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In this article, we investigate the ground states (GS) of arbitrary-angle rotating Bose-Einstein 
condensates (BECs), modeled by the three-dimensional (3D) Gross-Pitaevskii equation (GPE). 
Firstly, we establish the existence results of the ground states with rigorous proof. Secondly, 
we propose a preconditioned Riemannian conjugate gradient (pRCG) method coupled with 
the Fourier pseudo-spectral discretization to compute the ground states numerically. A robust 
and efficient preconditioner together with an adaptive stepsize control strategy is proposed to 
accelerate the convergence. Thirdly, utilizing the pRCG algorithm, we study the ground state 
patterns in various settings extensively. Particularly, for the first time, we observe bent vortex 
lines, including U-shaped and S-shaped vortex lines, in the elongated BEC with arbitrary-angle 
rotation. We also study how the bent vortex line patterns change with the angle between the 
rotation axis and the elongated direction in detail. Lastly, we perform a comprehensive numerical 
study to confirm the spectral accuracy and showcase the great computational efficiency, and study 
the influences of physical parameters on GS patterns of BECs with arbitrary-angle rotation.
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1. Introduction

Bose-Einstein condensates (BECs) are a remarkable state of matter that have captivated researchers since their experimental 
realization in 1995 [5,17,22]. In BECs, particles such as ultra-cold atoms are cooled to temperatures close to absolute zero, causing 
them to occupy the same quantum state. This phenomenon gives rise to a unique, coherent state of matter with extraordinary 
quantum properties, which permits an intriguing glimpse into the macroscopic quantum world. Over the last 20 years, research on 
BECs has developed very rapidly in the fields of atomic, molecular, optics and condensed matter physics. Among them, particular 
attention has been paid to rotating BECs, where quantum vortices [1,18] are induced. The appearance of vortices is a mark of the 
superfluid nature of BECs and holds wide-ranging potential applications, spanning from astrophysics to atomic physics, optics and 
superfluid dynamics. Early experiments on rotating BECs focus on rotation along the 𝑧-axis, whereas real-world applications may 
require rotation at arbitrary angles. For instance, recently, a BEC confined by a rotating harmonic trap whose rotation axis is not 
aligned with any of its principal axes has been investigated [31]. In [30], the Thomas-Fermi theory was extended to harmonically 
trapped dipolar Bose-Einstein condensates, polarized by a continuously rotating field with the flexibility to be oriented at any 
angle to its rotation axis. BECs with arbitrary-angle rotation constitute a captivating subject within the realm of quantum physics 
[16,26,30,31,36,37].

At temperature 𝑇 lower than the critical temperature 𝑇𝑐 , the macroscopic behavior of a BEC in an arbitrary-angle rotational 
frame can be accurately captured by a complex-valued wave function 𝜓(𝒙, 𝑡), whose evolution is governed by the dimensionless 
Gross-Pitaevskii equation (GPE) with an arbitrary angular momentum rotation term in three dimension (3D) [7,8]:{

𝑖𝜕𝑡𝜓(𝒙, 𝑡) =
[
−1
2
Δ+ 𝑉 (𝒙) + 𝛽|𝜓(𝒙, 𝑡)|2]𝜓(𝒙, 𝑡) − (𝛀 ⋅𝑳)𝜓(𝒙, 𝑡), 𝒙 ∈ℝ3, 𝑡 > 0,

𝜓(𝒙,0) = 𝜓0(𝒙), 𝒙 ∈ℝ3.
(1.1)

Here, 𝒙 = (𝑥, 𝑦, 𝑧)𝑇 , 𝑡 denote respectively the spatial and time variables, Δ = ∇2 is Laplace operator with ∇ ∶= (𝜕𝑥, 𝜕𝑦, 𝜕𝑧)𝑇 the 
standard gradient operator, 𝛽 ∈ℝ is a constant characterizes strength of short range two-body interaction in a condensate (positive 
for repulsive and negative for attractive). 𝑉 (𝒙) is an external trapping potential usually taken as the harmonic oscillator type [12,13]

𝑉 (𝒙) = 𝑉har (𝒙) ∶=
𝛾2𝑥𝑥

2 + 𝛾2𝑦 𝑦
2 + 𝛾2𝑧 𝑧

2

2
, (1.2)

with 𝛾𝜈 the trapping frequency in 𝜈-direction (𝜈 = 𝑥, 𝑦, 𝑧). The rotation of the system is characterized by the term 𝛀 ⋅𝑳 ∶=𝛀𝑇𝑳, i.e. 
the inner product of the rotation frequency 𝛀 and angular momentum 𝑳 defined as

𝛀 =
(
𝜔𝑥,𝜔𝑦,𝜔𝑧

)𝑇
, 𝑳 = 𝒙 × 𝒑 = 𝒙 × (−𝑖∇) =∶

(
𝐿𝑥,𝐿𝑦,𝐿𝑧

)𝑇
.

A simple calculation shows the angular momentum in 𝜈-direction (𝜈 = 𝑥, 𝑦, 𝑧) reads as

𝐿𝑥 = −𝑖(𝑦𝜕𝑧 − 𝑧𝜕𝑦), 𝐿𝑦 = −𝑖(𝑧𝜕𝑥 − 𝑥𝜕𝑧), 𝐿𝑧 = −𝑖(𝑥𝜕𝑦 − 𝑦𝜕𝑥). (1.3)

In most experiments, the rotating axis is aligned parallel to the 𝑧-axis, hence leading to a rotation frequency 𝛀 = (0, 0, 𝜔𝑧)𝑇 . As such, 
the rotation term reduces to 𝛀 ⋅𝑳 = 𝜔𝑧𝐿𝑧, with which the corresponding BEC system has been well studied. One can refer to [11]

and references therein.

The time dependent GPE (1.1) conserves two important quantities: the total mass (or normalization)

𝑁(𝜓) ∶= ‖𝜓(⋅, 𝑡)‖22 = ∫
ℝ3

|𝜓(𝒙, 𝑡)|2𝑑𝒙 = ‖𝜓(⋅,0)‖22 = 1, 𝑡 ≥ 0, (1.4)

and the energy per particle

𝐸(𝜓) = ∫
ℝ3

(
1
2
|∇𝜓|2 + 𝑉 (𝒙)|𝜓|2 + 𝛽

2
|𝜓|4 −𝜓∗(𝛀 ⋅𝑳)𝜓

)
𝑑𝒙, (1.5)

where 𝜓∗ denotes the complex conjugate of 𝜓 . The ground states (GS) of the arbitrary-angle rotating BEC is defined as follows 
[3,11,27] { 2 3 }
2

𝜙𝑔(𝒙) ∶= argmin
𝜙∈𝕊

𝐸(𝜙), with 𝕊 ∶= 𝜙(𝒙) ∈𝐿 (ℝ )| ‖𝜙(𝒙)‖2 = 1, 𝐸(𝜙) <∞ , (1.6)
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which is a non-convex minimization problem due to the constraint. It can also be defined as the stationary states of GPE (1.1) with 
the lowest energy, which then leads to a nonlinear eigenvalue problem [23,39].

For BECs with rotation axis parallel to 𝑧-axis, there have been extensive theoretical and numerical studies on the GS of such 
systems [3,4,8,9,11,12,15,23–25]. The difficulties in numerically computing the GS lie in the proper treatment of the constraint and 
in resolving the hyperfine vortex structure induced by rotation. For highly rotating and strongly nonlinear systems, GS is usually 
equipped with a vortex lattice and the energy landscape presents shallower minima. Hence, numerical schemes need to be accurate 
enough to capture those spatial-small-scale vortices and be of the capability to escape from most local shallower minima. Various 
numerical methods were developed based on solving the non-convex constrained optimization problems (1.6) or its correlated Euler-

Lagrange equation. For the later approach, one can refer to [23,39] and references therein. The former approach includes methods 
such as those based on proper discretizations of gradient-type flows and their variants [6–8,12,19,20,28,41] as well as those based on 
direct minimizing the energy functional (1.5) [9,10,13,21,40,38]. Among them, the preconditioned Riemannian conjugated gradient 
(pRCG) methods [9,10,21], which treat problem (1.6) as an unconstrained minimization problem on Riemannian manifold, was 
numerically evidenced to be one of the best. With proper choice of the preconditioner and stepsize control strategy, which play a key 
role in the acceleration of the convergence process, the pRCG algorithm is shown to be accurate, efficient and robust for computing 
GS of rotating BECs, especially for those systems with fast rotation and strong nonlinearity [9,10].

