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Abstract: Seals, sea lions, and other aquatic animals rely on their whiskers to identify and track 14 

underwater targets, offering valuable inspiration for the development of low-power, portable, and 15 

environmentally friendly sensors. We design a single seal-whisker-like cylinder and conduct exper- 16 

iments to measure the forces acting on it with 9 different upstream targets. Using sample sets con- 17 

structed from these force signals, a convolutional neural network (CNN) is trained and tested. The 18 

results demonstrate that combining the seal whisker style sensor with CNN enables the identifica- 19 

tion of objects in the water in most cases, although there may be some confusion for certain targets. 20 

Increasing the length of the signal samples can enhance the results but may not eliminate these 21 

confusions. Our study reveals that high frequencies (greater than 5Hz) are irrelevant in our model. 22 

Lift signals present more distinct and distinguishable features than drag signals, serving as the pri- 23 

mary basis for the model to differentiate between various targets. Fourier analysis indicates that the 24 

model's efficacy in recognizing different targets heavily relies on the discrepancies in the spectral 25 

features of the lift signals. 26 

Keywords: biomimetics, harbor seal whiskers, convolution neural network, underwater detection, 27 

shape classification 28 

 29 

1. Introduction 30 

The underwater detection technology has a wide range of applications in marine re- 31 

source development, environmental protection, military reconnaissance, and more. Com- 32 

mon underwater detection methods include sonar based on ultrasound and vision based 33 

on optics. However, both techniques require a large, heavy platform and lead to substan- 34 

tial energy consumption [1,2] Furthermore, sonar detectors may harm aquatic animals 35 

that rely on sonar positioning, such as whales [3]. Optical-based vision methods may re- 36 

quire additional lighting devices to be used in dark and turbid waters [4]. On the other 37 

hand, many marine animals have the natural ability to perceive their surroundings and 38 

environment by sensing water flow disturbances through their whiskers, particularly for 39 

low-frequency signals. Inspired by this, researchers have endeavored to mimic marine 40 

organisms’ whiskers and develop sensors that passively detect changes in water flow to 41 

perceive their surroundings. Compared to traditional sonar systems, these sensors offer 42 

advantages such as low energy consumption, minimal environmental impact, easy 43 

maintenance, and portability. 44 
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Pinnipeds, such as seals and sea lions, have demonstrated remarkable abilities in 45 

tracking prey. In a study, the reaction of harbor seals to hydrodynamic stimuli was exam- 46 

ined, revealing their capability to detect water velocity as low as 245 μm/s [5]. Even blind- 47 

folded, seals could follow the trail of a small submarine with a wake defect velocity of 48 

approximately 2 m/s for up to 20 seconds [6]. Compared to harbor seals, sea lions exhibit 49 

lower sensitivity, which is attributed to the unique wave-like shape of the harbor seal’s 50 

whiskers [7]. The noise generated by vortex-induced vibrations may mask the weak wake 51 

vortex signals of fish. However, the suppression of these vibrations by seal whiskers re- 52 

duces noise, improves the signal-to-noise ratio, and enhances the detection capabilities of 53 

the whiskers. The special shape of seal whiskers, characterized by a wavy surface and 54 

elliptical cross-section, was found to contribute to the suppression of vortex-induced vi- 55 

brations [8,9]. Morrison et al. [10] conducted a numerical study of the ability of harbor seal 56 

whiskers to identify wakes at Re = 500 by using the lattice Boltzmann method (LBM). They 57 

revealed that the turbulent kinetic energy of the wake is an order of magnitude lower in 58 

the case of the vibrissa-shaped cylinder compared to the circular cylinder. Further re- 59 

search compared the vibrissa-shaped cylinder with cylinders of different shapes, includ- 60 

ing elliptical cylinders and wave-shaped cylinders, all with the same hydrodynamic di- 61 

ameter. The study utilized Particle Image Velocimetry (PIV) technology at Re = 1800 and 62 

observed a considerably reduced recirculation zone in the nodal plane, decreased velocity 63 

fluctuation intensities, and the presence of stable reversed flow in the vibrissa-shaped cyl- 64 

inder compared to the other three systems [11]. Furthermore, the vibrissa-shaped cylinder 65 

exhibited significant suppression of vortex-induced vibrations even at Re ≈ 50000 [12]. 66 

Gong et al. [13] examined how artificial disturbances like flapping paddles notably alter 67 

lift forces on harbor seal vibrissae but have little effect on cylinders. Zhao et. al. [14] ex- 68 

perimentally investigated the vibration responses, spectral frequencies, and fluid forces 69 

of the whisker model right downstream of a fixed cylinder and a flapping caudal fin at 70 

different angles of attack. 71 

Over the past decade, significant progress has been made in the development of sen- 72 

sors inspired by sea whiskers. A Micro-Electro-Mechanical System artificial whisker sen- 73 

sor was proposed that was able to detect minute disturbances underwater with a velocity 74 

detection limit as low as 193μm/s [15]. An array of whisker-style sensors was designed 75 

and successfully detected the same hydrodynamic disturbances that triggered changes in 76 

the seal’s tracking behavior [16]. Compared with a circular cylinder, the wake of the seal- 77 

vibrissa-shaped cylinder was found to present more stable three-dimensional separation, 78 

a longer vortex formation length, and a weaker vortex strength in the large eddy simula- 79 

tion framework at a Re=20000 [17]. Verma et al. [18] combined numerical simulations and 80 

Bayesian experiments to determine the optimal placement of shear and pressure sensors, 81 

aiming to identify the location of disturbance sources more effectively. Additionally, 82 

