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Abstract

The well-posedness and exponential ergodicity are proved for stochastic Hamiltonian
systems containing a singular drift term which is locally integrable in the component
with noise. As an application, the well-posedness and uniform exponential ergodicity are
derived for a class of singular degenerated McKean-Vlasov SDEs.
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1 Introduction

Let dy,ds € N. For fixed T' € (0, 00], consider the following degenerate SDE for (X;,Y;) €
Ré+z — R x Rez;

(1) {dXt = 20 (X, Yo,

dY; = (Z(X.,Y2) + bu(Y2))dt + oy (Yo)dW,, ¢ € [0, 7],

where [0,T] := [0,00) when T'" = oo, (W})sco,1] is an m-dimensional Brownian motion on a
complete filtrated probability space (€2, #,{Z }icjo,r,P), and

ZD [0, T] x R+ 5 RE 4§ =1,2,
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b:[0,T] x R2 - R2 5:[0,T] x R2 - R2 @ R™

are measurable. We assume that Z”(z,y) and o,(y) are continuous in (z,y) € RU+% ag
“regular” coefficients, but b;(y) only satisfies a local integrability condition in (¢,y) and is
regarded as a “singular” term. See assumptions (A;)-(As) below for details.

SDE (1.1) is known as stochastic Hamiltonian system when the drifts are given by the
gradients of a Hamiltonian functional. The associated Fokker-Planck equation is called the
Langevin equation or kinetic Fokker-Planck equation. In particular, when Zt(l)(x,y) =y, X;
and Y; stand for the location and speed of a fluid flow at time t respectively.

In this paper, we investigate the well-posedness and exponential ergodicity of (1.1) with drift
z? (x,y) + bi(y) discontinuous in (¢,y). These two properties have been intensively studied
when the coefficients are regular enough or the invariant probability measure is known, which
we summary as follows.

When Zt(l)(az, y) and Zt(z)(:c,y) + bi(y) satisfy a Dini-Hoélder continuity condition in (z,y),
the well-posedness of (1.1) has been proved in [2, 18], see also the recent paper [8] for the weak
well-posedness of (1.1) for d; = dy, ZW(z,y) = y,0 = Iy, (the dy x dy identity matrix) and
Z® 4 b being in a weighted anisotropic Besov space.

When the SDE is time independent, the exponential ergodicity for special versions of (1.1)
has been studied in many references. When the unique invariant probability measure is given,
the hypocoercivity introduced by Villani [15] has attracted a lot of attentions , and has been
further developed in a series of papers such as [1, 6, 7] based on an abstract analytic frame-
work built up by Dolbeaut, Mouhot and Schmeiser [3]. However, the study in this direction
heavily relies on the explicit formulation of the invariant probability measure, for which the
drifts are given by (weighted) gradient of a Hamiltonian functional. A crucial motivation in
the ergodicity theory is to simulate the invariant probability measure by using the stochastic
system. In this spirit, we study the ergodicity for the above general model with unknown in-
variant probability measure. On the other hand, when the coefficients are regular enough, the
exponential ergodicity follows from some modified dissipativity conditions, see for instance [19]
for the hypercontractivity implying the exponential ergodicity in related entropy, and [14] for
an extension to McKean-Vlasov SDEs.

In Section 2 and Section 3, we investigate the well-posedness and exponential ergodicity
for (1.1) with Zt(z) (x,y) only satisfying a local integrability condition in (¢,y), such that the
corresponding results derived in the recent papers [13, 16, 21| for non-degenerate SDEs are
extended to the present degenerate setting. Finally, in Section 4 we extend the main results to
McKean-Vlasov SDEs.

2 Well-posedness

In this part we let T € (0, 00) be finite. For any r > 0 and (x,y) € R+ et
By (w,y) == {(z",y) e R |z —o/| + |y —y/| < v}, Bi(y):={y eR®:|y—y/|<r}.

For any

dy 2
,q) € KX = Q) pq € (2,00), —+—<1p¢,
(P, q) {(PQ) p,q € ( )p . }
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define the f)g—norm of a (vector or real valued) measurable function f on [0, 7] x R%:
T .
1155 = sup ([ D it
yER2 0

We write [ € fﬂ; if [[f]lzz < oo and LP represents the Ezq’—norm independent of ¢. We use V()

and V@ to denote the gradient operators in z € R% and y € R% respectively, so that (V®)? is
the corresponding Hessian operator. In case only one variable is concerned, we simply denote
the gradient by V.

