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Abstract. We prove an upper bound for the Poincaré constant for Brownian motion on manifolds with
sticky reflecting boundary diffusion under general curvature conditions. This corresponds to bounding

from below the first nontrivial eigenvalue of the Laplace operator with Wentzell-type boundary condition.

Additionally we give an upper bound on the logarithmic Sobolev constant for Brownian motion with
sticky reflecting boundary diffusion.

We also apply our results to Brownian motion with sticky reflection but without boundary diffusion.

Furthermore we obtain a lower bound on the first nontrivial Steklov eigenvalue and an upper bound for
the norm of the Trace operator in terms of the geometry of the manifold.

1. Introduction

Let Ω be a smooth compact connected Riemannian manifold of dimension d ≥ 2 with connected and
piecewise smooth boundary ∂Ω. We consider so-called Brownian motion with sticky reflecting boundary
diffusion, i.e. a diffusion on Ω with Feller generator (D(A),A) on C(Ω) given by

D(A) = {f ∈ C(Ω) ∣ Af ∈ C(Ω)}

Af = ∆f1Ω + (∆τf − γ
∂f

∂N
)1∂Ω,

where ∂f
∂N

is the outer normal derivative, ∆τ is the Laplace-Beltrami operator on ∂Ω and γ > 0, which
corresponds to inward sticky reflection at ∂Ω. A construction of the associated semigroup and diffusion
process was given e.g. in [?]. We assume that Ω and ∂Ω have finite (Hausdorff) measure and denote it
respectively by ∣Ω∣ and ∣∂Ω∣. Furthermore by λΩ resp. λ∂Ω we denote the normalised volume measure on
Ω resp. normalised Hausdorff measure on ∂Ω and choose α ∈ [0,1], such that

α

1 − α

∣∂Ω∣

∣Ω∣
= γ.

Moreover we set
λα ∶= αλΩ + (1 − α)λ∂Ω.

and find that −A is λα-symmetric.
Our aim is to estimate the Poincaré and logarithmic Sobolev constants for such processes.
In section 2 we show an upper bound on the Poincaré constant for Brownian motion with sticky reflecting
boundary diffusion by using an interpolation approach introduced in [?]. In [?] it was shown that as time
goes to infinity the proportion of time spent on the boundary is positive and in particular approaches
(1−α)∣∂Ω∣
α∣Ω∣ . This illustrates that the interplay of boundary and interior will be of central importance. The

interpolation approach used in section 2 is in accordance with this. We generalise the results previously
achieved in [?] by allowing less strict assumptions on the geometry of the manifold Ω. Furthermore we
consider examples in the Euclidean and hyperbolic plane and compare the bounds from the interpolation
approach with exact values as well as bounds obtained from a more simple approach that does not use
any interpolation. Lastly we also apply our results to Brownian motion with sticky reflection but without
boundary diffusion.
In section 3 we point out a connection with the trace operator and state some more results relating
boundary and interior properties that might be of independent interest. These are analogues of Poincaré
and Sobolev-Poincaré inequalities between boundary and interior of Ω.
In section 4 we generalise the interpolation approach and use it in order to give an upper bound on the
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logarithmic Sobolev constant for Brownian motion with sticky reflecting boundary diffusion. Again we
also apply our results to Brownian motion with sticky reflection but without boundary diffusion.

2. Poincaré Inequality

We say that a Poincaré Inequality is fulfilled if there is a constant Cα such that for all f ∈ C1(Ω)

V arλα(f) ≤ CαEα(f),

where

V arλα(f) = ∫
Ω
f2dλα − (∫

Ω
fdλα)

2

Eα(f) = α∫
Ω
∣∇f ∣2dλΩ + (1 − α)∫

∂Ω
∣∇
τf ∣2dλ∂Ω, f ∈ C1

(Ω)

and ∇τ denotes the tangential derivative operator on ∂Ω. In the following we denote by Cα the optimal
such constant. By CΩ and C∂Ω we denote the usual (Neumann) Poincaré constants of Ω and ∂Ω respec-
tively. We assume that CΩ and C∂Ω (or respective upper bounds for them) are known.
In [?][Proposition 2.1] the following statement was proved in the setting introduced above using an in-
terpolation approach:

Proposition 2.1. Assume there exist constants K∂Ω,Ω,K1,K2 such that for any f ∈ C1(Ω)

(1) V arλ∂Ω
f ≤K∂Ω,Ω ∫

Ω
∣∇f ∣2dλΩ

and

(2) (∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

≤K1 ∫
Ω
∣∇f ∣2dλΩ +K2 ∫

∂Ω
∣∇
τf ∣2dλ∂Ω,

then it holds for any α ∈ (0,1)

Cα ≤max(CΩ + (1 − α)K1, αK2,
(1 − α)K∂Ω,ΩC∂Ω + αCΩC∂Ω + α(1 − α)(K∂Ω,ΩK2 +C∂ΩK1)

(1 − α)K∂Ω,Ω + αC∂Ω
) .

In [?][section 3.2] constants K∂Ω,Ω,K1,K2 were found under the assumption of a positive lower bound
on Ricci curvature and a positive lower bound on the second fundamental form on the boundary ∂Ω (i.e. a
convex boundary). Our aim is to find K∂Ω,Ω,K1,K2 and thus an upper bound on Cα assuming any upper
and lower bound on Sectional curvature and any upper and lower bound for the second fundamental form
on the boundary and to thereby generalise section 3.2 in [?].
We first aim to find suitable constants K1,K2 fulfilling (2) and for that matter prove the following
Proposition. We do not yet make any assumptions on the geometry of the manifold, but will later
combine the following Proposition with assumptions on curvature and second fundamental form in order
to obtain explicit values for K1,K2.

Proposition 2.2. For any ϕ ∈ C1(Ω) such that ∂ϕ
∂N

∣∂Ω = 1 and ∇ϕ is Lipschitz continuous on Ω equa-
tion (2) in Proposition 2.1 is fulfilled with K2 = 0 and

K1 = (
∣Ω∣

∣∂Ω∣
)

2

inf
ε∈(0,∞)

[(1 + ε)∣∇ϕ∣22 + (1 + ε−1
)CΩ∣∆ϕ∣22] ,

where ∣ ⋅ ∣2 denotes the L2-norm on Ω with respect to λΩ.
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Proof. Let f ∈ C1(Ω). Without loss of generality we can assume that ∫Ω fdλΩ = 0. Now ∀ε > 0

(∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

=(∫
∂Ω
fdλ∂Ω)

2

= (∫
∂Ω
fNϕdλ∂Ω)

2

=(
∣Ω∣

∣∂Ω∣
∫

Ω
∇f ⋅ ∇ϕdλΩ +

∣Ω∣

∣∂Ω∣
∫

Ω
f∆ϕdλΩ)

2

≤(
∣Ω∣

∣∂Ω∣
)

2

[(1 + ε) (∫
Ω
∇f ⋅ ∇ϕdλΩ)

2

+ (1 + ε−1
) (∫

Ω
f∆ϕdλΩ)

2

]

≤(
∣Ω∣

∣∂Ω∣
)

2

[(1 + ε)∫
Ω
∣∇f ∣2dλΩ ∫

Ω
∣∇ϕ∣2dλΩ + (1 + ε−1

)∫
Ω
f2dλΩ ∫

Ω
(∆ϕ)2dλΩ]

≤(
∣Ω∣

∣∂Ω∣
)

2

[(1 + ε)∫
Ω
∣∇f ∣2dλΩ ∫

Ω
∣∇ϕ∣2dλΩ + (1 + ε−1

)CΩ ∫
Ω
∣∇f ∣2dλΩ ∫

Ω
(∆ϕ)2dλΩ] .

�

We next find K∂Ω,Ω such that equation (1) is fulfilled by proceeding similarly as in the proof of
Proposition 2.2:

Proposition 2.3. For any ρ ∈ C1(Ω) such that ∂ρ
∂N

∣∂Ω = −1 and ∇ρ is Lipschitz continuous on Ω
equation (1) in Proposition 2.1 is fulfilled with

K∂Ω,Ω =
∣Ω∣

∣∂Ω∣
(2∣∇ρ∣∞C

1/2
Ω + ∣(∆ρ)−∣∞CΩ) ,

where (⋅)− denotes the negative part of a function and ∣ ⋅ ∣∞ denotes the L∞-norm on Ω with respect to
λΩ.

Proof. Let f ∈ C1(Ω). Without loss of generality we can assume that ∫Ω fdλΩ = 0. Now we can calculate
similarly as in the previous result

V arλ∂Ω
(f) = ∫

∂Ω
f2dλ∂Ω − (∫

∂Ω
fdλ∂Ω)

2

≤ ∫
∂Ω
f2dλ∂Ω = −∫

∂Ω
f2 ∂ρ

∂N
dλ∂Ω

= −
∣Ω∣

∣∂Ω∣
∫

Ω
2f∇f ⋅ ∇ρdλΩ −

∣Ω∣

∣∂Ω∣
∫

Ω
f2∆ρdλΩ

≤ 2
∣Ω∣

∣∂Ω∣
∫

Ω
∣f ∣∣∇f ∣∣∇ρ∣dλΩ +

∣Ω∣

∣∂Ω∣
∫

Ω
f2

(∆ρ)−dλΩ

≤ 2
∣Ω∣

∣∂Ω∣
∣∇ρ∣∞ ∫

Ω
∣f ∣∣∇f ∣dλΩ +

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞ ∫

Ω
f2dλΩ

≤ 2
∣Ω∣

∣∂Ω∣
∣∇ρ∣∞ (∫

Ω
f2dλΩ ∫

Ω
∣∇f ∣2dλΩ)

1/2
+

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞ ∫

Ω
f2dλΩ

≤ 2
∣Ω∣

∣∂Ω∣
∣∇ρ∣∞C

1/2
Ω ∫

Ω
∣∇f ∣2dλΩ +

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞CΩ ∫

Ω
∣∇f ∣2dλΩ

=
∣Ω∣

∣∂Ω∣
(2∣∇ρ∣∞C

1/2
Ω + ∣(∆ρ)−∣∞CΩ)∫

Ω
∣∇f ∣2dλΩ.

