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ABsTrRACT. By methods of stochastic analysis on Riemannian manifolds, we develop two approaches
to determine an explicit constant ¢(D) for an n-dimensional compact manifold D with boundary such
that

A
- lIlleo < [ Hess dlleo < c(D)A|lle0

holds for any Dirichlet eigenfunction ¢ of —A with eigenvalue A. Our results provide the sharp Hessian

estimate ||Hess ¢l < 4 T Corresponding Hessian estimates for Neumann eigenfunctions are derived
in the second part of the paper.

1. INTRODUCTION

Let D be an n-dimensional compact Riemannian manifold with boundary dD. We write (¢, 1) €
Eig(A) if ¢ is a Dirichlet eigenfunction of —A on D with eigenvalue A > 0, i.e. —A¢ = 1¢. We always
assume eigenfunctions ¢ to be normalized in L*(D) such that ll¢ll;2 = 1. According to [15], there exist
two positive constants c¢{(D) and c,(D) such that

c1(D) VAIplloo < IV@lloo < c2(D) VAlBlloo, (¢, 1) € Eig(A), (1.1)

where we write ||V@||e :=|||VP|||l for simplicity. An analogous statement for Neumann eigenfunc-
tions has been derived by Hu, Shi and Xui [8]. Subsequently, by methods of stochastic analysis
on Riemannian manifolds, Arnaudon, Thalmaier and Wang [2] determined explicit constants c1(D)
and cy(D) in (1.1) for Dirichlet and Neumann eigenfunctions. From this, together with the uniform
estimate of ¢ (see [7, 6, 11]),

n=1
lplloc < cpA3

for some positive constant cp, the optimal uniform bound of the gradient writes as

Vel < A5
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Results of this type have been used to study gradient estimates for unit spectral projection operators
and to give a new proof of Hormander’s multiplier theorem, see [23, 24, 25].

Concerning higher order estimates of eigenfunctions, not much is known. Very recently, Steiner-
berger [16] studied Laplacian eigenfunctions of —A with Dirichlet boundary conditions on bounded
domains Q c R"” with smooth boundary and proved a sharp Hessian estimate for the eigenfunctions
which reads as

+3
| Hess Blloo S A+

where

IHess ¢l := sup{|Hessp(v,v)|(x) : x e R", veR", |v| = 1}.
It is a natural question under which geometric assumptions such estimates extend to compact mani-
folds (with boundary). Following the lines of [2], one may ask the question how for the Hessian to
derive explicit numerical constants C(D) and C»(D) such that

Ci1(D)A|¢llo < [IHess plleo < C2(D)AI@llco, (¢, 4) € Eig(A). (1.2)

Note that for eigenfunctions of the Laplacian, one trivially has
1 A

|Hess¢| > —[Ag| = — g,
n n

and hence there is always the obvious lower bound
[Hess dlloo A
[l n

For this reason, we shall concentrate in the sequel on upper bounds for ||Hess @||o /||¢]|co-

In [2] a derivative formula for Dirichlet eigenfunctions has been given from where an upper bound
for the gradient of the eigenfunction could be derived directly. Let us briefly describe this method.
Assume that X; is a Brownian motion on D\ dD with generator %A, and write X,(x) to indicate the
starting point Xy = x. Then X.(x) is defined up to the first hitting time 7p = inf{z > 0: X;(x) € dD} of
the boundary. For x € 9D we use the convention that X.(x) is defined with lifetime 7 = 0; in this case
the subsequent statements usually hold automatically.

Suppose that Q;: T D — Ty, D is defined by

1
DQ, = —ERicﬁ(Qz)dt, Qo =1id,

where D := //,d//t‘l with //;:= [/os: TxD — Tx,(xD parallel transport along X(x) and Ricﬂ(v)(w) =
Ric(v,w) for v,w € TM. Suppose that (¢, 1) € Eig(A). Then, for ve T, M and any k € Cé([O, o);R),
i.e., k bounded with bounded derivative, the process

k(t) e 2 (Vp(X,), Qi(v)) — eV p(X,) fo (k(5)Qyv,//sdBs), t<Tp

is a martingale. From this, by taking expectation, a formula involving V¢ can be obtained which
allows to derive an upper bound for |V¢| on D by estimating |V¢| on the boundary dD and carefully
choosing the function k. Along this circle of ideas, we aim at establishing a similar formula for the
Hessian of an eigenfunction ¢.

In view of the fact that P;¢p = e /2 ¢ where P, is the semigroup generated by %A, we focus first
on martingales which are appropriate for attaining uniform Hessian estimates of eigenfunctions. Let
us start with some background on Bismut type formulas for the second-order derivatives of heat
semigroups. A second-order differential formula for the heat semigroup P, was first obtained by
Elworthy and Li [5, 12] for a non-compact manifold, however with restrictions on the curvature
of the manifold. An intrinsic formula for Hess P, f has been given by Stroock [17] for a compact
Riemannian manifold, and a localized version of such a formula was obtained in [1, 3] adopting
martingale arguments. For the Hessian of the Feynman-Kac semigroup of an operator A+ V with a
potential function V on manifolds, we refer the reader to see [13, 14, 18].
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For a complete Riemannian manifold M without boundary, an appropriate version of a Bismut-type
Hessian formula gives the following estimate (see [3, Corollary 4.3] and Lemma 2.2, or Corollary 3.2
with o1 = 0 = 0):

K-t 2
[Hess P, flloo < (K1 Vi+ %)eKO' Il 5 €5 1l

where
Koy := sup{—Ric(v,v): yeEM,veT,M, |v|= 1};
Ky :=sup{|R|(y): y € M}; (1.3)
K2 := sup{[(d"R + VRiO) (v, w)|(): y € M, vow € T, M, ] = |l = 1)

and

IRI(y) := supN Z Riei,v,w,e)>(y) : V| < 1,]w] < 1}

ij=1
for an orthonormal base {e;}?_, of TyM.