Zheng et al. [19] conducted numerical simulations to study the noise generated by nine 83 

different shapes of seal whisker-style cylinders affected by vortex-induced vibrations, 84 

aiming to improve biomimetic sensing cylinder models. 85 

To determine the shape and position of obstacles ahead based on the flow signals 86 

sensed by seal-whisker-style cylinders, one may need to solve the inverse problem of the 87 

three-dimensional fluid-structure problem. It typically exhibited high complexity and 88 

nonlinearity, making it difficult and computationally intensive to solve, and often requir- 89 

ing the solution of ill-posed problems. However, animals can accurately sense the desired 90 

results through their whiskers without complex "calculations."  This has led to the prom- 91 

ise of using deep learning models inspired by biological neural networks. Deep learning 92 

has now found a wide range of applications in science and engineering, offering excep- 93 

tional versatility in mapping complex nonlinear relationships without the need for strong 94 

prior assumptions about the model structure. Carrillo et al. [20] utilized artificial neural 95 

networks (ANNs) and two-dimensional lattice Boltzmann numerical simulation methods 96 

to estimate the position and size of obstacles in pipe flow. They used dynamic pressure 𝑞 97 

or the x-component of velocity 𝑣𝑥  profiles to learn obstacle dimensions and locations. 98 
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Lakkam et al. [21] employed ANNs to determine shape parameters of complex-shaped 99 

hydrofoils in uniform flow, utilizing data from a potential flow model with 25 sensor ar- 100 

rays Du et al. [22] predicted Reynolds numbers and cylinder positions using a multi-layer 101 

perceptron neural network based on velocity fields calculated by a computational fluid 102 

dynamics model. While numerous works have proposed predicting location and other 103 

information using neural networks based on experimental data, most of these studies fo- 104 

cus on artificial lateral lines. Zheng et al. [23] predicted the dipole source positions two 105 

body lengths away using a Generalized Regression Neural Network with nine sensing 106 

points distributed in a cross shape. Wolf et al. [24] used eight two-dimensional sensing 107 

points to measure flow field velocity and predicted the location, distance, and direction 108 

of obstacles using an Extreme Learning Machine neural network. Pu et al. [25] explored 109 

the localization of dual vibration sources using multi-layer perceptron networks based on 110 

air pressure values obtained from sensing points and studied the impact of sensor layout 111 

and quantity on localization results. Bodaghi et al. [26] employed a computational fluid- 112 

structure interaction model combined with a deep-learning approach to decode the intri- 113 

cate mechanisms of seal whisker sensing, predicting the location and orientation of obsta- 114 

cles based on whisker array signals. 115 

Although there have been many works on obstacle detection sensors that incorporate 116 

AI algorithms, most of these studies focus on the recognition capabilities of sensor arrays. 117 

We believe that a thorough understanding of the recognition capabilities and underlying 118 

mechanisms of individual whiskers is essential for optimizing whisker arrays. However, 119 

current research on this topic is still limited. In this paper, we aim to experimentally meas- 120 

ure the response and time evolution of lift and drag forces of a single seal whisker-style 121 

cylinder to excitations caused by upstream obstacles. Additionally, we construct a convo- 122 

lutional neural network (CNN) to explore the recognition capability of the model. 123 

The paper is organized as follows. Section 2 introduces the experimental setup and 124 

procedures, as well as the structure and training settings of the CNN model used in the 125 

study. Section 3 presents the CNN model classification results based on the experimental 126 

data. Section 4 further analyzes and discusses the results. Finally, the summary and con- 127 

clusions are provided in Section 5. 128 

 129 

2. Materials and Methods 130 

2.1. Experimental Setup and Procedure 131 
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Figure 1. Experimental setup 132 

 133 

The experiment was conducted in the low-turbulence circulation water channel at 134 

the Fluid Mechanics Laboratory of Tianjin University. The testing section of the 135 
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experimental water channel had a length of 2370 mm, a height of 400 mm, and a width of 136 

306 mm. The upper part of the water channel was open, and the flow velocity of the water 137 

in the tank could be adjusted by changing the motor speed. The water depth in the water 138 

channel during the experiment is 330 mm. The flow velocity range in the water channel 139 

was 0-0.4 m/s, and the turbulence intensity was less than 1% at a flow velocity of 0.4 m/s. 140 

 141 

Figure 1 shows the schematic diagram and photo of the experimental platform. The 142 

seal whisker-style cylinder was fixed at the top of the water channel using a support 143 

bracket, with the bottom end free, forming a vertically hanging cantilever beam. The top 144 

of the seal whisker-style cylinder was equipped with a dual-axis force sensor. The target 145 

cylinder to be tested was located upstream of the seal whisker-style cylinder, directly in 146 

front along the flow direction, with the top fixed on the support bracket and the bottom 147 

end free. The immersed length of all test targets and seal whisker style cylinder is 273 mm. 148 

Both the target cylinder and the seal whisker-style cylinder had their axes perpendicular 149 

to the horizontal plane, and the distance 𝐿 between them could be adjusted using the 150 

bracket. The dual-axis force sensor installed on the top of the seal whisker-style cylinder 151 

could simultaneously measure the drag force (along the flow direction) and lift force 152 

(along the horizontal plane) acting on the seal-whisker-style cylinder. The force signals 153 

were output in the form of dual-channel signals and transmitted to a computer through a 154 

signal amplifier and data acquisition card. The signal sampling rate during the experiment 155 

was set to 1 KSa/(s·ch). 156 

  

(a) (b) 

