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Abstract

The couplings by change of measure are applied to establish log-Harnack inequal-
ity(equivalently the entropy-cost estimate) for conditional McKean-Vlasov SDEs and
derive the quantitative conditional propagation of chaos in relative entropy for mean
field interacting particle system with common noise. For the log-Harnack inequali-
ty, two different types of couplings will be constructed for non-degenerate conditional
McKean-Vlasov SDEs with multiplicative noise. As to the quantitative conditional
propagation of chaos in relative entropy, the initial distribution of interacting particle
system is allowed to be singular with that of limit equation. The above results are also
extended to conditional distribution dependent stochastic Hamiltonian system.
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1 Introduction

Distribution dependent stochastic differential equations(SDEs) can be viewed as the limit
equation of a single particle in the mean field interacting particle system as the number of
particles goes to infinity, see [29]. It is applied extensively in mean field games [22]. It is also
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called a McKean-Vlasov SDE in the literature due to the work in [23]. Different from the
classical Itô stochastic differential equation, the distribution of McKean-Vlasov SDEs solves
a nonlinear Fokker-Planck-Kolmogorov equation. When there exists a common noise in the
mean field interacting particle system, which is independent of the private noise of all par-
ticles, the limit equation of a single particle turns into a conditional distribution dependent
SDE, which is called conditional McKean-Vlasov SDE, see [5]. Moreover, the conditional
distribution of the solution with respect to the common noise is a probability measure-valued
stochastic process, which solves a stochastic nonlinear Fokker-Planck-Kolmogorov equation,
see for instance [5, 21]. Compared with the McKean-Vlasov SDEs, there are fewer results
on conditional McKean-Vlasov ones. One can refer to [1, 3, 4, 5, 7, 13, 19, 21, 26, 27, 33] for
well-posedness, [7, 17, 19] for the study of stochastic nonlinear Fokker-Planck-Kolmogorov
equations and [1, 3, 6, 10, 17, 26, 27, 28, 30] for conditional propagation of chaos.

Let P(Rd) be the space of all probability measures on Rd equipped with the weak
topology. For k ≥ 1, let

Pk(Rd) :=
{
µ ∈P(Rd) : ‖µ‖k := µ(| · |k)

1
k <∞

}
,

which is a Polish space under the Lk-Wasserstein distance

Wk(µ, ν) = inf
π∈C (µ,ν)

(∫
Rd×Rd

|x− y|kπ(dx, dy)

) 1
k

, µ, ν ∈Pk(Rd),

where C (µ, ν) is the set of all couplings of µ and ν. The relative entropy of two probability
measures is defined as

Ent(ν|µ) =

{
ν(log(dν

dµ
)), ν � µ;

∞, otherwise.

Fix T > 0. As in [5, Section 2.1.3], let (Ωi,F i, (F i
t )t≥0,Pi), i = 0, 1 be two complete

filtration probability spaces and (Ω,F , (Ft)t≥0,P) be the completion of the product structure
generated by them, i.e. Ω = Ω0 × Ω1, F and (Ft)t≥0 are the completions of F 0 ⊗F 1 and
(F 0

t ⊗F 1
t )t≥0 with respect to the product measure P = P0 × P1. Denote E the expectation

associated to P. Wt is a dW -dimensional Brownian motion on (Ω1,F 1, (F 1
t )t≥0,P1) while

Bt is a dB-dimensional Brownian motion on (Ω0,F 0, (F 0
t )t≥0,P0). Let {FB

t }t∈[0,T ] be the
completion of σ{Bs, s ∈ [0, t]} ⊗ {∅,Ω1}, t ∈ [0, T ] with respect to P. Consider conditional
McKean-Vlasov SDEs:

dXt = bt(Xt,LXt|FB
t

)dt+ σt(Xt,LXt|FB
t

)dWt + σ̃t(Xt,LXt|FB
t

)dBt,(1.1)

where LXt|FB
t

stands for the regular conditional distribution of Xt with respect to FB
t

under P, b : [0, T ] × Rd × P(Rd) → Rd, σ : [0, T ] × Rd × P(Rd) → Rd ⊗ RdW and
σ̃ : [0, T ]×Rd×P(Rd)→ Rd⊗RdB are measurable and bounded on bounded set. The noise
Bt is usually called the common noise while Wt is the private noise. Throughout the paper,
we assume that the initial value X0 is (Ω1,F 1

0 )-measurable. Note that when (1.1) is well-
posed, see Definition 1.1 below, [5, Proposition 2.9 and Lemma 2.5] tells that {LXt|FB

t
}t∈[0,T ]

is a version of {L1(Xt)}t∈[0,T ] in [5, (2.6)]. For more other assumptions on the initial value
X0, one can refer to [5, Remark 2.10].
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Definition 1.1. For any ξ ∈ L2(Ω1 → Rd,F 1
0 ,P1), we call a continuous and (Ft)t≥0-adapted

process (Xt)t≥0 with E supt∈[0,T ] |Xt|2 < ∞, T > 0 a solution to (1.1) with initial value ξ, if

LXt|FB
t

is a continuous, FB
t -adapted and P2(Rd)-valued process and it holds

E
∫ T

0

{|bt(Xt,LXt|FB
t

)|+ ‖σt(Xt,LXt|FB
t

)‖2
HS + ‖σ̃t(Xt,LXt|FB

t
)‖2
HS}dt <∞, T > 0

and P-a.s.

Xs = ξ +

∫ s

0

bt(Xt,LXt|FB
t

)dt+

∫ s

0

σt(Xt,LXt|FB
t

)dWt +

∫ s

0

σ̃t(Xt,LXt|FB
t

)dBt, s ≥ 0.

We call (1.1) is well-posed, if for any ξ ∈ L2(Ω1 → Rd,F 1
0 ,P1), it has a unique solution

starting from ξ which will be denoted by Xξ
t in the sequel.

When (1.1) has a solution, Itô’s formula implies that the conditional time-marginal dis-
tribution µt := LXt|FB

t
solves measured-valued stochastic evolution equation, i.e. for any

f ∈ C∞0 (Rd), the smooth functions with compact support on Rd,

d(µt(f)) = µt(Lt,µtf)dt+ µt(〈σ̃t(·, µt),∇f〉)dBt,

where Lt,µf(x) := 1
2
tr[(σtσ

∗
t + σ̃tσ̃

∗
t )(x, µ)∇2f(x)] + 〈bt(x, µ),∇f(x)〉 and µt(f) =

∫
Rd fdµt,

the study of which can be dated to [8], see also [5, 21]. Since then, it has been intensively
investigated. [3] derived the well-posedness of mean reflected forward and backward SDEs
and obtained the propagation of chaos in Wasserstein distance for the associated interacting
particle system. Moreover, in the forward case, the conditional mean reflected SDEs and
conditional propagation of chaos in Wasserstein distance are also studied; [4] studied a
systemic risk control problem by the central bank, which stabilizes the interbank system
with borrowing and lending activities and the mean field optimal control is shown to satisfy
a stochastic Fokker-Planck-Kolmogorov equation driven by the common noise; In [19], the
uniqueness for the stochastic nonlinear Fokker-Planck-Kolmogorov equation is proved in the
class of solutions with squarely integrable density with respect to the Lebesgue measure; In
[7], the uniqueness is shown by means of a duality argument to a backward stochastic PDE
and [9] verifies the uniqueness of solutions by a dual method, coupling arguments as well
as the Krylov-Rozovskii variational approach to SPDE. In [21], the superposition principle
and mimicking theorem for conditional McKean-Vlasov SDE are derived, which establish the
correspondence between conditional McKean-Vlasov SDE and stochastic nonlinear Fokker-
Planck-Kolmogorov equation under reasonable condition and also show that the conditional
time-marginals of an Itô process can be constructed by those of the solution to a conditional
McKean-Vlasov SDE with Markovian coefficients. This provides a probability method to
investigate stochastic nonlinear Fokker-Planck-Kolmogorov equation.

In recent years, the study of (1.1) attracts much attention. [13] proved that (1.1) is well-
posed if (1.1) with b = 0 is well-posed, σ and σ̃ are distribution free and σ−1b is bounded
and Lipchitz continuous under total variation distance. In [17], the quantitative conditional
propagation of chaos in weak convergence is provided, where σ and σ̃ are distribution free
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and all the coefficients are regular enough in spatial-measure arguments. [6] proved con-
ditional propagation of chaos in Wasserstein distance when σ = 0, bt(x, µ) = µ(f(x − ·))
for some Lipschitz function f . [10] investigated conditional propagation of chaos for one
dimensional SDEs driven by Poisson random measure and common Brownian motion noise,
where σ̃ =

√
µ(f) for some positive Lipschitz function f . For moderately interacting parti-

cle systems with environmental noise and singular interaction kernel such as the Biot-Savart
and repulsive Poisson kernels, [12] proved that the mollified empirical measures converge in
strong norms to the unique (local) solutions of nonlinear Fokker-Planck-Kolmogorov equa-
tions. [33] studied the well-posedness in the case σ = 0 by constructing image dependent
SDE. In [30], the quantitative conditional propagation of chaos in the sense of Wasserstein
distance is studied for stochastic spatial epidemic model, where the evolution of infection
states are driven by the Poisson point processes and the displacement of individuals contains
a common noise. Quite recently, adopting the technology of disintegration and the entropy
method developed by [15], [28] established quantitative conditional propagation of chaos in
relative entropy for the stochastic 2-dimensional Navier-Stokes equation in torus. One can al-
so refer to [26, 27] for the (conditional)propagation of chaos for (conditional)McKean-Vlasov
SDEs with regime-switching.

