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Abstract. Let p ≥ 7 be a prime number. Let S(3) denote the third Morava
stabilizer algebra. In recent years, Kato-Shimomura and Gu-Wang-Wu found
several families of nontrivial products in the stable homotopy ring of spheres
π∗(S) using H∗,∗(S(3)). In this paper, we determine all nontrivial products
in π∗(S) of the Greek letter family elements αs, βs, γs and Cohen’s elements
ζn which are detectable by H∗,∗(S(3)). In particular, we show β1γsζn �= 0 ∈
π∗(S), if n ≡ 2 mod 3, s �≡ 0,±1 mod p.

1. Introduction

The computation of the ring of stable homotopy groups of spheres, denoted as
π∗(S), is one of the fundamental problems in algebraic topology. The Adams-
Novikov spectral sequence (ANSS) based on the Brown-Peterson spectrum BP is
an incredibly powerful tool for computing the p-component of π∗(S), where p is a

prime number. The E2-page of the ANSS is of the form Exts,tBP∗BP (BP∗, BP∗) and
has been extensively studied in low dimensions.

For s = 1, Ext1,∗BP∗BP (BP∗, BP∗) is generated by αkpn/n+1 for n � 0, and
p � k � 1 [15].

For s = 2, Ext2,∗BP∗BP (BP∗, BP∗) is generated by βkpn/j,i+1 for suitable (n, k, j, i)
[11, 12].

For s = 3, only partial results of Ext3,∗BP∗BP (BP∗, BP∗) are known (see, for
example, [13,14,18]). Nonetheless, a construction of a family of linearly independent

elements denoted as γs3/s2,s1 in Ext3,∗BP∗BP (BP∗, BP∗) has been achieved [11].

Through the computations of Exts,tBP∗BP (BP∗, BP∗) in low dimensions, numer-
ous nontrivial elements in π∗(S) can be obtained. In particular, for p ≥ 7, there
are the Greek letter family elements, denoted as αs, βs, and γs with s ≥ 1
[11, 15, 19, 20]. These families are represented by elements of the same name in

Ext1,∗BP∗BP (BP∗, BP∗), Ext2,∗BP∗BP (BP∗, BP∗), and Ext3,∗BP∗BP (BP∗, BP∗), respec-
tively.
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Furthermore, using the Adams spectral sequence, Cohen [2] discovered another
family of nontrivial elements ζn ∈ π∗(S) with n ≥ 1. The representation of ζn in

Ext3,∗BP∗BP (BP∗, BP∗) has also been studied in [2] (also see [3]).

Nontrivial products on π∗(S). There exists a natural ring structure on π∗(S)
in which multiplication is defined by the composition of representing maps. In
order to gain a deeper understanding of the ring structure of π∗(S), it is necessary
to determine whether the product of certain given elements is trivial. The main
purpose of this paper is to find nontrivial products formed by the elements in
{αs, βs, γs, ζs|s ≥ 1}. To ensure these elements are well-defined, we assume p ≥ 7
for the remainder of the paper, unless otherwise specified.

Numerous results have been obtained in this direction. Just to mention a few:

(a) Aubry [1] shows that α1β2γ2, β
r
1β2γ2 �= 0 if r ≤ p− 1.

(b) Lee-Ravenel [8] show βp2−p−1
1 �= 0 for p ≥ 7.

(c) Lee [7] shows: (1) βr
1βs, β

r−1
1 β2βkp−1 �= 0 for p ≥ 5, if r, k ≤ p − 1, s <

p2 − p − 1, and s �≡ 0 mod p; (2) βr
1γt, β

r−1
1 β2γt �= 0, if r, t ≤ p − 1; (3)

α1β
r
1γt �= 0, if r ≤ p− 2, 2 ≤ t ≤ p− 1; (4) βp−1

1 ζn �= 0.
(d) Liu-Liu [9] show that α1β

2
1β2γs �= 0 if 4 < s < p.

(e) Zhao-Wang-Zhong [23] show that γp−1ζn �= 0 if n �= 4.

In recent years, Kato-Shimomura [5] have developed a method for detecting
nontrivial products on π∗(S) through the use of S(3), where S(3) denotes the
third Morava stabilizer algebra [16]. This new approach offers an advantage when
studying products involving γs for arbitrarily large values of s. We can briefly recall
their strategy as follows.

There exists a natural map φ : Ext∗,∗BP∗BP (BP∗, BP∗) → Ext∗,∗S(3)(Fp,Fp) =:

H∗,∗(S(3)). The cohomology H∗,∗(S(3)) is studied in [3, 17, 22]. Given a product
x = x1x2 · · ·xn ∈ π∗(S), we let y = y1y2 · · · yn ∈ Ext∗,∗BP∗BP (BP∗, BP∗) represent x

on the E2-page of the ANSS. If φ(y) �= 0, then y �= 0 ∈ Ext∗,∗BP∗BP (BP∗, BP∗). For
the examples of interest, y will not be eliminated by any Adams-Novikov differential
due to degree considerations. Thus, we can conclude that x �= 0 ∈ π∗(S) in this
case.

Using this strategy, Kato-Shimomura [5] demonstrate the following: (1) α1γs �=
0, if s �≡ 0,±1 mod p; (2) β1γs �= 0, if s �≡ 0, 1 mod p; (3) β2γs �= 0, if s �≡ 0,±1
mod p.

Similarly, Gu-Wang-Wu [3] show that ζnγs �= 0 if n �≡ 1 mod 3 and s �≡ 0,±1
mod p.

Our main results. In this paper, we employ the “Detection via H∗,∗(S(3))”
method, which was developed in [3, 5], to detect nontrivial products on π∗(S).
However, instead of focusing on specific examples, we fully utilize the potential of
this method and enumerate all detectable products. The main results of our study
are as follows:

Theorem 1.1. Let p ≥ 7 be a prime. Let n ≡ 2 mod 3, and s �≡ 0,±1 mod p.
Then β1γsζn �= 0 ∈ π∗(S).

Remark 1.2. Utilizing the Adams spectral sequence, Kato-Shimomura [6] demon-
strated that β1γsζn �= 0 ∈ π∗(S) holds true when 3 ≤ s < p − 2. The findings
presented in [6] and Theorem 1.1 address distinct ranges of (n, s), with neither
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being a subset of the other. The method of “Detection via H∗,∗(S(3))” possesses
the advantage of accommodating products involving γs for arbitrarily large s.