Figure 2. (a)Photo and (b)schematic diagram of seal whisker style cylinder 157 

 158 

The seal whisker-style cylinder used in the experiment was made of resin using 3D 159 

printing, as shown in Figure 2 (a). It was an enlarged version, scaled up 30 times, of the 160 
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seal whisker shape parameters proposed by Hanke et al.8 (Figure 2 (b)). The shape pa- 161 

rameters of this seal whisker-style cylinder included the lengths of the major and minor 162 

axes of two controlling elliptical cross-sections (𝑎, 𝑏, 𝑘, 𝑙), the distance between the two 163 

controlling elliptical cross-sections (𝑀), and the inclination angle of the two controlling 164 

elliptical cross-sections (α, 𝛽). The parameters of the spotted seal whisker style cylinder 165 

used in the experiment were 𝑀 = 27.3 mm, 𝑎 = 17.85 mm, 𝑏 = 7.2 mm, α = 15.27 °, 𝑘 = 166 

14.25 mm , 𝑙 = 8.7 mm , 𝛽 = 17.6 ° . The narrow-face equivalent diameter of the seal 167 

whisker style cylinder in the Y-Z plane was 168 

𝑑 = 2 ×
𝑏 + 𝑙

2
= 15.90 mm (1) 

 169 

The wide-face equivalent diameter of the seal whisker-style cylinder in the Y-Z plane was 170 

𝑑wide = 2 ×
𝑎 cos 𝛼+𝑘 cos 𝛽

2
= 30.81 mm. (2) 

 171 

The length of the cylinder is 343 mm. 172 

 173 

Figure 3. Shapes and dimensions of the tested targets (Left: Cross-section; Middle: Side view; Right: 174 
3D view. Units: mm) 175 

 176 
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The nine different shapes of targets shown in Figure 3 are tested in the experiment, 177 

and these targets are all made of resin using 3D printing. The length of all target models 178 

is 375 mm. We used three different diameters of straight cylinders, C1 (15.9 mm), C2 (31.8 179 

mm), and C3 (47.7 mm). By comparing the classification results of the CNN model for 180 

these three cylinders, we can test the recognition ability of the seal whisker style sensor 181 

for test targets of the same shape but different sizes. We also selected two different types 182 

of dual-stepped cylinders, both with a larger diameter of 31.8 mm and a smaller diameter 183 

of 15.9 mm. The lengths of their larger sections are different, 35 mm (D1) and 140 mm (D2), 184 

respectively. By comparing the recognition results of the CNN model for these two dual- 185 

stepped cylinders with those of the straight cylinders C1 and C2, we can test the recogni- 186 

tion ability of the seal whisker style sensor for these targets. We also used a regular trian- 187 

gular prism with a base side length of 15.9 mm and a square prism with a base side length 188 

of 15.9 mm, which equals the diameter of C1. By comparing the recognition results of the 189 

CNN model for these two prisms with the straight cylinder C1, we can investigate the 190 

recognition ability of the sensor for test targets of the same size but different shapes. 191 

Table 1. Experimental conditions, representing the incoming flow velocity, and the distance from 192 
the upstream axis of the test target to the axis of the seal whisker-style cylinder. "No" in the table 193 
indicates no test target. 194 

 195 

 C1 C2 C3 T1 T2 S1 S2 D1 D2 No 

Case 1 

𝑈 = 0.1 m/s, 𝐿 = 16 cm 
√ √ √ √ √ √ √ √ √ √ 

Case 2 

𝑈 = 0.15 m/s, 𝐿 = 16 cm 
√ √ √ √ √ √ √ √ √ √ 

Case 3 

𝑈 = 0.2 m/s, 𝐿 = 16 cm 
√ √ √ √ √ √ √ √ √ √ 

Case 4 

𝑈 = 0.1 m/s, 𝐿 = 24 cm 
√ √ √ √ √ √ √ √ √ - 

Case 5 

𝑈 = 0.1 m/s, 𝐿 = 32 cm 
√ √ √ √ √ √ √ √ √ - 

To test whether the seal whisker style sensor can recognize different upstream flow 196 

conditions of the same target, we used different orientations for the triangular prism and 197 

square prism in the experiment. For the triangular prism, we used two installation orien- 198 

tations: edge-facing flow (T1) and face-facing flow (T2). For the square prism, we used 199 

two installation orientations: face-facing flow (S1) and edge-facing flow (S2). The triangu- 200 

lar prisms or square prisms installed in different ways in the experiment are considered 201 

as different test targets, so there is a total of nine different test targets. 202 

During the experiment, the seal whisker-style cylinder and test targets are fixed at 203 

the designated distances according to the experimental conditions, and the water flow 204 

velocity is adjusted to the required velocity for the conditions. When the incoming flow 205 

stabilizes, the lift and drag forces acting on the seal whisker-style cylinder are measured 206 

for 122 seconds. Experiments were conducted for each test target at flow velocities of 0.1 207 

m/s, 0.15 m/s, and 0.2 m/s with the seal whisker-style cylinder positioned 16 cm away from 208 

the test targets. And experiments were also conducted for each test target at a flow veloc- 209 

ity of 0.1 m/s with the seal whisker-style cylinder positioned 16 cm, 24 cm, and 32 cm away 210 

from the test targets. The full experimental conditions and the corresponding Reynolds 211 

numbers are shown in Table 1. No test target case was also included for flow velocities at 212 

0.1 m/s, 0.15 m/s, and 0.2 m/s. Each test target (including the no test target case) was re- 213 

peated 9 times under each condition to obtain sufficient experimental data for building 214 

the sample set used for CNN training and testing. In the absence of the target, the experi- 215 

mental conditions of Case 4 and Case 5 are the same as Case 1, so only the experiment in 216 

Case 1 without the target is sufficient. 217 
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 218 

