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order mass convergence can be achieved by suitably adding correction terms while keeping
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theorem is that, up to some fixed time T , there exist constants τ0 and C depending only on
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‖u (tn, ·)− un‖Hγ ≤ Cτ, ‖v (tn, ·)− vn‖Hγ+1 ≤ Cτ,
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1. Introduction

Recently, Kou, Ning and Wang [4] constructed a first-order low-regularity integrator for
Davey-Stewartson II (DS-II) system, which showed the first order accuracy in Hγ for initial
data in Hγ+1. However, it is difficult to maintain the geometric structure of underlying PDEs
for low-regularity integrators. The geometric structure is not only important property, but
also becomes a standard to judge the effectiveness of the numerical methods. In generally,
the conservative schemes perform much better than the nonconservative schemes.

Ismail and Taha [2] proposed a linearly implicit scheme with mass conservation for solving
the coupled nonlinear Schrödinger equation, and the proposed scheme conserves the mass
exactly ruling out any possibility of blowing up of the numerical solution. Wu and Yao [7]
proposed a first-order Fourier integrator with almost mass conservation for solving the cubic
nonlinear Schrödinger equation in one dimension. To the best of our knowledge, this is the
first attempt to consider the conservation laws of the numerical solution for the exponential-
type integrators. For the Korteweg-de Vries equation, Maierhofer and Schratz [5] proposed
a implicit scheme with mass conservation. For the Davey-Stewartson systems, Frauendiener
and Klein [1] presented a detailed numerical study of the Davey-Stewartson I system and
obtained the relative conservation of the mass.

In this work, inspired by the works of [7] and [4], we construct a new scheme such that it
could almost conserve the mass and require as low regularity as possible while keeping the
first-order convergence for the DS-II system under the rough initial data on a torus. Due to
the complexity of the phase function, we shall fully exploit the structure of the DS-II system
and employ delicate Fourier analysis.

The DS-II system with the rough initial data on a torus studied in this work is{
i∂tu(t,x) + ∂2

x1
u(t,x)− ∂2

x2
u(t,x) = µ1|u(t,x)|2u(t,x) + µ2u(t,x)∂x1v(t,x),

∂2
x1
v(t,x) + ∂2

x2
v(t,x) = ∂x1

(
|u(t,x)|2

)
, t > 0, x = (x1, x2) ∈ T2,

(1.1)

where µ1, µ2 ∈ R, T = (0, 2π), u = u(t,x) : R+ × T2 → C, u0 = u(0,x) ∈ Hγ(T2) ( γ ≥ 0 )
is unknown.

A variable substitution is introduced:
ξ1 =

1

2
(x1 + x2),

ξ2 =
1

2
(x1 − x2),

that is {
φ(ξ1, ξ2) = u(x1, x2),

ψ(ξ1, ξ2) = v(x1, x2).
(1.2)
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then, the equations (1.1) can be rewritten asiφt + φξ1ξ2 = µ1|φ|2φ+
1

2
µ2φ(ψξ1 + ψξ2),

ψξ1ξ1 + ψξ2ξ2 = (∂ξ1 + ∂ξ2)(|φ|2).
(1.3)

To avoid confusion of subsequent symbols, the equations (1.3) are rewritten as equations
with respect to x1, x2 to obtain{

iφt + ∂x1x2φ− φE(|φ|2) = 0,

ψ = −(−∆)−1(∂x1 + ∂x2)(|φ|2),
(1.4)

where Ef = (µ̃1 +µ2
∂x1x2

∆
)f , µ̃1 = µ1 + 1

2
µ2,φ0 = u

(
0, x1 +x2, x1−x2

)
. The derivation process

can be found in [4].
Based on the above variable substitution, it can be seen that we only need to analyze the

system (1.4). The DS-II system is completely integrable and thus has an infinite number
of formally conserved quantities. For the solution φ of the system (1.4) in L2, we have the
following law of mass conservation

M(φ(t)) =
1

(2π)2

∫
T2

|φ(t,x)|2 dx = M (φ0) = M0. (1.5)

To this purpose, we define a modified numerical scheme of (1.4) as follows.
First, we define the function

ω(z) =


ez − 1

z
, if z 6= 0,

1, if z = 0.
(1.6)

Here we denote Π0(f) to be the zero mode of the function f , that is

Π0(f) =
1

(2π)2

∫
T2

f(x)dx,

so
M0 = Π0(|φ0|2).

