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Abstract. By methods of stochastic analysis on Riemannian manifolds, we develop two approaches
to determine an explicit constant c(D) for an n-dimensional compact manifold D with boundary such
that

λ

n
‖φ‖∞ ≤ ‖Hessφ‖∞ ≤ c(D)λ‖φ‖∞

holds for any Dirichlet eigenfunction φ of −∆ with eigenvalue λ. Our results provide the sharp Hessian
estimate ‖Hessφ‖∞ . λ

n+3
4 . Corresponding Hessian estimates for Neumann eigenfunctions are derived

in the second part of the paper.

1. Introduction

Let D be an n-dimensional compact Riemannian manifold with boundary ∂D. We write (φ,λ) ∈
Eig(∆) if φ is a Dirichlet eigenfunction of −∆ on D with eigenvalue λ > 0, i.e. −∆φ = λφ. We always
assume eigenfunctions φ to be normalized in L2(D) such that ‖φ‖L2 = 1. According to [15], there exist
two positive constants c1(D) and c2(D) such that

c1(D)
√
λ‖φ‖∞ 6 ‖∇φ‖∞ 6 c2(D)

√
λ‖φ‖∞, (φ,λ) ∈ Eig(∆), (1.1)

where we write ‖∇φ‖∞ := ‖ |∇φ| ‖∞ for simplicity. An analogous statement for Neumann eigenfunc-
tions has been derived by Hu, Shi and Xui [8]. Subsequently, by methods of stochastic analysis
on Riemannian manifolds, Arnaudon, Thalmaier and Wang [2] determined explicit constants c1(D)
and c2(D) in (1.1) for Dirichlet and Neumann eigenfunctions. From this, together with the uniform
estimate of φ (see [7, 6, 11]),

‖φ‖∞ ≤ cDλ
n−1

4

for some positive constant cD, the optimal uniform bound of the gradient writes as

‖∇φ‖∞ . λ
n+1

4 .
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2 HESSIAN ESTIMATE FOR EIGENFUNCTIONS

Results of this type have been used to study gradient estimates for unit spectral projection operators
and to give a new proof of Hörmander’s multiplier theorem, see [23, 24, 25].

Concerning higher order estimates of eigenfunctions, not much is known. Very recently, Steiner-
berger [16] studied Laplacian eigenfunctions of −∆ with Dirichlet boundary conditions on bounded
domains Ω ⊂ Rn with smooth boundary and proved a sharp Hessian estimate for the eigenfunctions
which reads as

‖Hessφ‖∞ . λ
n+3

4

where
‖Hessφ‖∞ := sup

{
|Hessφ(v,v)|(x) : x ∈ Rn, v ∈ Rn, |v| = 1

}
.

It is a natural question under which geometric assumptions such estimates extend to compact mani-
folds (with boundary). Following the lines of [2], one may ask the question how for the Hessian to
derive explicit numerical constants C1(D) and C2(D) such that

C1(D)λ‖φ‖∞ 6 ‖Hessφ‖∞ 6C2(D)λ‖φ‖∞, (φ,λ) ∈ Eig(∆). (1.2)

Note that for eigenfunctions of the Laplacian, one trivially has

|Hessφ| ≥
1
n
|∆φ| =

λ

n
|φ|,

and hence there is always the obvious lower bound
‖Hessφ‖∞
‖φ‖∞

≥
λ

n
.

For this reason, we shall concentrate in the sequel on upper bounds for ‖Hessφ‖∞/‖φ‖∞.
In [2] a derivative formula for Dirichlet eigenfunctions has been given from where an upper bound

for the gradient of the eigenfunction could be derived directly. Let us briefly describe this method.
Assume that Xt is a Brownian motion on D \ ∂D with generator 1

2∆, and write Xt(x) to indicate the
starting point X0 = x. Then X.(x) is defined up to the first hitting time τD = inf{t > 0: Xt(x) ∈ ∂D} of
the boundary. For x ∈ ∂D we use the convention that X.(x) is defined with lifetime τD ≡ 0; in this case
the subsequent statements usually hold automatically.

Suppose that Qt : TxD→ TXt(x)D is defined by

DQt = −
1
2

Ric](Qt)dt, Q0 = id,

where D := //t d //−1
t with //t := //0,t : TxD→ TXt(x)D parallel transport along X(x) and Ric](v)(w) =

Ric(v,w) for v,w ∈ T M. Suppose that (φ,λ) ∈ Eig(∆). Then, for v ∈ TxM and any k ∈ C1
b([0,∞);R),

i.e., k bounded with bounded derivative, the process

k(t)eλt/2 〈∇φ(Xt),Qt(v)〉− eλt/2φ(Xt)
∫ t

0
〈k̇(s)Qsv, //sdBs〉, t ≤ τD

is a martingale. From this, by taking expectation, a formula involving ∇φ can be obtained which
allows to derive an upper bound for |∇φ| on D by estimating |∇φ| on the boundary ∂D and carefully
choosing the function k. Along this circle of ideas, we aim at establishing a similar formula for the
Hessian of an eigenfunction φ.

In view of the fact that Ptφ = e−λt/2φ where Pt is the semigroup generated by 1
2∆, we focus first

on martingales which are appropriate for attaining uniform Hessian estimates of eigenfunctions. Let
us start with some background on Bismut type formulas for the second-order derivatives of heat
semigroups. A second-order differential formula for the heat semigroup Pt was first obtained by
Elworthy and Li [5, 12] for a non-compact manifold, however with restrictions on the curvature
of the manifold. An intrinsic formula for Hess Pt f has been given by Stroock [17] for a compact
Riemannian manifold, and a localized version of such a formula was obtained in [1, 3] adopting
martingale arguments. For the Hessian of the Feynman-Kac semigroup of an operator ∆ + V with a
potential function V on manifolds, we refer the reader to see [13, 14, 18].
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For a complete Riemannian manifold M without boundary, an appropriate version of a Bismut-type
Hessian formula gives the following estimate (see [3, Corollary 4.3] and Lemma 2.2, or Corollary 3.2
with σ1 = σ2 = 0):

‖Hess Pt f ‖∞ ≤
(
K1
√

t +
K2t
2

)
eK0t ‖ f ‖∞+

2
t

eK0t ‖ f ‖∞

where

K0 := sup
{
−Ric(v,v) : y ∈ M, v ∈ TyM, |v| = 1

}
;

K1 := sup {|R|(y) : y ∈ M} ; (1.3)

K2 := sup
{
|(d∗R +∇Ric)](v,w)|(y) : y ∈ M, v,w ∈ TyM, |v| = |w| = 1

}
and

|R|(y) := sup


√√√ n∑

i, j=1

R(ei,v,w,e j)2(y) : |v| ≤ 1, |w| ≤ 1


for an orthonormal base {ei}

n
i=1 of TyM.

Thus if f = φ and (φ,λ) ∈ Eig(∆), then

‖Hessφ‖∞ ≤
(
K1
√

t +
K2t
2

)
e(K0+λ/2)t ‖φ‖∞+

2e(K0+λ/2)t

t
‖φ‖∞

for any t > 0. Letting t = 1
K0+λ/2 then yields the estimate

‖Hessφ‖∞
‖φ‖∞

≤

K1

√
2

2K0 +λ
+

K2

2K0 +λ

e+(λ+ 2K0)e .