Thus if f = ¢ and (¢, 1) € Eig(A), then

Kzl 2 e(KO+/I/2)t
| Hess bl < (K1 Vit 7)e%”/”' ¢l + =——— 1l

1
Ko+4/2

||Hess @)oo 2 K>
————<|K + +(1+2Kp)e.
8lleo "VaKe+a T aker )T 0e

To carry over such results to (compact) manifold D with boundary, the influence of the boundary
has to be studied. In this paper, we shall discuss a martingale approach to the Hessian of Dirichlet
eigenfunctions. This is based on the construction of a suitable martingale which builds a relation
between Hess ¢ and d¢ and then to estimate C»(D) in (1.2) by finding explicit constants C, C and
C3 such that

for any ¢ > 0. Letting ¢ = then yields the estimate

[[Hess @lloo < C1lIHessdllop,co + C2lIV Bllon,co + C3lIV ¢lloo (1.4)

where |[Hess ¢llop,c := sup,gp | Hess@l(x) and ||V éllop,co := sup,eyp |V @l(x). The final estimate for
|Hess ¢| is then received by combining the last inequality with estimate (1.1) in [2].

Let us start with the general principle behind the construction of the relevant martingale. Let
keC })([0, );R) and define an operator-valued process Wtk: T\D®TD — Tx,xD as solution to the
following covariant Itd equation

dW{ (v,w) = R(//dBy, Qi(k(1)v) Q(w) - %(d*R + VRic)(Q, (k(1)v), Qs(w)) dt — %Ricﬁ(Wtk (v,w))dt,

with initial condition W(’)‘(v, w) = 0. Here the operator d*R is defined by d*R(vy,v;) := —tr V.R(:,v)v;
and thus satisfies

(d*R(v1,v2),v3) = (Vs RicH) (1), v2) = (V,,RicH)(v3),v1)
for all vi,vy,v3 € TD and x € D. Then the process

M, := e/* Hess p(Q,(k(1)v), Q,(v)) + /2 dgp(WE(v,v))

t
P ap0,) fo (Q,(k(s)v). //5dBy) (1.5)

is a martingale on [0,7p] in the sense that (M;sr,)r=0 is a globally defined martingale where 7p =
inf{r > 0 : X,(x) € dD} denotes the first hitting time of X.(x) of the boundary dD. The martingale
property of (1.5) then allows to establish an inequality of the type (1.4) by equating the expectations
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at time O and at time ¢ A 7p. This approach then requires to estimate the boundary values of |d¢|
and |Hess ¢|, in order to obtain the wanted upper bound for ||Hess ¢||.. To this end, we establish the
required estimates in Lemmas 2.4-2.5 by using the information on the second fundamental form II
and the second derivative of N, where for X,Y € T,0D and x € 9D, the second fundamental form is
defined by

I(X,Y) = —(VxN, Y).
Note that we observe that the N is canonically extended to vector fields on a neighbourhood of the
boundary. Let
cos Vki— %12 sin Vki, k>0,
(1) =t (t) =35 10, k=0, (1.6)
cosh V—kt— JL—TC sinh V—-kt, k<O,

We state now the first main result of this paper.

Theorem 1.1. Let D be a compact Riemannian manifold with boundary D. Assume that |Ric| < Ky,
IR| < K| and |d*R + VRic| < K, on D. Moreover, assume that N is the extended vector field of the
normal vector field to the neighbour area 0,,D := {x : pap(x) < ro} such that psp is smooth, |Sect| < k,

IVN| < o and |[AVN| < B8 on 0y, D for some ry > 0. Then
H 0
% <CuD)A,

where if YA+ Ky > 2A, then

2n—-1)ecA 2e(e”/?+2 3
CiuD) = (n=Dea + ele ) A+ Komax{ . [A+2Ko+ 22 402, 2" 2 (0 + =)
A A ri 1¥)

2 6(cv Vk) 6
i e”’l/z(ﬁ+—(a- \/_)+—2+K0+/1)+K1
7 r s
Kze
+

/l\//l+2Ko+%+o-2

if VA+ Ko <?2A, then

2(n-1 A 3 A A+ K
cupy= 207 DTeA @20y max] 1+ 2Ke+ T 402, 26 (o4 2 (—+ 0)
A r 1) A 4A1
/2 6V Vb | 6
e (,8+ = +r2+K0+/l)+K1 A 1+Ko
+2e (—+—)
A 4AQ

\/A+2Ko+a(% +0)

+ Kye (A+/1+K0)
A+2Ko+o(H+0)\A1 - 4AQ ’

where

>

AT 2
A :2(@A0)+wexp(—]€/\—o—)
T

24
-1 il
ri=roA{ (0); rn=rgA{ (5)
Remark 1.2. It is easy to see that both C,(D) is decreasing in A, and hence C (D) < C,,(D) where
Ay is the first Dirichlet eigenvalue of —A which gives

|| Hess @l

D)A.
e = CuD
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Considering now Hessian estimate for Neumann eigenfunctions, we denote by Eigy(A) the set of
non-trivial eigenpairs (¢, 1) for the Neumann eigenproblem, i.e., ¢ is non-constant, A¢ = —A¢ with
N¢|sp = 0 for the unit inward normal vector field N of dD. Along the previous idea, a big different
is that we do not consider the process before hitting the boundary dD. Thus when constructing the
suitable martingales, the boundary behaviour of the process should be considered at first. Here, we
will use the reflecting Brownian motion as the base process to consider this question. Due to our
very recent work on Bismut-type Hessian formula for Neumann semigroup, we have the following
formula linking Hess P, f and df directly:

Hess P, f (V,V)=E[—df (0i(v)) j(; (Qs(k(s)v), //dBsy+d f(Wf (v, v))],

where O and W* are defined in (3.1) and (3.2) in Section 3. By observing the fact that P,¢ = ¢34 and
estimating Q. and W. carefully under suitable curvature condition, we obtain the following theorem
gives an upper estimate for Hess ¢ of the type (1.2) with an explicit constant C»(D).