And we define a function

Ψ(f) = ei∂x1x2τf − iτei∂x1x2τ
[
f · E

(
ω(−2i∂x1x2τ)f̄ · f

)]
. (1.7)

Then we denote the functionals I, J1, J2 to be

I(U) = Ψ(U)− ei∂x1x2τU ; (1.8)

J1(U) = H(U)ei∂x1x2τU ; (1.9)

J2(U) = −1

2

(
H(U)

)2
ei∂x1x2τU − Π0(|U |2)−1H(U)Re

(
Π0(I(U)e−i∂x1x2τ Ū)

)
ei∂x1x2τU ; (1.10)

and

H(U) = −Π0(|U |2)−1
[
Re
(
Π0(I(U)e−i∂x1x2τ Ū)

)
+

1

2
Π0(|I(U)|2)

]
. (1.11)
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Now the modified numerical scheme of φ is defined by

φn = Ψ(φn−1) + J1(φn−1) + J2(φn−1), (1.12)

based on the DS systems (1.4), we can write the numerical solution of ψ

ψn = −(−∆)−1(∂x1 + ∂x2)(|φn|2), (1.13)

where n = 1, 2, . . . , T
τ

; φ0 = φ0.
Then we obtain that

Theorem 1.1. Let φn and ψn be the numerical solution of the DS-II system (1.4) obtained
from the LRI schemes (1.12) and (1.13) up to some fixed time T > 0. Under the assume
φ0 ∈ Hγ+1(T2), for some γ > 1, there exist constants τ0 and C > 0, such that for any
0 < τ ≤ τ0, we have

‖φ (tn, ·)− φn‖Hγ ≤ Cτ, ‖ψ (tn, ·)− ψn‖Hγ+1 ≤ Cτ, n = 0, 1, . . . ,
T

τ
; (1.14)

moreover,
|M (φn)−M (φ0)| ≤ Cτ 5, (1.15)

where the constants τ0 and C depend only on T and ‖φ‖L∞((0,T );Hγ+1).

By variable substitution (1.2), we can obtain the scheme of u and v for n = 1, 2, . . . , T
τ
, u0 =

u0:
un = Ψ̃(un−1) + J̃1(un−1) + J̃2(un−1), (1.16)

and
vn = −(−∆)−1∂x1(|un|2), (1.17)

where

Ψ̃(f) = ei(∂
2
x1
−∂2x2 )τf − iτei(∂2x1−∂2x2 )τ

[
f · E

(
ω(−2i(∂2

x1
− ∂2

x2
)τ)f̄ · f

)]
,

Ĩ(U) = Ψ̃(U)− ei(∂2x1−∂2x2 )τU ; J̃1(U) = H̃(U)ei(∂
2
x1
−∂2x2 )τU ;

J̃2(U) = −1

2

(
H̃(U)

)2
ei(∂

2
x1
−∂2x2 )τU−Π0(|U |2)−1H̃(U)Re

(
Π0(Ĩ(U)e−i(∂

2
x1
−∂2x2 )τ Ū)

)
ei(∂

2
x1
−∂2x2 )τU ;

and

H̃(U) = −Π0(|U |2)−1
[
Re
(
Π0(I(U)e−i(∂

2
x1
−∂2x2 )τ Ū)

)
+

1

2
Π0(|Ĩ(U)|2)

]
.

Then we get that

Corollary 1.2. Let un and vn be the numerical solution of the DS-II system (1.1) obtained
from the LRI schemes (1.16) and (1.17) up to some fixed time T > 0. Under the assume
u0 ∈ Hγ+1(T2), for some γ > 1, there exist constants τ0 and C > 0, such that for any
0 < τ ≤ τ0, we have

‖u (tn, ·)− un‖Hγ ≤ Cτ, ‖v (tn, ·)− vn‖Hγ+1 ≤ Cτ, n = 0, 1, . . . ,
T

τ
; (1.18)

moreover,
|M (un)−M (u0)| ≤ Cτ 5; (1.19)
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where the constants τ0 and C depend only on T and ‖u‖L∞((0,T );Hγ+1).

Remark 1.3. The almost mass convergence scheme proposed in this work, together with the
first-order scheme proposed in [4], has the lowest regularity requirement among all schemes
for the DS-II system so far. For example, the Strang splitting method requires the loss of
two derivatives.