Theorem 1.3. Let p ≥ 7 be a prime. We consider the products in π∗(S) where
each factor belongs to {αs, βs, γs, ζs : s ≥ 1}. Among all such products, only the
following ones can be detected as nontrivial products using the comparison with
H∗,∗S(3).

(1) α1β1,
(2) α1β2,
(3) α1γs, if s �≡ 0,±1 mod p,
(4) β2

1 ,
(5) β1γs, if s �≡ 0, 1 mod p,
(6) β1ζn,
(7) β2γs, if s �≡ 0,±1 mod p,
(8) γsζn, if n �≡ 1 mod 3, s �≡ 0,±1 mod p,
(9) α1β

2
1 ,

(10) α1β1γs, if s �≡ 0,±1 mod p,
(11) β2

1ζn, if n ≡ 1 mod 3
(12) β1γsζn, if n ≡ 2 mod 3, s �≡ 0,±1 mod p.

The nontriviality of (1) ∼ (11) has been determined by earlier works in [3, 5, 7,
11]. We single out the new result (12) as Theorem 1.1. We have exhausted the
potential of the “Detection via H∗,∗(S(3))” strategy in Theorem 1.3. To detect
other nontrivial products in π∗(S), different methods would need to be employed.

Organization of the paper. In Section 2, we review the basic structures of the
Hopf algebroid (BP∗, BP∗BP ) and the third Morava stabilizer algebra S(3). In
Section 3, we analyze the Fp-algebra structure of H∗,∗S(3). We also discuss some
typos in the previous literature [3, 22]. In Section 4, we determine the images
of {αs, βs, γs, ζs|s ≥ 1} under the comparison map φ : Ext∗,∗BP∗BP (BP∗, BP∗) →
H∗,∗(S(3)). In Section 5, we prove Theorem 1.1 and Theorem 1.3.

2. Hopf algebroids

This section recalls the basic definitions and constructions related to Hopf al-
gebroids. In particular, we review the basic structures of the Hopf algebroid
(BP∗, BP∗BP ) and the third Morava stabilizer algebra S(3).

2.1. The Hopf algebroid (BP∗, BP∗BP ).

Definition 2.2. A Hopf algebroid over a commutative ring K is a pair (A,Γ) of
commutative K-algebras with structure maps

left unit map ηL : A → Γ,

right unit map ηR : A → Γ,

coproduct map Δ : Γ → Γ⊗A Γ,

counit map ε : Γ → A,

conjugation map c : Γ → Γ

such that for any other commutative K-algebra B, the two sets Hom(A,B) and
Hom(Γ, B) are the objects and morphisms of a groupoid.
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An important example of Hopf algebroids is (BP∗, BP∗BP ). Recall that we have

(2.1) BP∗ := π∗(BP ) = Z(p)[v1, v2, · · · ], BP∗BP = BP∗[t1, t2, · · · ],

where the inner degrees are |vn| = |tn| = 2(pn − 1). Throughout this paper, we de-
note v0 = p, and t0 = 1. The structure maps of the Hopf algebroid (BP∗, BP∗BP )
are described in [4, 11, 18]. In practice, the following formulas [5] are useful.

ηR(v1) = v1 + pt1,(2.2)

ηR(v2) ≡ v2 + v1t
p
1 + pt2 mod (p2, vp1),(2.3)

Δ(t1) = t1 ⊗ 1 + 1⊗ t1,(2.4)

Δ(t2) = t2 ⊗ 1 + t1 ⊗ tp1 + 1⊗ t2 − v1b1,0.(2.5)

Notation 2.3. We denote bi,j =
1
p [(

∑i
k=0 ti−k ⊗ tp

i−k

k )p
j+1 −

∑i
k=0 t

pj+1

i−k ⊗ tp
i−k+j+1

k ]

for i ≥ 1, j ≥ 0. See [21] for related discussions.

2.4. Morava stabilizer algebras. We recall the basic properties of the Morava
stabilizer algebras, which are studied in detail in [10, 16].

Let K(n)∗ denote Fp[vn, v
−1
n ]. We can equip K(n)∗ with a BP∗-algebra struc-

ture via the ring homomorphism which sends all vi with i �= n to 0. Then
we define Σ(n) := K(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ K(n)∗. As an algebra, one has

Σ(n) ∼= K(n)∗[t1, t2, · · · ]/(vntp
n

i − vp
i

n ti|i > 0). The coproduct structure of Σ(n) is
inherited from that of BP∗BP .

Moreover, one can prove Ext∗,∗BP∗BP (BP∗, v
−1
n BP∗/In)∼=Ext∗,∗Σ(n)(K(n)∗,K(n)∗),

where we let In denote the ideal (p, v1, v2, · · · , vn−1) ⊂ BP∗.
We define the Hopf algebra S(n) := Σ(n)⊗K(n)∗ Fp, where K(n)∗ and Σ(n) are

here regarded as graded over Z/2(pn − 1) and Fp is a K(n)∗-algebra via the map
sending vn to 1. We call S(n) the n-th Morava stabilizer algebra. One can show

(2.6) Ext∗,∗Σ(n)(K(n)∗,K(n)∗)⊗K(n)∗ Fp
∼= Ext∗,∗S(n)(Fp,Fp) =: H∗,∗(S(n)).

For the purpose of this paper, from now on, we will only consider the case when
n = 3. We have the following results.

Proposition 2.5 ([17]). As an algebra, S(3) ∼= Fp[t1, t2, . . . ]/(t
p3

i − ti) and the
inner degrees are |ts| ≡ 2(ps− 1) mod 2(p3− 1). The coproduct structure of S(3) is

that inherited from BP∗BP . In particular, Δ(ts) =
∑s

k=0 tk ⊗ tp
k

s−k for s ≤ 3, and

Δ(ts) =
∑s

k=0 tk ⊗ tp
k

s−k − b̃s−3,2 for s > 3.

Notation 2.6. We let b̃i,j denote the mod p reduction of bi,j in Notation 2.3.

2.7. Cobar complexes. Cobar complexes are helpful in computing certain Ext
groups, such as

Ext∗,∗BP∗BP (BP∗, BP∗), Ext∗,∗BP∗BP (BP∗, v
−1
n BP∗/In), and Ext∗,∗S(n)(Fp,Fp).

We now recall the relevant definitions and constructions.