Theorem 1.3. Let D be an n-dimensional compact Riemannian manifold with boundary 0D. Assume
that Ric > —Ko, |R| < K and |d*R + VRic| < K> on D, and that —o <11 < o and |V*N = R(N)| < o>
on the boundary 0D. If there exists a positive constant ro such that on 0,,D :={x € D : psp(x) < ro}
the distance function pgp to the boundary 0D is smooth and Sect < k. Then for any non-trivial

(¢.4) € Eigy(A),
|| Hess ¢||e

< Cya(D)a
Il co
where
Ki+2Ky+20T (L 4+20F K> +205(L + 20t
Cuupy=| 14 D 2Rox 20 G200 | BB rRD et
A A\20+4Ko + 4071 (& +207)

gnry

\/2/1 + 4K +401 (= +20°)e37 i+
ri

for ri = ro A€7Y(0). Denoting by A; the first Neumann eigenvalue of —A, then
|| Hess @l
lléllo

The remainder of the paper is organized as follows. In Section 2 we first show for Dirichlet
eigenfunctions

< Cy.a, (D).

lIHess glleo/lI$llo < Ca(D)A (1.7

by verifying that the process (1.5) is a martingale, in combination with boundary estimates for
|Hess¢|. Section 3 deals with Neumann eigenfunctions where we give a proof of Theorem 1.3 by
using Bismut type Hessian formulae for the Neumann semigroup and an estimate of the local time.

2. HESSIAN ESTIMATES OF DIRICHLET EIGENFUNCTIONS

This section is dedicated to the the approach described in the Introduction. In fact, the proof of
Theorem 1.1 is also divided into two steps by first showing Theorem 2.8 with some testing functions,
which will be constructed in Section 4. We start by constructing the fundamental martingale which
will be the basis for our method.

Theorem 2.1. On a compact Riemannian manifold D with boundary 0D, let X.(x) be a Brownian
motion starting from x € D and denote by tp = inf{t > 0: X,(x) € dD} its first hitting time of 0D.
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Define Q, and Wtk as above where k € C })([O, o0);R). Then, for (¢,1) € Eigy(A) and v € T, D, the
process

e''/? Hess ¢(Qi(k(1)v), 0,(v)) + &> dgp(Wy (v,v)
2 a5(0,) fo (0,(k(s)v). // ,dBy) @1

is a martingale on [0,7p].

Proof. Due to the compactness of D it is sufficient to check that (2.1) is a local martingale on [0,7p).
Fixing a time T > 0, for v € T,.D, we let

Ni(v,v) = Hess Pr—(Q:(v), Q:(v)) + (APr_p)(W;(v,v)), t<T A7p,
where

t 1 t
Wi(v,v) = Oy fo Q; 'R(//rdBy, Q-(1)Q,(v) = 5 O, fo 0;' (@R + VRio) (Q,(v), 0,(v)) dr.

Then N,(v,v) is a local martingale, see for instance the proof of [19, Lemma 2.7] with potential V = 0.
Since (¢, A) € Eig(A), we know that Pr_¢(X;) = e *7=0/2 ¢(X,) and thus

/2 Hess ¢(Q,(v), 0;(v)) + e/ 2(dp) (W, (v, v))
is also a local martingale. Furthermore, consider
NE,v) = e? Hess p(Qi(k(1)v), Qu(v)) + (/> dp) (W (v,v)).

According to the definition of W,k(v,v), resp. Wi(v,v), and in view of the fact that N,(v,v) is a local
martingale, it is easy to see that

e''/2 Hess p(Q,(k(H)v), Q,(v)) + (€V/? dp) (W (v,v)) — f e™*/2 Hess ¢p(Q5(k(s)v), Q5(v)) dss
0

is a local martingale as well. From the formula

e dg(Q,(v)) = dp(v) + f e'5/2(Hess ¢)(// dBy, O5(v))
0

it follows that

t !
fo e (Hess ¢)(Q;(k(5)v), Qs(v)) ds — "2 dp(Q,(v)) fo (Qy(k(s)v), /] sdBs) (2.2)

is a local martingale. We conclude that

(&> Hess p)(Q,(k(t)v), Q:(v)) + (€'/* dp) (W} (v,v)) —e!/* dp(Q:(v)) f (Qy(k(s)v), /] sdBs)
0
is a local martingale. O

We shall use the following estimate to proceed with the Hessian formula for ¢.