However, for BECs with arbitrary-angle rotation, to our best knowledge, there is little literature yet developing numerical methods 
for its GS computation. Due to the 3D nature and possible hyperfine vortex-structure caused by the angle between the rotation axis 
and elongated direction of an anisotropic condensate, it is challenging to develop an efficient and robust numerical method to 
compute the GS of BEC with arbitrary-angle rotation. This motivates us to extend the pRCG method integrating with a Fourier 
pseudo-spectral method for spatial discretization, whose impressive performance has been evidenced for a system of rotation axis 
parallel to 𝑧-axis, to compute the GS of arbitrary-angle rotating BECs. Other objectives of this paper are as follows: (i) to provide the 
existence of the GS of arbitrary-angle rotating BECs. (ii) to explore the impacts of model parameters, such as the external trapping 
potential, the rotation and the nonlinear interaction strength, on the properties and patterns of GS. Specially, we investigate GS 
patterns with intriguing bent vortex structures versus the angle between the rotation axis and the elongated direction of a BEC 
[24,25].

The rest of the paper is organized as follows. In Section 2, we present existence results of the GS of arbitrary-angle rotating BECs 
with rigorous proofs. In Section 3, we propose a Fourier pseudo-spectral method to discretize the constrained optimization problem. 
We also introduce the manifold geometry structure of the discretized optimization problem, including the Riemannian gradient, 
Riemannian Hessian, retraction and vector transport. Based on this, a preconditioned Riemannian conjugate gradient (pRCG) method 
is proposed to solve the discretized optimization problem. In Section 4, we test the performance of the pRCG method, and apply it 
to investigate the GS patterns and vortex structures of BECs under various settings of physical parameters. Several conclusions are 
presented in Section 5.

2. Existence of the ground state

Existence results of the ground state for BECs with a rotating axis paralleled to 𝑧-axis are well-researched and one can refer to 
[14,33] and references therein. For the existence and simple properties of ground state for the arbitrary-angle rotating BEC, we have 
the following results:

Theorem 1. For systems with harmonic trapping potential (1.2), we have

(1) If 𝜙(𝑥, 𝑦, 𝑧) is a ground state of 𝐸𝜔𝑥,𝜔𝑦,𝜔𝑧 (𝜙), then 𝜙(𝑥, 𝑦, −𝑧), 𝜙(𝑥, −𝑦, 𝑧) and 𝜙(−𝑥, 𝑦, 𝑧) are ground states of 𝐸−𝜔𝑥,−𝜔𝑦,𝜔𝑧 (𝜙), 
𝐸−𝜔𝑥,𝜔𝑦,−𝜔𝑧 (𝜙) and 𝐸𝜔𝑥,−𝜔𝑦,−𝜔𝑧 (𝜙) respectively. Here, 𝐸𝜔𝑥,𝜔𝑦,𝜔𝑧 (𝜙) denotes the energy for wave function 𝜙 with rotation frequency 
𝛀 ∶= (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)𝑇 .

(2) For 𝛽 ≥ 0, there exists a ground state if the following matrix

𝐴 =
⎛⎜⎜⎝
𝛾2𝑥 − (𝜔2

𝑦 +𝜔
2
𝑧) 𝜔𝑥𝜔𝑦 𝜔𝑥𝜔𝑧

𝜔𝑥𝜔𝑦 𝛾2𝑦 − (𝜔2
𝑥 +𝜔

2
𝑧) 𝜔𝑦𝜔𝑧

𝜔𝑥𝜔𝑧 𝜔𝑦𝜔𝑧 𝛾2𝑧 − (𝜔2
𝑥 +𝜔

2
𝑦)

⎞⎟⎟⎠ (2.1)

is positive definite. Specially,

(i) for an isotropic trapping potential, i.e. 𝛾𝑥 = 𝛾𝑦 = 𝛾𝑧 = 𝛾 , the ground state exists as long as |𝛀| < 𝛾 ;
(ii) for the typical rotation frequency 𝛀 = (0, 0, 𝜔𝑧)𝑇 , the ground state exists when |𝜔𝑧| <min{𝛾𝑥, 𝛾𝑦}, which is the same as that already 
established in [14,33].

Proof. The first conclusion is easy to check with a change of variables, therefore we choose not to present details here and shall 
focus on existence results of the ground state. Using a Householder transform 𝒙 = 𝑃 �̃�, we can map the rotation vector 𝛀 to �̃�-axis, 
i.e. 𝑃 (0, 0, |𝛀|)𝑇 =𝛀, where the orthogonal matrix 𝑃 is symmetric and reads as follows

𝑃 = 𝐼3 −
1 ⎛⎜ 𝜔2

𝑥 𝜔𝑥𝜔𝑦 𝜔𝑥(𝜔𝑧 − |𝛀|)
𝜔𝑥𝜔𝑦 𝜔2

𝑦 𝜔𝑦(𝜔𝑧 − |𝛀|) ⎞⎟ .

3

|𝛀|(|𝛀|−𝜔𝑧) ⎜⎝ 𝜔𝑥(𝜔𝑧 − |𝛀|) 𝜔𝑦(𝜔𝑧 − |𝛀|) (𝜔𝑧 − |𝛀|)2 ⎟⎠
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We then introduce a new wave function �̃�(�̃�) ∶= 𝜙(𝒙) using such Householder transform. Using the chain rule and vector cross 
product properties, we have

∇𝒙𝜙(𝒙) = 𝑃∇�̃��̃�(�̃�), Δ𝒙𝜙(𝒙) = Δ�̃��̃�(�̃�),

𝛀 ⋅𝑳𝜙 =𝛀 ⋅
[
𝒙 ×
(
− 𝑖∇𝒙𝜙

)]
=𝛀 ⋅

[
𝑃 �̃� ×

(
−𝑖𝑃∇�̃��̃�

)]
= −𝛀 ⋅ 𝑃

[
�̃� ×
(
−𝑖∇�̃��̃�

)]
= −𝑃𝛀 ⋅

[
�̃� ×
(
−𝑖∇�̃��̃�

)]
= −(0,0, |𝛀|)𝑇 ⋅

[
�̃� ×
(
−𝑖∇�̃��̃�

)]
= −|𝛀|𝐿�̃��̃�,

with 𝐿�̃� = −𝑖(�̃�𝜕�̃� − �̃�𝜕�̃�). The energy (1.5) is then equivalent to the following

𝐸(𝜙) =𝐸(�̃�) ∶= ∫
ℝ3

(
1
2
|∇�̃�|2 + 𝑉 (𝑃 �̃�)|�̃�|2 + 𝛽

2
|�̃�|4 + |𝛀|�̃�∗𝐿�̃��̃�)d�̃�. (2.2)

Since the Household transform is a one-to-one map, the ground state existence is equivalent to the existence of minimizer to (2.2)

under the same constraint in (1.6). Hereafter we shall focus on (2.2).

Using Young inequality, we have||||∫
ℝ3

|𝛀|�̃�∗𝐿�̃��̃� d�̃�
|||| ≤ ∫

ℝ3

[|𝛀||�̃��̃�∗||𝜕�̃�𝜙|+ |𝛀||�̃��̃�∗||𝜕�̃��̃�|]d�̃�
≤ ∫
ℝ3

[ |𝛀|2
2

(�̃�2 + �̃�2)|�̃�|2 + 1
2
(|𝜕�̃��̃�|2 + |𝜕�̃��̃�|2)]d�̃�,

and

∫
ℝ3

[(
𝑉 (𝑃 �̃�) − |𝛀|2

2
(�̃�2 + �̃�2)

)|�̃�|2 + 𝛽
2
|�̃�|4]d�̃� ≤ 𝐸(�̃�)

≤ ∫
ℝ3

[|∇�̃�|2 +(𝑉 (𝑃 �̃�) + |𝛀|2
2

(�̃�2 + �̃�2)
)|�̃�|2 + 𝛽

2
|�̃�|4]d�̃�.