Definition 2.8. Let (A,Γ) be a Hopf algebroid. A right Γ-comodule M is a right A-
module M together with a right A-linear map ψ : M → M ⊗A Γ which is counitary
and coassociative. Left Γ-comodules are defined similarly.
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Definition 2.9. Let (A,Γ) be a Hopf algebroid. LetM be a right Γ-comodule. The

cobar complex Ω∗,∗
Γ (M) is a cochain complex with Ωs,∗

Γ (M) = M ⊗A Γ
⊗s

, where Γ

is the augmentation ideal of ε : Γ → A. The differentials d : Ωs,∗
Γ (M) → Ωs+1,∗

Γ (M)
are given by

d(m⊗ x1 ⊗ x2 ⊗ · · · ⊗ xs) = −(ψ(m)−m⊗ 1)⊗ x1 ⊗ x2 ⊗ · · · ⊗ xs

−
s∑

i=1

(−1)λi,jim⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ (
∑
ji

x′
i,ji ⊗ x′′

i,ji)⊗ xi+1 ⊗ · · · ⊗ xs,

where we denote ∑
ji

x′
i,ji ⊗ x′′

i,ji = Δ(xi)− 1⊗ xi − xi ⊗ 1,(2.7)

λi,ji = i+ |x1|+ · · ·+ |xi−1|+ |x′
i,ji |.(2.8)

Proposition 2.10 ([18, Section A1.2]). The cohomology of Ωs,∗
Γ (M) is Exts,∗Γ (A,M).

Moreover, if M is also a commutative associative A-algebra such that the structure
map ψ is an algebra map, then Exts,∗Γ (A,M) has a naturally induced product struc-
ture.

3. The cohomology of S(3)

In this section, we discuss the cohomology H∗,∗S(3) := Ext∗,∗S(3)(Fp,Fp) of the

Hopf algebra S(3). Ravenel [17] computed the Fp-module structure of H∗,∗S(3).
The Fp-algebra structure of H∗,∗S(3) was subsequently computed by Yamaguchi in
[22], and revisited by Gu-Wang-Wu in [3]. Unfortunately, both [22] and [3] contain
typos. We will say more about these typos in this section.

Theorem 3.1 ([3,22]). As an Fp-algebra, H
∗(S(3)) is isomorphic to the cohomol-

ogy H∗(E; d1) of a certain differential graded algebra E, where

(3.1) E := E[hi,j |i = 1, 2, 3, j ∈ Z/3],

is the exterior algebra with generators hi,j, and the differential d1 is given by

(3.2) d1(hi,j) = −
∑

1≤k≤i−1

hk,jhi−k,j+k.

Moreover,

(3.3) d1(xy) = d1(x)y + (−1)sxd1(y)

for all monomials x, y ∈ E and s denotes the homological degree of x. The generator

hi,j corresponds to tp
j

i ∈ S(3) under the isomorphism H∗(E; d1) ∼= H∗(S(3)). The
generator hi,j has induced inner degree |hi,j | = 2(pi − 1)pj mod 2(p3 − 1).

Remark 3.2. Recall from Proposition 2.5 that S(3) ∼= Fp[t1, t2, . . . ]/(t
p3

i − ti). This

implies tp
j

i = tp
j+3

i ∈ S(3). Corresponding to this, we have j ∈ Z/3 in Theorem 3.1.

Proposition 3.3 ([3, 22]). Let p ≥ 7 be a prime number. As an Fp-module,
H∗,∗S(3) is isomorphic to E[ρ] ⊗ M , where ρ := h3,0 + h3,1 + h3,2 ∈ H1,∗S(3),
M is an Fp-module with the following generators (i ∈ Z/3):

dim0: 1;
dim1: h1,i;
dim2: e4,i, gi, ki;
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dim3: e4,ih1,i, e4,ih1,i+1, gih1,i+1, μi, νi, ξ;
dim4: e24,i, e4,ie4,i+1, e4,igi+1, e4,igi+2, e4,iki, θi;

dim5: e24,ih1,i+1, e24,ih1,i+2, e4,ie4,i+1h1,i+2 (e4,ie4,i+1h1,i+2=e4,i+1e4,i+2h1,i),
e4,iμi+2, e4,iνi, ηi;

dim6: e24,ie4,i+1, e24,ie4,i+2, e4,ie4,i+1gi+2;
dim7: e4,ie4,i+1μi+2;
dim8: e24,ie4,i+2gi+1 (e24,ie4,i+2gi+1 = e24,i+1e4,igi+2).

Here, the generators are defined as follows:

e4,i := h1,ih3,i+1 + h2,ih2,i+2 + h3,ih1,i

ki := h2,ih1,i+1

νi := h3,ih2,i+1h1,i+2

θi = h3,ih2,i+2h2,ih1,i

gi := h2,ih1,i,

μi = h3,ih2,ih1,i,

ξ =
∑2

i=0
h3,ie3,i+1 + h2,0h2,1h2,2,

ηi = h3,ih3,i+1h2,i+2h2,ih1,i.

Here we denote e3,i := h1,ih2,i+1 + h2,ih1,i+2 for i ∈ Z/3.

Remark 3.4. The original formula for ξ in [3] was ξ=
∑

h3,i+1e3,i+
∑

h2,ih2,i+1h2,i+2.
However, that doesn’t represent a cocycle. We have corrected the formula for ξ in
Proposition 3.3. It corresponds to Yamaguchi’s generator c in [22] under the relation
c− ξ = −d1(h3,0h3,2).

Using Theorem 3.1, one can compute the product relations of these additive
generators by hand.

Example 3.5. Direct computation shows

(1) h1,iki = h1,ih2,ih1,i+1 = −h2,ih1,ih1,i+1 = −gih1,i+1.
(2) e4,i+1ki=h1,i+1h3,i+2h2,ih1,i+1+h2,i+1h2,ih2,ih1,i+1+h3,i+1h1,i+1h2,ih1,i+1

= 0.
(3) k2i = h2,ih1,i+1h2,ih1,i+1 = 0.

It is also useful to notice that, for x ∈ Hi,∗S(3), y ∈ Hj,∗S(3), we have x · y =
(−1)ijy · x.