Lemma 2.2. Assume that Ric > — Ky, |R| < K| and |d*R + VRic| < K, on D for non-negative constants
Ko, Ky and K;. Let k € Cj([0,00);R). Fort>0and & >0, it holds

10 <eX'? and (2.3)
E||Wf 0. k()| Ly<eyy | < (K1 Vi + %t) 5o (o), (2.4)

where Ko, K| and K, are defined as in (1.3).
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Proof. The first inequality follows from the lower Ricci curvature bound condition and the definition
of Q;. According to the definition of Wt", it is easy to see that

W(n) =0, fo 07" RU// By, 05 k()04 ()

!
- %Qr f 07 @R+ VRic)(Q,(k(s)v), Q5(v)) ds.
0

Then we have

E(le(v,v)m{m})sE[ﬂ{,gDﬂQt fo Q}lR(//sst,Qs(k(S)V))Qs(V)|]

1
+=E
2

!
Lj<rp)| O fo Q;l(d*R+VRiC)(Qs(k(S)V),Qs(V))dSI]

1/2

<e? E[l{gmﬂe_%ﬁ Qtfo Q;'R(// +dB, Qs(k(s)v))Qs(V)|2]

K t
+71E[11{,S7D}|ei’f0f f e7kos ds|}. 2.5)
0

Moreover,

1 ! 2
dle 3k, fo 03" R(// By, Qu(k())Q,(V)|

= 2670 (R B QKO Os [ O RULLABL Q. K5MO.()
+ &0 [REE(Q, (k(w). Qi) g

t !
—G_KOIRiC(Qth Q;ll'?(//sst,Qs(k(S)V))Qs(V),QzfO Q;lR(//sst’Qs(k(s)v))Qs(v)) dt

- Koe ™ |0, fo 0;'R(//dB,, Qs(k(s )W) Q, )| di

< e Kot IR (Q:(k(1)), Qt(v))|12{5 dt<K3e X'|Q,[*dr < KZeK'dt, 1<),
Combining this with (2.5), we have

1 ! 12 K;
E(IWf (v W) Ly<ey)) < K2 ezKOf( f efos ds) + TeKO‘;.
0

We then complete the proof. O
By the results above, the following Hessian formula for eigenfunctions ¢ is obtained.

Theorem 2.3. Let D be a compact Riemannian manifold with boundary dD. Let X.(x) be a Brownian
motion starting from x € D and tp be its first hitting time of 0D. Suppose that k is a non-negative
function in C })([O, o0);R) such that k(0) = 1. Then for (¢,1) € Eig(A), t >0 and v € T+D,

(Hess $)(v,v) = B* [e ™2 (Hess $)(Qune, (k(t ATDIV), Qiney (1) + P2 dp) Wy, (v, 1))
IATD

-E* [e(’A’D“/stb(Qmm(v)) f (Qs(k(s)v), /] sdBs)|. (2.6)
0

Proof. The claim follows by taking expectation of the martingale (2.1) at time 0 and 7 A 7p. Recall
that |Q;| < eX0"/2 For x € D formula (2.6) is obviously tautological since 7p = 0. O

To get Hessian estimates from Theorem 2.3 requires estimates of Hess ¢ on the boundary 0D. To
this end, we first note the following observation. Since ¢ = 0 on the boundary dD, then d¢ = N(¢)N.



8 HESSIAN ESTIMATE FOR EIGENFUNCTIONS

Lemma 2.4. For x € 0D, let H(x) be the mean curvature of the boundary. Then
N} (@)(x) = ~H@N(@)(x), x€dD.
Proof. For x € 0D, we have

0 = A¢(x) = Ap(x)
= div(dg)(x) = div(N($)N)(x)
= (VN(¢), N)(x) + N(¢)div(N)(x).
Taking into account that div(N)(x) = H(x), the proof is completed. O

The following lemma is taken from [2, Proposition 2.5] and allows to estimate the values of |V¢|
on the boundary.

Lemma 2.5. Let @ € R such that

1
EApaD <a. 2.7)
Then for any t > 0,
IVéllap.co = IN@)llop.co < Il €/ f(2, ), (2.8)
where
ta)=2at+—e 7. 2.9
f(t,@) N (2.9)

Remark 2.6. With constants Ky,6 > 0 such that Ric > —Ky on D and H > —6 on the boundary 0D,
where H(x) is the mean curvature of D at x € D, let

1
a= 5max{e, (n- DKo }.
Then estimate (2.7) holds for such a.

Lemmas 2.4 and 2.5 allow to derive an estimate of | Hess ¢| on the boundary dD.

Lemma 2.7. Assume that Ric > —Ky and N is the extended vector field of the normal vector field to
the neighbour area 0,,D := {x : psp(x) < ro} such that [VN| < o and IADN]| < B on 8,,D. Then for
x €D,

|Hess()|(x) <(n = DIIN@)lap,c0
+ [1lloo €2 Ko+ Kt (iw + VIB+ AWl + Ko + A)) IVl

+ lhlloo 2 KHTKR N1 (g 1] Vipoo)| Hess Blloos
where h € C*(D) such that h > 1 and Nlogh > 1 and
Kj» = sup{—Alogh+o|Viogh|*},
and yr € CZ(D) is a cut-off function satisfying ¥lsp = 1 and Y(x) = 0 for ps(x) = ry.
Proof. Given x € 0D, let {X;}1<i<, be an orthonormal basis of 7D with X; = N. Then
|Hess(9)(Xi, X))l = [Vdo(Xi, X )| = KVx, Vo, X
=XV, X;) —(Vo, Vx, X)l.

From the condition [VN| < o on 8,,D, we know that [Il| < o. If X;, X; € T, 0D, i.e. i,j# 1, then
(Vé,Xj)lop = 0 and

|Hess(@)(X;, X )| == N(oXN, Vx X j)| < aIN(®)|. (2.10)
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If X; =Xj =N,ie.i=j=1,then VyN|sp =0 and
|Hess(#)(N. N)| = IN*(¢)| < (n— Do |N(¢)l. (2.11)
If X;eT 0D and X; = N (i.e. j# 1 andi=1), then
|Hess(¢)(Xj, N)I(x) = INXj($)I(x).