(A1) For any n > 1 there exists a constant 0 < K, < oo such that

max |2 (z,y) = 2, (¢!, )| < Kullx = 2’| + |y —y']), t€[0,T], (2,9), (a,y/) € B.(0).

=1,
Moreover, ‘
sup  |Z17(0)] < .
t€[0,T],i=1,2

(Ay) oo* is invertible with ||o||« + ||(00*) 7|l < o0, and

lim sup llow(y) — Ut(y/)H =0.
€40 tE[O,T],|y7y/|§g

Moreover, there exist [ € N, {(pi, ¢i) }o<i<i and 1 < f; € f’gfv 0 < ¢ <[ such that
!
Bl < fo, IVol <D fi
i=1

(A3) There exist € € (0,1) and 1 <V € C?*(R¥*%) with

vy / v(2))2) /
(2.1) lim V(z,y) =o0, limsup sup | () + Il )2V (z,y')||
[l +ly| o0 ||+ |yl —00 y € B (1) V(z,y)

< 00,

such that

e sup {120 @ )|IVOVOV (@, )| + 127 (2, 9)| (IVPV (2, )| + [(VE)2V (z,4/)]) }

y'€Be(y)

(2 (@, y), VV () (@) + (23 (@,9), VV (2, ) () < 0V (2, y)
holds for some 0 < n € L'([0,T7]), all t € [0,T] and (x,y) € R+,

Theorem 2.1. Assume (Ay) and (Ay). Then for any initial value (Xo,Yo) the SDE (1.1) has
a unique strong solution up to the life time . If (As) holds then ( =T and

(2.2) E| sup V(X Y;)
t€[0,T

Fo| < eV (X0, Vo)

holds for some constant 0 < ¢ < oco.
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By a truncation argument, we first consider the case where {K,},>1 is bounded. In this
case, we may follow the line of [20] to prove the well-posedness by using Zvonkin’s transform.
The only difference is that in the present degenerate setting we apply this transform for the
following time-dependent elliptic operators on R%:

1
Ly = 5tr(o—tU;:VQ) +b-V, tel0,T].

Moreover, since Y; also depends on X;, we have to reprove the Khasminskii estimate for Y;
which is crucial in the proof of pathwise uniqueness.

Lemma 2.2. Assume (Ay) and that |Z?)||. < oco. Then for any (p,q) € # there exists an
increasing function H : [0,00) — [0,00) such that for any strong solution (X, Yy)iepo,r of (1.1),

E[efoT\ft(ﬁ)Ith] < H(Hf”ig)’ fe EZ-

Proof. Let
Vs 1= (07 (0508) T ZP) (X, Yy), s €[0,T).

By (A;) and the boundedness of Z?), we have

23) K /T||%H§ods < oo.
0
So, by Girsanov’s theorem,
Wy =W, + /t%ds, te€0,T]
0
is an m-dimensional Brownian motion under the probability measure Q := RP, where
P or o S W)= d [T prefds

So, Y; solves the SDE .
dY;, = b (Yy)dt + o,(Yy)dW,, t € [0,T).

By [20, Lemma 4.1], (Ay) implies that
Eqel VO < Ho(f] )
holds for some increasing function Hy : [0,00) — [0,00). Thus,

Eelo (0Pt — g [ Rlel fi)a]
1
< (E[RJ])% <EQ62f0T \ft(Yt)|2dt]> 2 _ (E[R—Z])% H0<2”fHEg)'
Then the proof is finished since (2.3) implies

E[R*Z] —= E[ef2 fOT<’Ys,dWS>+fOT |’)’3|2d5:|

T T
< E[e‘2f0 (s, dWs) =2 [ wsl2ds+3K] — 3K~



PDE

E1’

(2.7)

Proof of Theorem 2.1. (a) The well-posedness up to life time. By a truncation argument, in

stead of (A;) we may and do assume that Zt(i) are bounded and Lipschitz continuous in (x,y)
uniformly in ¢ € [0, 77, so that the life time of (X;,Y;) is 7. By [20, Themore 3.2], (A2) implies
that for any A > 0 the PDE