�

Remark 2.1. Denote by σ the first nontrivial eigenvalue of the Steklov eigenvalue problem
⎧⎪⎪
⎨
⎪⎪⎩

∆f = 0, in Ω
∂f
∂N

= σf, on ∂Ω,

which is characterised (using normalised measures) by

σ =
∣Ω∣

∣∂Ω∣
inf

f∈C1(Ω)
∫∂Ω fdλ∂Ω=0

∫Ω ∣∇f ∣2dλΩ

∫∂Ω f
2dλ∂Ω

.
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Thus we have for the optimal constant K∂Ω,Ω in equation (1) in Proposition 2.1

K∂Ω,Ω = sup
f∈C1(Ω)

V arλ∂Ω
(f)

∫Ω ∣∇f ∣2dλΩ
= sup

f∈C1(Ω)
∫∂Ω fdλ∂Ω=0

∫∂Ω f
2dλ∂Ω

∫Ω ∣∇f ∣2dλΩ
=

⎛
⎜
⎜
⎝

inf
f∈C1(Ω)

∫∂Ω fdλ∂Ω=0

∫Ω ∣∇f ∣2dλΩ

∫∂Ω f
2dλ∂Ω

⎞
⎟
⎟
⎠

−1

=
∣Ω∣

∣∂Ω∣
σ−1.

Therefore by finding upper bounds for the optimal K∂Ω,Ω we find lower bounds for the first nontrivial
Steklov eigenvalue. We use this connection in the computations for Example 2.2 below.

To obtain an explicit constant it now remains to specify functions ϕ and ρ with the desired properties.
Note that despite fulfilling the same assumptions, ϕ and ρ may be chosen independently in order to
optimise the estimates. It seems natural to define both functions of the form ψ○ρ∂Ω for some appropriate
function ψ, where ρ∂Ω denotes the distance to the boundary function.
We use for k, γ ∈ R the function

(3) h ∶ [0,∞)→ R, h(t) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

cos(
√
kt) − γ√

k
sin(

√
kt), k ≥ 0

cosh(
√
−kt) − γ√

−k
sinh(

√
−kt), k < 0.

Let h−1(0) ∶= inf{t ≥ 0 ∶ h(0) = 0}, where h−1(0) =∞ if h(t) > 0 for all t ≥ 0. We denote by Ric and sect
the Ricci and sectional curvatures of Ω, and by Π the second fundamental form on the boundary ∂Ω, i.e.

Π(X,Y ) ∶= ⟨∇XN,Y ⟩, X,Y ∈ Tx∂Ω, x ∈ ∂Ω,

where N is the outward pointing unit normal vector field of ∂Ω.

Lemma 2.1. Let k1, k2 ∈ R such that Ric ≥ (d − 1), sect ≤ k2 and γ1, γ2 ∈ R such that γ1id ≤ Π ≤ γ2id.

We construct a function ϕ ∈ C1(Ω) such that ∂ϕ
∂N

∣∂Ω = −1 and ∇ϕ is Lipschitz continuous on Ω and for

t0 ∈ (0, h−1
2 (0))

∣∇ϕ∣22 ≤
1

∣Ω∣
∫

t0

0
Hd−1({ρ∂Ω = t})(1 −

t

t0
)

2

dt,

∣∆ϕ∣22 ≤
1

∣Ω∣
∫

t0

0
Hd−1({ρ∂Ω = t})((((d − 1)

h′2
h2

(t) (1 −
t

t0
) −

1

t0
)

−

)

2

+ (((d − 1)
h′1
h1

(t) (1 −
t

t0
) −

1

t0
)

+

)

2

)dt,

where hi, i = 1,2 are as defined above in (3) with k = ki and γ = γi.

Proof. It is easy to see that h−1
2 (0) ≤ h−1

1 (0). Let ρ∂Ω be the distance function to the boundary. By the
Laplacian comparison theorem, we have

∆ρ∂Ω ≤
(d − 1)h′1

h1
(ρ∂Ω) on {ρ∂Ω < h−1

1 (0)},(4)

∆ρ∂Ω ≥
(d − 1)h′2

h2
(ρ∂Ω) on {ρ∂Ω < h−1

2 (0)}.(5)

Indeed, (5) follows from [?][Theorem 3.1] for the Laplacian comparison theorem due to [?], and by
[?][Corollary 3.2] which says that the injectivity radius of ∂Ω is larger than h−1

2 (0). Next, for x ∈ Ω with
ρ∂(x) < h

−1
2 (0), let p ∈ ∂Ω be the projection such that γ(s) ∶= exp[−sN(p)], s ∈ [0, ρ∂(x)] be the minimal

geodesic form p to x. Let {Xi}1≤i≤d−1 be orthonormal vector fields around x orthogonal to ∇ρ∂(x). Let
Ji(s))s∈[0,ρ∂(x)] be the Jacobi fields along the geodesic γ such that Ji(ρ∂(x)) =Xi(x) and

⟨J̇i(0), v⟩ = −Π(Ji(0), v), v ∈ Tp∂Ω.

Le R be the Riemannian curvature tensor. By the second variational formula (see page 321 in [?]) we
have

Hessρ∂ (Xi,Xi)(x) = −Π(Ji(0), Ji(0)) + ∫
ρ∂(x)

0
(∣J̇i(s)∣

2
− ⟨R(γ̇(s), Ji(s))γ̇, Ji(s)⟩)ds.

Let (Xi(s))s∈[0,ρ∂(x)] be the parallel displacement of (Xi(0) ∶=Xi(x))s∈[0,ρ∂(x)], and denote

J̃i(s) =
h2(s)

h(ρ∂(x))
Xi(s), 1 ≤ i ≤ d − 1, s ∈ [0, ρ∂(x)].
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Then the index lemma yields

Hessρ∂ (Xi,Xi)(x) ≤ −Π(J̃i(0), J̃i(0)) + ∫
ρ∂(x)

0
(∣̃̇Ji(s)∣

2
− ⟨R(γ̇(s), J̃i(s))γ̇, J̃i(s)⟩)ds.

Noting that h2”(s) = −k2h2(s), this implies (4).
Now for t0 ∈ (0, h−1

2 (0)) we define

ϕ = ∫

ρ∂Ω

0
(1 −

s

t0
)
+
ds.

We have

∇ϕ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

∇ρ∂Ω(x) ⋅ (1 − ρ∂Ω(x)
t0

) , ρ∂Ω(x) ≤ t0

0, else,

and thus ∂ϕ
∂N

∣∂Ω = −1 and ∇ϕ is Lipschitz continuous. Furthermore

∆ϕ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

∆ρ∂Ω(x) (1 − ρ∂Ω(x)
t0

) − 1
t0
, ρ∂Ω(x) ≤ t0

0, else.

Now using the Coarea formula we get

∫
Ω
∣∇ϕ∣2dλΩ = ∫

{ρ∂Ω≤t0}
(1 −

ρ∂Ω

t0
)

2

∣∇ρ∂Ω∣
2dλΩ = ∫

{ρ∂Ω≤t0}
(1 −

ρ∂Ω

t0
)

2

dλΩ

=
1

∣Ω∣
∫

t0

0
∫
{ρ∂Ω=t}

(1 −
t

t0
)

2

dHd−1dt

=
1

∣Ω∣
∫

t0

0
Hd−1({ρ∂Ω = t})(1 −

t

t0
)

2

dt,

where Hd−1 denotes the (d − 1)-dimensional Hausdorff measure. Furthermore

∫
Ω
(∆ϕ)2dλΩ = ∫

Ω
((∆ϕ)+ + (∆ϕ)−)

2
dλΩ = ∫

Ω
((∆ϕ)+)

2
dλΩ + ∫

Ω
((∆ϕ)−)

2
dλΩ.

We see that by equations (4) and (5) on {ρ∂Ω ≤ t0}

∆ϕ ≥ (d − 1)
h′2
h2

(ρ∂Ω) (1 −
ρ∂Ω

t0
) −

1

t0
⇒ (∆ϕ)− ≤ ((d − 1)

h′2
h2

(ρ∂Ω) (1 −
ρ∂Ω

t0
) −

1

t0
)

−

,

∆ϕ ≤ (d − 1)
h′1
h1

(ρ∂Ω) (1 −
ρ∂Ω

t0
) −

1

t0
⇒ (∆ϕ)+ ≤ ((d − 1)

h′1
h1

(ρ∂Ω) (1 −
ρ∂Ω

t0
) −

1

t0
)

+

.

Thus

∫
Ω
(∆ϕ)2dλΩ ≤∫

{ρ∂Ω≤t0}
(((d − 1)

h′2
h2

(ρ∂Ω) (1 −
ρ∂Ω

t0
) −

1

t0
)

−

)

2

+ (((d − 1)
h′1
h1

(ρ∂Ω) (1 −
ρ∂Ω

t0
) −

1

t0
)

+

)

2

dλΩ

=
1

∣Ω∣
∫

t0

0
Hd−1({ρ∂Ω = t})((((d − 1)

h′2
h2

(t) (1 −
t

t0
) −

1

t0
)

−

)

2

+ (((d − 1)
h′1
h1

(t) (1 −
t

t0
) −

1

t0
)

+

)

2

)dt.

�

In the previous Lemma t0 ∈ (0, h−1
2 (0)) may be chosen to either optimise ∣∇ϕ∣22 or ∣∆ϕ∣22.

