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Abstract

The notion of leaders of labeled rooted trees was introduced by Seo. A vertex
in a labeled rooted tree is called a leader if it has no smaller descendants. We
present an algorithm which leads to a bijection between labeled rooted trees and
integer sequences a1 · · · an−1 with ai ∈ {1, 2, . . . , n} such that the number of leaders
is exactly one more than the number of anti-excedances, namely, the positions i
for which ai ≤ i. Our bijection gives a refinement of an identity of Gessel and Seo
which takes the degree of 2 into account. By taking the reverse complement of a
sequence, we obtain a combinatorial interpretation of a symmetry property on the
enumeration of forests by the number of leaders and the number of components.
This question was raised by Gessel and Seo. Applying a theorem of Lyapunov,
we show that the distribution of the number of leaders of a random rooted tree is
asymptotically normal.
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1 Introduction

Throughout the paper, we consider labeled rooted trees in which each vertex is given
a unique integer label. Especially, a tree on [n] = {1, 2, . . . , n} refers to a tree with n
vertices labeled by 1, 2, . . . , n. A vertex u is called a descendant of a vertex v if v is in
the path from u to the root. A vertex v of a tree T is called a leader (or proper vertex by
Seo [19]) if v is smaller than all its descendants. Note that a leaf itself is regarded as a
leader. The set of leaders, the number of leaders and the degree of a vertex v (the number
of children of v) are denoted by Lead (T ), lead (T ), and degT (v), respectively.

The number of leaders turns out to be an important statistic for the enumeration of
rooted trees. The well-known formula of Cayley [2] states that the number of rooted
labeled trees with n vertices equals nn−1. Gessel and Seo [6] discovered the following
remarkable generalization of Cayley’s formula:∑

T

ulead (T )cdegT (1) = cu2

n−2∏
i=1

(i+ (n− 1− i)u+ cu), (1.1)
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where T ranges over all trees on [n] with root 1. Callan [1] provided an involution to count
the number of forests of unrooted trees on [n] with respect to the number of leaders. Guo
and Zeng [7] noticed that the generating function of plane trees with respect to the number
of younger children and the number of elder children has a similar form to (1.1). Chen
and Peng [3] gave a combinatorial interpretation.

The notion of leaders was introduced by Seo in his combinatorial proof of Postnikov’s
hook length formula [15]:

n!

2n

∑
T

∏
v∈V (T )

(
1 +

1

h(v)

)
= (n+ 1)n−1, (1.2)

where T ranges over all unlabeled binary trees on n vertices, V (T ) is the vertex set,
and h(v) is the number of descendants of v under the convention that v is counted as a
descendant of itself. Seo [19] found a proof of (1.2) by using the generating function (1.3)
for labeled trees with respect to the number of leaders. For other combinatorial proofs
of Postnikov’s identity and its generalizations, see Seo [19], Chen and Yang [4], Du and
Liu [5], Liu [13], Shin and Zeng [21], Han [9], and Kuba and Panholzer [11,12].

Gessel and Seo [6] counted various kinds of labeled rooted trees and forests by the
number of leaders. They obtained the corresponding generating functions by establishing
and solving differential equations. Let a1a2 · · · an−1 be the reverse Prüfer code of a tree.
Seo and Shin [20] showed that among the n choices of ai, there are exactly i choices
leading to a new leader. By this observation, they gave a combinatorial interpretation for
(1.1) and for other generating functions. However, from a given Prüfer code or a given
reverse Prüfer code, it appears that the number of leaders cannot be directly deduced
without explicitly constructing the tree from the code.