To carry over such results to (compact) manifold D with boundary, the influence of the boundary
has to be studied. In this paper, we shall discuss a martingale approach to the Hessian of Dirichlet
eigenfunctions. This is based on the construction of a suitable martingale which builds a relation
between Hessφ and dφ and then to estimate C2(D) in (1.2) by finding explicit constants C1, C2 and
C3 such that

‖Hessφ‖∞ ≤C1‖Hessφ‖∂D,∞+C2‖∇φ‖∂D,∞+C3‖∇φ‖∞ (1.4)

where ‖Hessφ‖∂D,∞ := supx∈∂D |Hessφ|(x) and ‖∇φ‖∂D,∞ := supx∈∂D |∇φ|(x). The final estimate for
|Hessφ| is then received by combining the last inequality with estimate (1.1) in [2].

Let us start with the general principle behind the construction of the relevant martingale. Let
k ∈ C1

b([0,∞);R) and define an operator-valued process Wk
t : TxD⊗TxD→ TXt(x)D as solution to the

following covariant Itô equation

dWk
t (v,w) = R(//tdBt,Qt(k(t)v))Qt(w)−

1
2

(d∗R +∇Ric)](Qt(k(t)v),Qt(w))dt−
1
2

Ric](Wk
t (v,w))dt,

with initial condition Wk
0(v,w) = 0. Here the operator d∗R is defined by d∗R(v1,v2) := − tr∇.R(·,v1)v2

and thus satisfies

〈d∗R(v1,v2),v3〉 = 〈(∇v3Ric])(v1),v2〉− 〈(∇v2Ric])(v3),v1〉

for all v1,v2,v3 ∈ TxD and x ∈ D. Then the process

Mt := eλt/2 Hessφ
(
Qt(k(t)v),Qt(v)

)
+ eλt/2 dφ(Wk

t (v,v))

− eλt/2 dφ(Qt(v))
∫ t

0
〈Qs(k̇(s)v), //sdBs〉 (1.5)

is a martingale on [0, τD] in the sense that (Mt∧τD)t≥0 is a globally defined martingale where τD =

inf{t > 0 : Xt(x) ∈ ∂D} denotes the first hitting time of X.(x) of the boundary ∂D. The martingale
property of (1.5) then allows to establish an inequality of the type (1.4) by equating the expectations
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at time 0 and at time t∧ τD. This approach then requires to estimate the boundary values of |dφ|
and |Hessφ|, in order to obtain the wanted upper bound for ‖Hessφ‖∞. To this end, we establish the
required estimates in Lemmas 2.4-2.5 by using the information on the second fundamental form II
and the second derivative of N, where for X,Y ∈ Tx∂D and x ∈ ∂D, the second fundamental form is
defined by

II(X,Y) = −〈∇XN, Y〉.

Note that we observe that the N is canonically extended to vector fields on a neighbourhood of the
boundary. Let

`(t) := `k,σ(t) :=


cos
√

kt− σ√
k

sin
√

kt, k > 0,
1−σt, k = 0,
cosh

√
−kt− σ√

−k
sinh

√
−kt, k < 0,

(1.6)

We state now the first main result of this paper.

Theorem 1.1. Let D be a compact Riemannian manifold with boundary ∂D. Assume that |Ric| ≤ K0,
|R| ≤ K1 and |d∗R +∇Ric| ≤ K2 on D. Moreover, assume that N is the extended vector field of the
normal vector field to the neighbour area ∂r0 D := {x : ρ∂D(x) ≤ r0} such that ρ∂D is smooth, |Sect| ≤ k,
|∇N | ≤ σ and |∆(1)N | ≤ β on ∂r0 D for some r0 > 0. Then

‖Hessφ‖∞
‖φ‖∞

≤Cλ(D)λ,

where if
√
λ+ K0 ≥ 2A, then

Cλ(D) =
2(n−1)eσA

λ
+

2e(enr1/2 +2)
λ

√
λ+ K0 max

{√
λ+ 2K0 +

nσ
r1

+σ2, 2enr1/2(σ+
3
r2

)
}

+
2e
λ

enr1/2
β+

6(σ∨
√

k)
r2

+
6
r2

2

+ K0 +λ

+ K1


+

K2 e

λ
√
λ+ 2K0 + nσ

r1
+σ2

;

if
√
λ+ K0 < 2A, then

Cλ(D) =
2(n−1)σe A

λ
+ 2e(enr1/2 +2)max

{√
λ+ 2K0 +

nσ
r1

+σ2, 2enr1/2(σ+
3
r2

)
}(A
λ

+
λ+ K0

4Aλ

)

+ 2e
enr1/2

(
β+

6(σ∨
√

k)
r2

+ 6
r2

+ K0 +λ
)
+ K1√

λ+ 2K0 +σ( n
r1

+σ)

(A
λ

+
λ+ K0

4Aλ

)

+
K2 e

λ+ 2K0 +σ( n
r1

+σ)

(A
λ

+
λ+ K0

4Aλ

)
,

where

A = 2(
√

k∧σ) +

√
2(λ+ K0)
√
π

exp
(
−

k∧σ2

2λ

)
;

r1 = r0∧ `
−1(0); r2 = r0∧ `

−1(
1
2

).

Remark 1.2. It is easy to see that both Cλ(D) is decreasing in λ, and hence Cλ(D) ≤ Cλ1(D) where
λ1 is the first Dirichlet eigenvalue of −∆ which gives

‖Hessφ‖∞
‖φ‖∞

≤Cλ1(D)λ.
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Considering now Hessian estimate for Neumann eigenfunctions, we denote by EigN(∆) the set of
non-trivial eigenpairs (φ,λ) for the Neumann eigenproblem, i.e., φ is non-constant, ∆φ = −λφ with
Nφ|∂D = 0 for the unit inward normal vector field N of ∂D. Along the previous idea, a big different
is that we do not consider the process before hitting the boundary ∂D. Thus when constructing the
suitable martingales, the boundary behaviour of the process should be considered at first. Here, we
will use the reflecting Brownian motion as the base process to consider this question. Due to our
very recent work on Bismut-type Hessian formula for Neumann semigroup, we have the following
formula linking Hess Pt f and d f directly:

Hess Pt f (v,v) = E

[
−d f (Q̃t(v))

∫ t

0
〈Q̃s(k̇(s)v), //sdBs〉+ d f (W̃k

t (v,v))
]
,

where Q̃ and W̃k are defined in (3.1) and (3.2) in Section 3. By observing the fact that Ptφ = e−
1
2λt and

estimating Q̃· and W̃· carefully under suitable curvature condition, we obtain the following theorem
gives an upper estimate for Hessφ of the type (1.2) with an explicit constant C2(D).

Theorem 1.3. Let D be an n-dimensional compact Riemannian manifold with boundary ∂D. Assume
that Ric ≥ −K0, |R| ≤ K1 and |d∗R +∇Ric| ≤ K2 on D, and that −σ1 ≤ II ≤ σ and |∇2N −R(N)| ≤ σ2
on the boundary ∂D. If there exists a positive constant r0 such that on ∂r0 D := {x ∈ D : ρ∂D(x) ≤ r0}

the distance function ρ∂D to the boundary ∂D is smooth and Sect ≤ k. Then for any non-trivial
(φ,λ) ∈ EigN(∆),

‖Hess φ‖∞
‖φ‖∞

≤CN,λ(D)λ

where

CN,λ(D) =

1 +
K1 + 2K0 + 2σ+

1 ( n
r1

+ 2σ+
1 )

λ
+

K2 + 2σ2( n
r1

+ 2σ+
1 )

λ
√

2λ+ 4K0 + 4σ1( n
r1

+ 2σ+
1 )

e
3
2σ

+
1 nr1+1

+
σ2nr1

2λ

√
2λ+ 4K0 + 4σ1(

n
r1

+ 2σ+
1 )e

3
2σ

+
1 nr1+1,

for r1 = r0∧ `
−1(0). Denoting by λ1 the first Neumann eigenvalue of −∆, then

‖Hessφ‖∞
‖φ‖∞

≤CN,λ1(D)λ.