Lemma 2.2. Let k2 ∈ R such that sect ≤ k2 and γ2 ∈ R such that Π ≤ γ2id. Then k2 > −γ2
2 , and there

exists a function ρ ∈ C1(Ω) such that ∂ρ
∂N

∣∂Ω = −1 and ∇ρ is Lipschitz continuous on Ω and

∣∇ρ∣∞ ≤ 1,

∣(∆ρ)−∣∞ ≤ inf
t1∈(0,h−1

2 (0))
sup

t∈(0,t1)
((d − 1)

h′2
h2

(t) (1 −
t

t1
) −

1

t1
)

−

.
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Proof. Let h2 be the function defined as above in equation (3) with k = k2 and γ = γ2. If k2 ≤ −γ
2
2 , then

h−1
2 (0) = ∞, so that [?][Corollary 3.2] implies that the cut locus of ∂Ω is empty, which is contractive to

the fact that the maximum point of ρ∂ is in the cut locus. Hence, k2 > −γ
2
2 .

Let t1 ∈ (0, h−1
2 (0)) to be chosen later. By (5)

(6) ∆ρ∂Ω ≥ (d − 1)
h′2
h2

(ρ∂Ω) on {ρ∂Ω ≤ t1}.

Now, define

ρ = ∫
ρ∂Ω

0
(1 −

s

t1
)
+
ds.

We have

∇ρ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

∇ρ∂Ω(x) ⋅ (1 − ρ∂Ω(x)
t1

) , ρ∂Ω(x) ≤ t1

0, else,

and thus ∂ρ
∂N

∣∂Ω = −1, ∣∇ρ∣∞ ≤ 1 and ∇ρ is Lipschitz continuous. Furthermore

∆ρ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

∆ρ∂Ω(x) (1 − ρ∂Ω(x)
t1

) − 1
t1
, ρ∂Ω(x) ≤ t1

0, else,

and thus by equation (6) on {ρ∂Ω ≤ t1}

∆ρ ≥ (d − 1)
h′2
h2

(ρ∂Ω) (1 −
ρ∂Ω

t1
) −

1

t1
⇒ (∆ρ)− ≤ ((d − 1)

h′2
h2

(ρ∂Ω) (1 −
ρ∂Ω

t1
) −

1

t1
)

−

.

We can still choose t1 ∈ (0, h−1
2 (0)) to obtain

∣(∆ρ)−∣∞ ≤ inf
t1∈(0,h−1

2 (0))
sup

t∈(0,t1)
((d − 1)

h′2
h2

(t) (1 −
t

t1
) −

1

t1
)

−

.

�

Inserting ϕ and ρ as defined in Lemma 2.1 and Lemma 2.2 in Proposition 2.2 and Proposition 2.3
we now get explicit constants K1,K2 and K∂Ω,Ω in terms of bounds on sectional curvature and second
fundamental form on the boundary. We state these in the following Proposition.

Proposition 2.4. Let k1, k2 ∈ R such that Ric ≥ (d − 1)k1, sect ≤ k2 and γ1, γ2 ∈ R such that γ1id ≤ Π ≤

γ2id. Then for t0 ∈ (0, h−1
2 (0)) the assumptions in Proposition 2.1 are fulfilled with

K1 =
∣Ω∣

∣∂Ω∣2
inf

ε∈(0,∞)
[∫

t0

0
(1 + ε)Hd−1({ρ∂Ω = t})(1 −

t

t0
)

2

+(1 +
1

ε
)CΩHd−1({ρ∂Ω = t})((((d − 1)

h′2
h2

(t) (1 −
t

t0
) −

1

t0
)

−

)

2

+ (((d − 1)
h′1
h1

(t) (1 −
t

t0
) −

1

t0
)

+

)

2

)dt],

K2 = 0,

K∂Ω,Ω =
∣Ω∣

∣∂Ω∣

⎛

⎝
2C

1/2
Ω +CΩ inf

t1∈(0,h−1
2 (0))

sup
t∈(0,t1)

((d − 1)
h′2
h2

(t) (1 −
t

t1
) −

1

t1
)

−
⎞

⎠
.

As explained in Remark 2.1, upper bounds for the optimal K∂Ω,Ω correspond to lower bounds for the
first nontrivial Steklov eigenvalue. Thus we now also get a lower bound on the first nontrivial Steklov
eigenvalue σ that is explicit in terms of upper bounds on sectional curvature and second fundamental
form on the boundary:

Corollary 2.1. Let k2 ∈ R such that sect ≤ k2 and γ2 ∈ R such that Π ≤ γ2id. Then

σ ≥
⎛

⎝
2C

1/2
Ω +CΩ inf

t1∈(0,h−1
2 (0))

sup
t∈(0,t1)

((d − 1)
h′2
h2

(t) (1 −
t

t1
) −

1

t1
)

−
⎞

⎠

−1

.

By inserting the set of constants stated in Proposition 2.4 into Proposition 2.1 we get an explicit upper
bound on the Poincaré constant again in terms of bounds on sectional curvature and second fundamental
form.
For comparison we state the following obvious upper bound for the optimal Poincaré constant without
the interpolation approach:
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Proposition 2.5. Assume there exist constants K1,K2 such that for any f ∈ C1(Ω)

(∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

≤K1 ∫
Ω
∣∇f ∣2dλΩ +K2 ∫

∂Ω
∣∇
τf ∣2dλ∂Ω,

then it holds for any α ∈ (0,1)

Cα ≤ max (CΩ + (1 − α)K1,C∂Ω + αK2) .

Proof. Let f ∈ C1(Ω), then

V arλα(f) =αV arλΩ
(f) + (1 − α)V arλ∂Ω

(f) + α(1 − α) (∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

≤αCΩ ∫
Ω
∣∇f ∣2dλΩ + (1 − α)C∂Ω ∫

∂Ω
∣∇
τf ∣2dλ∂Ω

+ α(1 − α) (K1 ∫
Ω
∣∇f ∣2dλΩ +K2 ∫

∂Ω
∣∇
τf ∣2dλ∂Ω)

= (CΩ + (1 − α)K1)α∫
Ω
∣∇f ∣2dλΩ + (C∂Ω + αK2) (1 − α)∫

∂Ω
∣∇
τf ∣2dλ∂Ω

≤max (CΩ + (1 − α)K1,C∂Ω + αK2)Eα(f).

�

In the following we consider as examples balls in Euclidean plane and in hyperbolic plane and compare
the results obtained above with or without the interpolation approach. While the former example has
already been treated in [?], the latter was not included in the setting of [?] due to negative curvature.

Example 2.1. Let Ω ∶= B1 be the unit ball in R2. In this case the sectional curvature equals k = 0, and
for the second fundamental form on the boundary we have γ = 1. The constants K1,K2 and K∂Ω,Ω are
now to be computed for this specific example. The general results in [?][section 3.2] concerning the values
for these constants are not applicable. However the same paper also contains a computation adapted
to this specific example. In the following we will consider the values for the three constants obtained
by computations adapted to this specific example as well as the values obtained by the above general
results. For both sets of constants we will compare the upper bounds on Poincaré constants obtained by
the interpolation approach with the bounds obtained without interpolation as in Proposition 2.5 and the
exact values for the Poincaré constants.
We first recall the results of the computations adapted to the ball example made in [?][section 3.1]:

CΩ ≈
1

3.39
, C∂Ω = 1, K1 =

3

16
, K2 = 0, K∂Ω,Ω =

1

2
.

The upper bound obtained from Proposition 2.1 is

Cα ≤
8(1 − α) + 16αCΩ + 3α(1 − α)

8(1 + α)
,

while the upper bound obtained for the same values of K1,K2 and K∂Ω,Ω from Proposition 2.5 is Cα ≤ 1.
Moreover we also refer to [?] for the procedure to calculate the exact values for Cα, α ∈ (0,1).
Using the results from the previous pages instead, we find different constants: We have h1(t) = h2(t) = 1−t
from which follows by Lemma 2.1 and Lemma 2.2 that

∀ε > 0 ∃ϕ ∶ ∣∇ϕ∣22 ≤ ε, ∣∆ϕ∣22 ≤ 1 + ε

and

∃ρ ∶ ∣∇ρ∣∞ ≤ 1, ∣(∆ρ)−∣∞ ≤ 2.

Inserting this in Proposition 2.2 and Proposition 2.3 we get

K ′
1 =

CΩ

4
, K ′

2 = 0, K ′
∂Ω,Ω ≈ 0.8381.

Inserting this in Proposition 2.5 results in Cα ≤ 1 while inserting in Proposition 2.1 we get

Cα ≤ max
⎛

⎝
CΩ + (1 − α)K ′

1,
(1 − α)K ′

∂Ω,Ω + αCΩ + α(1 − α)K ′
1

(1 − α)K ′
∂Ω,Ω + α

⎞

⎠
.

We depict these results in Figure 1. Note that the green and purple curves overlap. From this we see
that the upper bounds obtained from the above general results are only slightly worse than the upper
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Figure 1. Exact Poincaré constants (blue), interpolation (yellow) and no interpolation
(green) results using computations specifically adapted to the example, interpolation
(red) and no interpolation (purple) results using computations not specifically adapted
to the example.

bounds obtained by computing with the specific example in mind. Furthermore it is obvious from the
proof of Proposition 2.1, that results obtained from the interpolation approach must be at least as good
as results obtained without interpolation. However the figure shows for both sets of constants that the
interpolation results clearly differ from the no interpolation results and give significantly better bounds
than the approach without interpolation. In particular the interpolation approach allows to better meet
the decreasing shape of the curve of exact values of Cα.