A lower bound is guaranteed if 𝑈 ∶= 𝑉 (𝑃 �̃�) − |𝛀|22 (�̃�2 + �̃�2) is semi positive definite for �̃� ∈ℝ3. Expanding in full variables �̃�= (�̃�, �̃�, ̃𝑧)
and rewriting it using matrix form, we have

𝑈 = 1
2
�̃�𝑇 𝑃 𝑇

⎛⎜⎜⎝
𝛾2𝑥 0 0
0 𝛾2𝑦 0
0 0 𝛾2𝑧

⎞⎟⎟⎠𝑃 �̃�− 1
2
�̃�𝑇
⎛⎜⎜⎝
|𝛀|2 0 0
0 |𝛀|2 0
0 0 0

⎞⎟⎟⎠ �̃�
= 1

2
𝒙𝑇

[⎛⎜⎜⎝
𝛾2𝑥 0 0
0 𝛾2𝑦 0
0 0 𝛾2𝑧

⎞⎟⎟⎠− |𝛀|2𝑃
⎛⎜⎜⎝
1 0 0
0 1 0
0 0 0

⎞⎟⎟⎠𝑃𝑇
]
𝒙 = 1

2
𝒙𝑇 𝐴𝒙.

Therefore, we conclude that 𝐸(�̃�) is positive if 𝛽 ≥ 0 and A is positive definite, so is 𝐸(𝜙). Moreover, we can prove that 𝐸(𝜙) is 
positive, coercive and weakly lower semi-continuous. Consequently, the existence of a minimum is established using the standard 
theory [34]. □

3. Numerical method

Due to the external trapping potential, the wave function 𝜙 decays exponentially as |𝒙| →∞. Therefore, one can approximately 
truncate the wave function 𝜙 to a bounded domain  ∶= [𝐿𝑥, 𝑅𝑥] × [𝐿𝑦, 𝑅𝑦] × [𝐿𝑧, 𝑅𝑧] with periodic boundary conditions. Based 
on this, in this section, we first discretize 𝜙 with standard pseudo-Fourier spectral method [9,12] and reformulate the constrained 
minimization problem (1.6) into its finite dimensional approximation. Then, a preconditioned Riemannian conjugate gradient method 
will be proposed to solve the resulted finite dimensional constrained minimization problem.

3.1. Discretization and the manifold geometry of the minimization problem

The mesh grids we used are chosen as 𝑁 = {𝒙𝑗𝑘𝓁 ∶= (𝑥𝑗 , 𝑦𝑘, 𝑧𝓁) ∶= (𝐿𝑥+𝑗ℎ𝑥, 𝐿𝑦+𝑘ℎ𝑦, 𝐿𝑧+𝓁ℎ𝑧), (𝑗, 𝑘, 𝓁) ∈𝑂𝑁} with mesh sizes 
ℎ𝜈 =

𝑅𝜈−𝐿𝜈
𝑁𝜈

, 𝑁𝜈 (𝜈 = 𝑥, 𝑦, 𝑧) even numbers, 𝑁 ∶=𝑁𝑥𝑁𝑦𝑁𝑧 and 𝑂𝑁 = {(𝑗, 𝑘, 𝓁) ∈ ℕ3 | 0 ≤ 𝑗 ≤𝑁𝑥−1, 0 ≤ 𝑘 ≤𝑁𝑦−1, 0 ≤ 𝓁 ≤𝑁𝑧−1}. 
Moreover, we introduce the Fourier basis functions∏

𝑖𝜇𝜈𝑝𝜈
(𝜈−𝐿𝜈 ) 𝑁𝜈 𝑁𝜈
4

𝑊𝑝𝑥𝑝𝑦𝑝𝑧
(𝒙) =

𝜈=𝑥,𝑦,𝑧
𝑒 , 𝑝𝜈 = −

2
,⋯ ,

2
− 1, 𝜈 = 𝑥, 𝑦, 𝑧,
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with 𝜇𝜈𝑝𝜈 =
2𝜋𝑝𝜈
𝑅𝜈−𝐿𝜈

(𝜈 = 𝑥, 𝑦, 𝑧) the discrete Fourier frequencies. The Fourier pseudo-spectral approximation of the wave function 𝜙 as 
well as its derivatives at 𝒙𝑗𝑘𝓁 ∈𝑁 is given by

𝜙(𝒙𝑗𝑘𝓁) ≈ 𝜙(𝒙𝑗𝑘𝓁) ∶=
1
𝑁

𝑁𝑥∕2−1∑
𝑝𝑥=−𝑁𝑥∕2

𝑁𝑦∕2−1∑
𝑝𝑦=−𝑁𝑦∕2

𝑁𝑧∕2−1∑
𝑝𝑧=−𝑁𝑧∕2

̂(𝜙)𝑝𝑥𝑝𝑦𝑝𝑧𝑊𝑝𝑥𝑝𝑦𝑝𝑧
(𝒙𝑗𝑘𝓁),

𝜕𝜈𝜙(𝒙𝑗𝑘𝓁) ≈ (�𝜕𝜈�𝜙)𝑗𝑘𝓁 ∶= 1
𝑁

𝑁𝑥∕2−1∑
𝑝𝑥=−𝑁𝑥∕2

𝑁𝑦∕2−1∑
𝑝𝑦=−𝑁𝑦∕2

𝑁𝑧∕2−1∑
𝑝𝑧=−𝑁𝑧∕2

(𝑖𝜇𝜈𝑝𝜈 )
̂(𝜙)𝑝𝑥𝑝𝑦𝑝𝑧𝑊𝑝𝑥𝑝𝑦𝑝𝑧

(𝒙𝑗𝑘𝓁), 𝜈 = 𝑥, 𝑦, 𝑧,

𝜕2𝜈𝜙(𝒙𝑗𝑘𝓁) ≈ (�𝜕2𝜈 �𝜙)𝑗𝑘𝓁 ∶= − 1
𝑁

𝑁𝑥∕2−1∑
𝑝𝑥=−𝑁𝑥∕2

𝑁𝑦∕2−1∑
𝑝𝑦=−𝑁𝑦∕2

𝑁𝑧∕2−1∑
𝑝𝑧=−𝑁𝑧∕2

(𝜇𝜈𝑝𝜈 )
2̂(𝜙)𝑝𝑥𝑝𝑦𝑝𝑧𝑊𝑝𝑥𝑝𝑦𝑝𝑧

(𝒙𝑗𝑘𝓁), 𝜈 = 𝑥, 𝑦, 𝑧,

where ̂(𝜙)𝑝𝑥𝑝𝑦𝑝𝑧 are Fourier coefficients given by

̂(𝜙)𝑝𝑥𝑝𝑦𝑝𝑧 =
𝑁𝑥−1∑
𝑗=0

𝑁𝑦−1∑
𝑘=0

𝑁𝑧−1∑
𝓁=0

𝜙(𝒙𝑗𝑘𝓁)𝑊 ∗
𝑝𝑥𝑝𝑦𝑝𝑧

(𝒙𝑗𝑘𝓁).

To discretize minimization problem (1.6), we also need the operators 𝑦�𝜕𝑥�, 𝑧�𝜕𝑥�, 𝑥�𝜕𝑦�, 𝑧�𝜕𝑦�, 𝑥�𝜕𝑧� and 𝑦�𝜕𝑧�, which are applied 
to the approximation 𝜙 of 𝜙, for (𝑗, 𝑘, 𝓁) ∈𝑂𝑁 ,

(𝑥𝜕𝜈𝜙)(𝒙𝑗𝑘𝓁) ≈ (𝑥�𝜕𝜈�𝜙)𝑗𝑘𝓁 ∶= 𝑥𝑗 (�𝜕𝜈�𝜙)𝑗𝑘𝓁 , 𝜈 = 𝑦, 𝑧,
(𝑦𝜕𝜈𝜙)(𝒙𝑗𝑘𝓁) ≈ (𝑦�𝜕𝜈�𝜙)𝑗𝑘𝓁 ∶= 𝑦𝑘(�𝜕𝜈�𝜙)𝑗𝑘𝓁 , 𝜈 = 𝑥, 𝑧,
(𝑧𝜕𝜈𝜙)(𝒙𝑗𝑘𝓁) ≈ (𝑧�𝜕𝜈�𝜙)𝑗𝑘𝓁 ∶= 𝑧𝓁(�𝜕𝜈�𝜙)𝑗𝑘𝓁 , 𝜈 = 𝑥, 𝑦.