Computing the entire Fp-algebra structure of H∗,∗S(3) is straightforward but
quite tedious. Yamaguchi [22] and Gu-Wang-Wu [3] both listed the product re-
lations without providing proofs. Unfortunately, both papers contain typos. As
pointed out in [3, Remark A.1], the formula a0g

′
0 = h0b

′
0 − h1b0 in [22, Theo-

rem 4.4] should be corrected to a0g
′
0 = h0b

′
0 − 2h1b0 under Yamaguchi’s nota-

tion. On the other hand, [3, Appendix A] claimed e4,ie4,i+1vi = −e4,ie4,i+1μi+2 +
2
3ρe4,i+2e4,igi+1. However, one can tell this is wrong since e4,ie4,i+1μi+2 and
ρe4,i+2e4,igi+1 have different inner degrees. As another example, [3, Appendix
A] claimed that vih1,i = 1

3e4,i+1gi+2 and h1,ie4,i+1vi = 0. However, we have

h1,ie4,i+1vi = h1,ivie4,i+1 = − 1
3e4,i+1gi+2e4,i+1 = − 1

3e
2
4,i+1gi+2 �= 0, since

e24,i+1e4,igi+2 �= 0 is a generator in dimension 8. This brings to a contradiction.
We have not reproduced all the product relations in H∗,∗S(3). We do not claim

we have found all typos in [3, 22].
For the purpose of this paper, we do not attempt to determine the entire Fp-

algebra structure of H∗,∗S(3). In Proposition 3.6, we will recompute only the
products that we actually need in this paper. Therefore, the result of this paper
does not depend on the computation of the full Fp-algebra structure of H∗,∗S(3)
in [3, 22].
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Proposition 3.6. Let p ≥ 7 be a prime number. We have the following nontrivial
products among generators of H∗,∗S(3):

• v0h1,0 = 1
3e4,1g2 �= 0.

• e4,1v0h1,0e4,0 = 1
3e

2
4,1e4,0g2 �= 0.

• v0e4,1 = −e4,2μ1 +
1
3ρe4,2g1 +

1
3ρe4,1k1 �= 0.

• e4,i+1h1,i = e4,ih1,i+1 �= 0.
• k0ν0 = 1

2e
2
4,1h1,2 �= 0.

Meanwhile, the following products are trivial:

h1,0k1 = 0, k0k1 = 0, k0h1,0e4,i = 0, h1,0k0ν0 = 0.

Proof. We pick several typical examples to illustrate the method of computation.
The rest of the products can be computed similarly.

(1) v0h1,0 = 1
3e4,1g2 �= 0. Recall that by definition, we have

v0h1,0 = [h3,0h2,1h1,2h1,0],(3.4)

e4,1g2 = [h1,1h3,2h2,2h1,2 + h2,1h2,0h2,2h1,2 + h3,1h1,1h2,2h1,2].(3.5)

Here, we use the bracket [ ] to emphasize these are cohomology classes. To sim-
plify notations, we denote A := h3,0h2,1h1,2h1,0, B := h1,1h3,2h2,2h1,2, C :=
h2,1h2,0h2,2h1,2, andD := h3,1h1,1h2,2h1,2. We want to show 3[A] = [B+C+D]. We
also denote E := h1,0h2,1h3,1h1,2, F := h3,0h1,1h2,2h1,2, and G := h2,1h1,0h3,2h1,2.

Next, we consider elements in homological degree 3, which has the same inner
degree as A,B,C,D. The point is, the differential of such elements might provide
relations among A,B,C,D. Direct computation shows:

d1(h3,0h3,1h1,2) = E − F +A ⇒ [A] = [F ]− [E].(3.6)

d1(h3,0h2,1h2,2) = −C + F +A ⇒ [A] = [C]− [F ].(3.7)

d1(h3,1h3,2h1,2) = −B +G+D ⇒ [G] = [B]− [D].(3.8)

d1(h3,0h3,2h1,2) = −G+ F ⇒ [F ] = [G].(3.9)

d1(h3,1h2,1h2,2) = D + E ⇒ [E] = −[D].(3.10)

Then we have 3[A] = 2([F ]−[E])+([C]−[F ]) = [C]−2[E]+[F ] = [C]+2[D]+[G] =
[C] + 2[D] + [B] − [D] = [B] + [C] + [D]. This shows v0h1,0 = 1

3e4,1g2. Moreover,
e4,1g2 �= 0 since it is a generator in dimension 4 by Proposition 3.3.

(2) e4,1v0h1,0e4,0 = 1
3e

2
4,1e4,0g2 �= 0. This follows directly from (1). Moreover,

e24,1e4,0g2 �= 0 since it is a generator in dimension 8 by Proposition 3.3.
(3) h1,0k1 = [h1,0h2,1h1,2] = 0. This is because d1(h3,0h1,2) = h1,0h2,1h1,2 +

h2,0h1,2h1,2 = h1,0h2,1h1,2.
(4) k0k1=[h2,0h1,1h2,1h1,2]=0. This is because d1(h3,0h1,1h2,1)=h1,0h2,1h1,1h2,1

+ h2,0h1,2h1,1h2,1 + h3,0h1,1h1,1h1,2 = h2,0h1,2h1,1h2,1.
The rest of the products can be computed similarly. �

4. Images of α, β, γ, ζ-family elements

In this section, we recall the constructions of the Greek letter family elements in
the E2-page Ext∗,∗BP∗BP (BP∗, BP∗) of the Adams-Novikov spectral sequence. Then
we determine the images of {αs, βs, γs, ζs|s ≥ 1} under the comparison map φ :
Ext∗,∗BP∗BP (BP∗, BP∗) → H∗,∗(S(3)).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4528 X. WANG, J. WU, Y. ZHANG, AND L. ZHONG

Note we can write φ as the composition of several maps. We have

(4.1) φ = Ext∗,∗BP∗BP (BP∗, BP∗)
η−→ Ext∗,∗BP∗BP (BP∗, v

−1
3 BP∗/I3)

ψ−→ H∗,∗(S(3))

with I3 = (p, v1, v2) ⊂ BP∗ and ψ = ψ3ψ2ψ1, where

ψ1 : Ext∗,∗BP∗BP (BP∗, v
−1
3 BP∗/I3)

∼=−→ Ext∗,∗Σ(3)(K(3)∗,K(3)∗),(4.2)

ψ2 : Ext∗,∗Σ(3)(K(3)∗,K(3)∗) → Ext∗,∗Σ(3)(K(3)∗,K(3)∗)⊗K(3)∗ Fp,(4.3)

ψ3 : Ext∗,∗Σ(3)(K(3)∗,K(3)∗)⊗K(3)∗ Fp

∼=−→ Ext∗,∗S(3)(Fp,Fp) = H∗,∗(S(3)).(4.4)

4.1. α-Family elements. Let n ≥ 0, p � s ≥ 1. Then

vsp
n

1 ∈ Ext0,∗BP∗BP (BP∗, BP∗/p
n+1).