Example 2.2. We consider the unit metric ball in the hyperbolic plane and compute the exact Poincaré
constants Cα, α ∈ (0,1) numerically. Again constants K1,K2 and K∂Ω,Ω are to be computed for this
specific example. The general results in [?][section 3.2] concerning the values for these constants are
not applicable. Instead we conduct a computation adapted to this specific example to obtain a set of
three constants. Furthermore we will consider the values obtained by the above general results. For both
sets of constants we will compare the upper bounds on Poincaré constants obtained by the interpolation
approach with the bounds obtained without interpolation as in Proposition 2.5 and the exact values for
the Poincaré constant.
In more detail we consider the unit ball B1(0) ⊂ R2 with the hyperbolic metric

(7) gh =
4

(1 − ∣x∣2)2
g,

where g = (dx1)2 + (dx2)2 is the standard metric in R2, resulting in the space form of constant sectional
curvature K = −1. Ω will be a unit ball in this hyperbolic plane. We will start by computing the exact
values for Cα, α ∈ (0,1). Using that ∣Ω∣ = 2π(cosh(1) − 1) and ∣∂Ω∣ = 2πsinh(1) the operator A = Aα
associated with the Dirichlet form Eα then becomes

Aαf = ∆f1Ω + (∆τf −
α

1 − α

sinh(1)

cosh(1) − 1

∂f

∂N
)1∂Ω.

An eigenvector of −Aα for eigenvalue λ ≥ 0 is then a function f ∈ D(Aα) such that the following system
of partial differential equations is fulfilled

⎧⎪⎪
⎨
⎪⎪⎩

∆f = −λf in Ω

∆τf − α
1−α

sinh(1)
cosh(1)−1

∂f
∂N

= −λf on ∂Ω
.

Since f and Aαf are continuous on Ω, this is equivalent to

⎧⎪⎪
⎨
⎪⎪⎩

∆f = −λf in Ω

∆τf − α
1−α

sinh(1)
cosh(1)−1

∂f
∂N

= ∆f on ∂Ω
.(8)

Following the well-known procedure for the Laplacian with Neumann boundary conditions, see e.g. [?][Chapter
2.5], we introduce spherical coordinates about x = 0 by

x = rξ, r = tanh(t/2),

where r ∈ [0,1], t ∈ [0,∞), ξ ∈ S1. Ω is then characterised by restriction of t to [0,1]. In these
coordinates (7) reads

gh = (dt)2
+ sinh2

(t)∣dξ∣2.

We then separate variables, i.e. f(t, ξ) = T (t)G(ξ). Furthermore we denote by ◻ the Laplacian on S1

and by ′ differentiation with respect to t. Using the Laplacian in spherical coordinates, the first equation
of (8) becomes

sinh(t)−1
(sinh(t)T ′(t))′G(ξ) + sinh(t)−2T (t) ◻G(ξ) = −λT (t)G(ξ).
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and in terms of G and T
⎧⎪⎪
⎨
⎪⎪⎩

◻G(ξ) + γG(ξ) = 0

(sinh(t)T ′(t))′ + (λ − γsinh(t)−2)sinh(t)T = 0,

where γ = l2, l ∈ N are the eigenvalues of ◻ on S1.
According to [?][Chapter 12.5] the solution T is given via

T (t) = Pµν (cosh(t)),

where Pµν (⋅) is the associated Legendre function of first kind with µ and ν given via

µ = l, ν = −
1

2
±

√

−λ +
1

4
.

We thus obtain a two parameter family of eigenfunctions fn,l(t, ξ) = P
l
n(cosh(t))Gl(ξ) where Gl is the

eigenfunction for eigenvalue l and n respectively λn is constrained via the boundary condition as follows:
Using that ∆τf = 1

sinh2(1)T ◻G, the second equation of (8) which holds on the boundary, i.e. for t = 1,

becomes

∆(TG)(1, ξ) =
1

sinh2(1)
T (1) ◻G(ξ) −

sinh(1)

cosh(1) − 1

α

1 − α
T ′(1)G(ξ)

⇔T ′′(1) + T ′(1)(
cosh(1)

sinh(1)
+

sinh(1)

cosh(1) − 1

α

1 − α
) = 0

⇔P lν
′′
(cosh(1))sinh2

(1) + P lν
′
(cosh(1))(2cosh(1) +

sinh2(1)

cosh(1) − 1

α

1 − α
) = 0.

We consider the (countably many) zero points of this function as a function in ν and thus obtain a
corresponding countable family of values λl,n. Thus for α ∈ (0,1) λα ∶= minl,n λl,n is the desired spectral
gap and Cα = 1/λα.

Furthermore we need to compute CΩ as well as C∂Ω for Proposition 2.1. Following the same procedure
as above including spherical coordinates and separation of variables we see that eigenfunctions f of the
Laplacian on Ω with Neumann boundary conditions on ∂Ω are again of the form

f(t, ξ) = T (t)G(ξ), with T (t) = Pµν (cosh(t)), µ = 1, ν = −
1

2
±

√

−λ +
1

4
,

where G are eigenfunctions of the Laplacian on S1 for the eigenvalues l2, l ∈ N.
Now the boundary condition amounts to

∂f

∂N
= 0 on ∂Ω ⇔ Pµν

′
(cosh(1)) = 0.

Thus by considering the countably many zero points of this function as a function in ν we again obtain
a corresponding countable family of values λl,n. Again λ1 ∶= minl,n λl,n ≈ 2.9614 is the desired spectral
gap and CΩ = 1/λ1 ≈ 0.3377.
We can furthermore derive C∂Ω from the well-known spectrum of the Laplacian on a unit sphere in
Euclidean space: Define

f ∶ (S1
H , gH)→ (S1

R, g), f(x) ∶=
1

tanh(1/2)
⋅ x,

where S1
H denotes the unit sphere in the hyperbolic plane, and S1

R denotes the unit sphere in the Euclidean
plane. Then for a smooth function h ∶ S1

R → R

∆S1
H
(h ○ f) =

1

sinh2(1)
∆S1

R
(h) ○ f.

Thus h being an eigenfunction of ∆S1
R

for the eigenvalue λ corresponds to h ○ f being an eigenfunction of

∆S1
H

for the eigenvalue λ/sinh2(1):

∆S1
H
(h ○ f) =

1

sinh2(1)
⋅ (∆S1

R
h) ○ f =

1

sinh2(1)
⋅ λ ⋅ h ○ f.
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Since the eigenvalues of ∆S1
R

are known to be λk ∶= k
2, k ∈ N0 (see e.g. [?][Chapter 2.4]), we can derive

that those of ∆S1
H

are λ̃k =
k2

sinh2(1) , k ∈ N0 and thus C∂Ω = sinh2(1).

We now compute K1 and K2 in a fashion adapted to the specific example. The following computation
is similar to the one referenced above in Example 2.1. Using that for f ∈ L1(∂Ω):

∫
∂Ω
f(y)λ∂Ω(dy) = ∫

Ω
f(x/∣x∣)λΩ(dx),

we get

(∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

≤ ∫
Ω
(f(x) − f(x/ ∣x∣)2λΩ(dx)

=
1

λ̃Ω(Ω)
∫
∂Ω
∫

1

0
(f(tanh(t/2)ξ) − f(tanh(1/2)ξ))

2
sinh(t)dtdξ

=
1

λ̃Ω(Ω)
∫
∂Ω
∫

1

0
(∫

1

t

d

ds
f(tanh(s/2)ξ)ds)

2

sinh(t)dtdξ

≤
1

λ̃Ω(Ω)
∫
∂Ω
∫

1

0
(1 − t)∫

1

t
(
d

ds
f(tanh(s/2)ξ))

2

ds sinh(t)dtdξ

=
1

λ̃Ω(Ω)
∫
∂Ω
∫

1

0
∫

s

0
(1 − t)sinh(t)dt(

d

ds
f(tanh(s/2)ξ))

2

dsdξ

=
1

λ̃Ω(Ω)
∫
∂Ω
∫

1

0
(sinh(s) − (s − 1)cosh(s) − 1) (⟨∇f(tanh(s/2)ξ),

d

ds
tanh(s/2)ξ⟩)

2

dsdξ

≤
1

λ̃Ω(Ω)
∫
∂Ω
∫

1

0
(sinh(s) − (s − 1)cosh(s) − 1) ∣∇f(tanh(s/2)ξ)∣2dsdξ

≤K1
1

λ̃Ω(Ω)
∫
∂Ω
∫

1

0
∣∇f(tanh(s/2)ξ)∣2sinh(s)dsdξ

=K1 ∫
Ω
∣∇f(x)∣2λΩ(dx),

where

K1 ∶= max
s∈[0,1]

sinh(s) − (s − 1)cosh(s) − 1

sinh(s)
≤ 0.1782.

Thus K2 = 0.

As explained in Remark 2.1 we may obtain the optimal constant K∂Ω,Ω in Proposition 2.1 as ∣Ω∣
∣∂Ω∣σ

−1,

where σ denotes the first nontrivial Steklov eigenvalue. In the present example the first Steklov eigenvalue
is coth(1) − tanh(1/2), cf. [?] and thus

K∂Ω,Ω =
cosh(1) − 1

sinh(1)
(coth(1) − tanh(1/2))−1

≈ 0.5431.

Inserting this in Proposition 2.5 results in Cα ≤ C∂Ω ≈ 1.3811. Furthermore we insert the same set of
constants in Proposition 2.1.
Using the results from the previous pages instead, we find different constants: We have h1(t) = h2(t) =
cosh(t) − coth(1)sinh(t) from which follows by Lemma 2.1 and Lemma 2.2 that

∀ε > 0 ∃ϕ ∶ ∣∇ϕ∣22 ≤ ε, ∣∆ϕ∣22 ≤
1

2(cosh(1) − 1)
+ ε,

and
∃ρ ∶ ∣∇ρ∣∞ ≤ 1, ∣(∆ρ)−∣∞ ≤ 2.3131.