The remainder of the paper is organized as follows. In Section 2 we first show for Dirichlet
eigenfunctions

‖Hessφ‖∞/‖φ‖∞ ≤Cλ(D)λ (1.7)

by verifying that the process (1.5) is a martingale, in combination with boundary estimates for
|Hessφ|. Section 3 deals with Neumann eigenfunctions where we give a proof of Theorem 1.3 by
using Bismut type Hessian formulae for the Neumann semigroup and an estimate of the local time.

2. Hessian estimates of Dirichlet eigenfunctions

This section is dedicated to the the approach described in the Introduction. In fact, the proof of
Theorem 1.1 is also divided into two steps by first showing Theorem 2.8 with some testing functions,
which will be constructed in Section 4. We start by constructing the fundamental martingale which
will be the basis for our method.

Theorem 2.1. On a compact Riemannian manifold D with boundary ∂D, let X.(x) be a Brownian
motion starting from x ∈ D and denote by τD = inf{t ≥ 0: Xt(x) ∈ ∂D} its first hitting time of ∂D.
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Define Qt and Wk
t as above where k ∈ C1

b([0,∞);R). Then, for (φ,λ) ∈ EigN(∆) and v ∈ TxD, the
process

eλt/2 Hessφ
(
Qt(k(t)v),Qt(v)

)
+ eλt/2 dφ(Wk

t (v,v))

− eλt/2 dφ(Qt(v))
∫ t

0
〈Qs(k̇(s)v), //sdBs〉 (2.1)

is a martingale on [0, τD].

Proof. Due to the compactness of D it is sufficient to check that (2.1) is a local martingale on [0, τD).
Fixing a time T > 0, for v ∈ TxD, we let

Nt(v,v) = Hess PT−tφ(Qt(v),Qt(v)) + (dPT−tφ)(Wt(v,v)), t ≤ T ∧τD,

where

Wt(v,v) = Qt

∫ t

0
Q−1

r R
(
//rdBr,Qr(v)

)
Qr(v)−

1
2

Qt

∫ t

0
Q−1

r (d∗R +∇Ric)]
(
Qr(v),Qr(v)

)
dr.

Then Nt(v,v) is a local martingale, see for instance the proof of [19, Lemma 2.7] with potential V ≡ 0.
Since (φ,λ) ∈ Eig(∆), we know that PT−tφ(Xt) = e−λ(T−t)/2φ(Xt) and thus

eλt/2 Hessφ(Qt(v),Qt(v)) + eλt/2(dφ)(Wt(v,v))

is also a local martingale. Furthermore, consider

Nk
t (v,v) := eλt/2 Hessφ(Qt(k(t)v),Qt(v)) + (eλt/2 dφ)(Wk

t (v,v)).

According to the definition of Wk
t (v,v), resp. Wt(v,v), and in view of the fact that Nt(v,v) is a local

martingale, it is easy to see that

eλt/2 Hessφ(Qt(k(t)v),Qt(v)) + (eλt/2 dφ)(Wk
t (v,v))−

∫ t

0
eλs/2 Hessφ(Qs(k̇(s)v),Qs(v))ds

is a local martingale as well. From the formula

eλt/2 dφ(Qt(v)) = dφ(v) +

∫ t

0
eλs/2(Hessφ)(//sdBs,Qs(v))

it follows that∫ t

0
eλs/2(Hessφ)(Qs(k̇(s)v),Qs(v))ds− eλt/2 dφ(Qt(v))

∫ t

0
〈Qs(k̇(s)v), //sdBs〉 (2.2)

is a local martingale. We conclude that

(eλt/2 Hessφ)(Qt(k(t)v),Qt(v)) + (eλt/2 dφ)(Wk
t (v,v))− eλt/2 dφ(Qt(v))

∫ t

0
〈Qs(k̇(s)v), //sdBs〉

is a local martingale. �

We shall use the following estimate to proceed with the Hessian formula for φ.

Lemma 2.2. Assume that Ric ≥ −K0, |R| ≤ K1 and |d∗R+∇Ric| ≤ K2 on D for non-negative constants
K0,K1 and K2. Let k ∈C1

b([0,∞);R). For t ≥ 0 and δ > 0, it holds

|Qt| ≤ eK0t/2 and (2.3)

E
[∣∣∣Wk

t (v, k̇(t)v)
∣∣∣1{t≤τD}

]
≤

(
K1
√

t +
K2

2
t
)

eK0t k̇(t), (2.4)

where K0,K1 and K2 are defined as in (1.3).
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Proof. The first inequality follows from the lower Ricci curvature bound condition and the definition
of Qt. According to the definition of Wk

t , it is easy to see that

Wk
t (v,v) =Qt

∫ t

0
Q−1

s R(//sdBs,Qs(k(s)v))Qs(v)

−
1
2

Qt

∫ t

0
Q−1

s (d∗R +∇Ric)](Qs(k(s)v),Qs(v))ds.

Then we have

E
(
|Wk

t (v,v)|1{t≤τD}

)
≤ E

[
1{t≤τD}

∣∣∣Qt

∫ t

0
Q−1

s R(//sdBs,Qs(k(s)v))Qs(v)
∣∣∣]

+
1
2
E

[
1{t≤τD}

∣∣∣Qt

∫ t

0
Q−1

s (d∗R +∇Ric)(Qs(k(s)v),Qs(v))ds
∣∣∣]

≤ e
K0t

2 E

[
1{t≤τD}

∣∣∣e− K0t
2 Qt

∫ t

0
Q−1

s R(//sdBs,Qs(k(s)v))Qs(v)
∣∣∣2]1/2

+
K1

2
E

[
1{t≤τD}

∣∣∣e 1
2 K0t

∫ t

0
e

1
2 K0 s ds

∣∣∣] . (2.5)

Moreover,

d
∣∣∣∣e− 1

2 K0t Qt

∫ t

0
Q−1

s R(//sdBs,Qs(k(s)v))Qs(v)
∣∣∣∣2

= 2e−K0t
〈
R(//tdBt,Qt(k(t)v))Qt(v),Qt

∫ t

0
Q−1

s R(//sdBs,Qs(k(s)v))Qs(v)
〉

+ e−K0t
∣∣∣R],](Qt(k(t)v),Qt(v))

∣∣∣2
HS dt

− e−K0t Ric
(
Qt

∫ t

0
Q−1

s R(//sdBs,Qs(k(s)v))Qs(v),Qt

∫ t

0
Q−1

s R(//sdBs,Qs(k(s)v))Qs(v)
)

dt

−K0 e−K0t
∣∣∣Qt

∫ t

0
Q−1

s R(//sdBs,Qs(k(s)v))Qs(v)
∣∣∣2 dt

m
≤ e−K0t

∣∣∣R],](Qt(k(t)v),Qt(v))
∣∣∣2
HS dt ≤ K2

2 e−K0t |Qt|
4 dt ≤ K2

2 eK0t dt, t ≤ τD.