(24) (8t + Lt)ut = —)\Ut - bt7 t e [O,T], ur = 0
for u: [0,T] x R% — R% has a unique solution with
lulloo + Voo + V2l 0 < o0,

where V and V? are the gradient and Hessian operators on R%2. Moreover, for ¢ € (0,1) there
exits A > 0 is large enough such that,

(2.5) |t]|co + VU] < &.
We now make the Zvonkin’s transform for Y;:
Y, = 0,(Y1), Ouy) :=y+uly), tel0,T],ycR:

By (2.4) and generalised 1td’s formula (see [20]), (1.1) becomes

26) {dXt = Z\0(X,, V),

4y, = Z(X,, V) dt + 6,(Y,)dW,, t € [0,T],
where

20 (w,y) = 2 (2,671 (9)),
Zt(z) (x,y) = ((V@t) o @t_l(y))Zt@) (:1:, @;1(y)) — duy o @t_l(y),
&t(y> = ((V@t) © 6;1<y))0t © @;1<y)? te [07 T]’ (x,y) € Rd1+d2'

Since ||Vull < 1, ©; is diffeomorphism so that the well-posedness of (1.1) is equivalent to that
of (2.6). Noting that the coefficients of (2.6) are bounded and continuous in (x,y), this SDE
has a weak solution. By the Yamada-Watanable principle, it remains to prove the pathwise
uniqueness of (2.6). This can be done as in [20] by using Khasminskii’s estimate in Lemma 2.2.
Below we present a detailed proof for completeness.

For any nonnegative measurable function f on R%, consider its maximal functional

M f(x) = sup !

flz+y)dy, z¢€ R,
re0,) |Br(0)] J 5,0

By [20, Lemma 2.1], there exists a constant 0 < ¢ < oo such that for any function f € L>(R%)
with Vf € L}, .(RY),

loc

1f(x) = f)| < clz—y|(||flloc + AV fl(z) + AV f(y), z,y€R?
21 flllzz < ell fllz2-
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Now, let (Xt(i),z(i))te[o,T],Z‘ = 1,2, be two solutions of (2.6) with (Xél),f/o(l)) = (XéQ),Y/O(Q)).
By the Lipschitz continuity of Z\"” uniformly in ¢, (2.7) and ||V2ul iz < 00, we find functions
1<g; €Ly (0<j<I) such that

ST 120, y) = 206y + 16:(y) — 5 )1

i=1,2

l
< (le=aP+ly=y'P) D (05t 9)° + 95(t,9)°), t€[0,T], (w,9), (o) ERMH™.
j=0

Then by Ito’s formula, we find a constant 0 < ¢ < oo and a martingale M, such that
&= XY - XPP Y -YER e 0,7)
satisfies
!
(2.8) e, <6 S gt V)2 +aMy, e [0,T],& = 0.
j=0 i=1,2

By Lemma 2.2, for all 0 < § < 0o, we have
B[/ VP oo 0 <<l i=1,2

So, by the stochastic Gronwall inequality, see [21, Lemma 3.7], (2.8) implies (Xt(l),fft(l)) =
(X2, Y, for all t € [0, 7).

(b) Now, let (A3) hold, we aim to prove (2.2). By (2.5), we have |Y; — Y;| < e. Combining
this with (2.1) it suffices to prove (2.2) for Y; replacing Y}, i.e.

(2.9) E| sup V(X,,Y)

t€[0,T

Fo| < eV (Xo,Yo)
holds for some constant 0 < ¢ < co. By (2.5), (2.6), and It6’s formula, the boundedness of &
and (As) imply that for some constant 0 < C' < oo,
(2.10) AV (X, Y;) < C(1 + )V (X, Yy)dt +dM,, t€[0,T]
holds for some martingale M; with
d(M), < CV (X, Y;)%dt, t€[0,T).
Let 7, := T Ainf{t > 0,|X7| +|Y}| > n} and the life time

¢(:=limr7, n>1
n—oo

Then by the Gronwall Inequality we have

]E<V(X7'nv YTn)]‘Tn<T‘cg;0) S V(Xo, %)ecfoT(H‘WS)dS’

6



which implies
V (X, Yp)elo (rmt

E(1l,<r|%0) < —
( <T‘ 0) infig41y>n V (2, y)

Then by Fatou’s Lemma, we have
E(lCST‘yo) - O,

which further implies
P(C < T) = E(le<r) = E(E(Lesr| o) ) = 0.