Inserting this in Proposition 2.2 and Proposition 2.3 we get

K ′
1 =

cosh(1) − 1

2(sinh(1))2
⋅CΩ ≈ 0.0664, K ′

2 = 0, K ′
∂Ω,Ω ≈ 0.8981.

Inserting this in Proposition 2.5 results in Cα ≤ C∂Ω. Furthermore we insert the same set of constants in
Proposition 2.1.
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Figure 2. Exact Poincaré constants (blue), interpolation (yellow) and no interpolation
(green) results using computations specifically adapted to the example, interpolation
(red) and no interpolation (purple) results using computations not specifically adapted
to the example.

The curves for actual Poincaré Constants and respective upper bounds via Proposition 2.1 as well as via
Proposition 2.5 obtained by plugging in the quantities collected above are depicted in Figure 2. Note
that the green and purple curves overlap. Again from the figure we may see that our general results are
only slightly worse than the ones obtained from computations specifically adapted to the example, and
that the interpolation approach results in a significant improvement compared to no interpolation. Our
attempts to transfer the computations made above for the specific example to a more general setting
have not been successful, as they lead to significantly worse results.

Finally instead of Brownian motion with sticky reflecting boundary diffusion we show that the above
results may as well be used to give upper bounds for Brownian motion with sticky reflection from the
boundary (but without boundary diffusion). I.e. under the same assumptions on Ω as above we consider

a diffusion on Ω with Feller generator (D(Â), Â)

D(Â) = {f ∈ C(Ω) ∣ Âf ∈ C(Ω)}

Âf = ∆f1Ω − γ
∂f

∂N
1∂Ω,

where ∂f
∂N

is the outer normal derivative and γ > 0, which corresponds to inward sticky reflection at ∂Ω.
A construction was given again in [?] using Dirichlet forms. We choose α ∈ [0,1], such that

α

1 − α

∣∂Ω∣

∣Ω∣
= γ.

and set
λα ∶= αλΩ + (1 − α)λ∂Ω.

We find that −Â is λα-symmetric with spectral gap σ̂α characterised by the Rayleigh quotient resp.
Poincaré constant Ĉα

σ̂α = inf
f∈C1(Ω)

V arλα(f)>0

Êα(f)

V arλα(f)
, Ĉα ∶= σ̂

−1
α = sup

f∈C1(Ω)
Êα(f)>0

V arλα(f)

Êα(f)

where

V arλα(f) = ∫
Ω
f2dλα − (∫

Ω
fdλα)

2

, Êα(f) = α∫
Ω
∣∇f ∣2dλΩ, f ∈ C1

(Ω)

By CΩ and C∂Ω we still denote the usual (Neumann) Poincaré constants of Ω and ∂Ω respectively, which
we assume to be known.
The eigenvalue problem corresponding to the Poincaré constant may be stated as

⎧⎪⎪
⎨
⎪⎪⎩

∆f = −λf in Ω,

−γ ∂f
∂N

= −λf on ∂Ω.

This type of eigenvalue problems with eigenvalue featured in the boundary condition has been of separate
interest, see e.g. [?], [?], [?], [?], [?]. For Brownian motion with sticky reflection spectral asymptotics
have been examined e.g. in [?], however we are not aware of results on the spectral gap.

Proposition 2.6. Assume there exist constants K∂Ω,Ω,K1 such that for any f ∈ C1(Ω)

V arλ∂Ω
f ≤K∂Ω,Ω ∫

Ω
∣∇f ∣2dλΩ

and

(∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

≤K1 ∫
Ω
∣∇f ∣2dλΩ,
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Figure 3. Exact Poincaré constants (blue), estimates using computations specifically
adapted to the example (yellow), estimates using computations not specifically adapted
to the example (green).

then it holds for any α ∈ (0,1)

Ĉα ≤ CΩ +
(1 − α)

α
K∂Ω,Ω + (1 − α)K1.

Proof. Let f ∈ C1(Ω)

V arλα(f) = αV arλΩ
(f) + (1 − α)V arλ∂Ω

(f) + α(1 − α) (∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

≤ αCΩ ∫
Ω
∣∇f ∣2dλΩ + (1 − α)K∂Ω,Ω ∫

Ω
∣∇f ∣2dλΩ + α(1 − α)K1 ∫

Ω
∣∇f ∣2dλΩ

= (CΩ +
(1 − α)

α
K∂Ω,Ω + (1 − α)K1)α∫

Ω
∣∇f ∣2dλΩ.

�

For f ∈ C1(Ω) with V arλ∂Ω
(f) > 0 the term V arλα(f) stays positive as α tends to zero while Êα(f)

vanishes. Thus Ĉα blows up as α tends to zero and accordingly so does the bound on Ĉα proven in
Proposition 2.6.
Of course the interpolation approach from above is not of any use anymore in this setting.
As we have previously shown that equation (2) can be fulfilled with K2 = 0, we may now insert K1 and
K∂Ω,Ω as computed above.
Thus in sum the results obtained above for Brownian motion with sticky reflecting boundary diffusion
may also be used for the case without boundary diffusion precisely for the reason that we were able to
show that equation (2) is fulfilled with K2 = 0
If we make the more strict assumption of respective positive lower bounds kR on Ricci curvature on Ω
and γ on second fundamental form on ∂Ω as in [?][section 3.2] we may as well insert the set of constants

K1 =
d−1
dkR

,K2 = 0,K∂Ω,Ω =
∣Ω∣
∣∂Ω∣

2
γ

obtained there. Note that this is possible as we again have K2 = 0.

We again consider as examples a unit ball in R2 and a unit metric ball in the hyperbolic plane.

Example 2.3. As in Example 2.1 we consider a unit ball in R2. In order to compute the exact values
for Ĉα, α ∈ (0,1) we again proceed as described in [?][section 3.1] and only need to adapt the boundary
condition. I.e. an eigenfunction f fulfills

⎧⎪⎪
⎨
⎪⎪⎩

∆f = −λf in Ω

− 2α
1−α

∂f
∂N

= ∆f on ∂Ω

and by passing to polar coordinates and seperating variables we obtain a family λ̂m,l,m, l ∈ N0 charac-
terised by

√
λJ ′′m(

√
λ) + J ′m(

√
λ)

1 + α

1 − α
− Jm(

√
λ)
m

λ
= 0,

where Jm,m ∈ N0 are the Bessel functions of the first kind. We then get λ̂α = minm,l∈N0 λ̂m,l and Ĉα = 1

λ̂α
.

In order to calculate the explicit values for the upper bound stated in Proposition 2.6 we need CΩ,K∂Ω,Ω

and K1. All of these have been computed in Example 2.1, in particular K∂Ω,Ω and K1 have been computed
once in a manner adapted to the specific example and once from the previously stated general results
(the latter marked by ′).
The curves for actual Poincaré Constants and respective upper bounds via Proposition 2.6 obtained by
plugging in the quantities collected above are depicted in Figure 3. As mentioned before Ĉα blows up as
α tends to zero. We therefore only consider α ≥ 0.2 for the plot.

Figure 3 suggests that Proposition 2.6 offers a precise upper bound for Ĉα that is (in particular for
small α) highly depended on how close the values of K1 and K∂Ω,Ω are to the optimal constants in
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Figure 4. Exact Poincaré constants (blue), estimates using computations specifically
adapted to the example (yellow) and estimates using computations not specifically
adapted to the example (green).

equation (1) and equation (2). More precisely for small values of α it is mainly the precision of the value
for K∂Ω,Ω that is relevant. Note that the value K ′

∂Ω,Ω obtained from our general results is worse than
K∂Ω,Ω obtained from computations adapted to the specific example, while the opposite is true for the
values of K ′

1 and K1.

Example 2.4. As in Example 2.2 we consider a unit ball in the hyperbolic plane and use the notation
introduced above. To calculate the exact values of the Poincaré constants we proceed as explained in
Example 2.2 and only need to adapt the boundary condition (see the second equation in (8)) to

−α

1 − α

sinh(1)

cosh(1) − 1

∂f

∂N
= ∆f on ∂Ω.

Inserting f(t, ξ) = T (t)G(ξ) and then using T (t) = Pµν (cosh(t)) as before, this results in

−α

1 − α

sinh(1)

cosh(1) − 1
T ′(1)G(ξ) = (

cosh(1)

sinh(1)
T ′(1) + T ′′(1))G(ξ) +

T (1)

sinh2(1)
◻G(ξ)

⇔T ′(1)(
α

1 − α

sinh(1)

cosh(1) − 1
+
cosh(1)

sinh(1)
) + T ′′(1) − γ

T (1)

sinh2(1)
= 0

⇔Pµν
′′
(cosh(1))sinh2

(1) + Pµν
′
(cosh(1))(

α

1 − α

sinh2(1)

cosh(1) − 1
+ 2cosh(1)) − γ

Pµν (cosh(1))

sinh2(1)
= 0.

By considering the (countably many) zero points of this function as a function in ν we obtain a corre-

sponding countable family of values λ̂l,n. For α ∈ (0,1) λ̂α ∶= minl,n λ̂l,n is the desired spectral gap and

Ĉα = 1/λ̂α.
In order to calculate the explicit values for the upper bound stated in Proposition 2.6 we may again
use the values for CΩ,K∂Ω,Ω and K1 as computed in Example 2.2 in a manner adapted to the specific
example or from the previously stated general results (the latter marked by ′).
The curves for actual Poincaré Constants and respective upper bounds via Proposition 2.6 obtained by
plugging in these quantities are depicted in Figure 4. Again we only consider α ≥ 0.2 for the plot, as Ĉα
blows up as α tends to zero.

From Figure 4 we may again see that the precision of the upper bound for Ĉα offered in Proposition
2.6 depends particularly for small α highly on how close the values of K1 and K∂Ω,Ω are to the optimal
constants in equation (1) and equation (2). Note that in this example again the value for K ′

∂Ω,Ω obtained
from our general results is worse than K∂Ω,Ω obtained from computations adapted to the specific example,
while the opposite is true for the values of K ′

1 and K1.