Let X, be the reflecting Brownian motion and Pﬁv f(x) =EB*[f(X,)] for f € By(D) the Neumann semi-
group. We have known that for N (ng Plop =0 for 6 > 0. Then according to Kolmogorov equation,

1 !
P (N@)() = PLy(N@)() + 5 fo PJ (AP (N(@)(x)ds.

Set 0,,D := {x: p(x,0D) < rp} and ¢ € CZ(E),OD) such that ¥|sp = 1 and ¥ = 0 outside d,,D. Taking
derivative on both sides of the above equation yields

1 A
X;PY (WN($))(x) = X;PY (U N(¢))(x) + 3 fo X;:PYAPY (WN($))(x)ds.
It has been known from [22] that
VPN fl < i\[teiKOfEX[e%“f]||f||m,

where [, is the local time supported on dD. By [22, Corollary 3.2.8.] or Lemma 3.3 presented in the
next section, one has

(o

B < I exp(3

Kh,O't)y
where i € C*(D) such that 2 > 1 and Nlogh > 1 and
Kpo = sup{—Alogh + o|Vlogh|*}.

We then conclude that
1
Vi
1
< IAlloo e2(Ko+oKiot [7I|V¢||o0 + \/ZIIAPQV(WN(@)IIW] . (2.12)
1

X PY WN@)|(x) < [Ihloo 3 KoroKno

IWN(@)lleo + VAIAPY <¢/N(¢>>||w]

Since for 0 < s <6,
1
dIAPY (UN@)(X:)] = 5N (AP WN@)X) (X)dly,
then there exists constants cj,c > 0 such that

1 0
IAPY (UN($))|(x) < [P [AQWN($))]I(x) + EEX [j(; (APfsv_s(l/'N(fﬁ)))(Xx)dls]

<NAWN ()l + %Exla < AWN@)lleo + %2 V5. (2.13)

Letting 6 go to O yields
IAPY (N ())|(x) < JAWN(9))]lco-

Moreover,
1
diI7VPY WNOYX) =117V a8, Py (WN(@))(X,) + 5//;1Ric”WP?_,(wN(@))(X» dt

1
+ 5//;IVNVP§V_,<wN(¢>>(Xt> dl,,
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which implies

KVPY (WN($)), Xid(x) = EX(//5 VN ($))(Xs), X0l

< % fJEX|VPf5V_S(¢N(¢))|(XS)ds+ %Ex fO(SIVPfsV_S(wN(@)I(Xs)dls-
Again using Itd’s formula for // V(Y N(¢))(Xs), we further have
KVPY WN(#)), Xi)(x) = (VN ($)), X ()|
< KVPYN($), Xi)(x) — BX(//5 VN@)(X5), Xi)]
+IEX(//5 VN@)(Xs), Xiy = (VWN($), Xi) (%))

K
570 f: E"|VP$V_S(wN(¢))I(Xs)ds+%E" f: IVPY (UN(@)I(Xs)dy

! AN @I ds + B | TGN,
Letting ¢ go to O we obtain
lim IXiPY WN(@))I(x) = [Xi(YN($)|(x).
Together this with (2.12) and (2.13), we have

i 1
IX: (YN (9))|(x) < ||h||ooez<’<°+“"w>’hnwnw + VIIAWN (@)oo |-

By Weitzenbock’s formula, we calculate that
AWN()) = AYN (@) +y(AVN, V) +y(N, AV ) + (Viy, VN())
= AYN($) + (AN, V) + (N, VAV $) + y(VN, Hess ¢) + (Viy, VN(¢))
= AYN($) +y(AVN, V) +Ric(YN, Vo) — W(N, V) + y(VN,Hess ¢} + (Y, VN(9)),
and for x € 0D,
XN (@)(x) = Xi@)®N@)(x) + () X;N(@)(x) = X;N($)(x).
We finally conclude that

1 1
IXiN(@)I(x) < [IAlloo ez<’<°+<”<hv>f(E + Vi(IADNllg, .o + 1Mo + Ko + D) |IIVlleo

1
+ [|hlloo €2 KK IV N5, 1,00 + IVl Hess -

We then complete the proof by combining the above estimate with (2.10) and (2.11).
O

Combining the estimates in Lemmas 2.5 and 2.7 with Theorem 2.3, we are now in a position to
prove our first main result.

Theorem 2.8. Let D be a compact Riemannian manifold with boundary dD. Assume that |Ric| < Ky,
IR| < K and |d*R + VRic| < K, on D. Moreover, assume that N is the extended vector field of the
normal vector field to the neighbour area 0,,D :={x : pop(x) < ro} such that |VN| < o and IADN| < B
on 0,,D. Let o € R such that

1
=A <a.
3 00D =

For h € C*(D) with minph = 1 and Nloghlsp > 1 and some cut-off function € C%(D) satisfying
Ylap = 1 and Y(x) = 0 for ps(x) = ro,
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o if VA+Ko 2 2f (7% @), then

|| Hess ¢||

1
ol 21 Deaf e @)

+2¢(lllle +2) YA+ Komax { A+ 2K + 0K, 2/l + V1)
+2e(llhllo(B+11AYllwo + Ko + ) + Ki]
Kze

VA+2Ko+0Kpg
e if VA+ Ky < 2f(rlKo,a), then
|| Hess ¢l <

+

;@)
¢l K
A+ K
+2e(llo +2)max | YA+ 2K + 0K, 2lhlleo(or + V)] £€ 0
A+Ko’ 4f(m,a’)
hllo AUl + Ko+ )+ K 1 A+ K
+2\/EII lloo (B +1AY|o0 + Ko + ) + K ( )+ +1 0
\//l+2K0+O'Kh,O— A+ Ko 4f(/1+K0,(I)
Kz\/g 1 )+ A+ Ky
7a b
A+2KO+O-K]’1,O' A+ Ky 4f(/l+_1[<o’a)

where Kp, o := supp{—Alogh+alV logh|2} with « a positive constant.
Proof. According to the formula (2.6) we have

| Hess (v, )| = E| "™/ HeSS¢(Qt/\TD (k(t ATD)V), Quney ()]
+ E[ A(tATp)/2 d¢( t/\TD (V, V))]

—E[e“’“ﬂ”zd(b(QmD(v)) f
0

0.k //sst>] .