With the definition of the life time (, when n — oo, we have ( = T. Finally, by a standard
argument using the Burkholder-Davis-Gundy and Gronwall inequalities, we prove (2.9) for some
constant ¢ > 0. 0

3 Exponential ergodicity
In this part we consider the time-homogeneous case such that (1.1) becomes

(3.1) dX, = ZW(X,,Y,)dt,
dY, = {ZP(X,, Y)) + b(Yy) }dt + oy (Y)dW,, >0,
where
Z0  RItE R =12 bh:R2? 5 RE2 g R%2 5 R2 @R

are measurable. We investigate the ergodicity of the associated Markov process. To this end,
we make the following assumption, which, according to Theorem 2.1, implies the well-posedness
and non-explosion of this SDE.

(B;) For any 1 < n < oo there exists a constant 0 < K,, < co such that

sup |29(z,y) = Z9(2,y)| < Ku(le —2'[ + |y = ¢/']), (z,y). (") € Ba(0).

i=1,2

(By) oo is invertible with [|o]|o + [|(00*) ™ [los < 00, and there exists p > (2 V d) such that
b] + || Vol € LP.

(Bs) There exist constants € € (0,1),0 < K < oo, an increasing function ® : [1,00) — (0, 00)
with ®(n) — co as n — 0o, and 1 <V € C?(R4+%) with

[VV (2, ) @) + IV?V (@, ) (@)l

(3.2) lim V(z,y) =00, limsup sup =0,
[Lyaq] J|+]y|—o0 2|+ |yl 00 1€ Be (1) (VAR(V))(z,y)

such that

e sup {1Z" (@ p)IVOIVOV (2, )| + |22 (@, »)|(IVOV (@,y)] + [VOVEV (2, y)])}

y'€Be(y)

(2 (2, y), VV () (@) + (23 (@,9), VV (2, ) () < K — &(V(z,y)).

7



By Theorem 2.1, under (B;)-(Bs) the SDE (3.1) is well-posed. Let {P,;}:>o be the associated
Markov semigroup, i.e.

Pif(z,y) =E[f (XYY", f€ By (RU2) ¢ >0, (2,y) € RN,

where (X}, Y,"Y) solves (3.1) with initial value (x,y). We investigate the ergodicity of P,, i.e.
it has a unique invariant probability measure p such that

lim Pfv=ypu, veZ,
t—o0
where & is the space of all probability measures on R%*% and

<ﬁwu>:uﬁww:/ Bfdv, | e BREE) ye D150

Rdl +do

In terms of (Bs), we consider the convergence under the V-variation norm

1 — p2llv == sup | (f) — m2(f)]-
FEB(RUF2) [ f|<V

Under this norm, the space

Py ={peP: pV) < oo}

is a complete metric sapce. When V = 1, we denote the norm by || - ||yer Which is known
as the total variation norm. The Lyapunov condition (Bs) implies the existence of invariant
probability measure.

3.1 Main results and example
To prove the ergodicity, we need the following assumption that any compact set is a petite set

Ofptf

(Bs) Any compact set D of R%%9 is Pi-petite, i.e. there exists ¢y > 0 and a non-trivial finite

measure v such that

AP
2 Pole) 2

where P,(z,-) is the transition probability kernel of P; at x € R¥1+d2 |

Theorem 3.1. Assume (By)-(Bs). Then the following assertions hold.

(1) P; has an invariant probability measure pu such that

p(@) = [ BV (@ y)uldedy) < 0

Rdl +do

holds for some g9 > 0.



(2) If P, is ty-reqular for some ty > 0, i.e. {Py(x,-) : x € Ra*%2} qre mutually equivalent,
then

(3.3) lim Pf(z,y) = p(f), pe P, feBR®).