Denote 𝑔𝑗𝑘𝓁 ∶= 𝑔(𝒙𝑗𝑘𝓁) as the value of an abstract function 𝑔(𝒙) (𝑔 represents 𝜙, 𝜙2, |𝜙|2, 𝑉 , etc) at 𝒙𝑗𝑘𝓁 ∈𝑁 and let 𝑔 be the vector 
with elements 𝑔𝑗𝑘𝓁 . Together with the operators

�Δ� ∶= �𝜕2𝑥�+ �𝜕2𝑦�+ �𝜕2𝑧�, �𝐿𝑥� ∶= −𝑖(𝑦�𝜕𝑧�− 𝑧�𝜕𝑦�), �𝐿𝑦� ∶= −𝑖(𝑧�𝜕𝑥�− 𝑥�𝜕𝑧�), �𝐿𝑧� ∶= −𝑖(𝑥�𝜕𝑦�− 𝑦�𝜕𝑥�),

we discretize the energy functional 𝐸(𝜙) as

𝐸(𝜙) ≈ (𝜙) ∶=
⟨
−1
2

�Δ�𝜙+ 𝑉 ⊙𝜙+ 𝛽
2
(|𝜙|2)⊙𝜙−

(
𝜔𝑥�𝐿𝑥�𝜙+𝜔𝑦�𝐿𝑦�𝜙+𝜔𝑧�𝐿𝑧�𝜙

)
, 𝜙

⟩
,

and the minimization problem (1.6) is then discretized into the finite dimensional minimization problem

𝜙𝑔 = argmin
𝜙∈

(𝜙), with  ∶= {𝜙 ∈ℂ𝑁 | ‖𝜙‖2 = 1}. (3.1)

Here, ⊙ denotes the Hadamard product, ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ are respectively the (scaled) Euclidean metric and its induced norm defined 
by

⟨𝑈,𝑉 ⟩ ∶=𝑅𝑒 ⎛⎜⎜⎝ℎ𝑥ℎ𝑦ℎ𝑧
𝑁𝑥−1∑
𝑗=0

𝑁𝑦−1∑
𝑘=0

𝑁𝑧−1∑
𝓁=0

𝑈𝑗𝑘𝓁𝑉
∗
𝑗𝑘𝓁

⎞⎟⎟⎠ , ‖𝑈‖ =√⟨𝑈,𝑈⟩, 𝑈 ,𝑉 ∈ℂ𝑁, (3.2)

with 𝑅𝑒(⋅) representing the real part. The difficulties of classical methods based on gradient-type flows to solve (3.1) come from the 
proper treatment of the constraint in  . However,  can be viewed as the spherical manifold and thus leads problem (3.1) to be a 
minimization problem on Riemannian manifold. Hence, problem (3.1) can be treated as an unconstrained optimization problem on 
the spherical manifold  , and efficient preconditioned Riemannian conjugate gradient (pRCG) method [2] could be applied to solve 
it. We state the geometry structure that the pRCG method (stated later in subsection 3.2) relies on thereinafter.

The Riemannian metric we use is the Euclidean metric (3.2). Recall that the Riemannian manifold of the optimization problem 
(3.1) reads as  = {𝜙 ∈ℂ𝑁 | ‖𝜙‖2 = 1}. The tangent space of  at 𝜙 ∈  is

𝜙 ∶= {𝑢 ∈ℂ𝑁 | ⟨𝜙,𝑢⟩ = 0}, (3.3)

and the orthogonal projection operator 𝑀𝜙 onto this space is given by

𝑀𝜙𝑢 ∶= 𝑢− ⟨𝑢,𝜙⟩𝜙, ∀𝑢 ∈ℂ𝑁. (3.4)

For energy functional (𝜙), by a direct calculation via Gâteaux differential, one obtains its Euclidean gradient ∇(𝜙) and the action 
of its Euclidean Hessian ∇2 at 𝜙 on 𝑢
5

∇(𝜙) = 2𝜙𝜙, ∇2(𝜙)[𝑢] = 2𝜙𝑢+ 2𝛽𝜙2 ⊙ 𝑢∗ + 2𝛽|𝜙|2 ⊙ 𝑢,
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with 𝜙𝑢 =
(
− 1

2
�Δ�−𝜔𝑥�𝐿𝑥�−𝜔𝑦�𝐿𝑦�−𝜔𝑧�𝐿𝑧�

)
𝑢+ (𝑉 + 𝛽|𝜙|2)⊙ 𝑢, ∀𝜙,𝑢 ∈ℂ𝑁.

The Riemannian gradient of (𝜙) at 𝜙 and the action of the Riemannian Hessian operator of (𝜙) at 𝜙 along 𝑢 ∈ 𝜙 , denoted 
respectively by grad(𝜙) and Hess(𝜙)[𝑢], can be explicitly computed as:

grad(𝜙) =𝑀𝜙(∇(𝜙)) = ∇(𝜙) − ⟨∇(𝜙), 𝜙⟩𝜙, ∀𝜙 ∈  , (3.5)

Hess(𝜙)[𝑢] =𝑀𝜙(∇2 (𝜙)[𝑢]) − ⟨∇(𝜙), 𝜙⟩𝑢, ∀𝑢 ∈ 𝜙 . (3.6)

The first-order and second-order necessary optimality conditions [2] for the optimization problem (3.1) state that at a minimum 
𝜙 ∈  , grad(𝜙) = 0 and ⟨Hess(𝜙)[𝑢], 𝑢⟩ ≥ 0. This immediately implies

𝜙𝜙 = 𝜆𝜙𝜙,
1
2
∇2(𝜙)[𝑢, 𝑢] − 𝜆𝜙‖𝑢‖22 ≥ 0, ∀𝑢 ∈ 𝜙 . (3.7)

Here, 𝜆𝜙 = ⟨𝜙𝜙, 𝜙⟩ and ∇2(𝜙)[𝑢, 𝑢] ∶= ⟨∇2(𝜙)[𝑢], 𝑢⟩. The first equation is indeed the Euler-Lagrange equation associated with 
our problem (3.1), and 𝜆𝜙 is the Lagrange multiplier which is also known as the chemical potential [9,11].

3.2. A preconditioned Riemannian conjugate gradient method

Algorithms on Riemannian manifold, such as the analogues of steepest descent and nonlinear conjugate gradient methods in 
Euclidean cases [29], have been extensively developed [2]. It was also observed that usually the Riemannian conjugate gradient 
algorithm converges faster than other simple gradient-type algorithms [2,9,35]. Therefore, here we propose a Riemannian conjugate 
gradient method with a suitable preconditioner to solve the Riemannian optimization problem (3.1). To this end, in addition to the 
definitions of tangent space, projection and Riemannian gradient/Hessian operator given in (3.3)-(3.6), we also need a retraction map 
to enforce the search direction so that the resulted updates stay on the manifold  and a vector transport map to move vectors in two 
different tangent spaces such that they are additive. For the spherical manifold  , these two maps are readily given explicitly [2,9].

Denote   ∶=
⋃
𝜙∈ 𝜙 as the tangent bundle of  . Then, for ∀ 𝜙 ∈  , the retraction 𝜙 ∶ 𝜙 →  reads as

𝜙(𝛼𝑣) ∶= cos(‖𝛼𝑣‖)𝜙+ sin(‖𝛼𝑣‖)‖𝑣‖ 𝑣, ∀𝑣 ∈ 𝜙 , 𝛼 ≥ 0. (3.8)

While the vector transport 𝑇 ∶   ×   →   ∶ (𝑢, 𝑣) → 𝑇𝑢(𝑣) using Riemannian submanifold structure reads as

𝑇𝑢𝜙 (𝑣𝜑) ∶=𝑀𝜙(𝑢𝜙)𝑣𝜑 = 𝑣𝜑 − ⟨𝑣𝜑,𝜙(𝑢𝜙)⟩𝜙(𝑢𝜙), ∀𝑢𝜙 ∈ 𝜙 , 𝑣𝜑 ∈ 𝜑 , (3.9)

which maps/moves the vector in tangent space 𝜑 onto 𝜙(𝑢𝜙) along the manifold  by the vector 𝑢𝜙, so that algebraic operations 
can be performed on vectors belonging to 𝜑 and 𝜙(𝑢𝜙) .