We define αspn/n+1 := δ0(v
spn

1 ) ∈ Ext1,∗BP∗BP (BP∗, BP∗), where δ0 is the boundary-
homomorphism associated to the short exact sequence

(4.5) 0 → ΩBP∗BP (BP∗)
pn+1

−−−→ ΩBP∗BP (BP∗) → ΩBP∗BP (BP∗/p
n+1) → 0

of cobar complexes (Definition 2.9). We often abbreviate αs/1 to αs.
In order to determine the image of η, we introduce the following notion.

Definition 4.2. Let n ≥ 1. We define I[n] as the ideal of BP∗ generated by

monomials pivj1v
k
2 such that i + j + k = n. In particular, I[1] = (p, v1, v2) = I3 ⊂

BP∗.

Lemma 4.3. Let d denote the differential of the cobar complex Ω∗,∗
BP∗BP (BP∗). Let

x ∈ I[n] ⊂ BP∗ = Ω0,∗
BP∗BP (BP∗) for some n ≥ 1. Then d(x) ∈ I[n]·Ω1,∗

BP∗BP (BP∗).

Proof. BP∗ can be regarded as a right BP∗BP -comodule with ηR : BP∗ → BP∗BP
as the structure map. According to Definition 2.9, for x ∈ BP∗, we have

(4.6) d(x) = −ψ(x) + x⊗ 1 = −ηR(x) + x⊗ 1.

Note that if x ∈ I[n], then x⊗1 ∈ I[n]·Ω1,∗
BP∗BP (BP∗). Therefore, it is sufficient to

show that ηR(x) ∈ I[n]·Ω1,∗
BP∗BP (BP∗). Furthermore, by considering each summand

separately, we can assume that x is a monomial in BP∗ = Z(p)[v1, v2, · · · ]. Write

x = pivj1v
k
2y, where i+ j + k ≥ n. Using (2.2) and (2.3), we have

ηR(p
ivj1v

k
2y) = ηR(p

i)ηR(v
j
1)ηR(v

k
2 )ηR(y)

= pi(v1 + pt1)
j(v2 + v1t

p
1 + pt2 + L)kηR(y),

(4.7)

where L ∈ (p2, vp1) · Ω
1,∗
BP∗BP (BP∗). By counting the exponents, we can see that

ηR(x) ∈ I[n] · Ω1,∗
BP∗BP (BP∗). �

Proposition 4.4. Concerning the image of the α-family elements under the map
φ specified in (4.1), we have

(1) φ(α1) = −h1,0.
(2) φ(αs) = 0, for s > 1.

Proof. (1) The image of α1 is computed in [5, Lemma 3.4]. Here, we still provide
a detailed computation to illustrate the method.
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We have α1 = δ0(v1). By definition of the connecting homomorphism δ0, we
have

(4.8) δ0(v1) =
d(v1)

p
= − (ηR(v1)− v1 ⊗ 1)

p
= −t1,

where we let v1 also denote the preimage of v1 with respect to the map

ΩBP∗BP (BP∗) → ΩBP∗BP (BP∗/p
n+1)

and let d denote the differential of the cobar complex ΩBP∗BP (BP∗). Therefore,
upon reduction modulo I3, we find that η(α1) = −t1.

On the level of cobar complexes, the effect of ψ is sending v3 to 1. By Proposition
3.3, −t1 represents −h1,0 in H∗,∗(S(3)). Therefore, φ(α1) = ψ(−t1) = −h1,0.

(2) For s ≥ 2, we have

(4.9) αs = δ0(v
s
1) =

d(vs1)

p
.

Note that vs1 ∈ I[s]. By Lemma 4.3, d(vs1) ∈ I[s] · ΩBP∗BP (BP∗). Then

(4.10)
d(vs1)

p
∈ I[s− 1] · ΩBP∗BP (BP∗).

Note s− 1 ≥ 1, we have

(4.11) αs ∈ I[s− 1] · ΩBP∗BP (BP∗) ⊂ I[1] · ΩBP∗BP (BP∗) = I3 · ΩBP∗BP (BP∗).

Upon reduction modulo I3, we have η(αs) = 0. Therefore, φ(αs) = 0 for s > 1. �

Notation 4.5. In this paper, we often abuse the notation and refer to the elements
in Exts,∗Γ (A,M) by their representatives in the associated cobar complex Ωs,∗

Γ (M)
when no confusion arises. For example, here we let −t1 denote the element in
Ext1,∗BP∗BP (BP∗, v

−1
3 BP∗/I3) represented by −t1 ∈ Ω1,∗

BP∗BP (v
−1
3 BP∗/I3).

Remark 4.6. Here, the result for φ(α1) differs from the formula in [5, Lemma 3.4] by
a negative sign, as our definitions of the differential in the cobar complex (Definition
2.9) differ by a negative sign.

4.7. β-Family elements. Let a0 = 1, an = pn + pn−1 − 1 for n ≥ 1. Define
xn ∈ v−1

2 BP∗ as

x0 = v2,(4.12)

x1 = xp
0 − vp1v

−1
2 v3,(4.13)

x2 = xp
1 − vp

2−1
1 vp

2−p+1
2 − vp

2+p−1
1 vp

2−2p
2 v3,(4.14)

xn = xp
n−1 − 2vbn1 vp

n−pn−1+1
2 , n ≥ 3(4.15)

with bn = (p+ 1)(pn−1 − 1) for n > 1. Now, if s ≥ 1 and pi|j ≤ an−i with j ≤ pn

if s = 1, then xs
n ∈ Ext0,∗BP∗BP (BP∗, BP∗/(p

i+1, vj1)). Define

(4.16) βspn/j,i+1 := δ′δ′′(xs
n) ∈ Ext2,∗BP∗BP (BP∗, BP∗),

where δ′ (resp. δ′′) is the boundary-homomorphism associated to E′ (resp. E′′)

E′ : 0 → Ω(BP∗)
pi+1

−−−→ Ω(BP∗) → Ω(BP∗/p
i+1) → 0,(4.17)

E′′ : 0 → Ω(BP∗/p
i+1)

vj
1−→ Ω(BP∗/p

i+1) → Ω(BP∗/(p
i+1, vj1)) → 0,(4.18)
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where we let Ω(−) denote ΩBP∗BP (−). We often abbreviate βspn/j,1 to βspn/j and
βspn/1 to βspn . When we work with β-family elements in practice, we require the
indexes (s, n, j, i) to satisfy certain relations as specified in Theorem 4.8.