The propagation of chaos is a hot topic in the McKean-Vlasov frame(σ̃ = 0). The
quantitative propagation of chaos in strong sense is studied in [29] by using synchronous
coupling argument, where the coefficients are assumed to be Lipschitz continuous and the
initial value of interacting particle system coincides with that of the limit equation. [2, 15, 16]
apply the entropy method to derive the quantitative propagation of chaos in relative entropy
with additive noise and singular interaction, for which the initial distribution of interacting
particle system is assumed to be absolutely continuous with that of limit equation. In [20],
the authors give the sharp rate of propagation of chaos for some models such as bounded
or uniformly continuous interaction by BBGKY hierarchy. We should also mention that
in [24], the (uniform in time)quantitative propagation of chaos for genetic-type interacting
particle system approximating model in the sense of relative entropy as well as Lα(α ∈ [1,∞])
estimate and thus in the sense of total variation distance are obtained.

As far as we know, the regularity estimate of conditional McKean-Vlasov SDEs with
respect to the initial value such as the entropy-cost estimate is still open. In this paper, we try
to construct the coupling by change of measure for conditional McKean-Vlasov SDEs (1.1).
We will present two different couplings in the case with non-degenerate and multiplicative
noise to derive the log-Harnack inequality, which is equivalent to entropy-cost estimate.
In the distribution independent case, the log-Harnack inequality associated to a Markov
semigroup Pt is formulated as

Pt log f(x) ≤ logPtf(y) + c(t)|x− y|2, f ∈ B+
b (Rd), t ∈ (0, T ], x, y ∈ Rd

for some nonnegative function c with limt→0 c(t) = ∞, which implies the gradient-L2 esti-
mate:

|∇Ptf |2 ≤ c(t)Pt|f |2, t ∈ (0, T ].
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In the case of non-degenerate diffusion, it is also equivalent to the gradient-gradient estimate:

|∇Ptf |2 ≤ CPt|∇f |2, t ∈ [0, T ]

for some constant C > 0. One can refer to [32, Chapter 1] for more details.
Different from the McKean-Vlasov frame, the conditional distribution with respect to

the common noise is a functional of common noise so that we have to overcome essential
difficulties produced by this crucial difference. For instance, in the procedure of constructing
coupling processes, we usually view the conditional distribution with respect to the common
noise as a known functional of common noise so that the common noise need also be fixed.
Hence, we can only construct a new private noise in coupling process. Moreover, since the
private noise and the common noise are independent, when we calculate the expectation
for a functional of (W,B), we can firstly take conditional expectation with respect to the
common noise in which the common noise can be viewed as a constant and then use the
tower property of conditional expectation to realize this goal.

We will also investigate the quantitative conditional propagation of chaos in the sense
of Wasserstein distance, which together with coupling by change of measure implies the
quantitative conditional propagation of chaos in relative entropy. Different from [2, 15, 16],
the initial distribution of interacting particle system is allowed to be singular with that of the
limit equation. The main tool is an entropy inequality in [25, Lemma 2.1] as well as Wang’s
Harnack inequality with power, see for instance [31] and the monograph [32]. Furthermore,
the associated assertions are derived by the method of coupling by change of measure for the
conditional distribution dependent stochastic Hamiltonian system and mean field interacting
stochastic Hamiltonian system with common noise.

When the conditional distribution is involved, an inequality is often used:

EW2(Lξ|G ,Lη|G )2 ≤ E
{
E(|ξ − η|2|G )

}
= E|ξ − η|2

for any random variables ξ, η with finite second monents and any sub-σ-algebra G ⊂ F .
Using Banach’s fixed point theorem and repeating the proof of [5, Proposition 2.11], it is
standard to obtain Lemma 1.1 below under the following monotonicity condition (H), see
for instance [18, Theorem 2.1]. One can also refer to [33] for image-dependent SDE, a
special type of conditional McKean-Vlasov SDE aforementioned. When (1.1) is well-posed
and for any γ ∈ P2(Rd) and any ξ, ξ̃ ∈ L2(Ω1 → Rd,F 1

0 ,P1) with Lξ = Lξ̃ = γ, it holds
LXξ

t
= L

X ξ̃
t

, then we denote P ∗t γ = LXξ
t

and

Ptf(γ) :=

∫
Rd
f(x)(P ∗t γ)(dx), f ∈ Bb(Rd).

(H) For any t ∈ [0, T ], bt, σt, σ̃t are continuous in Rd ×P2(Rd). There exists a constant
K ≥ 0 such that

‖σt(x, µ)− σt(y, ν)‖2
HS + ‖σ̃t(x, µ)− σ̃t(y, ν)‖2

HS + 2〈bt(x, µ)− bt(y, ν), x− y〉
≤ K(|x− y|2 + W2(µ, ν)2), t ∈ [0, T ], x, y ∈ Rd, µ, ν ∈P2(Rd).
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Lemma 1.1. Assume (H). Then (1.1) is well-posed and LXξ
t |FB

t
= L

X ξ̃
t |FB

t

for any initial

values ξ, ξ̃ ∈ L2(Ω1 → Rd,F 1
0 ,P1) with Lξ = Lξ̃. Moreover, there exists a constant CT =

e2KT such that for all s ∈ [0, T ], and ξ, ξ̃ ∈ L2(Ω1 → Rd,F 1
0 ,P1),

EW2(LXξ
s |FB

s
,L

X ξ̃
s |FB

s
)2 + W2(LXξ

s
,L

X ξ̃
s
)2 ≤ CTW2(Lξ,Lξ̃)

2.

When there are different probability measures on (Ω,F ), we use L P
ξ and L P

ξ|G to denote
the distribution and regular conditional distribution of a random variable ξ with respect to
sub-σ-algebra G ⊂ F respectively under probability measure P.

The remaining of the paper is organized as follows: In section 2, we establish the log-
Harnack inequality and thus the entropy-cost estimate for conditional McKean-Vlasov SDEs
with non-degenerate and multiplicative noise and two different cases are considered. More-
over, we investigate the quantitative conditional propagation of chaos in Wasserstein distance
and relative entropy. The corresponding results are derived in Section 3 for conditional dis-
tribution dependent stochastic Hamiltonian system and mean field interacting stochastic
Hamiltonian system with common noise.

2 Non-degenerate case

2.1 Log-Harnack inequality

To apply the coupling by change of measure to establish the log-Harnack inequality for
conditional McKean-Vlasov SDEs, we assume σ is distribution free and consider

dXt = bt(Xt,LXt|FB
t

)dt+ σt(Xt)dWt + σ̃t(Xt,LXt|FB
t

)dBt.(2.1)

In the following, we will investigate two different cases and construct corresponding couplings
by change of measure to derive the log-Harnack inequality for (2.1).

2.1.1 State-dependent case: σ̃t(x, µ) = σ̃t(x)

(A) For any t ∈ [0, T ], x ∈ Rd, (σtσ
∗
t )(x) is invertible and bt is continuous in Rd ×P2(Rd).

There exist λ ∈ (0, 1] and K, K̃ ≥ 0 such that

λ−1 ≥ (σtσ
∗
t )(x) ≥ λ, ‖σt(x)− σt(y)‖2

HS ≤ K|x− y|2,
〈bt(x, µ)− bt(y, ν), x− y〉 ≤ K(|x− y|W2(µ, ν) + |x− y|2),

‖σ̃t(x)− σ̃t(y)‖2
HS ≤ K̃|x− y|2, t ∈ [0, T ], x, y ∈ Rd, µ, ν ∈P2(Rd).

Theorem 2.1. Assume (A). Then there exists a constant c > 0 such that

Pt log f(ν0) ≤ logPtf(µ0) + c

{
(3K + K̃)

1− e−(3K+K̃)t
+ t

}
W2(µ0, ν0)2,

0 < f ∈ Bb(Rd), µ0, ν0 ∈P2(Rd), t ∈ (0, T ].
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Proof. We will follow essentially the line of [31, Theorem 1.1(1)] to complete the proof of
Theorem 2.1. Let Xµ0

0 , Xν0
0 be (Ω1,F 1

0 )-measurable such that

(2.2) LX
µ0
0

= µ0, LX
ν0
0

= ν0, E|Xµ0
0 −Xν0

0 |2 = W2(µ0, ν0)2.

