replacing W;. By the
weak uniqueness and the fact that n} is #F-measurable, we get

B,0 B,0 B,0 B,0
L =2 =75 =75
0

T T i+ 0my,) X04+Omy) T XD

This together with Y;, = X/, Young’s inequality and (3.7) yields that we find some constant
o > 0 such that for any 0 < f € %, (R™+9),

E”[log f(X;7)] = E®[Rlog f(Y;,)] = E7*[Rlog f(X[})]
< log BPY[(X[2)] + E**[Rlog R
1 fo
— log EO[F(X2)) + 3Bqmo [ et
0
< log E”°[£(X7)]

+ 02{t0 sup WQ(MS? Vs)2 + tgiéupto (X507 X(,)/0>2 + 1’374[ sup ’77; - 77#|2}
SE[O,to] tE[O,to]

By taking expectation with respect to PZ, using Jensen’s inequality, we obtain
E”[log f(X;?)] <log BP[f(X})]

ot sup Wa(ug, v,)* + 6 Epu, (X7, X0)? + 657 sup [y — 2}
s€[0,t0] t€[0,to]

Then by Lemma 1.1, (2.16), (2.17), [14, (3.5)], [32, Theorem 1.4.2(2)] and (3.4), we prove
(3.2), which gives (3.3) by (2.28) and [32, Theorem 1.4.2(2)]. O

3.2 Conditional propagation of chaos

Let N be a positive integer and (X}, W})1<i<n, (Xé’Nhgz‘gN and B, be defined in the same
way as in Section 2.2 with m + d replacing d. b : [0,T] x R™" x Z(R™H) — R4, o :
0, 7] > RI@R™, 5:[0,7] - R?®@R? are measurable and bounded on bounded sets, A

is an m X m matrix and M is an m X d matrix. Let X} = (Xti’(l), Xti’(z)) solve the conditional
distribution dependent stochastic Hamiltonian system:

1) _ [ 4O 0.2
38) {dXt = {Ax;Y + Mx; P,

dX;® = 0,(X], Lyi\p2)dt + 0, dW] + G:d By, t € [0,T),
and consider the mean field interacting particle system with common noise:

(39) Xy = LAxy ™ 4 P ar,
' dx; N =g, (xpN, LN Jyix)dt + o dW) + 5,dB,, t € [0,T],

here X}V = (XZ’N’(U, XZ’N’@)). Recall that R;,(N) is defined in Theorem 2.3.
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Theorem 3.2. Assume (C), E|X;"|? < co and E|X}|? < oo for some q > 2. Then there
exists a constant C' > 0 depending only on d,T and E|X}|? such that for any k > 1 and
k < N, it holds

(310) EEnt(%Ii(tl’N,Xf’N . xk N)|<§2"B’ (Xl X2 Xf)‘th)

C k
-1\
Proof. Since (C) implies (2.31), (2.32) holds for (3.8)-(3.9) in place of (2.29)-(2.30). We
first assume that b is bounded. Fix ¢ty € (0,7]. Let @; be defined in (3.5) and for s € [0, t¢],

< Cde,q(N) + WQ(OZXé’ng,,,7XéV),O?YX1N X2N XN N))Q, t e (O,T]

i S i,N,(2 i(2
gy (5) = = (N = X))
s(to — s)

* —sA '5 N,(1) i,(1)
RS

A to =T iN) i(2) .
+/ e—'f Mt—(XO’ ’ _XO’ )dT 9 ]_ SZSN.
0 0
Again set yi; = pij = Ly zp. Construct VA (Yti’N’(l), Yf’N’@)) as

(3.11)

dY’Z(: {AY”VUJFMYlN N, | N N
AV, M = b (XE, ) + (ad ) ()]t + o d Wi + 5d By, YN = XN,

Then we have

Yj:N’(Q) X 1,(2) + (XZN( ) Xé’@)) + (t),
}/j:N’(l) — Xt’(l) + eAt(Xéva(l) _ Xé’(l))

t . .
+ [ ARG - Xy + a (9)ds, 1T N,
0

In particular, it holds

(3.12) VN =X, 1<i<N.
Let
AW} = dw; — ;N dt,
i * 7, 1 .
N = o (o) | b (Y, Zéle — b (X}, 1) — Ozgo(t)] , 1<i<N,

and
t N
thexp{/ Z N AW — /Z|V§’N|2ds}.
0 i1 1
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Similarly to (3.7) and using the boundedness of b, there exists a constant ¢y > 0 such that
to ) to 1 N |X’L o Xi>N’2
i\N |2 Z , 2 0 0
(313) /0 ”}/5 | ds < CO[; (1 VAN WQ(N 2 5Ytz,N,,ut) > dt + COT.

By Girsanov’s theorem, ((W7)iefo.])1<i<n is an (N x dy)-dimensional Brownian motion
under the conditional probability measure Q% = R, PP, Moreover, (3.11) can be rewritten
as

dKﬁi,N,(l) _ {AY?’N’(I) + M}/;i’N’(Q)}dt,
ay; M@ = g, (v, LN Oy )dt + o dWi 4 6,dB,, YiN = X0Vt € [0,t).

N =1

By the weak uniqueness, it holds

K7 = 7

v hcicn (X" h<icn
This together with (3.12) implies
B2 F(X N, XN X0 ) = BPO[Ry f (V™ YN Y]
= EB’O[RtO(Xl X2 te 7X1§](\)[)]7 f € t%b((]Rm+d)N)‘

to? t()?'

B,0

, t€]0,to].

Note that
1 1
EquaWy(~- ; by, i) = EB,OWQ(N ; B o, )"
Combining this with Young’s inequality and (3.13), we can find a constant ¢ > 0 such that
EP%%g f(X0N, XoN, - XN

to

1 o I
<log EPO[f(X;,, X5+, X)) + 5B / > i ds
0 =1

<logEP[f(X}, X2, -+, X]))]
+c§:EBvO/tOW(i§:5 mu)thchg:w 0< feB((R™N)
— 0 2 N — X, t p tél_l 9 b .

Repeating the same argument to derive (2.44) from (2.42), we obtain
EZ log f (X", X", Xi™)

S IOgEB[f(thoaXtQOa e aXt’E)]

to 1 N N E XZ _ XZ,N 2
+ 2ck {EB/ WQ(NZ(&Z,N,MzdtJr iz jlwfjl_l 0 . 0< feB((R™THF,
0 i1 0

Again using [32, Theorem 1.4.2(2)] and (2.32), we derive (3.10) when b is bounded. Finally,
by the same approximation technique in (Step (ii)) in the proof of Theorem 2.3(2), we
obtain the desired result for general b. O
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