Taking k(s) = (¢ — 5)/1 for s € [0,7] in the equation yields

|Hess g(v,v)

< (1= DB Ligyen e 5 2 1Nl o

dele

+[|AlleoE []l{msz} e +KoI —t_TD ez(K°+”Kh~”)("TD)(

. + Vi—tp(IAV N5, Dm+||Aw||m+Ko+A))

1
Vi—Tp

TD 1
+||h||ooE[ﬂ{m<n (3+Koyrp LZTD . (KooK X=m0) N2 (1Y N g, p.co + I9]1c0) |1 Hess 1o

K
+[1dllos (Kl Vi+ 7%) o(b4+Ko):

(%/1+Ko)t
+ 2||d¢||ooT (2.14)

Combining this with the fact that
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and then substituting back into (2.14) and using (2.8) by letting t = #KO we obtain

|Hess ¢(v,v)|
A 1
< (n—1)oel2tKor \/Ef(rKO,a’)Hﬁb”oo

oKp &

2 h 1
+ ]l €2 TR0 >’(7[ + Vi(IADNllg, p.eo +5+K0+/1))||d¢||oo

1 U’Kh,‘)-
+Illeo €2 KT Vi + V|0 )| Hess Bl

2 K ) (Larko)
+| —+ K Vi+ 1] e 27 |d )| -
(«ﬁ 1 Vi > )e lldl|

_ N 1
Now let 1 = 10 := o R o Koy ATVl L Den

1 7Kg 1
|||o €2 K0T =200 \@(HVNlla,OD,oo + IV lleo)l| Hess gl|oo < §||H655¢||oo

and

1
|Hess p(v,v)| < 2(n— 1)0'ef(/1+K076¥)||¢||oo

+2 Ve(llillos +2)max { A+ 2K + 0Kz, 2lillos (o + IV11e0)} 1 dileo
hlloo AYlloo + Ko+ D)+ K
2o Ml B+ 1AV + Ko+ + K a0l

max{ y/A+2Ko + 0 Kpo, 2|hlleo (o + [IViflloo)}
1

+ Ky Ve

; —lldd.
max{1+2Ko + Ky, U0 + VY1l )?)

1
/HKO,CK)IIQSIIOO

+2 Ve(llillos +2)max{ A+ 2K + 0Ky, 2lilloo(o + IV11o0)} I dgilco
lloo(B+ 1A Ieo + Ko + 1) + K,

<2(n-1oef(

+2+e lldello
VA+2Ky + O'Kh’g
K> e
M5 LY
A+ 2K() + O’Kh’a-
It is known from Arnaudon, Thalmaier and Wang [2] that
14l _ Ve(@+Kp), if VA+ Ko > 2f (3755 @);
Illco = w/é(f(M‘KO @)+ 5 f(“‘)) if VA+ Ko < 2f (-, ),
Combining this with (2.16) implies that
« if VA+Ko 2 2f (%> @), then
|| Hess ¢|| 1
—— 2(n-1eof( , Q)
||¢”c>o A+ KO

+2e(lhllos +2) A+ Komax { 1+ 2K + 0Ky o, 2lhllco(0 + VY1)
+2e(llhllo(B+11AYllw + Ko + ) + Ki]
Kze

+ ;
A+ 2Ky + O'Kh’g—

2.15)

(2.16)

2.17)
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« if YA+ Ko <2f(5g-»a), then

|| Hess ¢]| 1
—— <2(n-Doef( , Q@)
||¢||oo /1+K0
1 A+ K
+26(||h||oo+2)maX{\//l+2Ko+UKh,m 2||h||oo(<f+||Vl//||oo)} f(/l X , ) + 1 0
+ Ko 4f(m,a)
o (B+ 1AWl + Ko+ )+ K 1 A+ K
+2\/E” lleo (B + 1At ]] 0+ +K; £ )+ : 0
JA+2Ko+ 0K A+ Ko 4f(5x@)
K 1 K
+ 2 Ve f( ,a)+—/l+1 L (2.18)
/l+2Ko+0'Kh’0- A+ Ky 4f(m,a/)

3. HESSIAN ESTIMATES ON NEUMANN EIGENFUNCTIONS OF LAPLACIAN

We also use a stochastic approach to prove Theorem 1.3. Let us first introduce the Hessian formulas
for the Neumann semigroups, which are established in [4] very recently. The reflecting Brownian
motion on D with generator %A satisfies the SDE

1
dXt = //[ o de)‘C + EN(X[)dlt, X() =X,

where B is a standard Brownian motion on the Euclidean space T,.D = R". We write again X; = X;(x)
to indicate the starting point x € D (which may be on the boundary 6D). Here //, : T,D — Tx,xD
denotes the V-parallel transport along X,(x) and /; the local time of X;(x) supported on dD. Note that
the reflecting Brownian motion X;(x) is defined for all 7 > 0.