Let Xµ0
t and Xν0

t solve (2.1) with initial values Xµ0
0 and Xν0

0 respectively. Denote

νt = L P
X
ν0
t |FB

t
, µt = L P

X
µ0
t |FB

t
, t ∈ [0, T ].(2.3)

Then it holds

dXµ0
t = bt(X

µ0
t , µt)dt+ σt(X

µ0
t )dWt + σ̃t(X

µ0
t )dBt, t ∈ [0, T ].(2.4)

Let t0 ∈ (0, T ] and ξt = 1
3K+K̃

(1− e(3K+K̃)(t−t0)), t ∈ [0, t0], which satisfies

−ξ′t + (3K + K̃)ξt = 1.(2.5)

Consider the following SDE:

dYt = bt(Yt, νt)dt+ σt(Yt)dWt + σ̃t(Yt)dBt

+ σt(Yt)[σ
∗
t (σtσ

∗
t )
−1](Xµ0

t )
Xµ0
t − Yt
ξt

dt, t ∈ [0, t0), Y0 = Xν0
0 .

(2.6)

Let τn = t0 ∧ inf{t ∈ [0, t0), |Xµ0
t | ∨ |Yt| ≥ n}. Then P-a.s. τn ↑ t0 as n ↑ ∞. Let

γt := [σ∗t (σtσ
∗
t )
−1](Xµ0

t )
Yt −Xµ0

t

ξt
,

Ŵt := Wt −
∫ t

0

γsds, Rt := e
∫ t
0 〈γr,dWr〉− 1

2

∫ t
0 |γr|

2dr,

Qt := RtP, t ∈ [0, t0).

(2.7)

Fix s ∈ [0, t0). According to Girsanov’s theorem, under the weighted probability Qs∧τn ,
(Ŵt, Bt) is a (dW + dB)-dimensional Brownian motion up to time s ∧ τn.

Then (2.4) and (2.6) can be rewritten as

dXµ0
t = bt(X

µ0
t , µt)dt+ σt(X

µ0
t )dŴt + σ̃t(X

µ0
t )dBt +

Yt −Xµ0
t

ξt
dt, t ∈ [0, s ∧ τn],

and

dYt = bt(Yt, νt)dt+ σt(Yt)dŴt + σ̃t(Yt)dBt, t ∈ [0, s ∧ τn], Y0 = Xν0
0 .

It follows from Itô’s formula that

d
|Yt −Xµ0

t |2

ξt

= −ξ
′
t|Yt −X

µ0
t |2

ξ2
t

dt+
2〈bt(Yt, νt)− bt(Xµ0

t , µt), Yt −X
µ0
t 〉

ξt
dt− 2

|Yt −Xµ0
t |2

ξ2
t

dt

+
2〈[σt(Yt)− σt(Xµ0

t )]dŴt + [σ̃t(Yt)− σ̃t(Xµ0
t )]dBt, Yt −Xµ0

t 〉
ξt

+
‖σt(Yt)− σt(Xµ0

t )‖2
HS + ‖σ̃t(Yt)− σ̃t(Xµ0

t )‖2
HS

ξt
dt, t ∈ [0, s ∧ τn].

(2.8)
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In view of (A) and the inequality ab ≤ 1
2
a2 + 1

2
b2, a, b ∈ R, we conclude that

2〈bt(Yt, νt)− bt(Xµ0
t , µt), Yt −X

µ0
t 〉

ξt

≤ 2K|Yt −Xµ0
t |W2(µt, νt)

ξt
+

2K|Yt −Xµ0
t |2

ξt

≤ 1

2

|Yt −Xµ0
t |2

ξ2
t

+ 2K2W2(µt, νt)
2 +

2Kξt|Yt −Xµ0
t |2

ξ2
t

, t ∈ [0, s ∧ τn],

and

‖σt(Yt)− σt(Xµ0
t )‖2

HS + ‖σ̃t(Yt)− σ̃t(Xµ0
t )‖2

HS

ξt
≤ (K + K̃)ξt|Yt −Xµ0

t |2

ξ2
t

, t ∈ [0, s ∧ τn].

This together with (2.8) gives

d
|Yt −Xµ0

t |2

ξt
≤

[−ξ′t + (3K + K̃)ξt − 3
2
]|Yt −Xµ0

t |2

ξ2
t

dt

+ 2K2W2(µt, νt)
2dt+ dMt, t ∈ [0, s ∧ τn],

(2.9)

where

dMt =
2〈[σt(Yt)− σt(Xµ0

t )]dŴt + [σ̃t(Yt)− σ̃t(Xµ0
t )]dBt, Yt −Xµ0

t 〉
ξt

.

Since W is independent of B, we have

E(Rs∧τn|FB
s ) = 1,

which together with (2.3), the definition of µt, νt and Lemma 1.1 implies

EQs∧τn

∫ s∧τn

0

W2(µt, νt)
2dt

≤ E
{
E(Rs∧τn|FB

s )

∫ s

0

W2(µt, νt)
2dt

}
= E

∫ s

0

W2(µt, νt)
2dt ≤ CsW2(µ0, ν0)2.

Combining this with (2.5) and (2.9), we derive

EQs∧τn

∫ s∧τn

0

|Yt −Xµ0
t |2

ξ2
t

dt ≤ 2EQs∧τn
|Y0 −Xµ0

0 |2

ξ0

+ EQs∧τn

∫ s∧τn

0

4K2W2(µt, νt)
2dt

≤ 2
W2(µ0, ν0)2

ξ0

+ 4K2CsW2(µ0, ν0)2.

Hence, by (2.7) and (A), we find a constant c1 > 0 such that

E[Rs∧τn logRs∧τn ] = EQs∧τn [logRs∧τn ] =
1

2
EQs∧τn

∫ s∧τn

0

|γt|2dt
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≤ c1
W2(µ0, ν0)2

ξ0

+ c1sW2(µ0, ν0)2.

Consequently, {Rs∧τn}n≥1 is a uniformly integrable martingale under P, which together with
the martingale convergence theorem and Fatou’s lemma implies that

1

2
EQs

∫ s

0

|γt|2dt = E[Rs logRs] ≤ c1
W2(µ0, ν0)2

ξ0

+ c1sW2(µ0, ν0)2, s ∈ [0, t0).(2.10)

This means that {Rs}s∈[0,t0] is a uniformly integrable martingale under P and Girsanov’s the-

orem yields that under the weighted probability Qt0 , (Ŵt, Bt)t∈[0,t0] is a (dW+dB)-dimensional
Brownian motion. Moreover, Qt0-a.s. Yt0 = Xµ0

t0 by (2.10) for s = t0 due to Fatou’s lemma.
On the other hand, consider the conditional McKean-Vlasov SDE

dỸt = bt(Ỹt,L
Qt0
Ỹt|FB

t

)dt+ σt(Ỹt)dŴt + σ̃t(Ỹt)dBt, t ∈ [0, t0], Ỹ0 = Xν0
0 .(2.11)

According to [5, Proposition 2.11], we derive νt = L
Qt0
Ỹt|FB

t

and L P
X
ν0
t

= L
Qt0
Ỹt

so that (2.11)

can be rewritten as

dỸt = bt(Ỹt, νt)dt+ σt(Ỹt)dŴt + σ̃t(Ỹt)dBt, t ∈ [0, t0], Ỹ0 = Xν0
0 .(2.12)

The strong uniqueness of (2.12) implies Yt = Ỹt, t ∈ [0, t0]. In fact, (2.12) is an SDE with
random coefficients, the well-posedness of which can be proved by standard argument under

the assumption (A). Therefore, L
Qt0
Yt|FB

t
= L P

X
ν0
t |FB

t
= νt and L

Qt0
Yt

= L P
X
ν0
t

. Combining this

with Young’s inequality and (2.10) for s = t0 due to Fatou’s lemma, we derive

Pt0 log f(ν0) = EQt0 [log f(Yt0)] = E[Rt0 log f(Xµ0
t0 )]

≤ logE[f(Xµ0
t0 )] + E[Rt0 logRt0 ]

≤ logPt0f(µ0) + c1
W2(µ0, ν0)2

ξ0

+ c1t0W2(µ0, ν0)2, 0 < f ∈ Bb(Rd).

Therefore, we complete the proof by the definition of ξ0.

2.1.2 Measure-dependent case: σ̃t(x, µ) = σ̃t(µ)

In the second case, we assume that σ̃ only depends on the time-distribution arguments, i.e.
consider

(2.13) dXt = bt(Xt,LXt|FB
t

)dt+ σt(Xt)dWt + σ̃t(LXt|FB
t

)dBt, t ∈ [0, T ].

To establish the log-Harnack inequality, we make the following Lipschitz assumption on b
instead of the monotonicity condition on b in (A).

9



(B) For any t ∈ [0, T ], x ∈ Rd, (σtσ
∗
t )(x) is invertible and there exist λ ∈ (0, 1] and K, K̃ ≥ 0

such that

λ−1 ≥ (σtσ
∗
t )(x) ≥ λ, ‖σt(x)− σt(y)‖2

HS ≤ K|x− y|2,
|bt(x, µ)− bt(y, ν)| ≤ K(|x− y|+ W2(µ, ν)),

‖σ̃t(µ)− σ̃t(ν)‖2
HS ≤ K̃W2(µ, ν)2, t ∈ [0, T ], x, y ∈ Rd, µ, ν ∈P2(Rd).