2.2. CNN Structure and Settings 219 

CNN methods initially achieved success in handwritten recognition, and later they 220 

were applied in image processing. Currently, CNNs are widely used in deep learning 221 

tasks such as electrocardiogram (ECG) signal recognition [27] and bearing fault diagnosis 222 

[28]. CNNs consist of multiple convolutional layers and pooling layers, used for feature 223 

extraction and data reduction, followed by fully connected layers and output layers for 224 

classification and result output. The advantages of CNN mainly include two points: firstly, 225 

CNN can automatically learn features of data, avoiding the limitations of relying on man- 226 

ually selecting features; secondly, CNN has the characteristics of local connections and 227 

weight sharing, reducing the number of training weights and the difficulty of network 228 

training. 229 

 230 

 231 

Figure 4. CNN structure 232 

 233 

Table 2. CNN parameters 234 

 235 

Network Structure Parameters 

Convolution 

Block 1 

Conv1d + Leaky 

ReLU 

filter size: 256, stride: 64, channel: 64, padding: no 

padding, negative slope: 0.01 
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Batch Normalize - 

Max Pooling pooling size: 4, stride:1, padding: no padding 

Convolution 

Block 2 

Conv1d + Leaky 

ReLU 

filter size: 7, stride: 1, channel: 64, padding: no pad-

ding, negative slope: 0.01 

Batch Normalize - 

Max Pooling pooling size: 4, stride:1, padding: no padding 

Convolution 

Block 3 

Conv1d + Leaky 

ReLU 

filter size: 7, stride: 1, channel: 64, padding: no pad-

ding, negative slope: 0.01 

Batch Normalize - 

Max Pooling pooling size: 4, stride:1, padding: no padding 

Flatten - 

Full Connect + Leaky ReLU node number: 120, dropout: 0.2, negative slope: 0.01 

Full Connect + Leaky ReLU Node number: 80, dropout: 0.2, negative slope: 0.01 

Full Connect + Softmax node number: =number of classes 

Figure 4 and Table 2 provide the structure and parameters of the CNN neural net- 236 

work we used. Note that the network structure and parameters in Table 2 were chosen by 237 

trial and error. The model consists of three convolutional blocks for extracting signal fea- 238 

tures and three fully connected layers. Each convolutional block consists of a convolu- 239 

tional layer, a batch normalization layer, and a max pooling layer. The first convolutional 240 

block uses a one-dimensional convolutional layer with a kernel size of 256 and a stride of 241 

64, which helps the model identify features with longer periods in the signal. The convo- 242 

lutional kernels in the other two convolutional blocks have a size of 7 and a stride of 1. 243 

The output of the last convolutional block is transmitted to the three fully connected layers 244 

for classification after flattening. Except for the last fully connected layer that outputs the 245 

final result using the SoftMax activation function, the other convolutional layers and fully 246 

connected layers in the CNN network use the Leaky ReLU function as the activation func- 247 

tion. The input size of the network is determined by the length of the segments in the 248 

sample set and the number of selected channels, and the output result is the likelihood 249 

score of various test target categories, which is a one-hot encoded vector. The category 250 

corresponding to the component with the highest probability is the classification result 251 

predicted by the CNN network. 252 

The force signals from the seal whisker style sensor after removing the direct current 253 

component are segmented into fragments of different lengths. These signal fragments are 254 

then used as the sample set for training and validation of the CNN model after undergo- 255 

ing different filtering processes. To study the influence of the length of sample signals on 256 

the recognition ability of the CNN model for test objects, we segmented the original sig- 257 

nals into fragments with lengths of 212、213、214and 215 . We selected the fragments 258 

with a length of 214 and filtered them with cutoff frequencies of 50 Hz, 30 Hz, 10 Hz, and 259 

5 Hz for low-pass filtering and with a cutoff frequency of 5 Hz for high-pass filtering. 260 

Sample sets obtained from different filtering methods are used to investigate the influence 261 

of signal features in different frequency ranges on the recognition ability of the CNN 262 

model. To study the influence of information contained in different channels on classifi- 263 

cation, we selected unfiltered samples with a length of 214, retaining only the lift or drag 264 

signals, resulting in two sample sets composed of single-channel signal samples. The spe- 265 

cific settings of all sample sets are listed in Table 3. 266 

To eliminate randomness in the training process of the CNN model, we employed a 267 

3-fold cross-validation method. For each shape, the results of 9 experiments under one 268 

condition were divided into 3 folds, each fold consisting of 3 experiment results. Each 269 

training session selected two folds for training and used the remaining fold as the test set 270 

to verify the recognition ability of the model for test objects. 271 

Table 3. The training and testing sample sets of CNN 272 
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 273 

Sample sets Length Time 

Step 

Filtering Channel Train Set Validation 

Set 

Test Set 

sample set 1 212 2048 unfiltered lift and drag 13363 3341 8352 

sample set 2 213 2048 unfiltered lift and drag 12902 3226 8064 

sample set 3 214 2048 unfiltered lift and drag 11981 2995 7488 

sample set 4 215 2048 unfiltered lift and drag 10138 2534 6336 

sample set 5 214 2048 50 Hz low-pass lift and drag 11981 2995 7488 

sample set 6 214 2048 30 Hz low-pass lift and drag 11981 2995 7488 

sample set 7 214 2048 10 Hz low-pass lift and drag 11981 2995 7488 

sample set 8 214 2048 5 Hz low-pass lift and drag 11981 2995 7488 

sample set 9 214 2048 5 Hz high-pass lift and drag 11981 2995 7488 

sample set 10 214 2048 unfiltered lift only 11981 2995 7488 

sample set 11 214 2048 unfiltered drag only 11981 2995 7488 

The optimizer, loss function, and learning parameters of the proposed CNN are de- 274 

scribed in Table 4. To prevent overfitting, an early stopping strategy was employed during 275 

training. Twenty percent of the training set was randomly selected as the validation set. 276 