Suppose that Q;: T,D — Ty, D satisfies

DO, = —%Ricﬁ(Q,)dH %(VN)ﬁ(Q",)dlt, Qo =1id. 3.1

ForkeC ;([0, o0);R) define an operator-valued process Wtk: T\D®TD — Tx,xD as solution to the
following covariant Itd equation

DW/(v,w) = R(//:dB;, O,(k(t)v)) O:(w)

- %(d*R + VRic) (0, (k(1)v), Oy(w)) dt

1 ~ ~
- E(VZN — RINDHDi(k(Dv), Gy(w))dl;

1 i 1 N
- ERic“(W,’f(v, w))dt + E(VN)’*(W,k(v,w)) dl;, (3.2)
with initial condition W§(v,w) = 0.

Theorem 3.1 ([4]). Let D be a compact Riemannian manifold with boundary 0D. Let X(x) be the
reflecting Brownian motion on D with starting point x (possibly on the boundary) and denote by
P, f(x) = BLf(X,(x)] the corresponding Neumann semigroup acting on f € Byp(D). Then, for v e T,D,
t>0and k € C}([0,00);R),

!
Hess P, f (v,V)=E[—df (0i(v)) fo (Qs(k(s)v), //dBsy+df (Wi (v, v)|.

By estimating W* and Q explicitly, we can get pointwise bounds for the Hessian of Neumann
eigenfunctions.
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Proof. By [4, Theorem 3.5] the Hessian of the semigroup can be estimated as

K 2
|Hess P f](x) s([ﬁ + 72 Vi + 7)eKO’E[e”ll‘]IIflloo

o 12 ! 212
Y2 Kot o1l f Lol ]

+ et Ele E ez dl 1/ 1lcos
241 [ ] ( [ 0 ' f

We complete the proof by observing that P;¢p = e /2 . O

Corollary 3.2. We keep the assumptions of Theorem 3.1. Assume that Ric > —K, |R| < K| and
|d*R + VRic| < K, on D, and 11 > —cr;, V2N + R(N)| < 0, on the boundary 0D. Then, for (¢,1) €

(1 K
| Hess ¢|(x) <e(24+K0r Bleoil] (7 + K Vi+ ft) [|dbloo
t

!
+ 22 e<Ko+‘%>fE(eéffT1r f e27ihs dls)||d¢||m.
2 0
Proof. By [4, Corollary 3.9] the Hessian of the semigroup can be estimated as

K2 1 +] K
Hess P, f| <Ky Vi+ ==t+—|E|e71" " ||V flloo
| Hess ,f|_( LV \ﬁ) e v ]

!
+ QE(ei”Tl/ f 207l dls)eKO’ IV Flleo.
2 0
We complete the proof by observing that P;¢p = e /2 . o

Now we turn to the problem of estimating E[e®/?] for @ > 0 by introducing a specific class of
function A.

Lemma 3.3. Suppose that h € C™(D) such that h> 1 and Nlogh > 1. For a > 0 let
Kj,.o = sup{—Alogh+a|Vloghl*}.
Then
Ble ] < [l exp 5 Kia)-

Proof. By the Itd formula we have

1 1
dh™(X;) =(Vh™*(X,), //:dB;) + EAh“’(X,)dt + ENh‘“(X,)dlt
1 1
<(VR™(X}),//:dB;y— ah™*(X;) (_EKh’“ dt+ ENlog h(X,) dl,) .
Hence,
_ « a (!
M, =h "(Xt)exp(—th’at+ Ef Nlogh(Xs)dls)
0
is a local submartingale. Therefore, by Fatou’s lemma and taking into account that 4 > 1, we get

!
E[h—a(Xt)exp(—%Kh,at+% f Nlogh(Xs)dlS)]
0

INTD

<E [h“’(X,,\TD) exp (—%Kh,a(t ATp)+ g Nlogh(Xs) dls)}

<h%x<l.
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Since Nlogh(x) > 1 we conclude that

t
E exp(gl,)] SE[exp(% f Nlogh(Xs)dls)] < Wil exp (5 Kinat). o
0

Combining Theorem 3.2 and Lemma 3.3, we are now in a position to prove Theorem 1.3.

Theorem 3.4. Let D be an n-dimensional compact Riemannian manifold with boundary 0D. Assume
that Ric > —Kj, |R| < K| and |d*R + VRic| < K, on D, and that 11 > —o-; and V>N —R(N)| < 05 on
the boundary 0D. For h € C*(D) with minph = 1 and Nloghlsp > 1, let Kj, o = supp{—Alogh +
a|Vlog h|?} with @ a positive constant. Then for any non-trivial (¢, 1) € Eigy(A),

Hess dllo
% < Cya(D)A

where

K+ 2[(8' + ZO-TKh,20'+ Ky + 20'21(};,20“r 30t
Cna(D) =e| 1+ -+ l Al !
A Pl \/21 +4K; +401Kp o

+ 28 \/2/1 FAKS +407 Ky oo I Inlhlus:

Proof. By Lemma 3.3, we have
E[e”"] < Ele”T"] < 1A exp(c} Koo
and
Ele”"] < [Ih exp (o} Kz 1)

Moreover, we observe that

¢ (o1+a)liy _
E[e;o'lltf e%a']ls dl€:| < 2(E[e 1 ] 1)
0

O'++8

2((7 +&)

= (||h||m

2(0' +&)

(||h||m

exXp (0-1 +8)Kh 200t +.9)t) 1)

exp (O’l +&)K;, (o7 +€)l) 1)

2(ct +s) 2(0’ +&)
2 (IR 1)+ =2 [exp((07 + Ko eot) - 1]
o7+
2(0' +&)