The main objective of this paper is to present a bijection between rooted trees and
sequences a1 · · · an−1 with ai ∈ [n] such that the number of leaders of a tree can be easily
determined from the corresponding sequence. For this purpose, we introduce an insertion
algorithm on rooted trees. Given a sequence a1 · · · an−1, the algorithm constructs a tree
recursively starting from the rooted tree with only one vertex 1. In each step, we either
add a new maximum leaf or insert a vertex above the maximum leaf. It is shown that
the algorithm builds up a bijection between trees and sequences such that the number of
leaders is exactly one more than that of anti-excedances, i.e., the positions i’s satisfying
ai ≤ i. Moreover, the number of children of the vertex 1 coincides with the number of
1’s appearing in the corresponding sequence. Thus the relation (1.1) follows immediately
from our bijection. A further consideration leads us to a refinement of (1.1) by taking
the degree of the vertex 2 into account, see Theorem 2.3. Moreover, by taking the reverse
complement, namely, ai → (n+1)−an−i, we are led to a combinatorial interpretation for
the symmetry relation due to Gessel and Seo that the number of trees with j non-leaders
is equal to the number of trees with j + 1 leaders.
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The insertion algorithm can be easily extended to forests, k-ary trees, k-colored ordered
trees and k-colored ordered forests. The corresponding bijections lead to combinatorial
proofs for the formulas obtained by Gessel and Seo using generating functions (see [6]).
In particular, the bijection for k-ary trees implies that

∑
U

ulead (U) = u

n−1∏
i=1

(
(n− i)k + (ki− i+ 1)u

)
, (1.3)

where U ranges over all k-ary trees on [n]. Consequently, Postnikov’s formula (1.2) can
be deduced from (1.3) by taking k = u = 2. In fact, among the n! ways of labeling an
unlabeled binary tree, there are exactly

n!∏
v∈S h(v)

of them such that all the vertices in S are leaders. When S = [n], the above formula
reduces to the formula for the number of increasing labelings of a binary tree [18, Formula
(4)]. Thus,

n!
∑
T

∏
v∈V (T )

(
1 +

1

h(v)

)
=

∑
T

∑
S⊆V (T )

n!∏
v∈S h(v)

=
∑
T ′

∑
S⊆Lead (T ′)

1 =
∑
T ′

2lead (T ′),

where T ′ ranges over all labeled binary trees on [n] .

Adopting the notation in [6], we denote by tree (F ) the number of components (trees)
in a forest F and define

Pn(a, b, c) =
∑
F

an−lead (F )blead (F )−tree (F )ctree (F ),

where F ranges over all forests on [n]. Like the case of rooted trees, the operation of
reverse complement leads to a simple bijective proof for the symmetry relation Pn(a, b, c) =
Pn(b, a, c) for forests. This question was raised by Gessel and Seo [6].

The last section deals with the distribution of the number of leaders in a random
rooted trees on [n]. By a theorem of Lyapunov, we show that the limiting distribution is
normal.

2 An Insertion Algorithm for Rooted Trees

In this section, we present an insertion algorithm which bijectively maps the sequences
a1a2 · · · an−1 with ai ∈ [n] to the labeled trees on [n]. This bijection has many features
compared with the classical Prüfer code. In Prüfer’s bijection, one adds a leaf at every
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step in the construction of a tree from a sequence. While in our insertion algorithm,
there are two kinds of operations. One may add a leaf or insert an inner vertex on a leaf
edge, that is, an edge associated with a leaf. Prüfer’s code records the labeling of the
parent vertex and hence preserves the information of the degrees of vertices. Our bijection
focuses on the ordering of the labels of vertices in order to keep track of the number of
leaders, as described in the following theorem.

Theorem 2.1. There is a bijection between trees on [n] and integer sequences a1 · · · an−1

with ai ∈ [n] such that the number of leaders is exactly one more than that of i’s satisfying
ai ≤ i in the corresponding sequence. Further more, the degree of the vertex 1 in a tree
equals the number of appearances of 1’s in the corresponding sequence.

Proof. The bijective map ϕ from sequences to trees is given by the insertion algorithm
described as follows.