When the loss function on the validation set did not decrease continuously for 7 epochs, 277 

it would be considered that the CNN model converged, and the training would be 278 

stopped. The training results of the epoch with the minimum loss function would be con- 279 

sidered as the final results. 280 

Table 4.  Learning Settings 281 

 282 

Learning Settings 

Optimizer Adam 

Loss function Categorical cross-entropy function 

Learning rate 0.0001 

Batch size 32 

Max number of training epochs 75 

Patience of early stopping 7 

 283 

3. Results 284 

3.1. Validation of the CNN Model 285 

To validate the effectiveness of the CNN model used in this study, we performed 286 

fault recognition using drive-end accelerometer signals from the Bearing Fault dataset 287 

provided by Case Western Reserve University Bearing Data Center [29]. We used signals 288 

of normal operating conditions, as well as signals of inner race faults (with fault diameters 289 

of 0.007″, 0.014″, and 0.021″), outer race faults (with fault diameters of 0.007″, 0.014″, and 290 

0.021″), and ball faults (with fault diameters of 0.007″, 0.014″, and 0.021″) sampled at a 291 

frequency of 12kSa/s and these signals are measured at 0 HP motor load. Segmentation of 292 

the data resulted in a 10-class dataset with segments of length 2048 and a 50% overlap. 293 

For training, segments up to 6.67s were used as the training set, with a random 20% subset 294 

reserved for validation, and segments from 6.67s to 10s used for testing. The CNN model 295 

achieved classification accuracies of 96.82% on the training set, 94.27% on the validation 296 

set, and 93.29% on the test set. These results confirm the model's ability to identify faults 297 

from time-series signals. 298 

3.2. Experimental Results of Seal Whisker Style Sensor Force Signals 299 
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Figure 5 presents experimental results of lift and drag signals for targets C1, D2, S1, 300 

and no-target scenarios. Figure 5 (a) to (c) correspond to the following test targets: a cyl- 301 

inder with a diameter of 15.9 mm (C1), a dual-stepped cylinder with a thicker segment 302 

length of 140 mm (D2), and a cube target with a side length of 15.9 mm (S1). Lift and drag 303 

data were recorded under various flow velocities and distances, as shown in Table 1 for 304 

the 5 cases. Figure 5 (d) illustrates the time series of lift and drag forces on the seal- 305 

whisker-style cylinder measured at three flow velocities with no upstream target (No). 306 

Notably, when no target is present upstream, the lift and drag signals received by the seal 307 

whisker style sensor have amplitudes below 0.01 N, displaying high-frequency signals 308 

with small amplitudes and no discernible pattern. Conversely, comparing Figure 5 (a) to 309 

(c) with Figure 5 (d), we found the presence of an upstream target results in significantly 310 

higher lift signal amplitudes and clear quasi-periodic oscillations, while the drag ampli- 311 

tude remains lower. The force signals captured by the model effectively indicate the pres- 312 

ence of nearby upstream targets. 313 

 314 

  

(a) (b) 
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(c) (d) 

Figure 5. The force signals acting on the seal whisker style cylinder under experimental conditions 315 
for the target (a) C1 (cylinder with a diameter of 15.9 mm), (b) D2 (dual-stepped cylinder with a 316 
thicker segment length of 140 mm), (c) S1 (cube with a side length of 15.9 mm), and (d) with no 317 
target (No) with time duration 16.384 s. 318 

 319 

For the cylinder with a diameter of 15.9 mm (target C1), positioned at a fixed distance 320 

of 16 cm from the seal whisker style cylinder, the lift force increases with escalating flow 321 

velocity in Cases 1, 2, and 3. Conversely, at a constant flow velocity of 0.1 m/s, as the 322 

distance between the target and the seal-whisker-style cylinder extends to 24 cm and 32 323 

cm in Cases 4 and 5, the lift force amplitude experiences a slight decrease while exhibiting 324 

heightened high-frequency components in the lift signal. Target D2 displays lift signal 325 

characteristics comparable to those of target C1, albeit with a more chaotic signal profile. 326 

Similarly, target S1 exhibits overall lift signal traits akin to target C1, yet with more pro- 327 

nounced signal periodicity and lower characteristic frequencies. Across the experiments, 328 

drag amplitudes generally remain significantly smaller than lift amplitudes. However, 329 

exceptions arise, such as in Cases 4 and 5 in Figure 5 (a), where drag amplitude irregularly 330 

surges, occasionally surpassing lift amplitude. This anomaly is likely attributed to exper- 331 

iment-induced disturbances. While the lift and drag force signals from other sets of exper- 332 

iments mirror the characteristics observed in the C1, D2, and S1 trials, variations in wave- 333 

form, amplitude, and frequency are evident. The experimental results indicate that force 334 

signals for the same test target fluctuate under different flow velocities and distances, 335 

while force signals for different test targets diverge even when subjected to the same flow 336 

conditions and distances. 337 

 338 

3.2. Results of CNN Model 339 
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 340 

Figure 6. The recognition accuracy of test targets by the CNN model trained on 11 different sample 341 
sets. 342 