Remark 1.4. With respect to the Fourier integrator, our scheme also achieves first-order
convergence in Hγ × Hγ+1 compared to the first-order scheme of [4], and maintains fifth-
order accuracy for mass. Thus the physical properties of the solution to the equation can be
well preserved. Using the same method, we can obtain arbitrarily order mass convergence
by suitably adding correction terms.

2. Preliminary

2.1. Some notations. Firstly, we present some notations and tools for future derivation
and analysis. We use A . B or B . A to denote the statement that A ≤ CB for some
absolute constant C > 0 which may vary from line to line but is independent of τ or n, and
we denote A ∼ B for A . B . A. We use O(Y ) to denote any quantity X such that X . Y .

For k := (k1, k2) ∈ T2, x := (x1, x2) ∈ T2, we denote

k · x = k1x1 + k2x2, |k|2 = |k1|2 + |k2|2 .
We denote 〈·, ·〉 to be the L2-inner product, that is

〈f, g〉 = Re

∫
T2

f(x)g(x)dx.

The Fourier transform of a function f on T2 is defined by

f̂k =
1

(2π)2

∫
T2

e−ik·xf (x) dx.

and thus the Fourier inversion formula

f(x) =
∑
k∈Z2

eik·xf̂k.

Then the following usual properties of the Fourier transform hold

‖f‖2
L2 = (2π)2

∑
k∈Z2

|f̂k|2 = (2π)2‖f̂k‖2
L2(Z2), (2.1)

(̂fg)(k) =
∑
k1∈Zd

f̂k−k1 ĝk1 . (2.2)

The Sobolev space Hγ(T2) for γ ≥ 0 has the equivalent norm

‖f‖2
Hγ(Td) = ‖Jγf‖2

L2(T2) = (2π)2
∑
k∈Z2

(1 + |k|2)γ|f̂k|2, (2.3)
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where we denote the operator

Js = (1−∆)
s
2 , ∀s ∈ R. (2.4)

we denote (−∆)−1 to be the operator defined by

̂(−∆)−1 f(k) =

{
|k|−2f̂k, if k 6= 0,

0, if k = 0.
(2.5)

Moreover, we denote |∇|−1 to be the operator defined by

̂|∇|−1f(k) =

{
|k|−1f̂k, if k 6= 0,

0, if k = 0.
(2.6)

We denote Tm(M ;ϕ) to be a class of qualities which is defined in the Fourier space by

FTm (M ;ϕ) (k) = O
( ∑

k=k1+···+km

|M(k1, · · · ,km)| |ϕ̂k1(t)| · · · |ϕ̂km(t)|
)
, (2.7)

where kj = (kj1, kj2) ∈ Z2, j = {1, · · · ,m}; M is a function about k1, · · · ,km.
Furthermore, we will make frequent use of the isometric property of the operator ei∂x1x2 t

‖ei∂x1x2 tf‖Hγ = ‖f‖Hγ . (2.8)

for all f ∈ Hγ, γ > 1 and t ∈ R.

2.2. Some preliminary estimates. First, we will frequently apply the following Kato-
Ponce inequality.

Lemma 2.1. [8](Kato-Ponce inequality) For any γ > 1, f, g ∈ Hγ(Td), then the following
inequality holds:

‖fg‖Hγ . ‖f‖Hγ‖g‖Hγ . (2.9)

To prove our main result below, we need the following specific estimate.

Lemma 2.2. Let γ > 1 and ϕ ∈ Hγ, then the following inequality holds:

‖T3 (k11(k22 + k32) + k21(k12 + k32) + k31(k12 + k22);ϕ)‖H−γ . ‖ϕ‖
3
L∞((0,T );Hγ).

Proof. We assume that ϕ̂kj > 0, j = {1, 2, 3} for any kj, otherwise one may replace them by
|ϕ̂kj |.

Using the definition in (2.7) and Sobolev’s embedding theorem, we have

‖T3(k11(k22 + k32) + k21(k12 + k32) + k31(k12 + k22);ϕ)‖H−γ

.
∥∥ ∑

k=k1+k2+k3

(|k1||k2|+ |k1||k3|+ |k2||k3|) ϕ̂k1ϕ̂k2ϕ̂k3

∥∥
H−γ

. ‖ (|∇|ϕ)2 ϕ‖H−γ . ‖ (|∇|ϕ)2 ϕ‖L1 .
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By Lemma 2.1, we get

‖T3(k11(k22 + k32) + k21(k12 + k32) + k31(k12 + k22);ϕ)‖H−γ
. ‖∇ϕ‖2

L2 ‖ϕ‖L∞ . ‖ϕ‖
3
L∞((0,T );Hγ) .