Initially, we have a tree T0 which consists of only one vertex, the root 1. Suppose
that we have constructed the tree Tk−1 with k vertices and label set Sk−1 ⊆ [n]. Now
let us construct Tk from Tk−1 according to ak, denoted by (Tk−1, ak) → Tk. There are
two cases: either (a) ak ≤ k or (b) ak > k. For case (a), we add a child to the ak-th
vertex of Tk−1 (vertices are ordered by their labels) and label the child by the smallest
unused label, i.e., the smallest element in [n] \ Sk−1. For case (b), we insert a vertex
above the largest leaf of Tk−1 and label the new vertex by the (ak − k)-th element in
[n] \ Sk−1 = {l1 < l2 < · · · < ln−k}. For examples, see Figure 2.1 where the new vertices
are represented by empty circles. Repeating the above procedure, we finally get a tree
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b

b

b
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−→ b

b

b

b
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Case (a)
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b

b

b

1

7

6

2

5

Case (b)

Figure 2.1: The two cases in the construction.

Tn−1 with label set [n]. Now define ϕ(a1a2 · · · an−1) = Tn−1.

Notice that in the insertion algorithm, we have used the greedy algorithm in the sense
that at each stage when a leaf is added, we always give the minimum available label to
the added leaf. Therefore the trees Tk (0 ≤ k ≤ n− 1) have the greedy property: If j is a
leaf of Tk, then [j] ⊆ Sk, i.e., all labels less than or equal to j appear in Tk. We call such
a tree a greedy tree. As we will see below, the greedy property enables us to count the
number of leaders based on the corresponding sequence.
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Let T be a greedy tree with label set S ⊆ [n] and j its largest leaf. Unless the trivial
case (T = T0), the vertex j has always a parent j′. Now consider the tree T ′ obtained
from T by removing the leaf j. Either T ′ is a greedy tree, or j′ is a leaf of T ′ and
[j′] ̸⊆ S \ {j}. In the former case, let a be the ordering of j′ in the label set of T ′. Then
we have (T ′, a) → T as in case (a). In the latter case, let T ′′ be the tree obtained from T ′

by changing the label j′ into j. Since [j′] ̸⊆ S \ {j} but [j] ⊆ S, it holds that j′ > j and
thus T ′′ is a greedy tree. Let S ′′ be the label set of T ′′ and a the number of vertices of T ′′

plus the ordering of j′ in [n] \ S ′′. Then we have (T ′′, a) → T as in case (b). In summary,
given a greedy tree T with at least two vertices, there always exist a greedy tree T ′ and
an integer a ∈ [n] such that (T ′, a) → T . Notice further that all trees with label set [n]
are greedy trees and that the only greedy tree with one vertex is T0. We thus derive that
ϕ is surjective.

Let T be a greedy tree as above. Suppose that we have two ways to construct T :
(T ′, a′) → T and (T ′′, a′′) → T . If both of the constructions are of case (a), then T ′ = T ′′

is the unique tree obtained by removing the largest leaf from T and thus a′ = a′′. If both
of the constructions are of case (b), then we also have T ′ = T ′′ is the unique tree obtained
by removing the parent vertex of the largest leaf from T and thus a′ = a′′. Finally, suppose
that one construction is of case (a) and the other is of case (b). Then the tree obtained
by removing the largest leaf from T is both a greedy tree and a non-greedy tree, which is
a contradiction. Therefore, the mapping ϕ is injective. Recall that we have proved that
ϕ is surjective. Thus we know that ϕ is a bijection.

Now we will show that for 0 ≤ k ≤ n − 1, the number of leaders of Tk is exactly one
more than that of i’s satisfying ai ≤ i in the sequence a1 · · · ak. We prove it by induction
on k. Clearly the statement holds for k = 0. Suppose that it holds for k − 1.