Theorem 4.8 ([11,12]). Let p be an odd prime. Ext2,∗BP∗BP (BP∗, BP∗) is the direct
sum of cyclic subgroups generated by βspn/j,i+1 for n ≥ 0, p � s ≥ 1, j ≥ 1, i ≥ 0,

subject to: (1) j ≤ pn, if s = 1, (2) pi|j ≤ an−i, and (3) an−i−1 < j, if pi+1|j.

Proposition 4.9. Concerning the image of the β-family elements under the map
φ specified in (4.1), we have

(1) φ(β1) = −e4,1.
(2) φ(β2) = 2k0.
(3) φ(βs) = 0, for s > 2.
(4) φ(βpn/pn) = −e4,n+1, for n ≥ 1.
(5) φ(βspn/pn) = 0, for n ≥ 1, s ≥ 2.

Proof. (1) and (2) are computed in [5, Lemma 3.4]. Note the elements b0 :=
h1,1h3,2 + h2,1h2,0 + h3,1h1,1, k0 := h2,0h1,1 defined in [5, Theorem 2.7] correspond
to e4,1 and k0 respectively in our notation, see Proposition 3.3.

Before proving (3), (4), (5), we first introduce some notations.
Consider βspn/pn = δ′δ′′(xs

n), we denote

(4.19) yspn/pn := δ′′(xs
n) =

d′(xs
n)

vp
n

1

∈ Ω(BP∗/p),

where we let xs
n also denote the preimage of xs

n with respect to the map Ω(BP∗/p) →
Ω(BP∗/(p, v

pn

1 )) and let d′ denote the differential map of the cobar complex
Ω(BP∗/p).

Similarly, using the definition of the connecting homomorphism δ′, we have

(4.20) βspn/pn = δ′(yspn/pn) =
d(yspn/pn)

p
∈ Ω(BP∗),

where we let yspn/pn also denote the preimage of yspn/pn with respect to the map
Ω(BP∗) → Ω(BP∗/p) and let d denote the differential map of the cobar complex
Ω(BP∗).

(3) Let n = 0, s ≥ 3. Then we have:

ys = δ′′(vs2) =
d′(vs2)

v1
∈ I[s− 1] · Ω(BP∗/p).(4.21)

βs = δ′(ys) =
d(ys)

p
∈ I[s− 2] · Ω(BP∗) ⊂ I3 · Ω(BP∗).(4.22)

Upon reduction modulo I3, we have η(βs) = 0. Then φ(βs) = 0 for s ≥ 3.

(4) Let n ≥ 1. We claim that in Ω(BP∗/(p, v
pn

1 )), we can express xn as vp
n

2 +Ln,

where Ln ∈ I[2pn − pn−1] · Ω(BP∗/(p, v
pn

1 )).
If n = 1, we have x1 = vp2 − vp1v

−1
2 v3 = vp2 ∈ Ω(BP∗/(p, v

p
1)) since vp1 = 0 ∈

Ω(BP∗/(p, v
p
1)). If n = 2, we have x2 = xp

1 − vp
2−1

1 vp
2−p+1

2 − vp
2+p−1

1 vp
2−2p

2 v3 =

vp
2

2 −vp
2−1

1 vp
2−p+1

2 ∈ Ω(BP∗/(p, v
p2

1 )) since p, vp
2

1 = 0 ∈ Ω(BP∗/(p, v
p2

1 )). The case
for general n ≥ 3 can be proved analogously.
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Consequently, we have

ypn/pn = δ′′(xn) =
d′(xn)

vp
n

1

=
d′(vp

n

2 )

vp
n

1

+
d′(Ln)

vp
n

1

.(4.23)

βpn/pn = δ′(ypn/pn) =
d(ypn/pn)

p
=

1

p
d

(
d′(vp

n

2 )

vp
n

1

)
+

1

p
d

(
d′(Ln)

vp
n

1

)
.(4.24)

Note that Ln ∈ I[2pn − pn−1] · Ω(BP∗/(p, v
pn

1 )). Analogous to Lemma 4.3, we
have

d′(Ln)

vp
n

1

∈ I[pn − pn−1] · Ω(BP∗/p),(4.25)

1

p
d

(
d′(Ln)

vp
n

1

)
∈ I[pn − pn−1 − 1] · Ω(BP∗) ⊂ I3 · Ω(BP∗).(4.26)

Using (2.3), we can write ηR(v2) = v2+v1t
p
1+pt2+L, where L ∈ (p2, vp1)·BP∗BP .

Since p = 0 in Ω(BP∗/p), we can write:

(4.27)
d′(vp

n

2 )

vp
n

1

= −tp
n+1

1 + Lpn ,

where Lpn ∈ I[pn+1 − pn] · Ω(BP∗/p). This implies

(4.28)
1

p
d(Lpn) ∈ I[pn+1 − pn − 1] · Ω(BP∗) ⊂ I3 · Ω(BP∗).

Moreover, we have

1

p
d(−tp

n+1

1 ) = −1

p
[Δ(tp

n+1

1 )− 1⊗ tp
n+1

1 − tp
n+1

1 ⊗ 1]

= −1

p
[(1⊗ t1 + t1 ⊗ 1)p

n+1 − 1⊗ tp
n+1

1 − tp
n+1

1 ⊗ 1]

= −b1,n,

(4.29)

as defined in Notation 2.3.
Combining (4.24) ∼ (4.29), we have η(βpn/pn) = −b1,n using Notation 2.6.
Next, we will show that ψ(b1,n) = e4,n+1 ∈ H∗,∗S(3) for n ≥ 0. Then, we can

conclude that φ(βpn/pn) = −e4,n+1, for n ≥ 1.