Combining this with (2.5), we have

E
(
|Wk

t (v,v)|1{t≤τD}

)
≤ K2 e

1
2 K0t

(∫ t

0
eK0 s ds

)1/2

+
K1

2
eK0t t.

We then complete the proof. �

By the results above, the following Hessian formula for eigenfunctions φ is obtained.

Theorem 2.3. Let D be a compact Riemannian manifold with boundary ∂D. Let X.(x) be a Brownian
motion starting from x ∈ D and τD be its first hitting time of ∂D. Suppose that k is a non-negative
function in C1

b([0,∞);R) such that k(0) = 1. Then for (φ,λ) ∈ Eig(∆), t ≥ 0 and v ∈ TxD,

(Hessφ)(v,v) = Ex
[
e(t∧τD)λ/2(Hess φ)(Qt∧τD(k(t∧τD)v),Qt∧τD(v)) + e(t∧τD)λ/2(dφ)(Wk

t∧τD
(v, v))

]
−Ex

[
e(t∧τD)λ/2 dφ(Qt∧τD(v))

∫ t∧τD

0
〈Qs(k̇(s)v), //sdBs〉

]
. (2.6)

Proof. The claim follows by taking expectation of the martingale (2.1) at time 0 and t∧ τD. Recall
that |Qt| ≤ eK0t/2. For x ∈ ∂D formula (2.6) is obviously tautological since τD ≡ 0. �

To get Hessian estimates from Theorem 2.3 requires estimates of Hessφ on the boundary ∂D. To
this end, we first note the following observation. Since φ = 0 on the boundary ∂D, then dφ = N(φ)N.
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Lemma 2.4. For x ∈ ∂D, let H(x) be the mean curvature of the boundary. Then

N2(φ)(x) = −H(x)N(φ)(x), x ∈ ∂D.

Proof. For x ∈ ∂D, we have

0 = λφ(x) = ∆φ(x)
= div(dφ)(x) = div(N(φ)N)(x)
= 〈∇N(φ),N〉(x) + N(φ)div(N)(x).

Taking into account that div(N)(x) = H(x), the proof is completed. �

The following lemma is taken from [2, Proposition 2.5] and allows to estimate the values of |∇φ|
on the boundary.

Lemma 2.5. Let α ∈ R such that
1
2

∆ρ∂D ≤ α. (2.7)

Then for any t > 0,

‖∇φ‖∂D,∞ = ‖N(φ)‖∂D,∞ ≤ ‖φ‖∞ eλt/2 f (t,α), (2.8)

where

f (t,α) = 2α+ +

√
2
√
πt

e−
α2t
2 . (2.9)

Remark 2.6. With constants K0, θ > 0 such that Ric ≥ −K0 on D and H ≥ −θ on the boundary ∂D,
where H(x) is the mean curvature of D at x ∈ D, let

α =
1
2

max
{
θ,

√
(n−1)K0

}
.

Then estimate (2.7) holds for such α.

Lemmas 2.4 and 2.5 allow to derive an estimate of |Hessφ| on the boundary ∂D.

Lemma 2.7. Assume that Ric ≥ −K0 and N is the extended vector field of the normal vector field to
the neighbour area ∂r0 D := {x : ρ∂D(x) ≤ r0} such that |∇N | ≤ σ and |∆(1)N | ≤ β on ∂r0 D. Then for
x ∈ ∂D, ∣∣∣Hess(φ)

∣∣∣(x) ≤(n−1)σ‖N(φ)‖∂D,∞

+ ‖h‖∞ e
1
2 (K0+σKh,σ)t

(
1
√

t
+
√

t(β+ ‖∆ψ‖∞+ K0 +λ)
)
‖∇φ‖∞

+ ‖h‖∞ e
1
2 (K0+σKh,σ)t √t(σ+ ‖∇ψ‖∞)‖Hessφ‖∞,

where h ∈C∞(D) such that h ≥ 1 and N logh ≥ 1 and

Kh,σ = sup{−∆ logh +σ|∇ logh|2},

and ψ ∈C2(D) is a cut-off function satisfying ψ|∂D = 1 and ψ(x) = 0 for ρ∂(x) ≥ r0.

Proof. Given x ∈ ∂D, let {Xi}1≤i≤n be an orthonormal basis of TxD with X1 = N. Then

|Hess(φ)(Xi,X j)| = |∇dφ(Xi,X j)| = |〈∇Xi∇φ,X j〉|

= |Xi〈∇φ,X j〉− 〈∇φ,∇Xi X j〉|.

From the condition |∇N | ≤ σ on ∂r0 D, we know that |II| ≤ σ. If Xi, X j ∈ Tx∂D, i.e. i, j , 1, then
〈∇φ,X j〉|∂D = 0 and

|Hess(φ)(Xi,X j)| = | −N(φ)〈N,∇Xi X j〉| ≤ σ|N(φ)|. (2.10)
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If Xi = X j = N, i.e. i = j = 1, then ∇N N |∂D = 0 and

|Hess(φ)(N,N)| = |N2(φ)| ≤ (n−1)σ|N(φ)|. (2.11)

If X j ∈ Tx∂D and Xi = N (i.e. j , 1 and i = 1), then

|Hess(φ)(X j,N)|(x) = |NX j(φ)|(x).

Let Xt be the reflecting Brownian motion and PN
t f (x) = Ex[ f (Xt)] for f ∈ Bb(D) the Neumann semi-

group. We have known that for N(PN
δ f )|∂D = 0 for δ > 0. Then according to Kolmogorov equation,

PN
δ (N(φ))(x) = PN

t+δ(N(φ))(x) +
1
2

∫ t

0
PN

s (∆PN
δ (N(φ))(x)ds.

Set ∂r0 D := {x : ρ(x,∂D) ≤ r0} and ψ ∈ C2(∂r0 D) such that ψ|∂D = 1 and ψ = 0 outside ∂r0 D. Taking
derivative on both sides of the above equation yields

XiPN
δ (ψN(φ))(x) = XiPN

t+δ(ψN(φ))(x) +
1
2

∫ t

0
XiPN

s ∆PN
δ (ψN(φ))(x)ds.

It has been known from [22] that

|∇PN
t f | ≤

1
√

t
e

1
2 K0tEx[e

1
2σlt ]‖ f ‖∞,

where lt is the local time supported on ∂D. By [22, Corollary 3.2.8.] or Lemma 3.3 presented in the
next section, one has

Ex[e
1
2σlt ] ≤ ‖h‖σ∞ exp

(
σ

2
Kh,σt

)
,

where h ∈C∞(D) such that h ≥ 1 and N logh ≥ 1 and

Kh,σ = sup{−∆ logh +σ|∇ logh|2}.