Therefore, the Lemma 2.2 is proved. �

2.3. Review of first-order numerical scheme construction. The article [4] solved the
DS-II system (1.4) using Duhamel’s formula

φ(t) = ei∂x1x2 tφ(t0)− i
∫ t

t0

ei∂x1x2 (t−s)[φ · E(|φ|2)
]
ds. (2.10)

By the twisted variable ϕ(t) = e−i∂x1x2 tφ(t), we obtain

ϕ(t) = ϕ(t0)− i
∫ t

t0

ei∂x1x2s
[
ei∂x1x2 tϕ · E

(
|ei∂x1x2 tϕ|2

)]
ds.

By Fourier transformation, we get

ϕ̂k(tn+1) =ϕ̂k(tn)− i
∫ τ

0

∑
k=k1+k2+k3

eiα(tn+s)
[
µ̃1 + µ2

(k11 + k21)(k12 + k22)

|k1 + k2|2
]

· ˆ̄ϕk1(tn + s)ϕ̂k2(tn + s)ϕ̂k3(tn + s)ds,

(2.11)

where α = k1k2 + k11k12 − k21k22 − k31k32. And let β = k11(k22 + k32) + k21(k12 + k32) +
k31(k12 + k22). Then, we have α = 2k11k12 + β.

For the integration, we only choose the dominant quadratic term 2isk11k12, so that the
integration can be carried out fully in Fourier space as∫ τ

0

e2isk11k12ds = τω(2iτk11k12).

Hence, we have

ϕ(tn+1) = ϕ(tn)− iτe−i∂x1x2 tn
[
ei∂x1x2 tnϕ(tn)E

(
ω(−2i∂x1x2τ)ei∂x1x2 tnϕ(tn) · ei∂x1x2 tnϕ(tn)

)]
+Rn

1 +Rn
2

:= Φn(ϕ(tn)) +Rn
1 +Rn

2 , (2.12)

where

Rn
1 = −i

∫ τ

0

e−i∂x1x2 (tn+s)
[
ei∂x1x2 (tn+s)ϕ(tn + s) · E

(
|ei∂x1x2 (tn+s)ϕ(tn + s)|2

)
− ei∂x1x2 (tn+s)ϕ(tn) · E

(
|ei∂x1x2 (tn+s)ϕ(tn)|2

)]
ds,

and

Rn
2 = −i

∑
k∈z2

∑
k1,k2,k3∈z2
k=k1+k2+k3

eitnα
[
µ̃1+µ2

(k11 + k21)(k12 + k22)

|k1 + k2|2
]

ˆ̄ϕk1ϕ̂k2ϕ̂k3e
ik·x
∫ τ

0

e2isk11k12(eisβ−1)ds.



8

In summary, we know that the scheme of the first order low-regularity integrator (LRI)
for solving the DS-II system (1.4): φn = φn(x) as the numerical solution, for n = 1, 2, 3, . . . ,

φn = ei∂x1x2τφn−1 − iτei∂x1x2τ
[
φn−1 · E

(
ω(−2i∂x1x2τ)φn−1 · φn−1

)]
. (2.13)

Based on the DS systems (1.4), we can write the numerical solution of ψ: denote ψn =
ψn(x)as the numerical solution, for n = 1, 2, 3, . . . ,

ψn = −(−∆)−1(∂x1 + ∂x2)|φn|2. (2.14)

Meanwhile, [4] also proved that the scheme can reach first order accuracy.

Theorem 2.3. [4] Let φn and ψn be the numerical solution of the DS-II system (1.4) obtained
from the schemes (2.13) and (2.14) up to some fixed time T > 0. Under the assume φ0 ∈
Hγ+1(T2) for some γ > 1 there exist constants τ0 > 0 and C > 0, such that for any
0 < τ ≤ τ0, we have

‖φ(tn)− φn‖Hγ ≤ Cτ, ‖ψ(tn)− ψn‖Hγ+1 ≤ Cτ, n = 0, 1, . . . ,
T

t
;

where the constants τ0 and C depend only on T and ‖φ‖L∞((0,T );Hγ+1).