With the concepts defined above (cf. (3.3)-(3.9)), the pRCG algorithm for the minimization of (𝜙) on  (3.1) is stated as follows: 
given 𝜙0 ∈  , update

𝜙𝑛+1 =𝜙𝑛
(𝛼𝑛𝑑𝑛) = cos(‖𝛼𝑛𝑑𝑛‖)𝜙𝑛 + sin(‖𝛼𝑛𝑑𝑛‖)‖𝑑𝑛‖ 𝑑𝑛, 𝑛 = 0, 1,⋯ , (3.10)

where 𝛼𝑛 is the step size to be computed later, and 𝑑𝑛 is the search direction at 𝜙𝑛 chosen as

𝑑0 =𝑀𝜙0
(− grad(𝜙0)), 𝑑𝑛 =𝑀𝜙𝑛

(− grad(𝜙𝑛)) + 𝛽𝑛𝑇𝛼𝑛−1𝑑𝑛−1 (𝑑𝑛−1), 𝑛 ≥ 1. (3.11)

Here,  is a symmetric positive definite preconditioner to be determined, and 𝛽𝑛 is the Polak-Ribière momentum term which is 
typically computed via [2]

𝛽𝑛 =max(𝛽𝑃𝑅𝑛 , 0), with 𝛽𝑃𝑅𝑛 =

⟨
grad(𝜙𝑛) − 𝑇𝛼𝑛−1𝑑𝑛−1 (grad(𝜙𝑛−1)), 𝑀𝜙𝑛

( grad(𝜙𝑛))⟩⟨
grad(𝜙𝑛−1), 𝑀𝜙𝑛−1

( grad(𝜙𝑛−1))⟩ . (3.12)

We use 𝛽𝑛 = max(𝛽𝑃𝑅𝑛 , 0), which is equivalent to restarting the pRCG method (simply using a steepest descent step) when 𝛽𝑃𝑅𝑛 ≤ 0
and is a standard choice in nonlinear CG methods [9,35].

Similar to the nonlinear CG method in the Euclidean setting [35], proper choice of the stepsize 𝛼𝑛 is important for the performance 
of pRCG method. A standard approach is to perform linesearch methods to the one-dimensional nonlinear minimization problem

𝛼𝑛 = argmin
𝛼>0

(𝜙𝑛
(𝛼 𝑑𝑛)), (3.13)

which could be expensive and time consuming. Alternatively, now that the retraction (3.8) is second order, we could propose a 
simple and cheap approach based on the Taylor expansion of  (𝛼) ∶= (𝜙𝑛

(𝛼𝑑𝑛)) as follows

 (𝛼) = (𝜙𝑛) + 𝛼
⟨

grad(𝜙𝑛), 𝑑𝑛
⟩
+ 𝛼

2

2

⟨
Hess(𝜙𝑛)[𝑑𝑛], 𝑑𝑛

⟩
+𝑂(𝛼3). (3.14)
6

When 𝛽𝑛 = 0 in (3.12) (i.e. the pRCG method reduces to steepest descent method), the first-order variation
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grad(𝜙𝑛), 𝑑𝑛

⟩
= −
⟨

grad(𝜙𝑛),  grad(𝜙𝑛)
⟩
< 0 (3.15)

is guaranteed since the preconditioner  is positive definite. This ensures that the energy is diminishing when 𝛼 is small enough. In 
addition, due to the second-order optimality condition (3.7), the second-order variation⟨

Hess(𝜙𝑛)[𝑑𝑛], 𝑑𝑛
⟩
> 0 (3.16)

is also ensured when 𝜙𝑛 is close enough to a minimizer. As such, a candidate to approximate step size 𝛼𝑛 in (3.13) can be obtained 
by minimizing the second order approximation of  (𝛼) (3.14) w.r.t. 𝛼, which yields

𝛼𝑜𝑝𝑡𝑛 ∶= −
⟨

grad(𝜙𝑛), 𝑑𝑛
⟩/⟨

Hess(𝜙𝑛)[𝑑𝑛], 𝑑𝑛
⟩
> 0. (3.17)

In the practical computation of pRCG, when 𝛽𝑛 ≠ 0, 𝑑𝑛 may not be a descent direction and 𝜙𝑛 may be far from a minimizer. Hence, 
with 𝛼𝑛 = 𝛼

𝑜𝑝𝑡
𝑛 or even a small stepsize, the energy dissipation is not guaranteed at each iteration. To enforce energy decrease, our 

strategy is as follows: First, check the validity of (3.15) and (3.16). If either of them is invalid, we set 𝛽𝑛 = 0 and choose a small 
positive number as the trail step size of 𝛼𝑛. Backtrack this trail step size until the energy is decreased and accept the resulting step 
size as 𝛼𝑛. Secondly, if both (3.15) & (3.16) hold true, we choose

𝛼𝑛 = 𝛼𝑜𝑝𝑡𝑛 . (3.18)

To close, we now consider the question of building preconditioners  for the presented pRCG algorithm above. A preconditioner 
in the pRCG method (3.11)-(3.12) at 𝜙𝑛 should be a positive-definite linear operator that approximates the inverse of the Riemannian 
Hessian Hess(𝜙𝑛). Recalling the expression of Hess(𝜙𝑛) in (3.6), we combine parts of it whose inverse can be easily computed to 
form a preconditioner:

 = 1∕2
𝑉

Δ1∕2
𝑉
, with Δ = (𝛼Δ − �Δ�∕2)−1, 𝑉 = (𝛼𝑉 + 𝑉 + 𝛽|𝜙𝑛|2)−1. (3.19)

Here, 𝛼Δ and 𝛼𝑉 are positive constants chosen such that Δ and 𝑉 are invertible, and here we choose

𝛼Δ = 𝛼𝑉 ∶=
⟨
− 1

2
�Δ�𝜙𝑛 + 𝑉 ⊙𝜙𝑛 + 𝛽(|𝜙𝑛|2)⊙𝜙𝑛, 𝜙𝑛⟩.

The pRCG algorithm is summarized in Algorithm 1.

Algorithm 1: The preconditioned Riemannian conjugate gradient (pRCG) method.

Input initial data 𝜙0 , stopping criteria 𝜀 and trial stepsize 𝛼𝑡𝑟𝑎𝑖𝑙 ∈ (0, 1).
Compute 𝑑0 =𝑀𝜙0

(− grad(𝜙0)).
Set 𝑛 = 0 and 𝜀0

𝑒𝑟𝑟
= 1.

while not converged (i.e. 𝜀𝑛
𝑒𝑟𝑟
> 𝜀) do

Step 1: Perform linesearch backtracking methods to update

𝛼𝑛 ∶= argmin
𝛼>0

(𝜙𝑛
(𝛼 𝑑𝑛)),

where the initial step size 𝛼0
𝑛

is chosen as

𝛼0
𝑛
=max

(
𝛼𝑜𝑝𝑡
𝑛
, 𝛼𝑡𝑟𝑎𝑖𝑙

)
.

Step 2: Update 𝜙𝑛+1 =𝜙𝑛
(𝛼𝑛𝑑𝑛).

Step 3: If either (3.15) or (3.16) is invalid, set 𝛽𝑛+1 = 0;

otherwise, compute 𝛽𝑃𝑅
𝑛+1 via (3.12) and set 𝛽𝑛+1 = max

(
𝛽𝑃𝑅
𝑛+1, 0

)
.

Step 4: Update search direction 𝑑𝑛+1 via:

𝑑𝑛+1 =𝑀𝜙𝑛+1
(− grad(𝜙𝑛+1)) + 𝛽𝑛+1𝑇𝛼𝑛𝑑𝑛 (𝑑𝑛).

Step 5: Check the error: 𝜀𝑛
𝑒𝑟𝑟

∶= ‖𝜙𝑛+1 − 𝜙𝑛‖∞ .