We then conclude that

|XiPN
δ (ψN(φ))|(x) ≤ ‖h‖∞ e

1
2 (K0+σKh,σ)t

[
1
√

t
‖ψN(φ)‖∞+

√
t‖∆PN

δ (ψN(φ))‖∞

]
≤ ‖h‖∞ e

1
2 (K0+σKh,σ)t

[
1
√

t
‖∇φ‖∞+

√
t‖∆PN

δ (ψN(φ))‖∞

]
. (2.12)

Since for 0 < s ≤ δ,

d[∆PN
δ−s(ψN(φ))(Xs)] =

1
2

N
(
∆PN

δ−s(ψN(φ))(Xs)
)
(Xs)dls,

then there exists constants c1,c2 > 0 such that

|∆PN
δ (ψN(φ))|(x) ≤ |PN

δ [∆(ψN(φ))]|(x) +
1
2
Ex

[∫ δ

0
(∆PN

δ−s(ψN(φ)))(Xs)dls

]
≤ ‖∆(ψN(φ))‖∞+

c1

2
Exlδ ≤ ‖∆(ψN(φ))‖∞+

c2

2

√
δ. (2.13)

Letting δ go to 0 yields

|∆PN
δ (ψN(φ))|(x) ≤ ‖∆(ψN(φ))‖∞.

Moreover,

d//−1
t ∇PN

δ−t(ψN(φ))(Xt) =//−1
t ∇//tdBt P

N
δ−t(ψN(φ))(Xt) +

1
2
//−1

t Ric](∇PN
δ−t(ψN(φ)))(Xt)dt

+
1
2
//−1

t ∇N∇PN
δ−t(ψN(φ))(Xt)dlt,
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which implies

|〈∇PN
δ (ψN(φ)),Xi〉(x)−Ex〈//−1

δ ∇(ψN(φ))(Xδ),Xi〉|

≤
K0

2

∫ δ

0
Ex|∇PN

δ−s(ψN(φ))|(Xs)ds +
σ

2
Ex

∫ δ

0
|∇PN

δ−s(ψN(φ))|(Xs)dls.

Again using Itô’s formula for //s∇(ψN(φ))(Xs), we further have

|〈∇PN
δ (ψN(φ)),Xi〉(x)−〈∇(ψN(φ)),Xi〉(x)|

≤ |〈∇PN
δ (ψN(φ)),Xi〉(x)−Ex〈//−1

δ ∇(ψN(φ))(Xδ),Xi〉|

+ |Ex〈//−1
δ ∇(ψN(φ))(Xδ),Xi〉− 〈∇(ψN(φ)),Xi〉(x)|

≤
K0

2

∫ δ

0
Ex|∇PN

δ−s(ψN(φ))|(Xs)ds +
σ

2
Ex

∫ δ

0
|∇PN

δ−s(ψN(φ))|(Xs)dls

+

∫ δ

0
Ex|∆(1)∇(ψN(φ))|(Xs)ds +Ex

∫ δ

0
|∇N∇(ψN(φ))|(Xs)dls.

Letting δ go to 0 we obtain

lim
δ→0
|XiPN

δ (ψN(φ))|(x) = |Xi(ψN(φ))|(x).

Together this with (2.12) and (2.13), we have

|Xi(ψN(φ))|(x) ≤ ‖h‖∞ e
1
2 (K0+σKh,σ)t

[
1
√

t
‖∇φ‖∞+

√
t‖∆(ψN(φ))‖∞

]
.

By Weitzenböck’s formula, we calculate that

∆(ψN(φ)) = ∆ψN(φ) +ψ〈∆(1)N,∇φ〉+ψ〈N,∆(1)∇φ〉+ 〈∇ψ,∇N(φ)〉

= ∆ψN(φ) +ψ〈∆(1)N,∇φ〉+ψ〈N,∇∆(1)φ〉+ψ〈∇N,Hessφ〉+ 〈∇ψ,∇N(φ)〉

= ∆ψN(φ) +ψ〈∆(1)N,∇φ〉+ Ric(ψN,∇φ)−λψ〈N,∇φ〉+ψ〈∇N,Hessφ〉+ 〈∇ψ,∇N(φ)〉,

and for x ∈ ∂D,

Xi(ψN(φ))(x) = Xi(ψ)(x)N(φ)(x) +ψ(x)XiN(φ)(x) = XiN(φ)(x).

We finally conclude that

|XiN(φ)|(x) ≤ ‖h‖∞ e
1
2 (K0+σKh,σ)t

(
1
√

t
+
√

t(‖∆(1)N‖∂r0 D,∞+ ‖∆ψ‖∞+ K0 +λ)
)
‖∇φ‖∞

+ ‖h‖∞ e
1
2 (K0+σKh,σ)t √t(‖∇N‖∂r0 D,∞+ ‖∇ψ‖∞)‖Hessφ‖∞.

We then complete the proof by combining the above estimate with (2.10) and (2.11).
�

Combining the estimates in Lemmas 2.5 and 2.7 with Theorem 2.3, we are now in a position to
prove our first main result.

Theorem 2.8. Let D be a compact Riemannian manifold with boundary ∂D. Assume that |Ric| ≤ K0,
|R| ≤ K1 and |d∗R +∇Ric| ≤ K2 on D. Moreover, assume that N is the extended vector field of the
normal vector field to the neighbour area ∂r0 D := {x : ρ∂D(x) ≤ r0} such that |∇N | ≤ σ and |∆(1)N | ≤ β
on ∂r0 D. Let α ∈ R such that

1
2

∆ρ∂D ≤ α.

For h ∈ C∞(D) with minD h = 1 and N logh|∂D ≥ 1 and some cut-off function ψ ∈ C2(D) satisfying
ψ|∂D = 1 and ψ(x) = 0 for ρ∂(x) ≥ r0,
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• if
√
λ+ K0 ≥ 2 f ( 1

λ+K0
,α), then

‖Hessφ‖
‖φ‖∞

≤2(n−1)eσ f (
1

λ+ K0
,α)

+ 2e(‖h‖∞+ 2)
√
λ+ K0 max

{ √
λ+ 2K0 +σKh,σ, 2‖h‖∞(σ+ ‖∇ψ‖∞)

}
+ 2e

[
‖h‖∞(β+ ‖∆ψ‖∞+ K0 +λ) + K1

]
+

K2 e√
λ+ 2K0 +σKh,σ

;

• if
√
λ+ K0 < 2 f ( 1

λ+K0
,α), then

‖Hessφ‖
‖φ‖∞

≤ 2(n−1)σe f (
1

λ+ K0
,α)

+ 2e(‖h‖∞+ 2)max
{ √

λ+ 2K0 +σKh,σ, 2‖h‖∞(σ+ ‖∇ψ‖∞)
} f (

1
λ+ K0

,α) +
λ+ K0

4 f ( 1
λ+K0

,α)


+ 2
√

e
‖h‖∞(β+ ‖∆ψ‖∞+ K0 +λ) + K1√

λ+ 2K0 +σKh,σ

 f
( 1
λ+ K0

,α
)
+

λ+ K0

4 f
( 1
λ+K0

,α
)

+
K2
√

e
λ+ 2K0 +σKh,σ

 f
( 1
λ+ K0

,α
)
+

λ+ K0

4 f
( 1
λ+K0

,α
) ,

where Kh,α := supD{−∆ logh +α|∇ logh|2} with α a positive constant.

Proof. According to the formula (2.6) we have

|Hessφ(v,v)| = E
[
eλ(t∧τD)/2 Hessφ

(
Qt∧τD(k(t∧τD)v),Qt∧τD(v)

)]
+E

[
eλ(t∧τD)/2 dφ(Wk

t∧τD
(v,v))

]
−E

[
eλ(t∧τD)/2 dφ(Qt∧τD(v))

∫ t∧τD

0
〈Qs(k̇(s)v), //sdBs〉

]
.