In (A), σ̃ is only allowed to depend on the time and spatial variables while σ̃ only depends
on time and measure variables in (B) and the condition for b in (B) can derive that for b in
(A). Since assumption (B) implies (H), Lemma 1.1 holds for SDE (2.13) replacing (1.1). In
the case that σ̃t(x, µ) = σ̃t(µ), the coupling used in Section 2.1 is unavailable so that we need
to construct a new coupling by change of measure which involves in conditional probability
with respect to FB

t .

Theorem 2.2. Assume (B). Then there exists a constant c > 0 such that for any 0 < f ∈
Bb(Rd), µ0, ν0 ∈P2(Rd), t ∈ (0, T ] and ξ, ξ̃ ∈ L2(Ω1 → Rd,F 1

0 ,P1) with Lξ = µ0,Lξ̃ = ν0,

E{Ent(LXξ
t |FB

t
|L

X ξ̃
t |FB

t

)} ≤ c

{
4K

1− e−4Kt
+

∫ t

0

4Ks

1− e−4Ks
ds

}
W2(µ0, ν0)2,

and consequently,

Pt log f(ν0) ≤ logPtf(µ0) + c

{
4K

1− e−4Kt
+

∫ t

0

4Kr

1− e−4Kr
dr

}
W2(µ0, ν0)2.(2.14)

Proof. For fixed µ0, ν0 ∈ P2(Rd), let Xµ0
0 , Xν0

0 be chosen in (2.2). Let Xµ0
t and Xν0

t solve
(2.13) with initial value Xµ0

0 and Xν0
0 respectively and µt and νt be defined in (2.3). Define

(2.15) ηµt :=

∫ t

0

σ̃s(µs)dBs, t ∈ [0, T ].

By (B), BDG’s inequality and Lemma 1.1, we find a constant C1 > 0 such that

E
[

sup
t∈[0,T ]

|ηµt − ηνt |2
]
≤ K̃2E

∫ T

0

W2(µs, νs)
2ds ≤ C1K̃

2TW2(µ0, ν0)2,(2.16)

and

(2.17) E|ηµt1 − η
µ
t2 − (ηνt1 − η

ν
t2

)|2 ≤ C1K̃
2W2(µ0, ν0)2|t1 − t2|, t1, t2 ∈ [0, T ].

Moreover, we derive from (2.3) that

dXµ0
t = bt(X

µ0
t , µt)dt+ σt(X

µ0
t )dWt + σ̃t(µt)dBt, t ∈ [0, T ].

Then X̂µ0
t := Xµ0

t − η
µ
t , t ∈ [0, T ] solves

(2.18) dX̂µ0
t = bt(X̂

µ0
t + ηµt , µt)dt+ σt(X̂

µ0
t + ηµt )dWt, t ∈ [0, T ].
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Let t0 ∈ (0, T ] and ξt = 1
4K

(1− e4K(t−t0)) and it holds

−ξ′t + 4Kξt = 1.(2.19)

Now, we construct the coupling process:

dŶ ν
t = bt(Ŷ

ν
t + ηνt , νt)dt+ σt(Ŷ

ν
t + ηνt )dWt

+ σt(Ŷ
ν
t + ηνt )[σ∗t (σtσ

∗
t )
−1](X̂µ0

t + ηµt )
(X̂µ0

t + ηµt0)− (Ŷ ν
t + ηνt0)

ξt
dt,

t ∈ [0, t0), Ŷ ν
0 = Xν0

0 .

(2.20)

Define

PB := P( · |FB
T ), EB := E( · |FB

T ).(2.21)

Set τn = t0 ∧ inf{t ∈ [0, t0), |X̂µ
t + ηµt0 | ∨ |Ŷ ν

t + ηνt0| ≥ n}. Then we have PB-a.s. τn ↑ t0 as
n ↑ ∞. Let

βt := [σ∗t (σtσ
∗
t )
−1](X̂µ0

t + ηµt )
(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)

ξt
,

W̃t := Wt −
∫ t

0

βsds, Rt := e
∫ t
0 〈βr,dWr〉− 1

2

∫ t
0 |βr|

2dr,(2.22)

QB
t := RtPB, t ∈ [0, t0).

Fix s ∈ [0, t0). Girsanov’s theorem yields that under the weighted conditional probability
QB
s∧τn , W̃t is a dW -dimensional Brownian motion on [0, s∧ τn]. Hence, (2.18) and (2.20) can

be reformulated as

d[X̂µ0
t + ηµt0 − η

ν
t0

)] = bt(X̂
µ0
t + ηµt , µt)dt+ σt(X̂

µ0
t + ηµt )dW̃t

+
(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)

ξt
dt, t ∈ [0, s ∧ τn],

and

dŶ ν
t = bt(Ŷ

ν
t + ηνt , νt)dt+ σt(Ŷ

ν
t + ηνt )dW̃t, t ∈ [0, s ∧ τn], Ŷ ν

0 = Xν0
0 .(2.23)

By Itô’s formula, we obtain

d
|(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)|2

ξt
dt

= −
ξ′t|(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)|2

ξ2
t

dt

+
2〈bt(Ŷ ν

t + ηνt , νt)− bt(X̂
µ0
t + ηµt , µt), (Ŷ

ν
t + ηνt0)− (X̂µ0

t + ηµt0)〉
ξt

dt(2.24)
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+
2〈[σt(Ŷ ν

t + ηνt )− σt(X̂µ0
t + ηµt )]dW̃t, (Ŷ

ν
t + ηνt0)− (X̂µ0

t + ηµt0)〉
ξt

− 2
|(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)|2

ξ2
t

dt

+
‖σt(Ŷ ν

t + ηνt )− σt(X̂µ0
t + ηµt )‖2

HS

ξt
dt, t ∈ [0, s ∧ τn].

(B) implies that

2〈bt(Ŷ ν
t + ηνt , νt)− bt(X̂

µ0
t + ηµt , µt), (Ŷ

ν
t + ηνt0)− (X̂µ0

t + ηµt0)〉
ξt

≤
2K|(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)|2

ξt

+
2K[W2(νt, µt) + |ηνt − ηνt0 − (ηµt − η

µ
t0)|]|(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)|

ξt

≤
[2Kξt + 1

2
]|(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)|2

ξ2
t

+ 2K2[W2(νt, µt) + |ηνt − ηνt0 − (ηµt − η
µ
t0)|]

2,

and

‖σt(Ŷ ν
t + ηνt )− σt(X̂µ0

t + ηµt )‖2
HS

ξt

≤
2Kξt|(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)|2

ξ2
t

+
2K|ηνt − ηνt0 − (ηµt − η

µ
t0)|2

ξt
.

This together with (2.24) yields that

d
|(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)|2

ξt

≤
[−ξ′t + 4Kξt − 3

2
]|(Ŷ ν

t + ηνt0)− (X̂µ0
t + ηµt0)|2

ξ2
t

dt

+ 2K2[W2(νt, µt) + |ηνt − ηνt0 − (ηµt − η
µ
t0)|]

2dt

+
2K|ηνt − ηνt0 − (ηµt − η

µ
t0)|2

ξt
dt

+
2〈[σt(Ŷ ν

t + ηνt )− σt(Xµ
t + ηµt )]dW̃t, (Ŷ

ν
t + ηνt0)− (X̂µ

t + ηµt0)〉
ξt

, t ∈ [0, s ∧ τn].

Combining this with (2.19), we deduce

EQBs∧τn

∫ s∧τn

0

|(Ŷ ν
t + ηνt0)− (X̂µ0

t + ηµt0)|2

ξ2
t

dt

12



≤
2EB|(Ŷ ν

0 + ηνt0)− (X̂µ0
0 + ηµt0)|2

ξ0

+ 8K2

∫ s

0

W2(νt, µt)
2dt

+

∫ s

0

8K2|ηνt − ηνt0 − (ηµt − η
µ
t0)|

2dt+

∫ s

0

4K|ηνt − ηνt0 − (ηµt − η
µ
t0)|2

ξt
dt.

As a result, it follows from (2.22) and (B) that

EB[Rs∧τn logRs∧τn ] = EQBs∧τn
[logRs∧τn ] =

1

2
EQBs∧τn

∫ s∧τn

0

|βt|2dt

≤ λ−1E
B|(Ŷ ν

0 + ηνt0)− (X̂µ
0 + ηµt0)|2

ξ0

+ 4λ−1K2

∫ s

0

W2(νt, µt)
2dt

+ 4λ−1K2

∫ s

0

|ηνt − ηνt0 − (ηµt − η
µ
t0)|

2dt+ 2λ−1K

∫ s

0

|ηνt − ηνt0 − (ηµt − η
µ
t0)|2

ξt
dt.