Step 6: Update step: 𝑛 = 𝑛 + 1.

end

4. Numerical results

In this section, we first test the accuracy and efficiency of the pRCG method. Then, we apply the pRCG method to investigate the 
GS patterns of arbitrary-angle rotating BEC under different settings, especially in the case when the rotation axis is not parallel to 
the elongated direction of the condensates. To this end, unless specified, the computational domain, the mesh size in each direction 
7

and the stopping criteria in Algorithm 1 are respectively chosen as  = [−16, 16]3, ℎ𝑥 = ℎ𝑦 = ℎ𝑧 =
1
8 and 𝜀 = 10−12. In the following 
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numerical tests, we consider three types of trapping potential 𝑉 (𝒙): the harmonic potential (1.2), the harmonic-plus-quartic potential 
[9,20]

𝑉hq(𝒙) ∶= 𝑉har (𝒙) − 𝛼(𝑥2 + 𝑦2) + 𝜅(𝑐1𝑥2 + 𝑐2𝑦2 + 𝑐3𝑧2)2∕4, (4.1)

and the toroidal potential (4.2) with 𝑉0 > 0, which uses a blue-detuned laser beam to make a repulsive potential barrier in the middle 
of a harmonic trap [32]

𝑉tor (𝒙) ∶= 𝑉har (𝒙) + 𝑉0𝑒−𝑎
2|𝒙|2 . (4.2)

Moreover, to obtain GS, we first utilize the pRCG algorithm with the following twelve frequently used initial data to get stationary 
states. The resulted one with the lowest energy is then regarded as the GS:

(𝑎) 𝜙𝑎(𝒙) =
1

4√
𝜋3
𝑒
−|𝒙|2

2 , (𝑏) 𝜙𝑏(𝒙) =
(𝑥+𝑖𝑦)𝜙𝑎(𝒙)‖(𝑥+𝑖𝑦)𝜙𝑎(𝒙)‖ , (𝑐) 𝜙𝑐(𝒙) =

(𝜙𝑎(𝒙)+𝜙𝑏(𝒙))‖(𝜙𝑎(𝒙)+𝜙𝑏(𝒙))‖ ,

(𝑑) 𝜙𝑑 (𝒙) =
(1−|𝛀|)𝜙𝑎(𝒙)+|𝛀|𝜙𝑏(𝒙)‖(1−|𝛀|)𝜙𝑎(𝒙)+|𝛀|𝜙𝑏(𝒙)‖ , (�̄�) 𝜙�̄�(𝒙) = 𝜙∗𝑏(𝒙), (𝑐) 𝜙𝑐(𝒙) = 𝜙∗𝑐 (𝒙),

(𝑒) 𝜙𝑒(𝒙) =
|𝛀|𝜙𝑎(𝒙)+(1−|𝛀|)𝜙𝑏(𝒙)‖|𝛀|𝜙𝑎(𝒙)+(1−|𝛀|)𝜙𝑏(𝒙)‖ , (𝑓 ) 𝜙𝑓 (𝒙) =

𝜙TF𝑔 (𝒙)‖𝜙TF𝑔 (𝒙)‖ , (𝑑) 𝜙𝑑 (𝒙) = 𝜙∗𝑑 (𝒙),

(𝑓 ) 𝜙𝑓 (𝒙) =
(1−|𝛀|)𝜙TF𝑔 (𝒙)+|𝛀|(𝑥−𝑖𝑦)𝜙TF𝑔 (𝒙)‖(1−|𝛀|)𝜙TF𝑔 (𝒙)+|𝛀|(𝑥−𝑖𝑦)𝜙TF𝑔 (𝒙)‖ , (𝑒) 𝜙𝑒(𝒙) = 𝜙∗𝑒 (𝒙), (𝑓 ) 𝜙𝑓 (𝒙) = 𝜙∗𝑓 .

Here, 𝛀 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)𝑇 =
√
𝜔2
𝑥 +𝜔2

𝑦 +𝜔2
𝑧 𝒏 =∶ |𝛀| 𝒏 with 𝒏 = (𝑛1, 𝑛2, 𝑛3)𝑇 , and

𝜙TF𝑔 =

{√
(𝜇TF𝑔 − 𝑉 (𝒙))∕𝛽, 𝑉 (𝒙) < 𝜇TF𝑔 ,

0, otherwise,
𝜇TF𝑔 = 1

2

(15𝛽𝛾𝑥𝛾𝑦𝛾𝑧
4𝜋

)2∕5

,

is the Thomas Fermi approximation of the GS [8,11]. For simplicity, we denote a rotation orientation that will be frequently used in 
the following numerical examples

𝒏0 ∶= 𝒏 =

(√
3
3
,

√
3
3
,

√
3
3

)𝑇
.

The pRCG algorithm was implemented in Matlab (2022) and runs on a 3.00GH Intel(R) Xeon(R) Gold 6136R CPU with 36 MB cache 
in Ubuntu GNU/Linux.

4.1. Accuracy and efficiency test

Similar as in the nonrotating BEC [11], if potential 𝑉 (𝒙) is taken as the harmonic one (1.2), the energies of the ground state 𝜙𝑔
of the arbitrary-angle rotating BEC satisfy the following virial identity

𝐼(𝜙𝑔) ∶= 2𝐸𝑘𝑖𝑛(𝜙𝑔) − 2𝐸𝑝𝑜𝑡(𝜙𝑔) + 3𝐸𝑖𝑛𝑡(𝜙𝑔) = 0, (4.3)

with

𝐸𝑘𝑖𝑛(𝜙𝑔) =
1
2 ∫
ℝ3

|∇𝜙𝑔|2𝑑𝒙, 𝐸𝑝𝑜𝑡(𝜙𝑔) = ∫
ℝ3

𝑉 (𝒙)|𝜙𝑔|2𝑑𝒙, 𝐸𝑖𝑛𝑡(𝜙𝑔) =
𝛽

2 ∫
ℝ3

|𝜙𝑔|4𝑑𝒙.
This identity, together with the first-order optimality condition (3.7), could be used as the benchmark to check the accuracy of the 
pRCG algorithm. For simplicity, we denote 𝐼𝑔 as the pseudo-spectral discretization of 𝐼(𝜙𝑔), 𝑟𝑔 ∶=𝜙𝑔

𝜙𝑔 − 𝜆𝜙𝑔𝜙𝑔 as the residual 
associated with the first-order optimality condition (3.7) and 𝑔 ∶= (𝜙𝑔) as the ground state energy.

Example 4.1. In this example, we test the accuracy and efficiency of pRCG method. To this end, we fix 𝛽 = 100, rotation frequency 
𝛀 = |𝛀| 𝒏0 with varied |𝛀| = 0.2, 0.4, 0.6, 0.8. Meanwhile, we take potential 𝑉 (𝒙) as the harmonic potential 𝑉har (𝒙) (1.2) and 
consider the following trapping frequencies:

Case 1. Isotropic trapping: 𝛾𝑥 = 𝛾𝑦 = 𝛾𝑧 = 1. Case 2. Anisotropic trapping: 𝛾𝑥 = 1, 𝛾𝑦 = 2, 𝛾𝑧 = 3.

Table 1 lists the total energy 𝑔 , virial |𝐼𝑔| and residual ‖𝑟𝑔‖∞ of the converged GS 𝜙𝑔(𝒙) for these two cases with different |𝛀|. 
The corresponding initial data and CPU time that the pRCG algorithm used to get 𝜙𝑔 (𝒙) are also listed in the same table. In addition, 
Figs. 1 & 2 show the evolution of the total energy 𝑛 ∶= (𝜙𝑛) versus iteration step 𝑛 and the isosurface plots of |𝜙𝑔(𝒙)|2 = 10−3 for 
different |𝛀|. From these figures, tables and additional numerical results not shown here for brevity, we can see that: (i) The total 
energy  is diminishing during iteration (cf. Fig. 1). And the pRCG algorithm is capable of computing GS of BEC with arbitrary-angle 
8

rotation accurately and efficiently (cf. Table 1 and Fig. 1). (ii) For the case of isotropic trapping potential, the density of BEC is in 
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Table 1

Total energy 𝑔 , virial |𝐼𝑔 | and residual ‖𝑟𝑔‖∞ of the converged GS 𝜙𝑔 (𝒙), as well as the initial 
data 𝜙0 and CPU time the pRCG used to converge to GS 𝜙𝑔(𝒙) in Example 4.1.

|𝛀| 𝜙0 𝑔 |𝐼𝑔 | ‖𝑟𝑔‖∞ CPU(s)

0.2 (𝑎) 2.8679204104619 1.3875E-11 9.7193E-11 153

Case 1 0.4 (𝑏) 2.8679204104619 5.1794E-12 4.0507E-11 575

(isotropic) 0.6 (𝑒) 2.8679204104619 4.4316E-12 5.1730E-11 97

0.8 (𝑓 ) 2.6823300688629 3.0131E-12 1.0004E-10 1464

0.2 (𝑓 ) 5.8933514312585 5.4774E-12 1.1848E-10 115

Case 2 0.4 (𝑓 ) 5.8493208273254 8.1712E-14 4.6788E-11 215

(anisotropic) 0.6 (𝑑) 5.7614222409060 3.2134E-12 9.2939E-11 314

0.8 (𝑏) 5.5924954863850 8.5354E-13 1.2495E-10 424

Fig. 1. Evolution of the energy 𝑛 ∶= (𝜙𝑛) vs. the iteration step 𝑛 in Example 4.1.