Taking k(s) = (t− s)/t for s ∈ [0, t] in the equation yields

|Hessφ(v,v)|

≤ (n−1)σE
[
1{τD≤t} e( λ2 +K0)τD

t−τD

t

]
‖N(φ)‖∂D,∞

+ ‖h‖∞E
[
1{τD≤t} e( λ2 +K0)τD

t−τD

t
e

1
2 (K0+σKh,σ)(t−τD)

(
1

√
t−τD

+
√

t−τD(‖∆(1)N‖∂r0 D,∞+ ‖∆ψ‖∞+ K0 +λ)
)]
‖dφ‖∞

+ ‖h‖∞E
[
1{τD≤t} e( λ2 +K0)τD

t−τD

t
e

1
2 (K0+σKh,σ)(t−τD) √t−τD(‖∇N‖∂r0 D,∞+ ‖∇ψ‖∞)

]
‖Hessφ‖∞

+ ‖dφ‖∞
(
K1
√

t +
K2

2
t
)

e
(

1
2λ+K0

)
t

+ 2‖dφ‖∞
e
(

1
2λ+K0

)
t

√
t

. (2.14)

Combining this with the fact that

t−τD

t
1

√
t−τD

≤

√
t−τD

t
≤

1
√

t
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and then substituting back into (2.14) and using (2.8) by letting t = 1
λ+K0

we obtain

|Hessφ(v,v)|

≤ (n−1)σe( λ2 +K0)t √e f
( 1
λ+ K0

,α
)
‖φ‖∞

+ ‖h‖∞ e( λ2 +K0+
σKh,σ

2 )t
(

1
√

t
+
√

t(‖∆(1)N‖∂r0 D,∞+β+ K0 +λ)
)
‖dφ‖∞

+ ‖h‖∞ e( λ2 +K0+
σKh,σ

2 )t √t(σ+ ‖∇ψ‖∞)‖Hessφ‖∞

+

(
2
√

t
+ K1

√
t +

K2

2
t
)

e
(

1
2λ+K0

)
t ‖dφ‖∞. (2.15)

Now let t = t0 := 1
max{λ+2K0+σKh,σ,4‖h‖2∞(σ+‖∇ψ‖∞)2}

. Then

‖h‖∞ e( λ2 +K0+
σKh,σ

2 )t0
√

t0(‖∇N‖∂r0 D,∞+ ‖∇ψ‖∞)‖Hessφ‖∞ ≤
1
2
‖Hessφ‖∞

and

|Hessφ(v,v)| ≤ 2(n−1)σe f
( 1
λ+ K0

,α
)
‖φ‖∞

+ 2
√

e(‖h‖∞+ 2)max
{ √

λ+ 2K0 +σKh,σ, 2‖h‖∞(σ+ ‖∇ψ‖∞)
}
‖dφ‖∞

+ 2
√

e
‖h‖∞(β+ ‖∆ψ‖∞+ K0 +λ) + K1

max{
√
λ+ 2K0 +σKh,σ, 2‖h‖∞(σ+ ‖∇ψ‖∞)}

‖dφ‖∞

+ K2
√

e
1

max{λ+ 2K0 +σKh,σ, 4‖h‖2∞(σ+ ‖∇ψ‖∞)2}
‖dφ‖∞

≤ 2(n−1)σe f
( 1
λ+ K0

,α
)
‖φ‖∞

+ 2
√

e(‖h‖∞+ 2)max
{ √

λ+ 2K0 +σKh,σ, 2‖h‖∞(σ+ ‖∇ψ‖∞)
}
‖dφ‖∞

+ 2
√

e
‖h‖∞(β+ ‖∆ψ‖∞+ K0 +λ) + K1√

λ+ 2K0 +σKh,σ
‖dφ‖∞

+
K2
√

e
λ+ 2K0 +σKh,σ

‖dφ‖∞. (2.16)

It is known from Arnaudon, Thalmaier and Wang [2] that

‖dφ‖∞
‖φ‖∞

≤


√

e(λ+ K0), if
√
λ+ K0 ≥ 2 f ( 1

λ+K0
,α);

√
e
(

f ( 1
λ+K0

,α) +
λ+K0

4 f ( 1
λ+K0

,α)

)
, if

√
λ+ K0 < 2 f ( 1

λ+K0
,α),

Combining this with (2.16) implies that

• if
√
λ+ K0 ≥ 2 f ( 1

λ+K0
,α), then

‖Hessφ‖
‖φ‖∞

≤2(n−1)eσ f (
1

λ+ K0
,α)

+ 2e(‖h‖∞+ 2)
√
λ+ K0 max

{ √
λ+ 2K0 +σKh,σ, 2‖h‖∞(σ+ ‖∇ψ‖∞)

}
+ 2e

[
‖h‖∞(β+ ‖∆ψ‖∞+ K0 +λ) + K1

]
+

K2 e√
λ+ 2K0 +σKh,σ

; (2.17)
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• if
√
λ+ K0 < 2 f ( 1

λ+K0
,α), then

‖Hessφ‖
‖φ‖∞

≤ 2(n−1)σe f (
1

λ+ K0
,α)

+ 2e(‖h‖∞+ 2)max
{ √

λ+ 2K0 +σKh,σ, 2‖h‖∞(σ+ ‖∇ψ‖∞)
} f (

1
λ+ K0

,α) +
λ+ K0

4 f ( 1
λ+K0

,α)


+ 2
√

e
‖h‖∞(β+ ‖∆ψ‖∞+ K0 +λ) + K1√

λ+ 2K0 +σKh,σ

 f
( 1
λ+ K0

,α
)
+

λ+ K0

4 f
( 1
λ+K0

,α
)

+
K2
√

e
λ+ 2K0 +σKh,σ

 f
(

1
λ+ K0

,α

)
+

λ+ K0

4 f
( 1
λ+K0

,α
) . (2.18)

�

3. Hessian estimates on Neumann eigenfunctions of Laplacian

We also use a stochastic approach to prove Theorem 1.3. Let us first introduce the Hessian formulas
for the Neumann semigroups, which are established in [4] very recently. The reflecting Brownian
motion on D with generator 1

2∆ satisfies the SDE

dXt = //t ◦ dBx
t +

1
2

N(Xt)dlt, X0 = x,

where Bx
t is a standard Brownian motion on the Euclidean space TxD �Rn. We write again Xt = Xt(x)

to indicate the starting point x ∈ D (which may be on the boundary ∂D). Here //t : TxD→ TXt(x)D
denotes the ∇-parallel transport along Xt(x) and lt the local time of Xt(x) supported on ∂D. Note that
the reflecting Brownian motion Xt(x) is defined for all t ≥ 0.

Suppose that Q̃t : TxD→ TXt(x)D satisfies

DQ̃t = −
1
2

Ric](Q̃t)dt +
1
2

(∇N)](Q̃t)dlt, Q̃0 = id. (3.1)

For k ∈ C1
b([0,∞);R) define an operator-valued process W̃k

t : TxD⊗TxD→ TXt(x)D as solution to the
following covariant Itô equation

DW̃k
t (v,w) = R(//t dBt, Q̃t(k(t)v))Q̃t(w)

−
1
2

(d∗R +∇Ric)](Q̃t(k(t)v), Q̃t(w))dt

−
1
2

(∇2N −R(N))](Q̃t(k(t)v), Q̃t(w))dlt

−
1
2

Ric](W̃k
t (v,w))dt +

1
2

(∇N)](W̃k
t (v,w))dlt, (3.2)

with initial condition W̃k
0(v,w) = 0.