3. Boundary-Interior Inequalities

In the following we present some Boundary-Interior Inequalities that can be proved in a similar fashion
as Proposition 2.2. They may be seen as alternatives for Proposition 2.2 but might also be of independent
interest.
In the proof of Proposition 2.3 we have seen that:

Proposition 3.1. For any ρ ∈ C1(Ω) such that ∂ρ
∂N

∣∂Ω = −1 and ∇ρ is Lipschitz continuous on Ω it holds

∫
∂Ω
f2dλ∂Ω ≤

∣Ω∣

∣∂Ω∣
{2∣∇ρ∣∞ (∫

Ω
f2dλΩ ⋅ ∫

Ω
∣∇f ∣2dλΩ)

1/2
+ ∣(∆ρ)−∣∞ ∫

Ω
f2dλΩ}

≤ {2∣∇ρ∣∞C
1/2
Ω + ∣(∆ρ)−∣∞CΩ}

∣Ω∣

∣∂Ω∣
∫

Ω
∣∇f ∣2dλΩ

∀f ∈ C1(Ω) with ∫Ω fdλΩ = 0.
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The statement in Proposition 3.1 is stronger than needed for equation (2) in Proposition 2.1 because
we bound from above the integral of the squared function as opposed to the square of the integral.
Nevertheless the proof of the next corollary follows directly as we may assume for equation (2) without
loss of generality that ∫Ω fdλΩ = 0 for any f ∈ C1(Ω). We thus get an upper bound for K1 in equation (2)
that is alternative to Proposition 2.2.

Corollary 3.1. For any ρ ∈ C1(Ω) such that ∂ρ
∂N

∣∂Ω = −1 and ∇ρ is Lipschitz continuous on Ω equation (2)
in Proposition 2.1 is fulfilled with K2 = 0 and

K1 = {2∣∇ρ∣∞C
1/2
Ω + ∣(∆ρ)−∣∞CΩ}

∣Ω∣

∣∂Ω∣
.

Additionally we think that this computation is of independent interest for the following reason:

Remark 3.1. We may calculate as in the proof of Proposition 3.1 to obtain for f ∈ C1(Ω) (but not
necessarily centered on Ω):

∫
∂Ω
f2dλ∂Ω ≤

∣Ω∣

∣∂Ω∣
{2∣∇ρ∣∞ (∫

Ω
f2dλΩ ⋅ ∫

Ω
∣∇f ∣2dλΩ)

1/2
+ ∣(∆ρ)−∣∞ ∫

Ω
f2dλΩ}

≤
∣Ω∣

∣∂Ω∣
{∣∇ρ∣∞ ∫

Ω
∣∇f ∣2dλΩ + (∣∇ρ∣∞ + ∣(∆ρ)−∣∞)∫

Ω
f2dλΩ} .

From this it follows that for K3 ∶=
∣Ω∣
∣∂Ω∣ (∣∇ρ∣∞ + ∣(∆ρ)−∣∞)

∣f ∣2L2(∂Ω,λ∂Ω) ≤K3∣f ∣
2
W 1,2(Ω,λΩ)⇔ ∣f ∣L2(∂Ω,λ∂Ω) ≤

√
K3∣f ∣W 1,2(Ω,λΩ).

As W 1,2(Ω, λΩ) is the completion of smooth functions whose derivatives up to degree 1 are in L2, the
inequality also holds for all functions in W 1,2(Ω). Thus via stating a specific constant K3, as can be
obtained from Lemma 2.2, we also give an upper bound for the norm of the Trace operator ∣∂Ω ∶W 1,2(Ω)→

L2(∂Ω) that is explicit in terms of upper bounds on sectional curvature and second fundamental form
on the boundary. An optimal upper bound in terms of the geometry of Ω seems to be unknown in this
form as of yet.

Proposition 3.2. Let k2 ∈ R such that sect ≤ k2 and γ2 ∈ R such that Π ≤ γ2id. Then the norm of the
Trace operator ∣∂Ω ∶W 1,2(Ω)→ L2(∂Ω) is bounded from above by

⎛

⎝

∣Ω∣

∣∂Ω∣

⎛

⎝
1 + inf

t1∈(0,h−1
2 (0))

sup
t∈(0,t1)

((d − 1)
h′2
h2

(t) (1 −
t

t1
) −

1

t1
)

−
⎞

⎠

⎞

⎠

1/2

.

It is known that on a smooth, compact d-dimensional Riemannian manifold (Ω, g) for q ∈ [1, d) and
1
p
= 1
q
− 1
d

(and thus for all p ∈ [1, qd
d−q ]) there is a constant Cp,q such that for f ∈H1,q(Ω):

(∫
Ω
∣f − f̄ ∣pdλΩ)

1/p
≤ Cp,q (∫

Ω
∣∇f ∣qdλΩ)

1/q
,

where f̄ = ∫Ω fdλΩ.
In terms of these Sobolev-Poincaré constants we may also show a generalisation of Proposition 3.1:

Proposition 3.3. Let (Ω, g) be a smooth, compact Riemannian manifold of dimension d ≥ 3, with a

connected boundary. For any ρ ∈ C1(Ω) such that ∂ρ
∂N

∣∂Ω = −1 and ∇ρ is Lipschitz continuous on Ω it

holds ∀f ∈ C1(Ω) with ∫Ω fdλΩ = 0

(∫
∂Ω

∣f ∣pdλ∂Ω)
2/p

≤
⎛

⎝
(

∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p)

2/p

C
2(p−1)/p
2(p−1),2 + (

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞)

2/p

C2
p,2

⎞

⎠
∫

Ω
∣∇f ∣2dλΩ, p ∈ [

3

2
,
2d − 2

d − 2
].
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Proof. We may calculate as in the previous proofs to obtain

(∫
∂Ω

∣f ∣pdλ∂Ω)
2/p

≤(
∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p∫

Ω
∣f ∣p−1

∣∇f ∣dλΩ +
∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞ ∫

Ω
∣f ∣pdλΩ)

2/p

≤(
∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p(∫

Ω
∣f ∣2(p−1)dλΩ)

1/2
(∫

Ω
∣∇f ∣2dλΩ)

1/2
+

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞ ∫

Ω
∣f ∣pdλΩ)

2/p

≤(
∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p(C2(p−1),2 (∫

Ω
∣∇f ∣2dλΩ)

1/2
)

(p−1)

(∫
Ω
∣∇f ∣2dλΩ)

1/2

+
∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞ (Cp,2 (∫

Ω
∣∇f ∣2dλΩ)

1/2
)

p

)

2/p

≤
⎛

⎝

∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p(C2(p−1),2 (∫

Ω
∣∇f ∣2dλΩ)

1/2
)

(p−1)

(∫
Ω
∣∇f ∣2dλΩ)

1/2⎞

⎠

2/p

+ (
∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞)

2/p

C2
p,2 ∫

Ω
∣∇f ∣2dλΩ

=(
∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p)

2/p

(C2
2(p−1),2 ∫

Ω
∣∇f ∣2dλΩ)

(p−1)/p
(∫

Ω
∣∇f ∣2dλΩ)

1/p

+ (
∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞)

2/p

C2
p,2 ∫

Ω
∣∇f ∣2dλΩ

=(
∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p)

2/p

C
2(p−1)/p
2(p−1),2 ∫

Ω
∣∇f ∣2dλΩ + (

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞)

2/p

C2
p,2 ∫

Ω
∣∇f ∣2dλΩ

=
⎛

⎝
(

∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p)

2/p

C
2(p−1)/p
2(p−1),2 + (

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞)

2/p

C2
p,2

⎞

⎠
∫

Ω
∣∇f ∣2dλΩ.

Here we have used the Sobolev-Poincaré inequalities associated with C2(p−1),2 and Cp,2. Note therefor

that for p ∈ [ 3
2
, 2d−2
d−2

] it holds p,2(p − 1) ∈ [1, 2d
d−2

]. �

Again explicit constants may be obtained from Lemma 2.2 in terms of upper bounds on sectional
curvature and second fundamental form on the boundary.

4. Logarithmic Sobolev Inequality

Using the notation from above we say that a (tight) logarithmic Sobolev inequality is fulfilled if

∃Lα ≥ 0 s.t. Entλα(f
2
) ≤ Lα ⋅ Eα(f) ∀f ∈ C1

(Ω).

where

Entλα(f) = ∫
Ω
f2log(f2

)dλα − (∫
Ω
f2dλα) log (∫

Ω
f2dλα)

Eα(f) = α∫
Ω
∣∇f ∣2dλΩ + (1 − α)∫

∂Ω
∣∇
τf ∣2dλ∂Ω, f ∈ C1

(Ω)

and ∇τ denotes the tangential derivative operator on ∂Ω.
In the following by Lα we will denote the optimal such constant. By LΩ respectively L∂Ω we will denote
the optimal logarithmic Sobolev constant associated to the Laplace operator on Ω with Neumann bound-
ary conditions and the logarithmic Sobolev constant associated to the Laplace-Beltrami operator on ∂Ω.
We assume that LΩ and L∂Ω (or respective upper bounds for them) are known. We aim at bounding Lα
for α ∈ (0,1) from above.
We consider here the entropy with respect to λα which is a mixture or more specifically a convex combi-
nation of the two measures λΩ and λ∂Ω. The entropy with respect to mixtures of two measures such as
λα has been considered previously e.g. in [?], [?], [?]. We first show an analogue of [?][Proposition 2.1]
for the entropy with respect to λα:
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Proposition 4.1. Assume there exist constants K∂Ω,Ω, L∂Ω,Ω,K1,K2 such that ∀f ∈ C1(Ω):

V arλ∂Ω
(f) ≤K∂Ω,Ω ∫

Ω
∣∇f ∣2dλΩ(9)

Entλ∂Ω
(f2

) ≤ L∂Ω,Ω ∫
Ω
∣∇f ∣2dλΩ(10)

(∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

≤K1 ∫
Ω
∣∇f ∣2dλΩ +K2 ∫

∂Ω
∣∇
τf ∣2dλ∂Ω.(11)

Then it holds for any α ∈ (0,1)

Lα ≤ max{a, d − e − θ,min [a + c + b(
d − a − c − θ

e + b
) , a + c(

d − a

c + θ
) , a + b(

d − a

e + b
) , a + b + c(

d − a − e − b

c + θ
)]} ,

where

a = LΩ +
(1 − α)(log(α) − log(1 − α))

2α − 1
(CΩ +K1), b =

1 − α

α
L∂Ω,Ω,

c =
(1 − α)(log(α) − log(1 − α))

2α − 1
K∂Ω,Ω, d = L∂Ω +

α(log(α) − log(1 − α))

2α − 1
(C∂Ω +K2)

e = L∂Ω, θ =
α(log(α) − log(1 − α))

2α − 1
C∂Ω.