Fig. 2. Isosurface plots of |𝜙𝑔 (𝒙)|2 = 10−3 with different |𝛀| for Case 1 (upper) and Case 2 (lower) in Example 4.1.

spherical shape (cf. upper row in Fig. 2). The GS energy of BEC without vortex is the same. When |𝛀| is large enough, symmetric-

breaking occurs and vortices are brought into the condensate. The GS energy then decreases as |𝛀| increases (cf. Table 1). (iii) For 
the case of anisotropic trapping potential, the density profile of BEC is elongated along the force field induced by the potential, which 
leads to ellipsoidal-shaped condensates (cf. lower row in Fig. 2). The larger the |𝛀|, the longer the condensate will be elongated (due 
to the centrifugal force induced by the rotation), and the lower the total energy of the related ground state (cf. Table 1). Moreover, 
the critical value of |𝛀| to create the first vortex is larger than those in an isotropic trap.

4.2. New vortex structure in anisotropic BEC

Bent vortices [24,25], a remarkable phenomenon that inspires the exploration of vortex lines, can be observed in an elongated 
rotating BEC with strong local interaction. In this subsection, we apply pRCG algorithm to investigate the vortex structures in GS of 
anisotropic BEC, especially the bent vortices and their relations w.r.t. the angle between the rotation axis and the elongated direction 
of the condensate. To this end, we choose potential 𝑉 (𝒙) as the harmonic potential 𝑉har (𝒙) (1.2) with 𝛾𝑦 = 𝛾𝑧 = 1 and 𝛾𝑥 < 1, i.e. the 
condensate is elongated along 𝑥-axis.
9

Example 4.2. Here, we set 𝛀 = (𝜔𝑥, 𝜔𝑦, 0)𝑇 and consider the following three cases:
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Fig. 3. Isosurface of |𝜙𝑔 (𝒙)|2 = 3 × 10−4 for Case 1(upper) and Case 2 in Example 4.2.

Fig. 4. Isosurface of |𝜙𝑔 (𝒙)|2 = 3 × 10−4 for Case 3 in Example 4.2.

Table 2

Total energy 𝑔 , virial |𝐼𝑔 | and residual ‖𝑟𝑔‖∞ of the converged GS 𝜙𝑔(𝒙) in Example 4.2.

𝛾𝑥 𝜔𝑦 𝜙0 𝑔 |𝐼𝑔 | ‖𝑟𝑔‖∞
0.7 0 (𝑏) 12.624833871315142 6.714629E-13 7.177332E-11

Case 1 0.7 0.1 (𝑏) 12.569389786882745 1.293543E-11 3.290184E-11

0.7 0.2 (𝑓 ) 12.376530806382885 1.509903E-13 5.736563E-11

0.25 0 (𝑑) 8.479507974932206 1.778133E-12 4.860156E-11

Case 2 0.25 0.001 (𝑑) 8.479397993330114 3.552714E-13 3.341535E-11

0.25 0.06 (𝑏) 8.379219530221569 1.723066E-12 5.040286E-11

0.05 0 (𝑓 ) 2.129112063451595 3.252953E-13 8.347278E-11

Case 3 0.05 5 × 10−7 (𝑓 ) 2.129112055891263 3.085310E-12 7.835594E-11

0.05 10−6 (𝑓 ) 2.129112033209414 1.760148E-12 9.062290E-11

0.05 4 × 10−6 (𝑐) 2.129111670223471 8.579804E-13 6.528560E-11

Case 1. Fix 𝛽 = 9000, 𝛾𝑥 = 0.7, 𝜔𝑥 = 0.35 and vary 𝜔𝑦 among 0, 0.1, 0.2.

Case 2. Fix 𝛽 = 9000, 𝛾𝑥 = 0.25, 𝜔𝑥 = 0.35 and vary 𝜔𝑦 among 0, 0.001, 0.06.

Case 3. Fix 𝛽 = 1000, 𝛾𝑥 = 0.05, 𝜔𝑥 = 0.75 and vary 𝜔𝑦 among 0, 5 × 10−7, 10−6 and 4 × 10−6.

We take computational domain  = [−40, 40] ×[−10, 10]2 with mesh size ℎ𝑥 = ℎ𝑦 = ℎ𝑧 =
1
12 for Case 1-2, and take  = [−50, 50] ×

[−8, 8]2 with ℎ𝑥 = ℎ𝑦 = ℎ𝑧 =
1
8 for Case 3. Table 2 lists the total energy 𝑔 , virial |𝐼𝑔| and residual ‖𝑟𝑔‖∞ of the converged GS 𝜙𝑔(𝒙), 

while Figs. 3–4 illustrate the isosurface plots of |𝜙𝑔(𝒙)|2 = 3 × 10−4 for the three cases. From these figures and additional numerical 
results not shown here for brevity, we can see that: (i) For a slow-rotating system in an isotropic/mild-anisotropic trapping potential 
and/or highly fast-rotating system, the vortex line is straight and aligned parallel to the rotation axis (cf. upper row in Fig. 3 and 
Figs. 5–8). (ii) Bent vortices occur only in strongly anisotropic trapping with slow rotation (i.e. 𝛾𝑥 becomes smaller in this example). 
When the rotation axis is parallel to the elongated direction, straight vortex lines will be bent into U-shaped curves (cf. the first 
column in Fig. 3 & Fig. 4). This phenomenon is in consistent with the observation in [24]. (iii) In addition to (ii), as the rotation axis 
shifts away from the elongated direction (i.e. 𝜔𝑦 becomes larger in this example), U-shaped vortex lines will gradually transform into 
10

planar S-shaped vortex lines (cf. Fig. 4).



Journal of Computational Physics 512 (2024) 113130Q. Shu, Q. Tang, S. Zhang et al.

Fig. 5. Isosurface of |𝜙𝑔 (𝒙)|2 = 0.02 (upper first figure) & |𝜙𝑔(𝒙)|2 = 5 ×10−4 (upper right three figures) and slice of |𝜙𝑔(𝒙)|2 perpendicular to the rotation axis (lower) 
for Case 1 of Example 4.3.

4.3. GS patterns under different model parameters

In this subsection, we apply the pRCG algorithm to investigate the impacts of trapping potential 𝑉 (𝒙), nonlinearity strength 𝛽, 
the amplitude |𝛀| and orientation of rotation 𝒏 on the structure of GS. Unless specified, hereafter we fix 𝛾𝑥 = 𝛾𝑦 = 𝛾𝑧 = 1 in all the 
three type potentials (1.2), (4.1) & (4.2).

Example 4.3. Here, we choose potential 𝑉 (𝒙) as the harmonic potential and consider the following cases:

Case 1. Set |𝛀| = 0.85, 𝒏= 𝒏0 and vary 𝛽 among 50, 80, 500, 5000.

Case 2. Set 𝛽 = 100, 𝒏 = 𝒏0 and vary |𝛀| among 0.5, 0.73, 0.81, 0.86.

Case 3. Set 𝛽 = 100, |𝛀| = 0.85 and vary 𝒏 among 𝒏0, (1, 0, 0)𝑇 , (0, 1, 0)𝑇 , (0, 0, 1)𝑇 .

Figs. 5–7 illustrate the isosurface plots of |𝜙𝑔(𝒙)|2 = 5 × 10−4 for Case 1 while |𝜙𝑔(𝒙)|2 = 10−3 for Case 2 & for Case 3 as well 
as the corresponding slice plots of |𝜙𝑔(𝒙)|2 perpendicular to rotation axis 𝒏. From these figures and additional numerical results not 
shown here for brevity, we can see that: (i) For fast rotation, i.e. |𝛀| is large, the vortex line is straight (cf. Figs. 5–7). Moreover, the 
number of vortex lines is independent of the orientation of rotation 𝒏 if the trapping potential is isotropic (cf. Fig. 7). (ii) For a fixed 
rotation frequency 𝛀, number of vortex lines increases as the nonlinear interaction strength 𝛽 getting larger (cf. Fig. 5). Moreover, 
for fixed orientation of rotation 𝒏 and nonlinear interaction strength 𝛽, number of vortex lines also increases as |𝛀| increases (cf. 
Fig. 6).