If ak ≤ k, then Tk is obtained from Tk−1 by adding one leaf. Therefore, if a vertex j
is not a leader of Tk−1, it is also not a leader of Tk. Conversely, we will show that if a
vertex j ∈ Tk−1 is a leader then it is also a leader of Tk. Suppose on the contrary that j
is a leader of Tk−1 but not a leader of Tk. This happens only when the label for the new
leaf is less than j, i.e., the smallest integer in [n]\Sk−1 is less than j. Let j′ be any leaf in
the subtree consisting of all the descendants of j in Tk−1. Since j is a leader of Tk−1, we
have j < j′ and hence by the greedy property [j] ⊂ [j′] ⊆ Sk−1, which is a contradiction.
Thus, Tk has exactly one more leader than Tk−1, i.e., the new leaf.

If ak > k, then Tk is obtained from Tk−1 by inserting a vertex above the largest leaf.
Since the label of the new vertex is larger than the label of the largest leaf by the greedy
property, the insertion does not change the number of leaders.

Summarizing, we prove that the assertion holds for k. Notice that k = n − 1 means
that the number of leaders of a tree is exactly one more than that of i’s satisfying ai ≤ i
in the corresponding sequences.

Finally, since 1 is the minimal vertex in Tk−1, we add a child to the vertex 1 if and
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only if ak = 1. Thus, the number of children of 1 equals the number of 1’s appearing in
the sequence a1 · · · an−1.

Here is an example for n = 7 and the code 3, 5, 2, 4, 3, 7. The corresponding tree is
constructed as in Figure 2.2.

b
1

−→
3 3

1

−→
5

3

5

1

−→
2

b

b

b

3

5

1

2
−→
4

b

b

b

b

3

5

1

2

4

−→
3

b

b

b

b

3

5

1

2

4

6 −→
7

3

5

1

2

4

7

6

Figure 2.2: The tree corresponding to the sequence (3, 5, 2, 4, 3, 7).

The bijection immediately leads to the generating function for the number of leaders:

Corollary 2.2. We have

∑
T

ulead (T ) = u

n−1∏
i=1

(iu+ (n− i)), (2.1)

where T ranges over all trees on [n].

It is well-known that the Prüfer code records the degrees of each vertex. Although our
bijection does not, we can read out the degrees of vertex 1. In fact, we have the following
generalization of the identity (1.1).

Theorem 2.3. We have

∑
T

ulead (T )x
degT (1)
1 x

degT (2)
2 = x1u

2

n−2∏
i=1

(x1u+ x2u+ (i− 1)u+ (n− 1− i)), (2.2)

where T ranges over all trees on [n] with root 1.

Proof. Notice that the labeled trees with root 1 are in one-to-one correspondce to the
sequences 1a2 · · · an−1 by the insertion algorithm. Furthermore, 2 is the second minimal
vertex in Ti for i ≥ 1. As in the proof of Theorem 2.1, the number of children of 2 equals
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the number of ocurrences of 2’s in the sequence 1a2 · · · an−1. Thus the bijection implies
that ∑

T

ulead (T )x
degT (1)
1 x

degT (2)
2

= x1u
2 · (x1u+ x2u+ (n− 2)) · (x1u+ x2u+ u+ (n− 3)) (2.3)

· · · (x1u+ x2u+ (n− 3)u+ 1)

= x1u
2

n−2∏
i=1

(x1u+ x2u+ (i− 1)u+ (n− 1− i)), (2.4)

as desired.

Now, the identity (1.1) follows immediately by setting x2 = 1 in the identity (2.2).

When defining the sequence a′i via a′i = (n+ 1)− an−i, then it holds

an−i > n− i ⇐⇒ a′i ≤ i.

Therefore, by taking the reverse complement ai → (n+1)−an−i, we deduce the following
symmetry property.

Corollary 2.4. The number of trees on [n] with j non-leaders is equal to that of trees
with j + 1 leaders.