In the following we list some estimates without proofs, and the relevant proofs can be
found in [4]. Firstly, the estimates for Rn

1 and Rn
2 are

Lemma 2.4. [4] Let γ > 1. Assume that φ0 ∈ Hγ+1(T2), then there exist constants τ0 > 0
and C > 0, such that for any 0 < τ ≤ τ0, the following estimate hold:

‖Rn
1‖Hγ ≤ Cτ 2,

where τ0 and C depend only on T and ‖φ‖L∞((0,T );Hγ).

Lemma 2.5. [4] Let γ > 1. Assume that φ0 ∈ Hγ+1(T2), then there exist constants τ0 > 0
and C > 0, such that for any 0 < τ ≤ τ0, the following estimate holds:

‖Rn
2‖Hγ ≤ Cτ 2,

where τ0 and C depend only on T and ‖φ‖L∞((0,T );Hγ+1).

Combining Lemma 2.4 and Lemma 2.5, the local error estimate of the numerical propa-
gator is obtained.

Lemma 2.6. [4](Local error) Let γ > 1. Assume that φ0 ∈ Hγ+1(T2), then there exist
constants τ0 > 0 and C > 0, such that for any 0 < τ ≤ τ0, the following estimate holds:

‖ϕ(tn+1)− Φn(ϕ(tn))‖Hγ ≤ Cτ 2,

where τ0 and C depend only on T and ‖φ‖L∞((0,T );Hγ+1).

Finally, we introduce the stability result.
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Lemma 2.7. [4](Stability) Let f, g ∈ Hγ, then for γ > 1, the following estimate holds:

‖Φn(f)− Φn(g)‖Hγ ≤ (1 + Cτ) ‖f − g‖Hγ + Cτ ‖f − g‖3
Hγ ,

where C depends only on ‖f‖Hγ .

3. The almost mass-conserved scheme

3.1. Construction of the numerical integrator. Let ϕn = e−i∂x1x2 tnφn. Accordingly,
from (1.8)-(1.11), we have that

ϕn+1 = ϕn + In(ϕn) + Jn1 (ϕn) + Jn2 (ϕn), (3.1)

where Φn is defined in (2.12),
In(ϕn) = Φn(ϕn)− ϕn, (3.2)

and the functionals Jn1 , J
n
2 are given by

Jn1 (ϕn) = Hn(ϕn)ϕn, (3.3)

Jn2 (ϕn) = −1

2

(
Hn(ϕn)

)2
ϕn −

(
‖ϕn‖2

L2

)−1
Hn(ϕn)

〈
In(ϕn), ϕn

〉
ϕn, (3.4)

and

Hn(ϕn) = −
(
‖ϕn‖2

L2

)−1
(
〈In(ϕn), ϕn〉+

1

2
‖In(ϕn)‖2

L2

)
. (3.5)

The proof of Theorem 1.1 depends on the following key lemmas. Firstly, the convergence
order of In(ϕ) is given.

Lemma 3.1. Let γ > 1. Assume that ϕ ∈ Hγ, then there exists a constant C > 0, such that

‖In(ϕ)‖L2 . Cτ, (3.6)

where C depends on ‖ϕ‖L∞((0,T );Hγ).

Proof. By (2.12) and (3.2), we have

In(ϕ) = −iτe−i∂x1x2 tn
[
ei∂x1x2 tnϕE

(
ω(−2i∂x1x2τ)ei∂x1x2 tnϕ · ei∂x1x2 tnϕ

)]
.

Hence, we have

‖In(ϕ)‖L2 =
∥∥− iτe−i∂x1x2 tn[ei∂x1x2 tnϕE(ω(−2i∂x1x2τ)ei∂x1x2 tnϕ · ei∂x1x2 tnϕ

)]∥∥
L2

≤ τ
∥∥ei∂x1x2 tnϕE(ω(−2i∂x1x2τ)ei∂x1x2 tnϕ · ei∂x1x2 tnϕ

)∥∥
L2

≤ τ
∥∥ei∂x1x2 tnϕ∥∥

L∞

∥∥E(ω(−2i∂x1x2τ)ei∂x1x2 tnϕ · ei∂x1x2 tnϕ
)∥∥

L2 .