 343 

Figure 6 depicts how different sample lengths, filtering methods, and force signal 344 

channels affect the CNN model's accuracy in recognizing test targets on their respective 345 

test sets. Noticeable discrepancies in performance between the training and test sets indi- 346 

cate potential issues of severe overfitting and limited generalization capabilities of the 347 

model. As shown in Figure 6, the CNN model trained on sample sets featuring lift chan- 348 

nels of length 214 or longer without filtering (Sample Sets 3, 4, and 11 from Table 3), as 349 

well as sample sets with lift channels filtered using high-pass filters at cutoff frequencies 350 

of 50 Hz, 30 Hz, 10 Hz, and 5 Hz (Sample Sets 5, 6, 7, and 8 from Table 3), achieved clas- 351 

sification accuracies above 81% with minimal variance among them. Notably, the model 352 

trained on Sample Set 7 (length 214 with both lift and drag channels, filtered at a 10 Hz 353 

cutoff frequency for high-pass filtering) exhibited the smallest disparity in accuracy be- 354 

tween the training and test sets, indicating the least amount of overfitting in comparison 355 

to models trained on other sample sets.  356 

From Figure 6, it is evident that as the sample length increases from 212 (equivalent 357 

to a sample duration of 4.096 s) to 214  (corresponding to a sample duration of 16.384 s), 358 

the CNN model's recognition accuracy improves by approximately 16%. However, be- 359 

yond this point, further increases in sample length result in minimal changes in the mod- 360 

el's recognition accuracy. Moreover, the CNN model trained on sample sets comprising 361 

solely lift signals demonstrates higher recognition accuracy for test targets compared to 362 

the CNN model trained on sample sets containing only drag signals.  363 

Next, we present the training and performance details of the CNN model using Sam- 364 

ple Set 7 (length 214, subjected to 10 Hz low-pass filtering, encompassing both lift and 365 

drag signals) as an illustrative example.  366 

Figure 7 presents the evolution of accuracy and cross-entropy loss during the training 367 

of the CNN model using sample set 7. Initially, there is a rapid decline in cross-entropy 368 

loss across both the training and validation sets, accompanied by a swift increase in accu- 369 

racy. By the 10th epoch, the fluctuations in loss and accuracy stabilize, with the validation 370 

set achieving its lowest loss at the 21st epoch. Subsequently, there is no further decrease 371 
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in loss over the subsequent 7 epochs, leading us to conclude that the CNN model has 372 

optimally converged at this stage without displaying significant overfitting tendencies. 373 

The accuracy rates for this model on the training, validation, and test sets in the three-fold 374 

validation are 95.53±3.26%, 87.69±1.14%, and 84.29±1.16%, respectively. 375 

  

(a) (b) 

Figure 7. The training progress curve of accuracy and cross-entropy loss for the CNN model trained 376 
using sample set 7. 377 

 378 

  

(a) (b) 

Figure 8. The confusion matrix of the CNN model trained on the sample set 7 (a. the validation set, 379 
b. the test set) (Here, P denotes the precision rate and R denotes the recall rate) 380 

 381 
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In the experiment, seven different target shapes from Figure 3 were used as test tar- 382 

gets, including triangular prism and square targets placed in various orientations, along 383 

with a scenario without any upstream targets, resulting in a total of 10 target categories 384 

for CNN classification. Figure 8 illustrates an example using sample set 7 to display the 385 

distribution of predicted measurements for each test target category. To measure the con- 386 

fusion between two categories, the confusion rate between classes A and B is defined as 387 

follows: 388 

𝑟AB =
𝑁A→B+𝑁B→A

𝑁A+𝑁B
 ， (3) 

 389 

where 𝑁A and 𝑁B respectively refer to the number of samples with the true label as A or 390 

B. 𝑁A→B represents the number of samples with the actual label A but predicted as B, 391 

𝑁B→A denotes the number of samples with the actual label A incorrectly predicted as B, 392 

and vice versa.  393 

Figure 8(a) represents the recognition results on the validation set. It can be observed 394 

that in the validation set, the highest confusion rate is between C1 (a straight cylindrical 395 

column with a diameter of 15.9 mm) and T1 (a regular triangular prism with an edge 396 

length of 15.9 mm facing upstream), reaching 36.7%; S1 (a square column with a side 397 

length of 15.9 mm facing sideways) and T2 (a regular triangular prism with a side length 398 

of 15.9 mm facing sideways) follow with a confusion rate of 10.7%; D1 (a dual-stepped 399 

cylindrical column with a coarse segment length of 35 mm) and D2 (a dual-stepped cylin- 400 

drical column with a coarse segment length of 140 mm) also exhibit some confusion, with 401 

a confusion rate of 6.8%; whereas errors in predictions for the remaining categories are 402 

minimal. In the validation set, there is significant confusion between C1 and T1, with a 403 

confusion rate exceeding 35%; while relatively minor confusion exists between S1 and T2, 404 

as well as between D1 and D2.  405 

From Figure 8 (b), it can be observed that in the test set, 268 samples actually belong- 406 

ing to C1 were identified as T1, and 251 samples actually belonging to T1 were classified 407 

as C1, resulting in a confusion rate rT1,   C1 = 33.3%; 111 samples actually belonging to S1 408 

were identified as T2, and 181 samples actually belonging to T2 were classified as S1, with 409 

a confusion rate of 18.7%. Additionally, 47 samples actually belonging to D1 were identi- 410 

fied as D2, and 98 samples actually belonging to D2 were classified as D1, resulting in a 411 

confusion rate of 9.3%. Furthermore, 37 samples actually belonging to C2 were identified 412 

as S2, and 48 samples actually belonging to S2 were classified as C2, with a confusion rate 413 

of 5.4%. Moreover, there were instances where 33 samples actually belonging to C2 were 414 

identified as D2, and 26 samples actually belonging to C2 were classified as T2; while 415 

errors in predictions for the remaining categories were minimal. In the test set, there was 416 

significant confusion between C1 and T1, S1 and T2, with confusion rates exceeding 18%; 417 

and there was also some confusion between D1 and D2, albeit to a lesser extent. 418 