It should be noted that the above symmetry is also a consequence of Corollary 2.2.
Let [un]f(u) denote the coefficient of un in the expansion of f(u). We see that

[un−j]u
n−1∏
i=1

(iu+ (n− i)) = [uj]unu−1

n−1∏
i=1

(iu−1 + (n− i)) = [uj+1]u
n−1∏
i=1

(iu+ (n− i)).

The concept of leaders of a tree can be naturally generalized to forests. We say a
vertex is a leader of a forest F if it is a leader of a certain tree (i.e., connected component)
in F . Define the multi-variable generating function Pn(a, b, c) for forests by

Pn(a, b, c) =
∑
F

an−lead (F )blead (F )−tree (F )ctree (F ),

where F ranges over labeled forests on [n], lead (F ) is the number of leaders in F , and
tree (F ) denotes the number of trees of F . As pointed by Gessel and Seo [6], Corollary 2.4
implies a general symmetry Pn(a, b, c) = Pn(b, a, c), which can be done by applying the
operation of reverse complement to each tree in F .
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3 Forests

Slight modifications of the insertion algorithm for trees lead to the bijections for other
types of trees and forests. The principle remains the same, that is, adding a leaf whenever
the code is no more than the total number of ways of adding a new leaf to a certain vertex
and inserting an inner vertex above the largest leaf otherwise. The only difference lies in
that for different types of trees and forests, we have different number of ways of adding a
leaf and inserting an inner vertex.

We first consider the bijection for forests. They are in one-to-one correspondence to
the sequences a1a2 · · · an−1 with ai ∈ {0, 1, . . . , n} using the same algorithm as trees. We
need only notice that for ai = 0 we add a new tree with the root labeled by the minimal
unused label. Then the number of trees and the number of leaders equals one more than
that of 0’s and anti-excedances in the sequence, respectively. Let tree (F ) denotes the
number of trees in F . The bijection implies the generating function formula∑

F

blead (F )ctree (F ) = bc

n−1∏
i=1

((n− i) + ib+ bc),

which can be written in the following homogeneous form.

Theorem 3.1. We have∑
F

an−lead (F )blead (F )−tree (F )ctree (F ) = c
n−1∏
i=1

(ia+ (n− i)b+ c), (3.1)

where F ranges over all forests on [n].

Equation (3.1) was proved by Gessel-Seo [6] and Moon-Yang [14] using algebraic meth-
ods. Here we give a combinatorial approach.

Recall that the left hand side of (3.1) is denoted by Pn(a, b, c). Using the above coding
for forests, we derive a simple bijective proof for the symmetry of Pn(a, b, c) = Pn(b, a, c),
which is a generalization of Corollary 2.4. In fact, let a1a2 · · · an−1 be the code of a forest
Fa. Set

bi =

{
0, if an−i = 0,

n+ 1− an−i, otherwise,

and denote by Fb the forest corresponding to the sequence b1b2 · · · bn−1. Then we have

tree (Fb) = tree (Fa), and n− lead (Fb) = lead (Fa)− tree (Fa).

We have seen in Section 2 that the symmetry can also be deduced by applying the
bijection for trees to each tree in a forest. Such a bijection preserves the labels in each
tree. While the above bijection change the labels globally.
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For example, the forests corresponding to a = (4, 0, 3, 1, 2) and b = (5, 6, 4, 0, 3) are
shown in Figure 3.1. We see that both Fa and Fb consist of two trees. Fa has one non-leader
and lead (Fa)− tree (Fa) = 3, while Fb has three non-leaders and lead (Fb)− tree (Fb) = 1.

4

1 3

5

2

6

Fa

5

6

2

1

3

4

Fb

Figure 3.1: The forests Fa and Fb. Leaders are marked by empty circles.

4 k-Ary Trees

In this section, we consider the bijection between k-ary trees and sequences a1a2 · · · an−1

with ai ∈ [nk − i + 1]. Similar to the case of ordinary trees, the number of leaders is
one more than that of i’s satisfying ai ≤ ki− i+ 1. This bijection leads to combinatorial
proofs for Theorems 4.1 and 4.2.