By ‖Ef‖L2 ≤ C‖f‖L2 , we have

‖In(ϕ)‖L2 . τ
∥∥ϕ∥∥

L∞

∥∥ω(−2i∂x1x2τ)ei∂x1x2 tnϕ · ei∂x1x2 tnϕ
∥∥
L2 ,

Together with Lemma 2.1 and ‖ω(−2i∂x1x2τ)f‖Hγ ≤ C‖f‖Hγ , we obtain

‖In(ϕ)‖L2 . τ
∥∥ϕ∥∥

Hγ

∥∥ei∂x1x2 tnϕ∥∥
Hγ

∥∥ϕ∥∥
Hγ

. τ‖ϕ‖3
L∞((0,T );Hγ).
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This proves this lemma. �

Next, we give the convergence order of 〈In(ϕ), ϕ〉.

Lemma 3.2. Let γ > 1. Assume that ϕ ∈ Hγ, then there exists a constant C > 0, such that

|〈In(ϕ), ϕ〉| . Cτ 2, (3.7)

where C depends on ‖ϕ‖L∞((0,T );Hγ).

Proof. We perform a Fourier transformation on In(ϕ) to obtain

În(ϕ) = −i
∑

k=k1+k2+k3

∫ τ

0

eiαtne2ik11k12sds
[
µ̃1 + µ2

(k11 + k21)(k12 + k22)

|k1 + k2|2
]

ˆ̄ϕk1ϕ̂k2ϕ̂k3 .

Together with α = 2k11k12 + β, we get

În(ϕ) = −i
∑

k=k1+k2+k3

∫ τ

0

eiαtn
[
eiαs − e2ik11k12s(e2iβs − 1)

]
ds

·
[
µ̃1 + µ2

(k11 + k21)(k12 + k22)

|k1 + k2|2
]

ˆ̄ϕk1ϕ̂k2ϕ̂k3 .

(3.8)

Therefore, we can write În(ϕ) as

În(ϕ) = −i
∑

k=k1+k2+k3

∫ τ

0

eiα(tn+s)dsW ˆ̄ϕk1ϕ̂k2ϕ̂k3 + (R̂n
2 )k, (3.9)

where (̂Rn
2 )k is defined as

(̂Rn
2 )k = i

∑
k=k1+k2+k3

∫ τ

0

eiαtne2ik11k12s(e2iβs − 1)ds
[
µ̃1 + µ2

(k11 + k21)(k12 + k22)

|k1 + k2|2
]

ˆ̄ϕk1ϕ̂k2ϕ̂k3 .

By making a Fourier inversion of the (3.8) equation, we obtain

In(ϕ) = −i
∫ τ

0

e−i∂x1x2 (tn+s)
(
ei∂x1x2 (tn+s)ϕ · E

(
|ei∂x1x2 (tn+s)ϕ|2

))
ds+Rn

2 . (3.10)

By taking the inner product of In and substituting (3.10) into the equation, we get

〈In(ϕ), ϕ〉 =
〈
− i
∫ τ

0

e−i∂x1x2 (tn+s)
(
ei∂x1x2 (tn+s)ϕ · E

(
|ei∂x1x2 (tn+s)ϕ|2

))
ds, ϕ

〉
+ 〈Rn

2 , ϕ〉

=

∫ τ

0

〈
−iei∂x1x2 (tn+s)ϕ · E

(
|ei∂x1x2 (tn+s)ϕ|2

)
, ei∂x1x2 (tn+s)ϕ

〉
ds+ 〈Rn

2 , ϕ〉 .

Since 〈
− if · E

(
|f |2
)
, f
〉

= Re

∫
Td
−if · E

(
|f |2
)
· f̄dx = 0,

we get ∫ τ

0

〈
−iei∂x1x2 (tn+s)ϕ · E

(
|ei∂x1x2 (tn+s)ϕ|2

)
, ei∂x1x2 (tn+s)ϕ

〉
ds = 0.



11

Hence, we have
〈In(ϕ), ϕ〉 = 〈Rn

2 , ϕ〉 .
According to the Lemma 2.2, we get

|〈In(ϕ), ϕ〉| = |〈Rn
2 , ϕ〉| ≤ ‖Rn

2‖H−γ‖ϕ‖Hγ . Cτ 2,

where C depends on ‖ϕ‖L∞((0,T );Hγ).
This proves Lemma 3.2. �

3.2. The proof of the Theorem 1.1. Since ϕn = e−i∂x1x2 tnφn, ϕ(tn) = e−i∂x1x2 tnφ(tn), we
only need to prove the conclusion of Theorem 1.1 holds for ϕn and ϕ(tn).