Theorem 3.1 ([4]). Let D be a compact Riemannian manifold with boundary ∂D. Let X(x) be the
reflecting Brownian motion on D with starting point x (possibly on the boundary) and denote by
Pt f (x) = E[ f (Xt(x)] the corresponding Neumann semigroup acting on f ∈ Bb(D). Then, for v ∈ TxD,
t ≥ 0 and k ∈C1

b([0,∞);R),

Hess Pt f (v,v) = E

[
−d f (Q̃t(v))

∫ t

0
〈Q̃s(k̇(s)v), //sdBs〉+ d f (W̃k

t (v,v))
]
.

By estimating W̃k and Q̃ explicitly, we can get pointwise bounds for the Hessian of Neumann
eigenfunctions.
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Proof. By [4, Theorem 3.5] the Hessian of the semigroup can be estimated as

|Hess Pt f |(x) ≤
(
K1 +

K2

2

√
t +

2
t

)
eK0tE[eσ1lt ]‖ f ‖∞

+
σ2

2
√

t
eK0tE

[
eσ1lt

]1/2
E [∫ t

0
e

1
2σ1ls dls

]21/2

‖ f ‖∞,

We complete the proof by observing that Ptφ = e−λt/2φ. �

Corollary 3.2. We keep the assumptions of Theorem 3.1. Assume that Ric ≥ −K0, |R| ≤ K1 and
|d∗R +∇Ric| ≤ K2 on D, and II ≥ −σ1, |∇2N + R(N)| < σ2 on the boundary ∂D. Then, for (φ,λ) ∈
EigN(D),

|Hessφ|(x) ≤e( 1
2λ+K0)tE[eσ

+
1 lt ]

(
1
√

t
+ K1

√
t +

K2

2
t
)
‖dφ‖∞

+
σ2

2
e(K0+ λ

2 )tE

(
e

1
2σ

+
1 lt

∫ t

0
e

1
2σ

+
1 ls dls

)
‖dφ‖∞.

Proof. By [4, Corollary 3.9] the Hessian of the semigroup can be estimated as

|Hess Pt f | ≤
(
K1
√

t +
K2

2
t +

1
√

t

)
E
[
eσ

+
1 lt

]
eK0t ‖∇ f ‖∞

+
σ2

2
E

(
e

1
2σ

+
1 lt

∫ t

0
e

1
2σ

+
1 ls dls

)
eK0t ‖∇ f ‖∞.

We complete the proof by observing that Ptφ = e−λt/2φ. �

Now we turn to the problem of estimating E[eαlt/2] for α > 0 by introducing a specific class of
function h.

Lemma 3.3. Suppose that h ∈C∞(D) such that h ≥ 1 and N logh ≥ 1. For α > 0 let

Kh,α = sup{−∆ logh +α|∇ logh|2}.

Then

E[eαlt/2] ≤ ‖h‖α∞ exp
(
α

2
Kh,αt

)
.

Proof. By the Itô formula we have

dh−α(Xt) = 〈∇h−α(Xt), //t dBt〉+
1
2

∆h−α(Xt)dt +
1
2

Nh−α(Xt)dlt

≤ 〈∇h−α(Xt), //t dBt〉−αh−α(Xt)
(
−

1
2

Kh,α dt +
1
2

N logh(Xt)dlt

)
.

Hence,

Mt := h−α(Xt)exp
(
−
α

2
Kh,αt +

α

2

∫ t

0
N logh(Xs)dls

)
is a local submartingale. Therefore, by Fatou’s lemma and taking into account that h ≥ 1, we get

E

[
h−α(Xt)exp

(
−
α

2
Kh,αt +

α

2

∫ t

0
N logh(Xs)dls

)]
≤ E

[
h−α(Xt∧τD)exp

(
−
α

2
Kh,α(t∧τD) +

α

2

∫ t∧τD

0
N logh(Xs)dls

)]
≤ h−α(x) ≤ 1.
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Since N logh(x) ≥ 1 we conclude that

E
[
exp

(α
2

lt
)]
≤ E

[
exp

(
α

2

∫ t

0
N logh(Xs)dls

)]
≤ ‖h‖α∞ exp

(α
2

Kh,αt
)
. �

Combining Theorem 3.2 and Lemma 3.3, we are now in a position to prove Theorem 1.3.

Theorem 3.4. Let D be an n-dimensional compact Riemannian manifold with boundary ∂D. Assume
that Ric ≥ −K0, |R| ≤ K1 and |d∗R +∇Ric| ≤ K2 on D, and that II ≥ −σ1 and |∇2N −R(N)| ≤ σ2 on
the boundary ∂D. For h ∈ C∞(D) with minD h = 1 and N logh|∂D ≥ 1, let Kh,α := supD{−∆ logh +

α|∇ logh|2} with α a positive constant. Then for any non-trivial (φ,λ) ∈ EigN(∆),

‖Hess φ‖∞
‖φ‖∞

≤CN,λ(D)λ

where

CN,λ(D) =e

1 +
K1 + 2K+

0 + 2σ+
1 Kh,2σ+

1

λ
+

K2 + 2σ2Kh,2σ+
1

λ
√

2λ+ 4K+
0 + 4σ1Kh,2σ+

1

‖h‖3σ+
1

∞

+
σ2 e
λ

√
2λ+ 4K+

0 + 4σ+
1 Kh,2σ+

1
‖h‖

3σ+
1

∞ ln‖h‖∞;

Proof. By Lemma 3.3, we have

E[eσ1lt ] ≤ E[eσ
+
1 lt ] ≤ ‖h‖

2σ+
1

∞ exp
(
σ+

1 Kh,2σ+
1
t
)
,

and

E[eσ1lt ] ≤ ‖h‖
2σ+

1
∞ exp

(
σ+

1 Kh,2σ+
1
t
)
.

Moreover, we observe that

E

[
e

1
2σ1lt

∫ t

0
e

1
2σ1ls dls

]
≤

2(E[e(σ+
1 +ε)lt ]−1)

σ+
1 +ε

≤
2

σ+
1 +ε

(
‖h‖

2(σ+
1 +ε)

∞ exp
(
(σ+

1 +ε)Kh,2(σ+
1 +ε)t

)
−1

)
≤

2
σ+

1 +ε

(
‖h‖

2(σ+
1 +ε)

∞ exp
(
(σ+

1 +ε)Kh,(σ+
1 +ε)t

)
−1

)
≤

2
σ+

1 +ε

(
‖h‖

2(σ+
1 +ε)

∞ −1
)
+

2
σ+

1 +ε
‖h‖

2(σ+
1 +ε)

∞

[
exp

(
(σ+

1 +ε)Kh,2(σ+
1 +ε)t

)
−1

]
≤ 4‖h‖

2(σ+
1 +ε)

∞ ln‖h‖∞+ 2‖h‖
2(σ+

1 +ε)
∞ exp

(
(σ+

1 +ε)Kh,2(σ+
1 +ε)t

)
Kh,2(σ+

1 +ε)t.

Letting ε tend to 0, we arrive at

E

[
e

1
2σ1lt

∫ t

0
e

1
2σ1ls dls

]
≤ 4‖h‖

2σ+
1

∞ ln‖h‖∞+ 2‖h‖
2σ+

1
∞ exp

(
σ+

1 Kh,2σ+
1
t
)
Kh,2σ+

1
t.