A k-ary tree is a labeled tree such that each vertex has at most k children and each
child of a vertex is designated as its first, second, . . . , or k-th child. Clearly, for a vertex
of degree d, we have k−d ways to add a new child. Hence, for a k-ary tree with i vertices,
we have

∑
(k − d) = ki − (i − 1) ways to add a new leaf. Moreover, we have k ways to

insert a vertex with a fixed label above the largest leaf, i.e., designate the largest leaf as
the first, the second, . . . , or the k-th child of the new vertex. Thus, a k-ary tree is in
one-to-one correspondence to the sequence a1a2 · · · an−1 with ai ∈ [nk − i + 1] and the
number of leaders is one more than that of i’s satisfying ai ≤ ki− i+ 1, which implies a
result of Seo [19, Corollary 7] (see also [6, Theorem 7.1]).

Theorem 4.1. We have∑
U

ulead (U) = u
n−1∏
i=1

(
(n− i)k + (ki− i+ 1)u

)
, (4.1)

where U ranges over all k-ary trees on [n].

In [6], Gessel and Seo defined the decomposing path of a k-ary tree as follows. Starting
from the root, the path goes always to the first child unless the vertex is a non-leader
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(or an improper vertex by Gessel and Seo) and its smallest descendant is a descendant of
its first child. In the later case, the path goes to the second child. As in Section 2, we
denote by T0, T1, . . . , Tn−1 the successive trees in the construction. One can verify that
the length of the decomposing path of Ti is the same as or one more than that of Ti−1.
Moreover, among the nk − i+ 1 possible values of ai, there exists one and only one such
that the length increases by one. Thus we recover Theorem 7.3 in [6].

Theorem 4.2. For k > 1 we have

∑
T

vn−lead (T )ulead (T )−comp (T )wcomp (T ) = w

n−1∏
i=1

(
(n− i)kv + i(k − 1)u+ w

)
,

where T ranges over all k-ary trees on [n] and comp (T ) denotes the number of vertices
on the decomposing path of T .

5 k-Colored Ordered Trees and Forests

At last, we provide the insertion algorithms for k-colored ordered trees and forests. We will
see that k-colored ordered trees are in one-to-one correspondence to sequences a1a2 · · · an−1

with ai ∈ [nk + i − 1] and the number of leaders is exactly one more than that of i’s
satisfying ai ≤ ki+ i−1. The bijection for k-colored ordered forests leads to Theorem 5.3,
which is the analogue of Theorem 3.1.

An ordered tree is a labeled tree such that the children of each vertex are linearly
ordered. A k-colored ordered tree is an ordered tree such that each edge is colored in
colors 1, 2, . . . , k and that among the children of any vertex, those joint with edges of
color i precede those joint with edges of color j for i < j. We remark that k-colored
ordered trees have also been studied under the notion of k-bundled ordered trees, see [10]
for example. A k-colored ordered forest is a forest of k-colored ordered trees such that
the roots are linearly ordered.

The generating functions for k-colored ordered trees and forests are given by the
following two theorems. Moon and Yang [14, Theorem 2] gave an equivalent result on
k-colored ordered trees based on a recurrence relation. We provide combinatorial proofs
for these two theorems.

Suppose a vertex has rj children joint with edges of color j. Then we have rj + 1
ways to add a new child joint with an edge of color j. Therefore, for a vertex of degree
d, we have

∑
(rj + 1) = d + k different ways to add a new child. Hence, for a k-colored

ordered tree with i vertices, we have ki+ i−1 ways to add a new leaf. Moreover, we have
only k ways to insert a vertex with a fixed label above the largest leaf, i.e., to choose a
color for the edge. Therefore, k-colored ordered trees are in one-to-one correspondence
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to sequences a1a2 · · · an−1 with ai ∈ [nk + i− 1] and the number of leaders is exactly one
more than that of i’s satisfying ai ≤ ki+ i− 1.