This means that {Rs∧τn}n≥1 is a uniform integrable martingale under PB so that we derive
from the martingale convergence theorem and Fatou’s lemma that

1

2
EQBs

∫ s

0

|βt|2dt = EB[Rs logRs]

≤ λ−1E
B|(Ŷ ν

0 + ηνt0)− (X̂µ
0 + ηµt0)|2

ξ0

+ 4λ−1K2

∫ s

0

W2(νt, µt)
2dt(2.25)

+ 4λ−1K2

∫ s

0

|ηνt − ηνt0 − (ηµt − η
µ
t0)|

2dt

+ 2λ−1K

∫ s

0

|ηνt − ηνt0 − (ηµt − η
µ
t0)|2

ξt
dt, s ∈ [0, t0).

This combined with (2.17) implies that {Rs}s∈[0,t0] is a uniform integrable martingale under

PB and QB
t0

-a.s. Ŷ ν
t0

+ ηνt0 = X̂µ0
t0 + ηµt0 in view of the definition of βt and ξt and (2.25) for

s = t0 due to Fatou’s lemma. It follows from the weak uniqueness to (2.23) on [0, t0] due to
(B) that

L
QBt0
Ŷ νt

= L PB
X̂
ν0
t
, t ∈ [0, t0],(2.26)

where X̂ν0
t = Xν0

t − ηνt , t ∈ [0, T ] solves

dX̂ν0
t = bt(X̂

ν0
t + ηνt , νt)dt+ σt(X̂

ν0
t + ηνt )dWt, t ∈ [0, T ].

Let Y ν
t := Ŷ ν

t + ηνt , t ∈ [0, t0]. Since ηνt0 is measurable with respect to FB
t0

, it follows from
(2.26) that

L
QBt0
Y νt0

= L
QBt0
Ŷt0+ηνt0

= L PB
X̂
ν0
t0

+ηνt0
= L PB

X
ν0
t0

.(2.27)
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Again by (2.25) for s = t0, (2.27), the fact QB
t0

-a.s. Y ν
t0

= Ŷ ν
t0

+ ηνt0 = X̂µ0
t0 + ηµt0 = Xµ0

t0 and
Young’s inequality, we conclude that

EB[log f(Xν0
t0 )] = EQBt0

[log f(Y ν
t0

)]

= EB[Rt0 log f(Xµ0
t0 )] ≤ logEB[f(Xµ0

t0 )] + EB[Rt0 logRt0 ]

≤ logEB[f(Xµ0
t0 )] + λ−1E

B|(Ŷ ν
0 + ηνt0)− (X̂µ

0 + ηµt0)|2

ξ0

+ 4λ−1K2

∫ t0

0

W2(νt, µt)
2dt

+ 4λ−1K2

∫ t0

0

|ηνt − ηνt0 − (ηµt − η
µ
t0)|

2dt

+ 2λ−1K

∫ t0

0

|ηνt − ηνt0 − (ηµt − η
µ
t0)|2

ξt
dt =: logEB[f(Xµ0

t0 )] + Φt0 , 0 < f ∈ Bb(Rd).

So, by [32, Theorem 1.4.2(2)], Lemma 1.1, (2.16), (2.17) and (2.22), we find a constant c > 0
such that

E{Ent(LX
ν0
t0
|FB
t0
|LX

µ0
t0
|FB
t0

)} ≤ EΦt0 ≤ c

{
4K

1− e−4Kt0
+

∫ t0

0

4Kt

1− e−4Kt
dt

}
W2(µ0, ν0)2.

This together with the fact

Ent(LX
ν0
t
|LX

µ0
t

) ≤ E{Ent(LX
ν0
t |FB

t
|LX

µ0
t |FB

t
)}(2.28)

implies (2.14), which combined with [32, Theorem 1.4.2(2)] completes the proof.

2.2 Conditional propagation of chaos

Fix T > 0. Let (Ωi,F i, (F i
t )t≥0,Pi), i = 0, 1 and (Ω,F , (Ft)t≥0,P) be defined in Section 1.

Let N ≥ 1 be an integer, (W i
t )1≤i≤N be N independent dW -dimensional Brownian motions

on (Ω1,F 1, (F 1
t )t≥0,P1), Bt be a dB-dimensional Brownian motion on (Ω0,F 0, (F 0

t )t≥0,P0),
and (X i

0)1≤i≤N be i.i.d. (Ω1,F 1
0 )-measurable Rd-valued random variables. Let b : [0, T ] ×

Rd ×P(Rd) → Rd, σ : [0, T ] × Rd ×P(Rd) → Rd ⊗ RdW and σ̃ : [0, T ] → Rd ⊗ RdB be
measurable. Consider conditional McKean-Vlasov SDEs

dX i
t = bt(X

i
t ,LXi

t |FB
t

)dt+ σt(X
i
t ,LXi

t |FB
t

)dW i
t + σ̃tdBt, 1 ≤ i ≤ N,(2.29)

and the mean field interacting particle system with common noise

dX i,N
t = bt(X

i,N
t , µ̂Nt )dt+ σt(X

i,N
t , µ̂Nt )dW i

t + σ̃tdBt, 1 ≤ i ≤ N,(2.30)

where for any 1 ≤ i ≤ N , X i,N
0 is an (Ω1,F 1

0 )-measurable Rd-valued random variable, the
distribution of (X1,N

0 , X2,N
0 , · · · , XN,N

0 ) is exchangeable and µ̂Nt is the empirical distribution
of (X i,N

t )1≤i≤N , i.e.

µ̂Nt =
1

N

N∑
j=1

δXj,N
t
.
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Theorem 2.3. Assume that there exists a constant K ≥ 0 such that

|bt(0, δ0)|+ ‖σt(0, δ0)‖HS + ‖σ̃t‖HS ≤ K, t ∈ [0, T ],

|bt(x, µ)− bt(y, ν)|+ ‖σt(x, µ)− σt(y, ν)‖HS(2.31)

≤ K(|x− y|+ W2(µ, ν)), t ∈ [0, T ], x, y ∈ Rd, µ, ν ∈P2(Rd).

Then the following assertions hold.
(1) Assume that E|X1,N

0 |2 < ∞ and E|X1
0 |q < ∞ for some q > 2. Then there exists a

constant C > 0 depending only on d, T and E|X1
0 |q such that

sup
t∈[0,T ]

EW2(µ̂Nt ,L
P
X1
t |FB

t
)2

≤ C
1

N
W2(L(X1

0 ,X
2
0 ,··· ,XN

0 ),L(X1,N
0 ,X2,N

0 ,··· ,XN,N
0 ))

2 + CRd,q(N),
(2.32)

and

EW2(L P
(X1

t ,X
2
t ,··· ,Xk

t )|FB
t
,L P

(X1,N
t ,X2,N

t ,··· ,Xk,N
t )|FB

t
)2

≤ C
k

N
W2(L(X1

0 ,X
2
0 ,··· ,XN

0 ),L(X1,N
0 ,X2,N

0 ,··· ,XN,N
0 ))

2 + CkRd,q(N), 1 ≤ k ≤ N,(2.33)

where

Rd,q(N) =


N−

1
2 +N−

q−2
q , d < 4, q 6= 4,

N−
1
2 log(1 +N) +N−

q−2
q , d = 4, q 6= 4,

N−
2
d +N−

q−2
q , d > 4, q 6= d

d−2
.

(2) If in addition, σt(x, µ) does not depend on µ and λ−1 ≥ σσ∗ ≥ λ for some λ ∈ (0, 1],
then for any k ≥ 1 and k ≤ N and t ∈ (0, T ], it holds

EEnt(L P
(X1,N

t ,X2,N
t ,··· ,Xk,N

t )|FB
t
|L P

(X1
t ,X

2
t ,··· ,Xk

t )|FB
t

)

≤ CkRd,q(N) +
C

1− e−(K2+2K)t

k

N
W2(L(X1

0 ,X
2
0 ,··· ,XN

0 ),L(X1,N
0 ,X2,N

0 ,··· ,XN,N
0 ))

2.(2.34)

Proof. (1) Let PB,EB be in (2.21). It is standard to derive from (2.31) that

EB[ sup
t∈[0,T ]

|X1
t |q] < c1

(
1 + E|X1

0 |q + sup
s∈[0,T ]

∣∣∣∣∫ s

0

σ̃tdBt

∣∣∣∣q
)

(2.35)

for some constant c1 > 0 depending on q, T . Denote µit = L P
Xi
t |FB

t
, i ≥ 1. Since (2.29) is

well-posed under (2.31) due to Lemma 1.1, µit does not depend on i and we write µt = µit, 1 ≤
i ≤ N . Letting µ̃Nt = 1

N

∑N
j=1 δXj

t
, we obtain from the triangle inequality that

W2(µ̂Ns , µs) ≤W2(µ̂Ns , µ̃
N
s ) + W2(µ̃Ns , µs)

≤

(
1

N

N∑
i=1

|X i,N
s −X i

s|2
) 1

2

+ W2(µ̃Ns , µs).
(2.36)
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By BDG’s inequality, (2.31) and (2.36), there exists a constant c2 > 0 such that

N∑
i=1

EB sup
s∈[0,t]

|X i,N
s −X i

s|2 ≤ c2

N∑
i=1

E|X i,N
0 −X i

0|2 + c2

∫ t

0

EB
N∑
i=1

|X i,N
s −X i

s|2ds

+ c2NEB
∫ t

0

W2(µ̃Ns , µs)
2ds.