From (3.1), we have

ϕn+1 = ϕn + In(ϕn) + Jn1 (ϕn) + Jn2 (ϕn).

Then, we get

ϕn+1 − ϕ (tn+1) = Φn (ϕn)− Φn (ϕ (tn)) + Φn (ϕ (tn))− ϕ (tn+1) + Jn1 (ϕn) + Jn2 (ϕn).

By Lemma 2.6 and Lemma 2.7, we find

‖ϕ(tn+1)− Φn(ϕ(tn))‖Hγ ≤ Cτ 2,

and

‖Φn (ϕn)− Φn (ϕ (tn)) ‖Hγ ≤ (1 + Cτ) ‖ϕn − ϕ (tn)‖Hγ + Cτ ‖ϕn − ϕ (tn)‖3
Hγ .

From (3.5), Lemma 3.1 and Lemma 3.2, we have

|Hn (ϕn)| ≤
(
‖ϕn‖2

L2

)−1
(
|〈In (ϕn) , ϕn〉|+ 1

2
‖In (ϕn)‖2

L2

)
≤ Cτ 2

(
‖ϕn‖2

Hγ + ‖ϕn‖4
Hγ

)
≤ Cτ 2(1 + ‖ϕn − ϕ (tn)‖4

Hγ ). (3.11)

This yields that

‖Jn1 (ϕn) ‖Hγ = |Hn (ϕn)| ‖ϕn‖Hγ ≤ Cτ 2(1 + ‖ϕn − ϕ (tn)‖5
Hγ ). (3.12)

Similarly, from (3.4), (3.11), Lemma 3.1 and Lemma 3.2, we have

‖Jn2 (ϕn) ‖Hγ ≤ 1

2
|Hn(ϕn)|2‖ϕn‖γ +

(
‖ϕn‖2

L2

)−1|Hn(ϕn)||
〈
In(ϕn), ϕn

〉
|‖ϕn‖γ

≤ Cτ 4(1 + ‖ϕn − ϕ (tn)‖9
Hγ ).

Putting together with the above estimates, we conclude that for any τ ≤ 1,

‖ϕn+1 − ϕ (tn+1) ‖Hγ ≤ Cτ 2 + (1 + Cτ) ‖ϕn − ϕ (tn)‖Hγ + Cτ ‖ϕn − ϕ (tn)‖9
Hγ , (3.13)

where the constant C depends only on ‖ϕ‖L∞((0,T );Hγ).
By the iteration and Gronwall inequalities, we get∥∥ϕ(tn)− ϕn

∥∥
Hγ ≤ Cτ 2

n∑
j=0

(1 + Cτ)j ≤ Cτ, n = 0, 1 . . . ,
T

τ
. (3.14)
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This implies the first-order convergence and the following a prior estimate:

‖ϕn‖Hγ ≤ C, n = 0, 1 . . . ,
T

τ
. (3.15)

Here the positive constant C depends only on T and ‖ϕ‖L∞((0,T );Hγ).
From the DS-II system (1.4), we know that ψn = −(−∆)−1(∂x + ∂y)|φn|2. Meanwhile,

using the first estimate in (1.14), we have

‖ψ (tn)− ψn‖Hγ+1 ≤
∥∥−(−∆)−1(∂x1 + ∂x2)

(
|φ(tn)|2 − |φn|2

)∥∥
Hγ+1

≤ C
∥∥ |φ (tn)|2 − |φn|2

∥∥
Hγ

≤ C ‖φ (tn)− φn‖Hγ (‖φ (tn)− φn‖Hγ + ‖φ(tn‖Hγ )

≤ Cτ,

where the constant C depends only on ‖φ‖L∞((0,T );Hγ+1). This proves (1.14).
Next we prove the almost mass conservation law. From (3.1), we have

‖ϕn+1‖2
L2 =

〈
ϕn+1, ϕn+1

〉
= ‖ϕn‖2

L2

+ 2 〈In (ϕn) , ϕn〉+ 2 〈Jn1 (ϕn) , ϕn〉+ ‖In (ϕn)‖2
L2

+ 2 〈Jn2 (ϕn) , ϕn〉+ 2 〈In (ϕn) , Jn1 (ϕn)〉+ ‖Jn1 (ϕn)‖2
L2

+ 2 〈In (ϕn) , Jn2 (ϕn)〉+ 2 〈Jn1 (ϕn) , Jn2 (ϕn)〉+ ‖Jn2 (ϕn)‖2
L2

:= ‖ϕn‖2
L2 + I + II + III. (3.16)

Combine (3.3), (3.4) and(3.5) , we get that

I = 0, II = 0.