Example 4.4. Here, we choose potential 𝑉 (𝒙) as the harmonic-plus-quartic trapping potential 𝑉hq(𝒙) (4.1) with 𝑐2 = 1, and consider 
the following cases:

Case 1. Set 𝛽 = 10000, choose 𝛾𝑧 =
√
2, 𝛼 = 0.4, 𝜅 = 0.3, 𝑐1 = 1, 𝑐3 = 0 and 𝒏 = (0, 0, 1)𝑇 . In such a setting, both the elongated 

direction of the condensate and the rotation axis are parallel to 𝑧-axis. We then study the impact of rotation amplitude on the 
GS by varying |𝛀| among 1.9, 2, 2.2, 3.

Case 2. Set 𝛽 = 80, choose 𝛼 = 0, 𝑐1 = 0, 𝑐3 = 1 and 𝛀 = (3, 0, 0)𝑇 . In such a setting, both the elongated direction of the 
condensate and the rotation axis are parallel to 𝑥-axis. We then study the impact of trapping potential on the GS by varying 𝜅
among 1, 1.5, 2, 2.5.

Case 3. Same as the Case 2 right above by only changing 𝛽 to a larger one 𝛽 = 1000.

Figs. 8–10 depict the isosurface |𝜙𝑔(𝒙)|2 = 4 × 10−4 for Case 1 while |𝜙𝑔(𝒙)|2 = 10−3 for Case 2 & for Case 3 as well as the 
corresponding slice plots of |𝜙𝑔(𝒙)|2 perpendicular to rotation axis 𝒏. From these figures and additional numerical results not shown 
here for brevity, we can see that: (i) Vortex lines are straight if the rotation axis is parallel to the elongated direction of the condensate 
and rotation is fast enough (cf. Figs. 8 & 10). Moreover, as |𝛀| increases, patterns of GS will transform from vortex lattice to vortex 
ring (cf. Fig. 8). (ii) For |𝛀| not too large, the GS pattern presents as a torus (cf. Fig. 9). In addition, vortex lines will be brought 
into the torus and aligned along the direction of rotation axis 𝒏 when |𝛀| is large enough (cf. Fig. 10). (iii) The inner diameter of 
the torus will decrease as the strength of the quartic potential (i.e. 𝜅 in (4.1)) increases. Hence for a fixed large enough |𝛀|, the GS 
11

pattern with vortex ring will shrink into vortex lattice as 𝜅 increases (cf. Fig. 10).
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Fig. 6. Isosurface of |𝜙𝑔 (𝒙)|2 = 10−3 (upper) and slice of |𝜙𝑔 (𝒙)|2 perpendicular to the rotation axis (lower) for Case 2 of Example 4.3.

Fig. 7. Isosurface of |𝜙𝑔 (𝒙)|2 = 10−3 (upper) and slice of |𝜙𝑔 (𝒙)|2 perpendicular to the rotation axis (lower) for Case 3 of Example 4.3.

Example 4.5. Here, we choose potential 𝑉 (𝒙) as the toroidal trapping potential (4.2). In such potential, the Gaussian part in (4.2)

will introduce a repulsive potential barrier hence driving an outward ‘force’. Together with the centrifugal force created by the 
rotation, this force competing with the centripetal force driven by the harmonic potential in (4.2) will bring ample diversity to the 
GS patterns. To carry out their impact on the GS patterns, we fix 𝛽 = 1000, 𝒏= 𝒏0 and consider the following three cases:

Case 1. Set |𝛀| = 0, 𝑎 = 0.1 and vary 𝑉0 among 60, 70, 80, 90.

Case 2. Set |𝛀| = 0.5, 𝑎 = 0.1 and vary 𝑉0 among 0, 45, 50, 55.

Case 3. Set |𝛀| = 0.5, 𝑉0 = 55 and vary 𝑎 among 0.104, 0.107, 0.109, 0.3.

Figs. 11–13 show respectively the isosurface |𝜙𝑔(𝒙)|2 = 4 ×10−4 for Case 1, |𝜙𝑔(𝒙)|2 = 10−4 for Case 2 & |𝜙𝑔(𝒙)|2 = 10−3 for Case 
3 as well as the corresponding slice plots of |𝜙𝑔(𝒙)|2 perpendicular to rotation axis 𝒏. From these figures and additional numerical 
results not shown here for brevity, we can see that: (i) For a non-rotating BEC with fixed 𝑎 in the potential, as the strength of the 
repulsive outward ‘force’ induced by the Gaussian (i.e. 𝑉0) grows, the GS pattern will transform from a solid ball to a hollow sphere. 
Meanwhile, both the inner and outer spheres become larger, and the inner diameter increases faster than the outer one (cf. Fig. 11). 
(ii) For a rotating BEC with fixed 𝑎, similar to those in (i), when 𝑉0 is small, the GS pattern presents as a solid ball carrying vortex 
lines for a sufficiently large |𝛀|. As 𝑉0 grows, the number of vortex lines in the GS increases meanwhile the density in the center of 
the condensates will be gradually expelled out, leading to a GS pattern in the shape of torus carrying vortex lines (cf. Fig. 12). (iii) 
For rotating BEC with proper fixed 𝑉0 and |𝛀|, the GS pattern presents as a torus surrounded by vortex lines parallel to the rotation 
12

axis (cf. last column in Fig. 12). Then, decreasing the width of the Gaussian (i.e. increasing 𝑎 in potential (4.2)), vortex lines in the 
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Fig. 8. Isosurface of |𝜙𝑔 (𝒙)|2 = 4 ×10−4 (upper) and slice of |𝜙𝑔 (𝒙)|2 perpendicular to the rotation axis with harmonic-plus-quartic potential in Case 1 of Example 4.4.

Fig. 9. Isosurface of |𝜙𝑔 (𝒙)|2 = 10−3 and slice of |𝜙𝑔 (𝒙)|2 perpendicular to the rotation axis with harmonic-plus-quartic potential for Case 2 in Example 4.4.

resulted GS will then gradually vanish, and the GS pattern eventually reduces into a smooth torus without vortices. Moreover, the 
inner and outer diameters of the torus decrease as 𝑎 increases (cf. Fig. 13).

5. Conclusion

In this paper, we first study the existence and properties of the ground states for 3D Bose-Einstein condensates with arbitrary-

angle rotation. Then, a preconditioned Riemannian conjugate gradient (pRCG) method is proposed to compute the ground states. 
The pRCG method is accurate, efficient, easy to implement and capable of computing ground states for fast rotating BECs with highly 
strong nonlinearity under various complicated trapping potentials. Furthermore, we apply pRCG to investigate the ground state 
patterns with different parameters. Impacts of the trapping potential, the nonlinearity strength, and the angle of the rotation on the 
GS patterns are carried out in details. Notably, we find that in a mild-rotating system with anisotropic trapping potential, vortex lines 
are bent. In particular, we observe the U-shaped vortex and S-shaped vortex in a cigar-shaped slow-rotating BEC, which, to our best 
knowledge, is the first observation in such a system. Other ample GS patterns under different parameter regimes are also explored. 
Extension of the pRCG method to more general systems, such as the rotating dipolar BEC, is straightforward and provides a powerful 
13

tool for investigating properties of GS with various vortex structures, especially for BECs with strong nonlinearity and fast rotation.
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Fig. 10. Isosurface of |𝜙𝑔 (𝒙)|2 = 10−3 and slice of |𝜙𝑔 (𝒙)|2 perpendicular to the rotation axis with harmonic-plus-quartic potential for Case 3 in Example 4.4.

Fig. 11. Isosurface of |𝜙𝑔 (𝒙)|2 = 4 × 10−4 (upper) and slice of |𝜙𝑔 (𝒙)|2 perpendicular to the rotation axis with toroidal potential in Case 1 of Example 4.5.
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Fig. 12. Isosurface of |𝜙𝑔 (𝒙)|2 = 10−3 (upper first figure) & |𝜙𝑔 (𝒙)|2 = 10−4 (upper right three figures) and slice of |𝜙𝑔 (𝒙)|2 perpendicular to the rotation axis with 
toroidal potential in Case 2 of Example 4.5.

Fig. 13. Isosurface of |𝜙𝑔 (𝒙)|2 = 10−3 (upper) and slice of |𝜙𝑔 (𝒙)|2 perpendicular to the rotation axis with toroidal potential in Case 3 of Example 4.5.
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