Proof. Applying (9) and (10) we can estimate for any f ∈ C1(Ω):

V arλ∂Ω
(f) ≤ tK∂Ω,Ω ∫

Ω
∣∇f ∣2dλΩ + (1 − t)C∂Ω ∫

∂Ω
∣∇
τf ∣2dλ∂Ω

Entλ∂Ω
(f2

) ≤ sL∂Ω,Ω ∫
Ω
∣∇f ∣2dλΩ + (1 − s)L∂Ω ∫

∂Ω
∣∇
τf ∣2dλ∂Ω

for any s, t ∈ [0,1]. We apply this in the following after first using a decomposition of the entropy with
respect to the mixture of two measures as well as an optimal logarithmic Sobolev inequality for Bernoulli
measures as described in [?][section 4]:

Entλα(f
2
) ≤αEntλΩ

(f2
) + (1 − α)Entλ∂Ω

(f2
)

+
α(1 − α)(log(α) − log(1 − α))

2α − 1
(V arλΩ

(f) + V arλ∂Ω
(f) + (EλΩ

(f) −Eλ∂Ω
(f))2)

≤∫
Ω
∣∇f ∣2dλΩ (αLΩ + (1 − α)sL∂Ω,Ω +

α(1 − α)(log(α) − log(1 − α))

2α − 1
(CΩ + tK∂Ω,Ω +K1))

+ ∫
∂Ω

∣∇
τf ∣2dλ∂Ω ((1 − α)(1 − s)L∂Ω +

α(1 − α)(log(α) − log(1 − α))

2α − 1
((1 − t)C∂Ω +K2)) .

And thus

Lα ≤ inf
s,t∈[0,1]

max{LΩ +
(1 − α)

α
sL∂Ω,Ω +

(1 − α)(log(α) − log(1 − α))

2α − 1
(CΩ + tK∂Ω,Ω +K1) ,

(1 − s)L∂Ω +
α(log(α) − log(1 − α))

2α − 1
((1 − t)C∂Ω +K2)}

= inf
s,t∈[0,1]

max{LΩ +
(1 − α)(log(α) − log(1 − α))

2α − 1
(CΩ +K1) + s ⋅

(1 − α)

α
L∂Ω,Ω+

t ⋅
(1 − α)(log(α) − log(1 − α))

2α − 1
⋅K∂Ω,Ω,

L∂Ω +
α(log(α) − log(1 − α))

2α − 1
(C∂Ω +K2) − sL∂Ω − t ⋅

α(log(α) − log(1 − α))

2α − 1
⋅C∂Ω}.
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For any a, b, c, d, e, f ∈ R≥0 it holds

inf
s,t∈[0,1]

max(a + sb + tc, d − se − tθ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, if a > d

d − e − θ, if d − e − θ > a + b + c

a + c + b ⋅ (d−a−c−θ
e+b ) , if a ≤ d, d − e − θ ≤ a + b + c, b − c ⋅ e+b

c+θ ≥ 0, d−a−c−θ
e+b ≥ 0

a + c ⋅ (d−a
c+θ ) , if a ≤ d, d − e − θ ≤ a + b + c, b − c ⋅ e+b

c+θ ≥ 0, d−a−c−θ
e+b < 0

a + b ⋅ (d−a
e+b ) , if a ≤ d, d − e − θ ≤ a + b + c, b − c ⋅ e+b

c+θ < 0, d−a
e+b ≤ 1

a + b + c ⋅ (d−a−e−b
c+θ ) , if a ≤ d, d − e − θ ≤ a + b + c, b − c ⋅ e+b

c+θ < 0, d−a
e+b > 1

= max{a, d − e − θ,min [a + c + b(
d − a − c − θ

e + b
) , a + c(

d − a

c + θ
) , a + b(

d − a

e + b
) , a + b + c(

d − a − e − b

c + θ
)]} .

�

In spite of its complicated structure this result allows to estimate variance as well as entropy on the
boundary ∂Ω not only via the Poincaré resp. logarithmic Sobolev constants for ∂Ω but alternatively via
K∂Ω,Ω and L∂Ω,Ω as needed. This interpolation approach is a direct generalisation of [?][Proposition 2.1].
For comparison we state the more simple result one can obtain based on [?][section 4] without using the
interpolation approach:

Proposition 4.2. Assume there exist constants K1,K2 such that ∀f ∈ C1(Ω):

(∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

≤K1 ∫
Ω
∣∇f ∣2dλΩ +K2 ∫

∂Ω
∣∇
τf ∣2dλ∂Ω.

Then it holds for any α ∈ (0,1)

Lα ≤ max{LΩ +
(1 − α)(log(α) − log(1 − α))

2α − 1
(CΩ +K1), L∂Ω +

α(log(α) − log(1 − α))

2α − 1
(C∂Ω +K2)} .

Proof. As in the proof of Proposition 4.1 we use a decomposition of the entropy with respect to the
mixture of two measures as well as an optimal logarithmic Sobolev inequality for Bernoulli measures as
described in [?][section 4]:

Entλα(f
2
) ≤αEntλΩ

(f2
) + (1 − α)Entλ∂Ω

(f2
)

+
α(1 − α)(log(α) − log(1 − α))

2α − 1
(V arλΩ

(f) + V arλ∂Ω
(f) + (EλΩ

(f) −Eλ∂Ω
(f))2)

≤αLΩ ∫
Ω
∣∇f ∣2dλΩ + (1 − α)L∂Ω ∫

∂Ω
∣∇
τf ∣2dλ∂Ω

+
α(1 − α)(log(α) − log(1 − α))

2α − 1
((CΩ +K1)∫

Ω
∣∇f ∣2dλΩ + (C∂Ω +K2)∫

∂Ω
∣∇
τf ∣2dλ∂Ω)

=(LΩ +
(1 − α)(log(α) − log(1 − α))

2α − 1
(CΩ +K1))α∫

Ω
∣∇f ∣2dλΩ

+ (L∂Ω +
α(log(α) − log(1 − α))

2α − 1
(C∂Ω +K2)) (1 − α)∫

∂Ω
∣∇
τf ∣2dλ∂Ω

≤max(LΩ +
(1 − α)(log(α) − log(1 − α))

2α − 1
(CΩ +K1),

L∂Ω +
α(log(α) − log(1 − α))

2α − 1
(C∂Ω +K2)) ⋅ Eα(f).

�

It has been discussed in [?] that the logarithmic Sobolev constant of a mixture of two measures may
blow up as the mixture proportion goes to 0 or 1. Accordingly so may our bounds for the logarithmic
Sobolev constant as α approaches 0 or 1. More specifically the upper bound in Proposition 4.2 always
blows up as α approaches 0 or 1. The same is true for the bound in Proposition 4.1 as α tends to 0 but
not necessarily as α tends to 1. On the contrary the Poincaré constant as well as the upper bound for it
in Proposition 2.1 does not blow up as α tends to 0 or 1.
We consider again a ball in the Euclidean plane as an example:
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Figure 5. Lower bound via exact Poincaré constants (blue), and upper bound via
interpolation (yellow) and no interpolation (green) for the Logarithmic Sobolev Constant

Example 4.1. As in Example 2.1 we consider Ω = B1, the unit ball in R2. We evaluate the upper bounds
for Lα, α ∈ (0,1) obtained via Proposition 4.2 and Proposition 4.1. Instead of calculating the exact value
for Lα for comparison, we recall that a logarithmic Sobolev inequality with constant C implies a Poincaré
inequality with constant C/2, cf. [?][Proposition 5.1.3]. Thus a lower bound for the optimal logarithmic
Sobolev constants is given via

Lα ≥ 2 ⋅Cα,∀α ∈ (0,1),

with Cα as computed in Example 2.1. Furthermore we use the following quantities collected in Example
2.1:

CΩ =
1

3.39
,C∂Ω = 1,K1 =

CΩ

4
,K2 = 0,K∂Ω,Ω =

1

2
.

Added to that we need values for LΩ, L∂Ω and L∂Ω,Ω. It is known that L∂Ω = 1, cf. [?]. Furthermore
from [?] we obtain L∂Ω,Ω = 1 and from [?] we obtain LΩ ≤ 2.9305.
We insert these quantities into Proposition 4.2 and Proposition 4.1 and depict the results in Figure 5.
Note that the yellow and green curves partly overlap.

Again the figure shows that the interpolation results clearly differ from the no interpolation results and
give significantly better bounds than the approach without interpolation. In particular the interpolation
approach gives an upper bound that does not blow up as α tends to 1.

To obtain explicit bounds on Lα in the general setting we can use the results from section 2 for
equation (9) and equation (11) and it remains to find L∂Ω,Ω such that equation (10) is fulfilled.
As a preliminary result we cite the following lemma, cf. [?].