By Lemma 3.2, (3.3), (3.4), (3.11) and (3.14), we obtain

2
∣∣ 〈In (ϕn) , Jn2 (ϕn)〉

∣∣ ≤ ∣∣2(‖ϕn‖2
L2)−1Hn(ϕn) 〈In (ϕn) , ϕn〉2

∣∣
+
∣∣(Hn(ϕn)

)2 〈In (ϕn) , ϕn〉
∣∣ ≤ Cτ 6,

2
∣∣ 〈Jn1 (ϕn) , Jn2 (ϕn)〉

∣∣ ≤ ∣∣[(Hn(ϕn)
)3‖ϕn‖2

L2 + 2
(
Hn(ϕn)

)2 〈In (ϕn) , ϕn〉
]∣∣ ≤ Cτ 6,

and
‖Jn2 (ϕn)‖2

L2 ≤
(
‖ϕn‖2

L2

)−1(
Hn(ϕn)

)2 〈In (ϕn) , ϕn〉

+
(
Hn(ϕn)

)3 〈In (ϕn) , ϕn〉+
1

4

(
Hn(ϕn)

)4‖ϕn‖2
L2 ≤ Cτ 8.

Then, we have
III ≤ Cτ 6.

Therefore, we conclude that ∣∣‖ϕn+1‖2
L2 − ‖ϕn‖2

L2

∣∣ ≤ Cτ 6, (3.17)

that is
|M(ϕn+1)−M (ϕn) | ≤ Cτ 6. (3.18)
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Then by the iteration, we get

|M (ϕn)−M (φ0)| ≤ Cτ 5.

This finishes the proof of Theorem 1.1.

4. Numerical Experiments

In this section, we present the numerical experiments of the scheme to justify the main
theorem. Since ψn is calculated via equation (1.4), we only need to test φn in this section.
To get an initial data with the desired regularity, we construct φ0(x) through the following
strategy [23]. Choose N = 26 as an even integer and discrete the spatial domain T2 with
grid points xj,k = (2jπ

N
, 2kπ
N

), j, k = 0, . . . , N . Take a uniformly distributed random array
rand (N,N) ∈ [0, 1]N×N and an N ×N vector Φ whose elements are defined as

Φj,k,l = rand(N,N) + i rand(N,N), (j, k = 0, . . . , N − 1).

In our numerical experiments, we set

φ0(x) :=
|∂x,N |−γΦ

‖|∂x,N |−γΦ‖L∞
, x ∈ T2, (4.1)

where the pseudo-differential operator |∂x,N |−γ for γ ≥ 0 reads as follows: for Fourier modes
k = (k1, k2) and kj = −N/2, . . . , N/2− 1, for j = 1, 2, and

(
|∂x,N |−γ

)
k

=

{
|k|−γ, if k 6= 0,

0, if k = 0.

Since the almost mass conservation scheme given in this work has high accuracy, direct
numerical calculation may not capture the convergence order of the mass error, in this
experiment we enlarge the initial value by 105 times and calculate the relative errors. The
MATLAB software is used to implement the numerical experiments, where the final time
T = 2.0, the results are shown in Fig. 1 and Fig. 2. These illustrate that the scheme (3.1)
achieves first-order convergence in Hγ and fifth-order convergence for the initial data in
Hγ+1, γ = 2, 3, and compares with the scheme given in [4] has higher order convergence of
mass.

5. Conclusion

In this work, we constructed a first-order Fourier integrator with almost mass conservation
for solving the DS-II system on a torus under rough initial data. Based on the numerical
scheme in [4], we designed a modified numerical scheme to obtain the first-order convergence
in Hγ×Hγ+1 with rough initial data in Hγ+1×Hγ+1 and the fifth-order mass convergence. In
addition, the scheme can be readily extent to constructed to obtain the arbitrary high-order
mass convergence.
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Figure 1. Convergence of (3.1): error
‖φref−φn‖Hγ
‖φref‖Hγ

(left) and error |M(φn)−M0|
|M0|

(right) when γ = 2

Figure 2. Convergence of (3.1): error
‖φref−φn‖Hγ
‖φref‖Hγ

(left) and error |M(φn)−M0|
|M0|

(right) when γ = 3
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