 419 

Figure 9. Detailed results of the test targets trained on sample set 7 420 

 421 
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Figure 9 presents the CNN classification results under varying experimental condi- 422 

tions in the form of a confusion matrix, with the actual target categories on the horizontal 423 

axis and the predicted target categories on the vertical axis. Notably, there is notable con- 424 

fusion between C1 and T1, as well as S1 and T2 across all experimental settings. However, 425 

in experiments with a distance of 16 cm and flow velocities of 0.15m/s (Cases 2) and 0.2m/s 426 

(Case 3), the confusion between S1 and T2 is relatively less pronounced compared to other 427 

scenarios. At a distance of 16 cm and a flow velocity of 0.1 m/s (Case 1), some incorrect 428 

predictions are observed, including some misclassifications such as C2 samples being mis- 429 

identified as D2, S1, S2, and T2, and certain S2 samples being incorrectly labeled as C2, 430 

D2, and T2. In experiments with a flow velocity of 0.1 m/s and distances of 16 cm (Case 1), 431 

24 cm (Case 4), and 32 cm (Case 5), there was also subtle confusion between D1 and D2. 432 

 433 

4. Discussion 434 

4.1. The Impact of Vortex Shedding Frequency on Force Signals 435 

 436 

Figure 10. The theoretical vortex shedding frequency VS experimental results for cylinders (C1, C2, 437 
and C3 in Table 1). 438 

 439 

Periodic shedding vortices occur when a steady flow passes over a bluff body, influ- 440 

enced by the flow velocity 𝑈, and the object's shape, and size. The vortex shedding fre- 441 

quency of a circular cylinder 𝑓 can be calculated as [30]: 442 

𝑓 = 𝑆𝑡
𝑈

𝐷
 , (4) 

 443 

where 𝑈 is the inflow fluid velocity, 𝐷 is the diameter of the circular cylinder, and 𝑆𝑡 is 444 

the Strouhal number. For Reynolds numbers 𝑅𝑒 = 𝑈𝐷/𝜈 (where 𝜈 is the kinematic vis- 445 

cosity of water) between 1000 to 10000, the Strouhal number is approximately equal to 0.2. 446 
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In our experiments, the Reynolds number varied from 1600 to 9600 under the current 447 

setup.  448 

Figure 10 displays the experimental vortex shedding frequency data for three straight 449 

circular cylinders (C1, C2, and C3 in Table 1) used as test targets, alongside the theoretical 450 

shedding frequencies calculated from equation (4). The measured downstream force sig- 451 

nal frequencies represent the average of peak frequencies from nine measurements. From 452 

Figure 10, it is evident that the force signal frequency of the seal whisker-style sensor is 453 

closely linked to the vortex shedding frequency of the upstream cylinders. This observa- 454 

tion suggests that the seal whisker-style sensor effectively captures the disruption signals 455 

emitted by upstream objects, highlighting the prominence of vortex characteristics as es- 456 

sential criteria for the sensor in identifying upstream objects. 457 

 458 

4.2. The Influence of Sample Length and Filtering on the CNN Model 459 

As previously mentioned, an increase in sample length leads to improved model per- 460 

formance; however, this enhancement reaches a limit, and once the sample length reaches 461 

212, further improvement in the model's performance is not observed. This limitation may 462 

be attributed to the vortex fields generated by the upstream cylinders, which contain in- 463 

formation of varying periods. Extending the sample length can expose more characteris- 464 

tics of long-period information, thereby improving the CNN classification outcomes for 465 

test targets. Nevertheless, the useful information contained within the sample has its lim- 466 

itations, and beyond a certain length, the additional extension does not yield more useful 467 

information, therefore plateauing the accuracy improvement of the CNN model.  468 

Figure 11 demonstrates the influence of sample length on CNN model performance. 469 

It is apparent that with a sample length of 212 (Sample Set 1), there is significant confu- 470 

sion between C1 and T1, between D1 and D2, and between S1 and T2, as well as some 471 

minor confusion between C2 and C3, between C2 and S2, and between S1 and S2. As the 472 

sample length increases to 214 (Sample Sets 3) and 215 (Sample Set 4), the level of confu- 473 

sion between C1 and T1, S1 and T2, and D1 and D2 decreases compared to the sample 474 

length of 212, although it remains noticeable. Meanwhile, confusion between other test 475 

targets is minimal. While increasing the sample length enhances the CNN model's perfor- 476 

mance for test targets, it does not eliminate confusion between categories like C1 and T1, 477 

D1 and D2, and S1 and T2. 478 
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(a) (b) 

  
(c) (d) 

 479 

Figure 11. The confusion matrices on the test sets of CNN models trained on sample sets with dif- 480 
ferent lengths (a. Sample set 1, length 212; b. Sample set 2, length 213; c. Sample set 3, length 214; d. 481 
Sample set 4, length 215 in TABLE III) 482 

As depicted in Figure 6, CNN models trained on sample sets filtered with low-pass 483 

filters at cutoff frequencies of 50Hz, 30Hz, 10Hz, and 5Hz exhibited similar recognition 484 

accuracy on the test set compared to models trained on unfiltered sample sets, achieving 485 

recognition accuracies of around 83.1%. These results indicate that the essential compo- 486 

nents of the force signal predominantly operate below 5Hz, consistent with the shedding 487 

frequency range of the target. Moreover, this suggests that our CNN model can effectively 488 

mitigate high-frequency noise interference, showcasing its robustness. Conversely, a 489 

high-pass filtered sample set at a cutoff frequency of 5Hz resulted in significantly lower 490 

recognition accuracy of only 31.7±4.9% on the test set, highlighting once more the im- 491 

portance of the force signal's components operating below 5Hz. 492 

 493 

4.3. Lift Signals Spectrum and Its Impact on Target Recognition 494 
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(a) (b) 