By Gronwall’s inequality, we can find a constant c3 > 0 such that

(2.37)
N∑
i=1

EB sup
s∈[0,t]

|X i,N
s −X i

s|2 ≤ c3

N∑
i=1

E|X i,N
0 −X i

0|2 + c3NEB
∫ t

0

W2(µ̃Ns , µs)
2ds.

By [11, Theorem 1] for p = 2 and (2.35), there exists a constant C0 > 0 depending only on
q, d such that

EBW2(µ̃Ns , µs)
2 ≤ C0

(
EB[ sup

t∈[0,T ]

|X1
t |q]

) 2
q

Rd,q(N)

≤ C0c
2
q

1

(
1 + E|X1

0 |q + sup
s∈[0,T ]

∣∣∣∣∫ s

0

σ̃tdBt

∣∣∣∣q
) 2

q

Rd,q(N), s ∈ [0, T ].(2.38)

So, we derive (2.33) by combining with (2.37) and the fact

W2(L(X1
t ,X

2
t ,··· ,Xk

t )|FB
t
,L(X1,N

t ,X2,N
t ,··· ,Xk,N

t )|FB
t

)2

≤ k

N
W2(L(X1

t ,X
2
t ,··· ,XN

t )|FB
t
,L(X1,N

t ,X2,N
t ,··· ,XN,N

t )|FB
t

)2.

Finally, (2.38) together with (2.37) and (2.36) derives

EBW2(µ̂Ns , µs)
2 ≤ C1

1

N

N∑
i=1

E|X i,N
0 −X i

0|2

+ C1

(
1 + E|X1

0 |q + sup
s∈[0,T ]

∣∣∣∣∫ s

0

σ̃tdBt

∣∣∣∣q
) 2

q

Rd,q(N), s ∈ [0, T ],

for some constant C1 > 0 depending on d, T , which yields (2.32) by taking expectation with
respect to P.

(2) (Step (i)) We first assume that b is bounded. Define

PB,0 := P( · |FB
T

∨
F0), EB,0 := E( · |FB

T

∨
F0).(2.39)

Consider

dX̄ i
t = bt(X̄

i
t , µt)dt+ σt(X̄

i
t)dW

i
t + σ̃tdBt, t ∈ [0, T ], X̄ i

0 = X i,N
0 , 1 ≤ i ≤ N.(2.40)
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Rewrite (2.40) as

dX̄ i
t = bt(X̄

i
t ,

1

N

N∑
i=1

δX̄i
t
)dt+ σt(X̄

i
t)dŴ

i
t + σ̃tdBt, t ∈ [0, T ], 1 ≤ i ≤ N.

where for 1 ≤ i ≤ N ,

Ŵ i
t := W i

t −
∫ t

0

γisds,

γit := [σ∗t (σtσ
∗
t )
−1](X̄ i

t)

(
bt(X̄

i
t ,

1

N

N∑
i=1

δX̄i
t
)− bt(X̄ i

t , µt)

)
, t ∈ [0, T ].

Fix t0 ∈ [0, T ]. Let

γt = (γ1
t , γ

2
t , · · · , γNt ), Ŵt = (Ŵ 1

t , Ŵ
2
t , · · · , ŴN

t ),

Rt := e
∫ t
0

∑N
i=1〈γir,dW i

r〉− 1
2

∫ t
0

∑N
i=1 |γir|2dr,

QB,0
t := RtPB,0, t ∈ [0, t0].

Since b is bounded, we can apply Girsanov’s theorem to conclude that {Ŵt}t∈[0,t0] is an

(N × dW )-dimensional Brownian motion under the weighted conditional probability QB,0
t0 .

So, we have

L
QB,0t0

({X̄i
t}1≤i≤N ,Bt)t∈[0,t0]

= L PB,0
({Xi,N

t }1≤i≤N ,Bt)t∈[0,t0]
.

This gives

EQB,0t0

∫ t0

0

W2(µt,
1

N

N∑
i=1

δX̄i
t
)2dt = EB,0

∫ t0

0

W2(µt, µ̂
N
t )2dt,

which together with (2.31), λ ≤ σσ∗ ≤ λ−1 and Young’s inequality implies that

EB,0 logF (X1,N
t0 , X2,N

t0 , · · · , XN,N
t0 )

≤ logEB,0[F (X̄1
t0
, X̄2

t0
, · · · , X̄N

t0
)] + EB,0(Rt0 logRt0)

≤ logEB,0[F (X̄1
t0
, X̄2

t0
, · · · , X̄N

t0
)] +

1

2

N∑
i=1

EQB,0t0

∫ t0

0

|γit|2dt(2.41)

≤ logEB,0[F (X̄1
t0
, X̄2

t0
, · · · , X̄N

t0
)]

+ c1NEB,0
∫ t0

0

W2(µt, µ̂
N
t )2dt, 0 < F ∈ Bb((Rd)N).

for some constant c1 > 0. On the other hand, let

bµ,Bt (x) = bt

(
x+

∫ t

0

σ̃sdBs, µt

)
, σBt (x) = σt

(
x+

∫ t

0

σ̃sdBs

)
, t ∈ [0, T ], x ∈ Rd.
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Consider

dY i
t = bµ,Bt (Y i

t ) + σt(Y
i
t )dW i

t , Y i
0 = X i

0, 1 ≤ i ≤ N,

and

dȲ i
t = bµ,Bt (Ȳ i

t ) + σt(Ȳ
i
t )dW i

t , Ȳ i
0 = X i,N

0 , 1 ≤ i ≤ N.

By [32, Theorem 3.4.1] and (2.31), for large enough p > 1 , we get Wang’s Harnack inequality
with power p for some constant c(p) > 0:(

EB,0[F̄ (Ȳ 1
t , Ȳ

2
t , · · · , Ȳ N

t )]
)p ≤ EB,0[F̄ (Y 1

t , Y
2
t , · · · , Y N

t )p]

× exp

{
c(p)

∑N
i=1 |X

i,N
0 −X i

0|2

1− e−(K2+2K)t

}
, F̄ ∈ B+

b ((Rd)N), t ∈ (0, T ].

In view of X̄ i
t = Ȳ i

t +
∫ t

0
σ̃sdBs and X i

t = Y i
t +

∫ t
0
σ̃sdBs, we conclude that(

EB,0[F (X̄1
t , X̄

2
t , · · · , X̄N

t )]
)p ≤ EB,0[F (X1

t , X
2
t , · · · , XN

t )p]

× exp

{
c(p)

∑N
i=1 |X

i,N
0 −X i

0|2

1− e−(K2+2K)t

}
, F ∈ B+

b ((Rd)N), t ∈ (0, T ].

This together with (2.41), [32, Theorem 1.4.2(1)-(2)] and [25, Lemma 2.1] implies that

EB,0 logF (X1,N
t0 , X2,N

t0 , · · · , XN,N
t0 )

≤ logEB,0[F (X1
t0
, X2

t0
, · · · , XN

t0
)] + c1pNEB,0

∫ t0

0

W2(µt, µ̂
N
t )2dt(2.42)

+
c(p)

∑N
i=1 |X

i,N
0 −X i

0|2

1− e−(K2+2K)t0
, 0 < F ∈ Bb((Rd)N).

Taking expectation with respect to EB on both sides and using Jensen’s inequality, we derive

EB logF (X1,N
t0 , X2,N

t0 , · · · , XN,N
t0 )

≤ logEB[F (X1
t0
, X2

t0
, · · · , XN

t0
)] + c1pNEB

∫ t0

0

W2(µt, µ̂
N
t )2dt(2.43)

+
c(p)

∑N
i=1 E|X

i,N
0 −X i

0|2

1− e−(K2+2K)t0
, 0 < F ∈ Bb((Rd)N).

For any 1 ≤ k ≤ N and 0 < f ∈ Bb((Rd)k), take

Ff (x1, x2, · · · , xbN
k
ck) =

bN
k
c−1∏

i=0

f(xik+1, xik+2, · · · , xik+k),

18



where bN
k
c stands for the integer part of N

k
. Since (X1,N

t0 , X2,N
t0 , · · · , XN,N

t0 ) is exchangeable
and X1

t0
, X2

t0
, · · · , XN

t0
are i.i.d. under PB and bN

k
c−1 ≤ 2k

N
, 1 ≤ k ≤ N , we derive from (2.43)

for F = Ff that

EB log f(X1,N
t0 , X2,N

t0 , · · · , Xk,N
t0 )

≤ logEB[f(X1
t0
, X2

t0
, · · · , Xk

t0
)] +

2c(p)k

1− e−(K2+2K)t0

1

N

N∑
i=1

E|X i,N
0 −X i

0|2(2.44)

+ 2c1pkEB
∫ t0

0

W2(µt, µ̂
N
t )2dt, 0 < f ∈ Bb((Rd)k).