Thus we have the following theorem.

Theorem 5.1. We have

∑
T

ulead (T ) = u

n−1∏
i=1

(
(n− i)k + (ki+ i− 1)u

)
, (5.1)

where T ranges over all k-colored ordered trees on [n].

We have shown that for a k-colored ordered tree with t vertices, there are kt + t − 1
different ways to add a new leaf. Hence for a k-colored ordered forest with i vertices, we
have

∑
(tk+ t− 1) = (k+1)i− c different ways to add a new leaf, where c is the number

of trees. Since the roots are linearly ordered, there are c + 1 ways to insert a new root.
Thus altogether we have (k+1)i+1 ways to add a new root or a new leaf. Moreover, we
have k ways to insert a vertex with a fixed label above the maximal leaf. We are led to
the following theorem.

Theorem 5.2. We have

∑
F

ulead (F ) = u
n−1∏
i=1

(
(n− i)k + (ki+ i+ 1)u

)
, (5.2)

where F ranges over all k-colored ordered forests on [n].

Similar to the case of trees, the forests Fi have the greedy property. So the minimal
unused label is greater than the minimal label in each tree of Fi. Let Si be the sequence
of the minimal element of each tree of Fi. Then the number of left-to-right minima of Si

is equal to or one more than that of Si−1. Moreover, if and only if we insert a new tree in
front of the other trees, the number increases by one. Thus we have given a combinatorial
proof of Theorem 8.3 in [6].

Theorem 5.3. We have

∑
F

un−lead (F )vlead (F )−comp (F )wcomp (T ) = w
n−1∏
i=1

(
(n− i)ku+ i(k + 1)v + w

)
,

where F ranges over all k-colored ordered forests on [n] and comp (F ) is the number of
left-to-right minima in the sequence consisting of the smallest element of each tree of F .
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6 The Limiting Distribution

In this section, we investigate the limiting distribution of the number of leaders under the
equiprobable model. We assume that each of the nn−1 labeled rooted trees on [n] occurs
with probability 1/nn−1 and define the random variable ξn as the number of leaders in a
tree. We will consider the limiting distribution of ξn as n tends to infinity.

The bijection given in Section 2 implies that

ξn = 1 +
n−1∑
i=1

ξn,i =
n∑

i=1

ξn,i, (6.1)

where ξn,i are independent Bernoulli distributions with pn,i = i/n, i.e.,

Prop {ξn,i = 1} = i/n and Prop {ξn,i = 0} = (n− i)/n, ∀ 1 ≤ i ≤ n.

The random variables ξn,i form a Poisson sequence [17, p. 23]. The mean and the variance
of ξn can be easily computed:

E ξn =
n∑

i=1

E ξn,i =
n∑

i=1

i/n = (n+ 1)/2,

Var ξn =
n∑

i=1

Var ξn,i =
n∑

i=1

i(n− i)/n2 = (n2 − 1)/6n.

As a corollary of Lyapunov’s theorem, we have [17, p. 23]

Lemma 6.1. Let Xn,i be a Poisson sequence with P{Xn,i = 1} = pn,i and

B2
n =

n∑
i=1

pn,i(1− pn,i), ηn = B−1
n

n∑
i=1

(Xn,i − pn,i).

If Bn → ∞ as n → ∞, then the sequence {ηn} is asymptotically normal with parameters
(0, 1).

Applying the lemma to ξn,i, we obtain the following limiting distribution of ξn.

Theorem 6.2. Let ξn be the number of leaders of a random equiprobable labeled rooted
tree on [n]. Then the distribution of the random variable

ηn =

(
ξn −

n+ 1

2

)/√
n2 − 1

6n

converges to the standard normal distribution as n → ∞.
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