Following Notation 2.6, we have ψ(b1,n) = b̃1,n. By Proposition 2.5, in the cobar

complex Ω∗,∗
S(3)(Fp), we have d(t4) = t1 ⊗ tp3 + t2 ⊗ tp

2

2 + t3 ⊗ tp
3

1 − b̃1,2. Hence, we

have equivalent cohomology classes [b̃1,2] = [t1⊗ tp3+ t2⊗ tp
2

2 + t3⊗ tp
3

1 ] = e4,3. This
implies ψ(b1,2) = e4,3.

Note that if a is not a multiple of p, then ap ≡ a modulo p. Hence, working

over Fp, we have b̃1,n+1 = b̃p1,n. Moreover, note that tp
3

1 = t1 in S(3), so we have

b̃1,n+3 = b̃1,n. Similarly, one can show that e4,n+1 = ep4,n and e4,n+3 = e4,n. Hence,

we conclude that ψ(b1,n) = e4,n+1 for each n ≥ 0.
This finishes the proof for statement (4).
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(5) Let n ≥ 1, s ≥ 2. Direct observation shows xn∈I[pn−pn−1]·Ω(BP∗/(p, v
pn

1 )).
From this, we can conclude

xs
n ∈ I[spn − spn−1] · Ω(BP∗/(p, v

pn

1 )),(4.30)

yspn/pn ∈ I[spn − spn−1 − pn] · Ω(BP∗/p),(4.31)

βspn/pn ∈ I[spn − spn−1 − pn − 1] · Ω(BP∗).(4.32)

Note spn − spn−1 − pn − 1 = (sp− s− p)pn−1 − 1 ≥ sp− s− p− 1 ≥ p− 3 > 1. We
have η(βspn/pn) = 0. Then φ(βspn/pn) = 0, for n ≥ 1, s ≥ 2. �

4.10. γ-Family elements. Analogous to α-family and β-family elements, one can
construct γ-family elements in Ext3,∗BP∗BP (BP∗, BP∗). For the purpose of this pa-
per, we only need to consider γs for s ≥ 1. Recall the following result concerning
φ(γs) (see [5, Lemma 3.4], also [3, Lemma 4.1]).

Proposition 4.11. Concerning the image of the γ-family elements under the map
φ specified in (4.1), we have

φ(γs) = −s(s2 − 1)ν0 + s(s− 1)ρk1, s ≥ 1.

Remark 4.12. Here, the result in Proposition 4.11 differs from the formula in [3,5] by
a negative sign, as our definitions of the differential in the cobar complex (Definition
2.9) differ by a negative sign.

4.13. ζ-Family elements. Let p ≥ 7, s ≥ 1. It is proved in [11, 15, 19, 20] that
αs, βs, γs all represent nontrivial elements in π∗(S). Using the Adams spectral
sequence, Cohen [2] also found another family of nontrivial elements ζn ∈ π∗(S),
for n ≥ 1. We also denote the representative of ζn in the Adams-Novikov E2-page
Ext∗,∗BP∗BP (BP∗, BP∗) by ζn.

Cohen [2] shows ζn = α1βpn/pn + α1x ∈ Ext3,∗BP∗BP (BP∗, BP∗), where x =∑
s,k,j

as,k,jβspk/j , 0 ≤ as,k,j ≤ p − 1, and a1,n,pn = 0. Moreover, by comparing the

inner degrees, one can show [3] x =
∑

as,k,pkβspk/pk , where k ≤ n, s = pn−k+1+1
p+1 �=

1. Then, simple calculation shows that s > 2.

Proposition 4.14. Concerning the image of the ζ-family elements under the map
φ specified in (4.1), we have

φ(ζn) = h1,0e4,n+1, n ≥ 1.

Proof. We have ζn = α1βpn/pn + α1x. By Proposition 4.4 and Proposition 4.9,
we have φ(α1) = −h1,0, φ(βpn/pn) = −e4,n+1, and φ(x) = 0. Therefore, φ(ζn) =
φ(α1)φ(βpn/pn) = h1,0e4,n+1. �

Gathering the analysis of the α-family, β-family, γ-family, and ζ-family elements,
we have the following result.

Proposition 4.15. Under the comparison map

φ : Ext∗,∗BP∗BP (BP∗, BP∗) → H∗,∗(S(3)),

all nonzero images of {αs, βs, γs, ζs|s ≥ 1} are listed as follows:

(1) φ(α1) = −h1,0,
(2) φ(β1) = −e4,1
(3) φ(β2) = 2k0,
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(4) φ(γs) = −s(s2 − 1)ν0 + s(s− 1)ρk1, for s � ≡0, 1 mod p.
(5) φ(ζn) = h1,0e4,n+1, for n ≥ 1.

Proof. This follows directly from Propositions 4.4, 4.9, 4.11, and 4.14. Note h1,0e4,0
= e4,0h1,0 �= 0 since e4,0h1,0 is a generator of H3,∗(S(3)) (Proposition 3.3). Sim-
ilarly, h1,0e4,2 = e4,2h1,0 �= 0. Finally, h1,0e4,1 �= 0 since e4,1e4,2h1,0 �= 0 is a
generator in dimension 5. Therefore, φ(ζn) �= 0 for n ≥ 1. �

5. Detection of nontrivial products in π∗(S)

In this section, we prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1. We consider the representation of β1γsζn on the E2-page of
the ANSS. According to Propositions 4.15 and 3.6, we have

φ(β1γsζn) = e4,1(s(s
2 − 1)ν0 − s(s− 1)ρk1)h1,0e4,n+1

= s(s2 − 1)e4,1ν0h1,0e4,n+1 − s(s− 1)ρe4,1k1h1,0e4,n+1

= s(s2 − 1)e4,1ν0h1,0e4,0 (n ≡ 2 mod 3, h1,0k1 = 0)

=
s(s2 − 1)

3
e24,1e4,0g2

�= 0

when n ≡ 2 mod 3, and s �≡ 0,±1 mod p.
Hence, we conclude β1γsζn �= 0 ∈ Ext8,∗BP∗BP (BP∗, BP∗). Since β1, γs, and ζn

are all permanent cycles in the ANSS, their product is also a permanent cycle.
Note the differentials of the ANSS have the form dr : Es,t

r → Es+r,t+r−1
r , where

r ≥ 2. Additionally, the inner degrees of the elements in the ANSS are all multiples
of q = 2p − 2. Thus, the first potentially nontrivial differentials in the ANSS
occur at d2p−1. Suppose β1γsζn is in the target of a differential dr. Then we have
8 = s+r ≥ 2p−1 ≥ 13. This is a contradiction. Hence, β1γsζn is not in the target of
any differential in the ANSS. This proves β1γsζn survives to the nontrivial product
β1γsζn �= 0 ∈ π∗(S). �

Proof of Theorem 1.3. Let X = X1X2 · · ·Xm be a product in π∗(S) where each
factor belongs to the set {αs, βs, γs, ζs|s ≥ 1}. Let

x = x1x2 · · ·xm ∈ Ext∗,∗BP∗BP (BP∗, BP∗)

represent X on the Adams-Novikov E2-page. If X can be detected as nontrivial by
comparing with H∗,∗S(3), then we have φ(x) �= 0 ∈ H∗,∗(S(3)).