Again using [32, Theorem 1.4.2(2)], we derive (2.34) from (2.32) and (2.44).
(Step (ii)) In general, let b(n) = (−n ∨ bi ∧ n)1≤i≤d, n ≥ 1. Noting that (2.31) holds for

b(n) in place of b, (2.34) follows from Step (i) and an approximation technique.

Remark 2.4. (1) Note that in the present case, the coefficients are only assumed to be
Lipschitz continuous in W2-distance with respect to the measure variable so that [11, Theorem
1] for p = 2 is used to estimate the convergence rate of conditional propagation of chaos,
which depends on the dimension d and seems a little complicated. One can also refer to [5,
Theorem 2.12] for the case q > 4 and X i,N

0 = X i
0, 1 ≤ i ≤ N . However, if we only consider

the special case:

bt(x, µ) =

∫
Rd
b̄t(x, y)µ(dy), σt(x, µ) =

∫
Rd
σ̄t(x, y)µ(dy)

for some Lipschitz continuous functions b̄, σ̄ uniformly in time variable t, the convergence
rate in Theorem 2.3 and Theorem 3.2 below can be improved to be Rd,q(N) = 1

N
and q = 2.

(2) In Theorem 2.3(2), the coefficients before the private noise can depend on the spatial
variable and the initial distribution of interacting particle system (2.30) is allowed to be sin-
gular with that of the conditional McKean-Vlasov SDEs (2.29) since (2.34) only involves in
1
N
W2(L(X1

0 ,X
2
0 ,··· ,XN

0 ),L(X1,N
0 ,X2,N

0 ,··· ,XN,N
0 ))

2. See also [2, 15, 16] for the quantitative propaga-

tion of chaos in relative entropy by the entropy method in the additive noise case and under
the assumption

lim
N→∞

Ent(L(X1,N
0 ,X2,N

0 ,··· ,XN,N
0 )|L(X1

0 ,X
2
0 ,··· ,XN

0 ))

N
= 0.

3 Conditional distribution dependent stochastic Hamil-

tonian system

In this part, we consider conditional distribution dependent stochastic Hamiltonian system
with additive noise, which is a type of degenerate model. More precisely, we consider

(3.1)

{
dX

(1)
t =

{
AX

(1)
t +MX

(2)
t

}
dt,

dX
(2)
t = bt(Xt,LXt|FB

t
)dt+ σtdWt + σ̃t(LXt|FB

t
)dBt, t ∈ [0, T ],
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where Xt = (X
(1)
t , X

(2)
t ), Wt, Bt are given in Section 1, b : [0, T ] × Rm+d ×P(Rm+d) →

Rd, σ : [0, T ]→ Rd⊗RdW , σ̃ : [0, T ]×P(Rm+d)→ Rd⊗RdB are measurable and bounded
on bounded sets, A is an m×m matrix and M is an m× d matrix.

3.1 Log-Haranck inequality

To establish the log-Harnack inequality, we make the following assumption.

(C) (σtσ
∗
t )
−1 is bounded in t ∈ [0, T ], and there exist constants K, K̃ > 0 such that

|bt(x, µ)− bt(y, ν)| ≤ K(|x− y|+ W2(µ, ν)),

‖σ̃t(µ)− σ̃t(ν)‖HS ≤ K̃W2(µ, ν), t ∈ [0, T ], x, y ∈ Rm+d, µ, ν ∈P2(Rm+d).

Moreover, the following Kalman’s rank condition holds for some integer 1 ≤ l ≤ m:

Rank[AiM, 0 ≤ i ≤ l − 1] = m.

By Lemma 1.1, (C) implies that (3.1) is well-posed. As in [14], for any t > 0, we consider
the modified distance

ρt(x, y) :=
√
t−2|x(1) − y(1)|2 + |x(2) − y(2)|2, x = (x(1), x(2)), y = (y(1), y(2)) ∈ Rm × Rd,

and define the associated L2-Wasserstein distance

W2,t(µ, ν) := inf
π∈C (µ,ν)

(∫
Rm+d×Rm+d

ρt(x, y)2π(dx, dy)

) 1
2

, µ, ν ∈P2(Rm+d).

The next theorem characterizes the log-Harnack inequality and the proof is similar to that
of [14, Theorem 3.1] since

∫ s
0
σ̃t(LXt|FB

t
)dBt is deterministic given B. Hence, we will give

an outline of the procedure in the following.

Theorem 3.1. Assume (C). Then there exists a constant c > 0 such that for any 0 <
f ∈ Bb(Rm+d), µ0, ν0 ∈ P2(Rm+d), t ∈ (0, T ] and ξ, ξ̃ ∈ L2(Ω1 → Rm+d,F 1

0 ,P1) with
Lξ = µ0,Lξ̃ = ν0,

E{Ent(LXξ
t |FB

t
|L

X ξ̃
t |FB

t

)} ≤ c

t4l−3
W2,t(µ0, ν0)2 ≤ c(1 ∨ T 2)

t4l−1
W2(µ0, ν0)2,(3.2)

and consequently,

Pt log f(ν0)− logPtf(µ0) ≤ c

t4l−3
W2,t(µ0, ν0)2 ≤ c(1 ∨ T 2)

t4l−1
W2(µ0, ν0)2.(3.3)
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Proof. For any t0 ∈ (0, T ] and µ0, ν0 ∈P2(Rm+d), let Xµ0
0 , Xν0

0 be (Ω1,F 1
0 )-measurable such

that

(3.4) LX
µ0
0

= µ0, LX
ν0
0

= ν0, E[ρt0(X
µ0
0 , Xν0

0 )2] = W2,t0(µ0, ν0)2.

Let Xµ0
t and Xν0

t solve (3.1) with initial value Xµ0
0 and Xν0

0 respectively and let µt, νt, η
µ be

in (2.3) and (2.15). Then (2.16) and (2.17) still hold. For fixed t0 ∈ (0, T ], let

Qt :=

∫ t

0

s(t− s)
t2

e−sAMM∗e−sA
∗
ds, t ∈ [0, t0]

v = Xν0
0 −X

µ0
0 ,

V µ,ν
t0 :=

∫ t0

0

e−rAM
{t0 − r

t0
v(2) +

r

t0

(
ηµt0 − η

ν
t0

)
+ ηνr − ηµr

}
dr,

αt0(s) :=
s

t0

(
ηµt0 − η

ν
t0
− v(2)

)
− s(t0 − s)

t20
M∗e−sA

∗
Q−1
t0

(
v(1) + V µ,ν

t0

)
, s ∈ [0, t0].

(3.5)

Denote Yt = (Y
(1)
t , Y

(2)
t ) the solution to the SDE:

(3.6)

{
dY

(1)
t =

{
AY

(1)
t +MY

(2)
t

}
dt,

dY
(2)
t =

{
bt(X

µ0
t , µt) + α′t0(t)

}
dt+ σtdWt + σ̃t(νt)dBt, Y0 = Xν0

0 .

which combined with (3.5) yields Yt0 = Xµ0
t0 . Let

γs := σ∗s(σsσ
∗
s)
−1
{
bs(Ys, νs)− bs(Xµ0

s , µs)− α′t0(s)
}
, s ∈ [0, t0].

By (C) and [14, (3.17)], there exists a constant c1 > 0 uniformly in t0 ∈ (0, T ] such that

|γs|2 ≤ c1

{
W2(µs, νs)

2 + t
4(1−l)
0 ρt0(X

µ0
0 , Xν0

0 )2 + t
4(1−l)
0 sup

t∈[0,t0]

|ηµt − ηνt |2
}

+ c1t
2−4l
0

(
ρt0(X

µ0
0 , Xν0

0 )2 + sup
t∈[0,t0]

|ηνt − η
µ
t |2
)
, s ∈ [0, t0].

(3.7)

Recall that PB,0 is defined in (2.39). By Girsanov’s theorem,

Ŵt := Wt −
∫ t

0

γsds, t ∈ [0, t0]

is a dW -dimensional Brownian motion under the weighted conditional probability measure
dQB,0 := RdPB,0, where

R := e
∫ t0
0 〈γs,dWs〉− 1

2

∫ t0
0 |γs|2ds.

By (3.6), Ŷt := Yt − (0, ηνt ) solves the SDE{
dŶ

(1)
t =

{
AŶ

(1)
t +MŶ

(2)
t +Mηνt

}
dt,

dŶ
(2)
t = bt(Ŷt + (0, ηνt ), νt)dt+ σtdŴt, t ∈ [0, t0], Ŷ0 = Y0.
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Observe that X̂ν
t := Xν

t − (0, ηνt ) solves the same equation as Ŷt for Wt replacing Ŵt. By the
weak uniqueness and the fact that ηνt is FB

T -measurable, we get

L QB,0
Yt0

= L QB,0

Ŷt0+(0,ηνt0
)

= L PB,0
X̂
ν0
t0

+(0,ηνt0
)

= L PB,0
X
ν0
t0

.