Lemma 4.1. [Rothaus’ Lemma] Let f ∶ ∂Ω→ R be measurable and such that ∫∂Ω f
2log(1+f2)dλ∂Ω <∞.

For every a ∈ R
Entλ∂Ω

((f + a)2) ≤ Entλ∂Ω
(f2) + 2∫

∂Ω
f2dλ∂Ω.

Lemma 4.2. If f ∈ C1(Ω) fulfills ∫Ω fdλΩ = 0 and if there are constants C̃p,2 such that

(12) (∫
∂Ω

∣f ∣pdλ∂Ω)
2/p

≤ C̃p,2 ∫
Ω
∣∇f ∣2dλΩ,∀p ∈ [2,

2d − 2

d − 2
] ,

then it holds

Entλ∂Ω
(f2) ≤ inf

p∈[2, 2d−2
d−2

]

p

p − 2

C̃p,2

e
∫

Ω
∣∇f ∣2dλΩ.

The proof of this Lemma is adapted from [?][Proposition 6.2.3], see also [?][Proposition 5.1.8] for
details.

Proof. Without loss of generality we may assume ∫∂Ω f
2dλ∂Ω = 1 and define

φ ∶ (0,1]→ R, φ(r) ∶= log ((∫
∂Ω

∣f ∣1/rdλ∂Ω)
r

) .

φ is convex and φ′ ( 1
2
) = −Entλ∂Ω

(f2). Now for p ∈ [2, 2d−2
d−2

] via the convexity of φ

d(φ(
1

2
) − φ(

1

p
)) = d∫

1/2

1/p
φ′(s)ds ≤ dφ′ (

1

2
)(

1

2
−

1

p
)

⇔ −Entλ∂Ω
(f2

) ≥
2p

p − 2
(φ(

1

2
) − φ(

1

p
))

⇔Entλ∂Ω
(f2

) ≤
p

p − 2
log ((∫

∂Ω
∣f ∣pdλ∂Ω)

2/p
) .

Inserting equation (12) we obtain

Entλ∂Ω
(f2

) ≤
p

p − 2
log (C̃p,2 ∫

Ω
∣∇f ∣2dλΩ) .
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We define φ̃ ∶ (0,∞)→ R, φ̃(r) ∶= p
p−2

log(C̃p,2r). φ̃ is concave and we may thus compute

Entλ∂Ω
(f2

) ≤ φ̃(∫
Ω
∣∇f ∣2dλΩ) ≤ φ̃(r) + φ̃′(r) (∫

Ω
∣∇f ∣2dλΩ − r) = φ̃′(r)∫

Ω
∣∇f ∣2dλΩ + (φ̃(r) − rφ̃′(r)) .

Choosing r = e
C̃p,2

the last term vanishes and we obtain

Entλ∂Ω
(f2

) ≤ φ̃′ (
e

C̃p,2
)∫

Ω
∣∇f ∣2dλΩ =

p

p − 2

C̃p,2

e
∫

Ω
∣∇f ∣2dλΩ.

�

Proposition 4.3. Assume that d ≥ 3. For any ρ ∈ C1(Ω) such that ∂ρ
∂N

∣∂Ω = −1 and ∇ρ is Lipschitz
continuous on Ω equation (10) in Proposition 4.1 is fulfilled with

L∂Ω,Ω = inf
p∈[2, 2d−2

d−2
]

p

p − 2

1

e

⎛

⎝
(

∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p)

2/p

C
2(p−1)/p
2(p−1),2 + (

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞)

2/p

C2
p,2

⎞

⎠

+ {2∣∇ρ∣∞C
1/2
Ω + ∣(∆ρ)−∣∞CΩ}

∣Ω∣

∣∂Ω∣
,

where (⋅)− denotes the negative part of a function.

Proof. Let f ∈ C1(Ω) then for a ∶= ∫Ω fdλΩ we define f̃ ∶= f − a and by Lemma 4.1 it holds

Entλ∂Ω
(f2

) = Entλ∂Ω
((f̃ + a)2

) ≤ Entλ∂Ω
(f̃2

) + 2∫
∂Ω
f̃2dλ∂Ω.

As f̃ is centered on Ω the assumptions of Lemma 4.2 are fulfilled due to Proposition 3.3 and we obtain

Entλ∂Ω
(f̃2

) ≤ inf
p∈[2, 2d−2

d−2
]

p

p − 2

1

e

⎛

⎝
(

∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p)

2/p

C
2(p−1)/p
2(p−1),2 + (

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞)

2/p

C2
p,2

⎞

⎠
∫

Ω
∣∇f̃ ∣2dλΩ.

Furthermore by Proposition 3.1

∫
∂Ω
f̃2dλ∂Ω ≤ {2∣∇ρ∣∞C

1/2
Ω + ∣(∆ρ)−∣∞CΩ}

∣Ω∣

∣∂Ω∣
∫

Ω
∣∇f̃ ∣2dλΩ.

Thus we have

Entλ∂Ω
(f2

) ≤
⎛

⎝
inf

p∈[2, 2d−2
d−2

]

p

p − 2

1

e

⎛

⎝
(

∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p)

2/p

C
2(p−1)/p
2(p−1),2 + (

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞)

2/p

C2
p,2

⎞

⎠

+{2∣∇ρ∣∞C
1/2
Ω + ∣(∆ρ)−∣∞CΩ}

∣Ω∣

∣∂Ω∣

⎞

⎠
∫

Ω
∣∇f̃ ∣2dλΩ

=
⎛

⎝
inf

p∈[2, 2d−2
d−2

]

p

p − 2

1

e

⎛

⎝
(

∣Ω∣

∣∂Ω∣
∣∇ρ∣∞p)

2/p

C
2(p−1)/p
2(p−1),2 + (

∣Ω∣

∣∂Ω∣
∣(∆ρ)−∣∞)

2/p

C2
p,2

⎞

⎠

+{2∣∇ρ∣∞C
1/2
Ω + ∣(∆ρ)−∣∞CΩ}

∣Ω∣

∣∂Ω∣

⎞

⎠
∫

Ω
∣∇f ∣2dλΩ.

�

Combining this with Lemma 2.2 again results in an explicit upper bound for L∂Ω,Ω.
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Proposition 4.4. Assume that d ≥ 3. Let k2 ∈ R such that sect ≤ k2 and γ2 ∈ R such that Π ≤ γ2id. Then
equation (10) in Proposition 4.1 is fulfilled with

L∂Ω,Ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

infp∈[2, 2d−2
d−2

]
p
p−2

1
e
[(

∣Ω∣
∣∂Ω∣p)

2/p
C

2(p−1)/p
2(p−1),2

+(
∣Ω∣
∣∂Ω∣ inft1∈(0,h−1

2 (0)) supt∈(0,t1) ((d − 1)
h′2
h2

(t) (1 − t
t1
) − 1

t1
)
−
)

2/p
C2
p,2]

+{2C
1/2
Ω + inft1∈(0,h−1

2 (0)) supt∈(0,t1) ((d − 1)
h′2
h2

(t) (1 − t
t1
) − 1

t1
)
−
CΩ}

∣Ω∣
∣∂Ω∣ , if k2 ≥ −γ

2
2

infp∈[2, 2d−2
d−2

]
p
p−2

1
e
[(

∣Ω∣
∣∂Ω∣p)

2/p
C

2(p−1)/p
2(p−1),2 + (

∣Ω∣
∣∂Ω∣ max(γ2(d − 1),0))

2/p
C2
p,2]

+{2C
1/2
Ω +max(γ2(d − 1),0)CΩ}

∣Ω∣
∣∂Ω∣ , if k2 < −γ

2
2 .

As in section 2 instead of Brownian motion with sticky reflecting boundary diffusion the above results
may as well be used to give upper bounds for Brownian motion with sticky reflection from the boundary
(but without boundary diffusion). The Logarithmic Sobolev inequality in this setting is

Entλα ≤ L̂αÊα(f) ∀f ∈ C1
(Ω),

where

Êα(f) = α∫
Ω
∣∇f ∣2dλΩ, f ∈ C1

(Ω).

Proposition 4.5. Assume there exist constants K∂Ω,Ω, L∂Ω,Ω,K1 such that for any f ∈ C1(Ω)

V arλ∂Ω
f ≤K∂Ω,Ω ∫

Ω
∣∇f ∣2dλΩ,

Entλ∂Ω
(f2

) ≤ L∂Ω,Ω ∫
Ω
∣∇f ∣2dλΩ,

(∫
Ω
fdλΩ − ∫

∂Ω
fdλ∂Ω)

2

≤K1 ∫
Ω
∣∇f ∣2dλΩ,

then it holds for any α ∈ (0,1)

L̂α ≤ (LΩ +
(1 − α)

α
L∂Ω,Ω +

(1 − α)(log(α) − log(1 − α))

2α − 1
(CΩ +K∂Ω,Ω +K1)) .

Proof. As above we use a decomposition of the entropy with respect to the mixture of two measures as
well as an optimal logarithmic Sobolev inequality for Bernoulli measures as described in [?][section 4]:

Entλα(f
2
) ≤αEntλΩ

(f2
) + (1 − α)Entλ∂Ω

(f2
)

+
α(1 − α)(log(α) − log(1 − α))

2α − 1
(V arλΩ

(f) + V arλ∂Ω
(f) + (EλΩ

(f) −Eλ∂Ω
(f))2)

≤ (LΩ +
(1 − α)

α
L∂Ω,Ω +

(1 − α)(log(α) − log(1 − α))

2α − 1
(CΩ +K∂Ω,Ω +K1))α∫

Ω
∣∇f ∣2dλΩ.

�

Of course again the interpolation approach from above is not of any use any more in this setting.
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