Figure 12. The peak frequency spectrum of the lift signal in Sample Set 10 (a. C1 and T1, b. S1 and 495 
T2) 496 

 497 

Based on the previous discussions, when utilizing the trained CNN model to identify 498 

targets, confusion is evident between C1 and T1, between T2 and S1, and between D1 and 499 

D2. Despite adjustments in sample lengths or signal filtering, these confusions persist. 500 

Hence, we postulate that these uncertainties may stem from the inherent characteristics of 501 

the signal samples.  502 

Notably, from Figure 6, it is observed that a CNN model exclusively trained on un- 503 

filtered lift signals achieved an accuracy of 81.0±2.3% on the test set. Similarly, a CNN 504 

model trained on both lift and drag signals of equivalent lengths (Sample Set 3) exhibited 505 

an accuracy of 83.1±1.49% on the test set, showcasing minimal disparity between them. 506 

Conversely, a CNN model trained solely on drag signals yielded an accuracy of only 507 

54.8±4.0% on the test set, indicating limited recognition capability. Consequently, it can be 508 

deduced that the primary basis for the CNN model's identification of target cylinders lies 509 

within the characteristics of the lift signals, as drag signals provide less relevant feature 510 

information. Hence, the analysis of signal features predominantly focuses on lift signals.  511 

By performing Fourier transform on the lift signals in Sample Set 10, their amplitude 512 

spectra are obtained. Figure 12 illustrates the highest peak values along with their corre- 513 

sponding frequencies in the resulting amplitude spectra, where closely clustered points 514 

suggest similarities in their primary peak characteristics. Specifically, Figure 12 (a) reveals 515 

similarities in the highest peak values and corresponding frequencies of lift signals for C1 516 

and T1 across all experimental conditions. Moreover, as depicted in Figure 9, the CNN 517 

model demonstrates confusion in distinguishing between these two categories under var- 518 

ious experimental scenarios. Similarly, at a flow velocity of 0.1 m/s (Cases 1, 4, 5), there is 519 

a strong similarity between the signals of T2 and S1, resulting in severe confusion between 520 

them. However, as the flow velocity surpasses 0.1 m/s, although the peak frequencies of 521 

the wake signals for T2 and S1 remain close, disparities in peak heights result in reduced 522 

confusion compared to the 0.1 m/s flow velocity.  523 

In a 1D CNN architecture, convolutional kernels serve as filters for distinct wave- 524 

forms, with each kernel aligned to a unique waveform type. The convolution process in- 525 

volves calculating the inner product of the signal segment with the kernel waveform to 526 

gauge the similarity between them, akin to the short-time Fourier transform (STFT). While 527 

the function of convolution kernels in CNN resembles triangular basis functions in STFT, 528 

they are consistently optimized during the neural network training phase. In 1D CNN 529 
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models directly processing time series data, the convolution layer aims to extract fre- 530 

quency domain features from the input signal. The more similar frequency components 531 

present in the input signal, the higher the similarity in the output results of the CNN 532 

model. Consequently, signals sharing similar frequency domain features, such as the 533 

aforementioned C1 & T1, and T2 & S1 wake signal samples, are more prone to confusion. 534 

 535 

5. Conclusions 536 

We conducted an underwater detection experiment and integrated it with a CNN 537 

model to investigate the recognition capability and mechanism of a single seal-whisker- 538 

style sensor on flow signals. The experiment involved measuring force signals from the 539 

seal whisker style cylinder in 9 tested targets under 5 different working conditions, which 540 

were then utilized for training and testing by the CNN model.  541 

The CNN model test results revealed that, in most instances, the model could suc- 542 

cessfully identify various targets, although there were instances of misidentification. In- 543 

creasing the sample length moderately improved recognition effectiveness; however, fur- 544 

ther extension beyond a certain point did not enhance performance. Upon comparing the 545 

CNN model's performance trained using differently filtered sample sets, it was observed 546 

that components with frequencies exceeding 5Hz provided little useful information. Lift 547 

signals exhibited more distinctive features for differentiation, while drag signals dis- 548 

played less significant characteristics. The primary basis for the seal whisker style sensor 549 

in distinguishing between different target cylinders lay in the lift signal.  550 

When testing a cylinder as the upstream target, the average frequency of the sensor's 551 

lift signal closely matched the vortex shedding frequency of the cylinder, indicating that 552 

important and relevant information was carried by the upstream vortices. Analyses of the 553 

lift signal's frequency spectrum in correlation with the confusion matrix unveiled that the 554 

model's identification efficacy across various targets heavily relied on disparities in the 555 

frequency spectrum characteristics of the lift signal.  556 

Our research findings suggest that integrating a single seal whisker style sensor with 557 

CNN enables the identification of underwater objects based on the model's responsive- 558 

ness to inflow, particularly the vortices within it. Nonetheless, the CNN model tends to 559 

struggle with distinguishing signals exhibiting similar frequency domain features, neces- 560 

sitating further enhancements in recognition performance. For future work, introducing 561 

spatial distribution information of signals through the formation of sensor arrays featur- 562 

ing multiple seal whisker-style sensors promises to provide richer insights into the CNN 563 

model's identification process. 564 
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