On the other hand, if 0 �= φ(x) ∈ Ha,∗(S(3)), then it follows that a ≤ 9. Similar
to the arguments in the proof of Theorem 1.1, we can show that x cannot be in the
target of any differential in the ANSS by degree reasons. Hence, the product X is
nontrivial in π∗(S).

For the rest of the proof, our task is to find all products X such that φ(x) �= 0.
Note φ(x) �= 0 implies φ(xi) �= 0 for 1 ≤ i ≤ m. Then Xi ∈ {α1, β1, β2, γs, ζn|s �≡
0, 1 mod p, n ≥ 1} by Proposition 4.15.

We first consider binary products. By Propositions 3.3, 3.6, and 4.15, we have:

(1) φ(α1α1) = h2
1,0 = 0,

(2) φ(α1β1) = h1,0e4,1 �= 0.
(3) φ(α1β2) = −2h1,0k0 �= 0, by Example 3.5.
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(4) φ(α1γs) = s(s2 − 1)h1,0ν0 + s(s − 1)ρh1,0k1 = s(s2 − 1)h1,0ν0 �= 0, if and
only if s �≡ 0,±1 mod p, since h1,0ν0 �= 0, h1,0k1 = 0.

(5) φ(α1ζn) = −h2
1,0e4,n+1 = 0,

(6) φ(β2
1) = e24,1 �= 0, since e24,1 ∈ H∗,∗(S(3)) is a generator.

(7) φ(β1β2) = −2e4,1k0 = 0, by Example 3.5.
(8) φ(β1γs) = s(s2−1)e4,1ν0−s(s−1)ρe4,1k1 �= 0, if and only if s �≡ 0, 1 mod p

by Proposition 3.6.
(9) φ(β1ζn)=−e4,1h1,0e4,n+1 �=0, since h1,0e

2
4,1, h1,0e4,1e4,2, and h1,0e4,1e4,0 =

e24,0h1,1 are all generators in H∗,∗(S(3)).

(10) φ(β2
2) = 4k20 = 0, by Example 3.5.

(11) φ(β2γs) = −2s(s2 − 1)k0ν0 + 2s(s− 1)ρk0k1 = −2s(s2 − 1)k0ν0 �= 0, if and
only if s �≡ 0,±1 mod p,

(12) φ(β2ζn) = 2k0h1,0e4,n+1 = 0,
(13) φ(γsγt) = 0, since ρ2 = 0, ν20 = 0, and ν0k1 = 0 by direct computation

similar to Example 3.5.
(14) φ(γsζn)=−s(s2−1)ν0h1,0e4,n+1+s(s−1)ρk1h1,0e4,n+1=−s(s2−1)ν0h1,0e4,n+1

�= 0, if and only if n �≡ 1 mod 3, s �≡ 0,±1 mod p. Note ν0h1,0e4,2 = 0
by direct computation similar to Example 3.5. Besides, we note that
ν0h1,0e4,0 �= 0 and ν0h1,0e4,1 �= 0. These assertions follow from the re-
sult that e4,1ν0h1,0e4,0 �= 0 by Proposition 3.6.

(15) φ(ζmζn) = 0, since h2
1,0 = 0.

For triple products, if X = X1X2X3 �= 0, then X1X2, X2X3, and X1X3 are all
nontrivial. By the above analysis, we only need to consider the following products.

(1) φ(α1β
2
1) = −h1,0e

2
4,1 �= 0.

(2) φ(α1β1γs)=−s(s2−1)h1,0e4,1ν0−s(s−1)ρh1,0e4,1k1=−s(s2−1)h1,0e4,1ν0 �=
0, if and only if s �≡ 0,±1 mod p. Note h1,0e4,1ν0 �= 0 since e4,1ν0h1,0e4,0 �=
0 by Proposition 3.6.

(3) φ(α1β2γs)=2s(s2−1)h1,0k0ν0+2s(s−1)ρh1,0k0k1=0, since h1,0k0ν0, h1,0k1
= 0 by Proposition 3.6.

(4) φ(β3
1) = −e34,1 = 0 by direct computation similar to Example 3.5.

(5) φ(β2
1γs) = −s(s2 − 1)e24,1ν0 + s(s − 1)ρe24,1k1 = 0, since e24,1ν0, e

2
4,1k1 = 0

by direct computation similar to Example 3.5.
(6) φ(β2

1ζn) = h1,0e
2
4,1e4,n+1 �= 0, if and only if n ≡ 1 mod 3. Note h1,0e

2
4,1e4,0,

h1,0e
3
4,1 = 0 by direct computation. Using the formula e4,i+1h1,i=e4,ih1,i+1

from Proposition 3.6, we have h1,0e
2
4,1e4,2 = e24,1e4,2h1,0 = e24,1e4,0h1,2 �= 0

since e24,1e4,0h2,2h1,2 = e24,1e4,0g2 �= 0 is a generator.

(7) φ(β1γsζn) = s(s2 − 1)e4,1ν0h1,0e4,n+1 �= 0, if and only if n ≡ 2 mod 3,
s �≡ 0,±1 mod p. Note we have e4,1ν0h1,0e4,0 �= 0 by Proposition 3.6.
On the other hand, e4,1ν0h1,0e4,1 = 0, and e4,1ν0h1,0e4,2 = 0 by direct
computation similar to Example 3.5.

For four-fold products, if X = X1X2X3X4 �= 0, then X1X2X3, X2X3X4,
X1X3X4, and X1X2X4 are all nontrivial. By the above analysis, there are no
nontrivial four-fold products.

In this way, we have found all nontrivial products of the desired form. The result
is summarized as Theorem 1.3. �
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