In||Alleo + 2|lAlle

2((7 +&)

< 4||h||oo exp (07 +&Kn 2ot +ert) Kno(ort ot

Letting € tend to 0, we arrive at
!
1 1 2 20°F
E[e2‘7‘l’ f e271h dl ] < 4IRS nllAlloo + 2017 exp (o) Koot ?) Kot
0
Therefore, combining this with Theorem 3.2, we obtain

IHessdllo _ (114k, ( ! K 2
P < KO gy N+ |l exp (0 Koot
e Vi 2 (it
+o (3 4+Ko)t [2 In||Alle + Kh,sz t] ||h||§<,0l exp (O'-th,ZO'T t)
1 K
< e<§A+Ko)t(_ +K Vi+ —zt)llhlli exp (0'1 K 20”)
Vi 2

1 20
+ 02 2K [ In [l + Ky vt Ml exp (0] Kot ).
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-1
Lett= (/l +2Ko+ Zcerh’zgf) . Then we get

|[Hess ¢lloo _ ( K
lldellco \//l +2Ko+207 K o0

+ \JA+2Ko+207 Koot

Kz + 20—2Kh,0'1*
+
2(/1 +2Ky+ 20'?-Kh’20-1r)

+203 1n||h||oo)||h||§fl+ Ve.
On the other hand, from [2], it has already been shown that

llde]lco 1 11172 LYKo+ 1 ot 1
—— 2 < —E[et2e2®ot U < __1p)|ct exp| = (A + 0T Kp oot + Kot |-
Y Vi P\ T 71 b

-1
Lett= (/l + Ko+ O'TKh,zo-;r) . Then we get

[l
ll$lloo

0.+
< JA+ Ko+ Koo IS Ve

We then conclude that
I Hess @l
|2]

K2 + 20‘2Kh,(,-;r

< (/l + K +2Ko+ 20-1’[(;,320? +
2 \/a +2Ko+ 207 Kp o0

307

+ 20—2 In ”h”oo \//l + KO + O-TKILZO'T)”h”oo €.

4. CONSTRUCTION OF FUNCTIONS /i AND

In Section 4 we explain that if more refined geometric information about the boundary is available
(for instance as Condition (B) below), then following F.-Y. Wang’s construction of the function / (see
[21, p.1436] or [22, Theorem 3.2.9]), we can derive explicit upper bounds for |||l and the constant
K o(0t+5) in Theorem 3.4. See Theorem 1.3 above for a precise formulation of the result. Let us first

formulate a more refined condition on the boundary.

Condition (B) There exists a non-negative constant o~ such that II < ¢~ and a positive constant ry such

that on 0,,D := {x € D : psp(x) < ro} the distance function psp to the boundary dD is smooth.

Furthermore let k be a positive constant such that Sect < k which exists by compactness of D.
Using Condition (B), F.-Y. Wang constructed a function & € & (see [21, p.1436] or [22, Theorem

3.2.9] for the notation and result). Modifying his construction one defines

1

5(x)
logh(x) = Aio fo g (L(s)—€(r) " ds ) =€) du
SAry

where ¢ is defined in (1.6), r| := ro A £~1(0) and
Tl
Ao :=(1—Lr)' ™" f (L(s)— ()" ds.
0
Then from the proof of [20, Theorem 1.1], we get:

n 1
Kno <Ky:=—+a and |}l <e2™.
ri

Lemma 4.1. Let 0,k € R be non-negative constants such that |Il| < o and |Sect| < k on 8,,D

Pop(x) < ro} for some ry > 0. Then

—2(o Vv \/B <Apg(x) <oV \/%, po(x) <1,

“4.1)

4.2)

={x:
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where
1
rai=rnAl). 4.3)
Then there exists € C%(D) satisfying Wlap = 0 and Y(x)|pyozr, = O such that
3 6(o Vv Vk 6
Vil <21 Al < XXV, 0
2 r 5

Proof. Using the comparison theorem for Aps, we have the following estimates due to Kasue [9, 10],
b o (Pa(x)) U4 Pa(x)
o O < Apy(x) < k"’—,
lko(py(x)) ko (pa(x))

It is easy to have for k,0 > 0,

pa(x) < ro A (0).

Apy(x) < oV Vk.

For ps(x) < rg A 5,;37(%),

Cro (o (X))
Apa(x) > Troa) 2o (Pa(x)) = =2(0 v Vk).
Let X
W(x) = {(%ﬁw)) , 0 < pap(x) < 15 . 4.4)
, Pop(x) > 1o,
where 1 = ry /\t"l(%) and
{f‘l(%) = [(arcsin( Vk/(k+ 02)) - arcsin( Vk/2(k + 0'2)))/ %] . for k>0.
Then we have
3 6(cvVk) 6
r r 5
O

Proof of Theorem 1.1. Substituting the upper bound @ = Vk V o from Apy(x) < Vk Vo for f(t,a)
into inequalities (2.17) and (2.18). Then using 4 and i defined in (4.1) and (4.4) and substituting the
estimates (4.2) and (4.5), we replace

Khas [1llcos [[Vloos 1Al

by
Ny g, 3 S0V 6
r r r s
respectively. We then complete the proof of inequality (1.7) O

Proof of Theorem 1.3. From the conditions we see that Condition (B) is satisfied. Then, the Hessian
estimate of Neumann eigenfunctions in Theorem 3.4 remain valid by substituting the / defined in
(4.1). Then under replacing

Ko and |17l
by

_n nri /2

Ky:=—+a and ™!
r

respectively, the conclusion is just listed in Theorem 1.3. O
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