Therefore, combining this with Theorem 3.2, we obtain

‖Hessφ‖∞
‖dφ‖∞

≤ e( 1
2λ+K0)t

(
1
√

t
+ K1

√
t +

K2

2
t
)
‖h‖

2σ+
1

∞ exp
(
σ+

1 Kh,2σ+
1
t
)

+σ2 e( 1
2λ+K0)t

[
2ln‖h‖∞+ Kh,σ+

1
t
]
‖h‖

2σ+
1

∞ exp
(
σ+

1 Kh,2σ+
1
t
)

≤ e( 1
2λ+K0)t

(
1
√

t
+ K1

√
t +

K2

2
t
)
‖h‖

2σ+
1

∞ exp
(
σ+

1 Kh,2σ+
1
t
)

+σ2 e( 1
2λ+K0)t

[
2ln‖h‖∞+ Kh,σ+

1
t
]
‖h‖

2σ+
1

∞ exp
(
σ+

1 Kh,2σ+
1
t
)
.
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Let t =
(
λ+ 2K0 + 2σ+

1 Kh,2σ+
1

)−1
. Then we get

‖Hessφ‖∞
‖dφ‖∞

≤

(
K1√

λ+ 2K0 + 2σ+
1 Kh,2σ+

1

+
√
λ+ 2K0 + 2σ+

1 Kh,2σ+
1

+
K2 + 2σ2Kh,σ+

1

2(λ+ 2K0 + 2σ+
1 Kh,2σ+

1
)

+ 2σ2 ln‖h‖∞

)
‖h‖

2σ+
1

∞

√
e.

On the other hand, from [2], it has already been shown that

‖dφ‖∞
‖φ‖∞

≤
1
√

t
E[eσ1lt ]1/2 e

1
2 (K0+λ)t ≤

1
√

t
‖h‖

σ+
1
∞ exp

(
1
2

(λ+σ+
1 Kh,2σ+

1
+ K0)t

)
.

Let t =
(
λ+ K0 +σ+

1 Kh,2σ+
1

)−1
. Then we get

‖dφ‖∞
‖φ‖∞

≤

√
λ+ K0 +σ+

1 Kh,2σ+
1
‖h‖

σ+
1
∞

√
e.

We then conclude that

‖Hessφ‖∞
‖φ‖∞

≤

(
λ+ K1 + 2K0 + 2σ+

1 Kh,2σ+
1

+
K2 + 2σ2Kh,σ+

1

2
√
λ+ 2K0 + 2σ+

1 Kh,2σ+
1

+ 2σ2 ln‖h‖∞
√
λ+ K0 +σ+

1 Kh,2σ+
1

)
‖h‖

3σ+
1

∞ e .

�

4. Construction of functions h and ψ

In Section 4 we explain that if more refined geometric information about the boundary is available
(for instance as Condition (B) below), then following F.-Y. Wang’s construction of the function h (see
[21, p.1436] or [22, Theorem 3.2.9]), we can derive explicit upper bounds for ‖h‖∞ and the constant
Kh,2(σ+

1 +δ) in Theorem 3.4. See Theorem 1.3 above for a precise formulation of the result. Let us first
formulate a more refined condition on the boundary.

Condition (B) There exists a non-negative constant σ such that II ≤σ and a positive constant r0 such
that on ∂r0 D := {x ∈ D : ρ∂D(x) ≤ r0} the distance function ρ∂D to the boundary ∂D is smooth.

Furthermore let k be a positive constant such that Sect ≤ k which exists by compactness of D.
Using Condition (B), F.-Y. Wang constructed a function h ∈ D (see [21, p.1436] or [22, Theorem
3.2.9] for the notation and result). Modifying his construction one defines

logh(x) =
1

Λ0

∫ ρ∂(x)

0
(`(s)− `(r1))1−n ds

∫ r1

s∧r1

(`(u)− `(r1))n−1 du (4.1)

where ` is defined in (1.6), r1 := r0∧ `
−1(0) and

Λ0 := (1− `(r1))1−n
∫ r1

0
(`(s)− `(r1))n−1 ds.

Then from the proof of [20, Theorem 1.1], we get:

Kh,α ≤ Kα :=
n
r1

+α and ‖h‖∞ ≤ e
1
2 nr1 . (4.2)

Lemma 4.1. Let σ,k ∈ R be non-negative constants such that |II| ≤ σ and |Sect| ≤ k on ∂r0 D := {x :
ρ∂D(x) ≤ r0} for some r0 > 0. Then

−2(σ∨
√

k) ≤ ∆ρ∂(x) ≤ σ∨
√

k, ρ∂(x) ≤ r2,
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where

r2 := r0∧ `
−1(

1
2

). (4.3)

Then there exists ψ ∈C2(D) satisfying ψ|∂D = 0 and ψ(x)|ρ∂(x)≥r0 = 0 such that

‖∇ψ‖∞ ≤
3
r2

; ‖∆ψ‖∞ ≤
6(σ∨

√
k)

r2
+

6
r2

2

.

Proof. Using the comparison theorem for ∆ρ∂, we have the following estimates due to Kasue [9, 10],

`′k,σ(ρ∂(x))

`k,σ(ρ∂(x))
≤ ∆ρ∂(x) ≤

`′
−k,−σ(ρ∂(x))

`−k,−σ(ρ∂(x))
, ρ∂(x) ≤ r0∧ `

−1
k,σ(0).

It is easy to have for k,σ ≥ 0,

∆ρ∂(x) ≤ σ∨
√

k.

For ρ∂(x) ≤ r0∧ `
−1
k,σ( 1

2 ),

∆ρ∂(x) ≥
`k,σ(ρ∂(x))
`k,σ(ρ∂(x))

≥ 2`k,σ(ρ∂(x)) ≥ −2(σ∨
√

k).

Let

ψ(x) =


(

r2−ρ∂D(x)
r2

)3
, 0 ≤ ρ∂D(x) ≤ r2;

0, ρ∂D(x) > r2,
. (4.4)

where r2 = r0∧ `
−1( 1

2 ) and

`−1(
1
2

) =
[(

arcsin
( √

k/(k +σ2)
)
− arcsin

( √
k/2(k +σ2)

))
/
√

k
]
, for k > 0.

Then we have

‖∇ψ‖∞ ≤
3
r2
, and ‖∆ψ‖∞ ≤

6(σ∨
√

k)
r2

+
6
r2

2

. (4.5)

�

Proof of Theorem 1.1. Substituting the upper bound α =
√

k∨σ from ∆ρ∂(x) ≤
√

k∨σ for f (t,α)
into inequalities (2.17) and (2.18). Then using h and ψ defined in (4.1) and (4.4) and substituting the
estimates (4.2) and (4.5), we replace

Kh,α, ‖h‖∞, ‖∇ψ‖∞, ‖∆ψ‖∞

by
n
r1

+α, enr1/2,
3
r2
,

6(σ∨
√

k)
r2

+
6
r2

2

respectively. We then complete the proof of inequality (1.7) �

Proof of Theorem 1.3. From the conditions we see that Condition (B) is satisfied. Then, the Hessian
estimate of Neumann eigenfunctions in Theorem 3.4 remain valid by substituting the h defined in
(4.1). Then under replacing

Kh,α and ‖h‖∞
by

Kα :=
n
r1

+α and enr1/2

respectively, the conclusion is just listed in Theorem 1.3. �
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