This together with Yt0 = Xµ0
t0 , Young’s inequality and (3.7) yields that we find some constant

c2 > 0 such that for any 0 < f ∈ Bb(Rm+d),

EB,0[log f(Xν0
t0 )] = EB,0[R log f(Yt0)] = EB,0[R log f(Xµ0

t0 )]

≤ logEB,0[f(Xµ0
t0 )] + EB,0[R logR]

= logEB,0[f(Xµ0
t0 )] +

1

2
EQB,0

∫ t0

0

|γt|2dt

≤ logEB,0[f(Xµ0
t0 )]

+ c2

{
t0 sup
s∈[0,t0]

W2(µs, νs)
2 + t3−4l

0 ρt0(X
µ0
0 , Xν0

0 )2 + t3−4l
0 sup

t∈[0,t0]

|ηνt − η
µ
t |2
}
.

By taking expectation with respect to PB, using Jensen’s inequality, we obtain

EB[log f(Xν0
t0 )] ≤ logEB[f(Xµ0

t0 )]

+ c2

{
t0 sup
s∈[0,t0]

W2(µs, νs)
2 + t3−4l

0 Eρt0(X
µ0
0 , Xν0

0 )2 + t3−4l
0 sup

t∈[0,t0]

|ηνt − η
µ
t |2
}
.

Then by Lemma 1.1, (2.16), (2.17), [14, (3.5)], [32, Theorem 1.4.2(2)] and (3.4), we prove
(3.2), which gives (3.3) by (2.28) and [32, Theorem 1.4.2(2)].

3.2 Conditional propagation of chaos

Let N be a positive integer and (X i
0,W

i
t )1≤i≤N , (X i,N

0 )1≤i≤N and Bt be defined in the same
way as in Section 2.2 with m + d replacing d. b : [0, T ] × Rm+d ×P(Rm+d) → Rd, σ :
[0, T ]→ Rd⊗RdW , σ̃ : [0, T ]→ Rd⊗RdB are measurable and bounded on bounded sets, A

is an m×m matrix and M is an m×d matrix. Let X i
t = (X

i,(1)
t , X

i,(2)
t ) solve the conditional

distribution dependent stochastic Hamiltonian system:

(3.8)

{
dX

i,(1)
t =

{
AX

i,(1)
t +MX

i,(2)
t

}
dt,

dX
i,(2)
t = bt(X

i
t ,LXi

t |FB
t

)dt+ σtdW
i
t + σ̃tdBt, t ∈ [0, T ],

and consider the mean field interacting particle system with common noise:

(3.9)

{
dX

i,N,(1)
t =

{
AX

i,N,(1)
t +MX

i,N,(2)
t

}
dt,

dX
i,N,(2)
t = bt(X

i,N
t , 1

N

∑N
i=1 δXi,N

t
)dt+ σtdW

i
t + σ̃tdBt, t ∈ [0, T ],

here X i,N
t = (X

i,N,(1)
t , X

i,N,(2)
t ). Recall that Rd,q(N) is defined in Theorem 2.3.
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Theorem 3.2. Assume (C), E|X1,N
0 |2 < ∞ and E|X1

0 |q < ∞ for some q > 2. Then there
exists a constant C > 0 depending only on d, T and E|X1

0 |q such that for any k ≥ 1 and
k ≤ N , it holds

EEnt(L P
(X1,N

t ,X2,N
t ,··· ,Xk,N

t )|FB
t
|L P

(X1
t ,X

2
t ,··· ,Xk

t )|FB
t

)(3.10)

≤ CkRd,q(N) +
C

t4l−1

k

N
W2(L(X1

0 ,X
2
0 ,··· ,XN

0 ),L(X1,N
0 ,X2,N

0 ,··· ,XN,N
0 ))

2, t ∈ (0, T ].

Proof. Since (C) implies (2.31), (2.32) holds for (3.8)-(3.9) in place of (2.29)-(2.30). We
first assume that b is bounded. Fix t0 ∈ (0, T ]. Let Qt be defined in (3.5) and for s ∈ [0, t0],

αit0(s) := − s
t0

(X
i,N,(2)
0 −X i,(2)

0 )

− s(t0 − s)
t20

M∗e−sA
∗
Q−1
t0

(
(X

i,N,(1)
0 −X i,(1)

0 )

+

∫ t0

0

e−rAM
t0 − r
t0

(X
i,N,(2)
0 −X i,(2)

0 )dr

)
, 1 ≤ i ≤ N.

Again set µt = µit = LXi
t |FB

t
. Construct Y i,N

t = (Y
i,N,(1)
t , Y

i,N,(2)
t ) as

(3.11)

{
dY

i,N,(1)
t =

{
AY

i,N,(1)
t +MY

i,N,(2)
t

}
dt,

dY
i,N,(2)
t = [bt(X

i
t , µt) + (αit0)

′(t)]dt+ σtdW
i
t + σ̃tdBt, Y i,N

0 = X i,N
0 .

Then we have

Y
i,N,(2)
t = X

i,(2)
t + (X

i,N,(2)
0 −X i,(2)

0 ) + αt0(t),

Y
i,N,(1)
t = X

i,(1)
t + eAt(X

i,N,(1)
0 −X i,(1)

0 )

+

∫ t

0

eA(t−s)M [(X
i,N,(2)
0 −X i,(2)

0 ) + αt0(s)]ds, 1 ≤ i ≤ N.

In particular, it holds

Y i,N
t0 = X i

t0
, 1 ≤ i ≤ N.(3.12)

Let

dŴ i
t = dW i

t − γ
i,N
t dt,

γi,Nt = σ∗t (σtσ
∗
t )
−1

[
bt(Y

i,N
t ,

1

N

N∑
i=1

δY i,Nt
)− bt(X i

t , µt)− α′t0(t)

]
, 1 ≤ i ≤ N,

and

Rt = exp

{∫ t

0

N∑
i−1

〈γi,Ns , dW i
s〉 −

1

2

∫ t

0

N∑
i=1

|γi,Ns |2ds

}
.
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Similarly to (3.7) and using the boundedness of b, there exists a constant c0 > 0 such that∫ t0

0

|γi,Ns |2ds ≤ c0

∫ t0

0

(
1 ∧W2(

1

N

N∑
i=1

δY i,Nt
, µt)

2

)
dt+ c0

|X i
0 −X

i,N
0 |2

t4l−1
0

.(3.13)

By Girsanov’s theorem, ((Ŵ i
t )t∈[0,t0])1≤i≤N is an (N × dW )-dimensional Brownian motion

under the conditional probability measure QB,0 = Rt0PB,0. Moreover, (3.11) can be rewritten
as {

dY
i,N,(1)
t =

{
AY

i,N,(1)
t +MY

i,N,(2)
t

}
dt,

dY
i,N,(2)
t = bt(Y

i,N
t , 1

N

∑N
i=1 δY i,Nt

)dt+ σtdŴ
i
t + σ̃tdBt, Y i,N

0 = X i,N
0 , t ∈ [0, t0].

By the weak uniqueness, it holds

L QB,0

{Y i,Nt }1≤i≤N
= L PB,0

{Xi,N
t }1≤i≤N

, t ∈ [0, t0].

This together with (3.12) implies

EB,0f(X1,N
t0 , X2,N

t0 , · · · , XN,N
t0 ) = EB,0[Rt0f(Y 1,N

t0 , Y 2,N
t0 , · · · , Y N,N

t0 )]

= EB,0[Rt0(X
1
t0
, X2

t0
, · · · , XN

t0
)], f ∈ Bb((Rm+d)N).

Note that

EQB,0W2(
1

N

N∑
i=1

δY i,Nt
, µt)

2 = EB,0W2(
1

N

N∑
i=1

δXi,N
t
, µt)

2.

Combining this with Young’s inequality and (3.13), we can find a constant c > 0 such that

EB,0 log f(X1,N
t0 , X2,N

t0 , · · · , XN,N
t0 )

≤ logEB,0[f(X1
t0
, X2

t0
, · · · , XN

t0
)] +

1

2
EQB,0

∫ t0

0

N∑
i=1

|γi,Ns |2ds

≤ logEB,0[f(X1
t0
, X2

t0
, · · · , XN

t0
)]

+ c

N∑
i=1

EB,0
∫ t0

0

W2(
1

N

N∑
i=1

δXi,N
t
, µt)

2dt+ c

N∑
i=1

|X i
0 −X

i,N
0 |2

t4l−1
0

, 0 < f ∈ Bb((Rm+d)N).

Repeating the same argument to derive (2.44) from (2.42), we obtain

EB log f(X1,N
t0 , X2,N

t0 , · · · , Xk,N
t0 )

≤ logEB[f(X1
t0
, X2

t0
, · · · , Xk

t0
)]

+ 2ck

{
EB
∫ t0

0

W2(
1

N

N∑
i=1

δXi,N
t
, µt)

2dt+

∑N
i=1 E|X i

0 −X
i,N
0 |2

Nt4l−1
0

}
, 0 < f ∈ Bb((Rm+d)k).

Again using [32, Theorem 1.4.2(2)] and (2.32), we derive (3.10) when b is bounded. Finally,
by the same approximation technique in (Step (ii)) in the proof of Theorem 2.3(2), we
obtain the desired result for general b.
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