(3) If (B4) holds and ®(r) > or for some constant 6 > 0 and all r > 0, then there exist
constants 1 < ¢ < oo, A > 0 such that

EXi] (3.4) | = Prmally < ce™ |l — pallv, pia, 2 € Pyt > 0.
Consequently, u € Py is the unique invariant probability measure of Py, and

Py — plly < ce™||lv—plly, ve Py, t>0.

(4) Let (By) hold and H(r) := Or% < oo forr > 0. If ® is convex, then there exist

constants 1 < k < oo, A > 0 such that
EX0] (3.5) [P0y — pllv <k{1+H '(H(V(z,y) -k 't)}e ™, (x,y) € R ¢>0,

where H™ is the inverse of H with H='(r) := 0 for r < 0. Consequently, if H(co) < oo
then there exist constants 0 < ¢, \,t* < oo such that

EX2| (3.6) 1P s = pallv < ce™|py = piollvar, V&> 15, pin, pa € 2.

In general, (By) follows from a Hérmander condition. In this spirit, we use the following
explicit condition replacing (Bjy).

(BY) di = dy = d, VP ZW is invertible with
IVEZW|oe + |(VPZ0) oo < 00,
V@ ZW is Hélder continuous, and [V ZW || + ||(V®)2ZW)|| is locally bounded.

Theorem 3.2. Assume (B1)-(B3) and (B}), then (By) holds and P, is ty-reqular for any ty > 0,
so that all assertions of Theorem 3.1 apply.

Example 3.1. Simply consider d; = dy = d and that o,(y) = I;xq is the identity matrix. We
make the following choices of b, Z() and Z?):

e b satisfies ||b]|;, < oo for some p > d. For example, it is easy to see that this is true when

b(z) = | ——Y _y(dy), zeR
€= [ -

for some « € (0,1) and a finite measure v on R This type drifts are of interests in
statistical physics, see [11] and references therein. Here, we extend the existing study to
degenerate setting.
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e For some constants ¢y, ¢a, ¢3,d with 0 < ¢1, |ca|, 3 < 00 and 0 < 6 < o0,
ZW0(z,y) = —er(1+ [a])’z + ey, Z%(2,y) = Z(w,y) — cs(1+ |y])’w,
where Z : R? — R? is a locally Lispchitz continuous with

2@yl

@nlee [(@,9)]
Take, for some constant 6 € (0, 00),
V(z,y) = 1+ 2>+ [y[*)’, 2,y e R%
Then (By), (By) and (B}) hold, so that by Theorem 3.2, we have the following assertions.

(1) When 6 = 0 and |cg| is small enough, we find a constant 0 < ¢y < oo such that (Bj)
holds for ®(r) = ¢or. Assertions (1)-(3) in Theorem 3.1 imply that P, has a unique
invariant probability measure y such that u(|-|*) < oo, (3.3) and (3.4) for some constants
0 < ¢, A < oo hold.

(2) When 6 > 0, then (Bs) holds for ®(r) = co(1 + r'+%9) for some constant 0 < ¢y < o0,
so that Theorem 3.1 (4) implies (3.6) for some constants ¢, A > 0.

3.2 Proofs

Proof of Theorem 3.1. Once (1) is proved, (2) follows from Doob’s Theorem [4]. So, below we
only prove (1), (3) and (4).

(a) We prove the existence of invariant probability measure by using Zvonkin’s transform.
Let

LY = %tr <UU*V2> +b-V.
According to [17, Lemma 2.5], (Bs) implies that there exists A > 0 such that the PDE
(3.7) (LY — Nu=—b
has a unique solution satisfying
(3.8) lulloo + IVulloo < &, [IVlz0 < o0,

where ¢ defined in (Bs).
Then O(y) := y + u(y), y € R%, gives rise to a diffeomorphism on R%. So,

(3.9) O(z,y) = (2,0(y)), (z,y) € R"*

is a diffeomorphism on R%+9z,
Let (XY Y,"");>0 solve (3.1) with initial value (z,y) € R *% and let

Pof(z,y) == E[(X7Y, ©()], t>0,f€ B(RM), (z,y) € R,

10
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W2’

W3’

Then (P,);0 and (P, f)>o satisfy

(3.10) (Pf)(@,y) = (Pi(f 0 ©)) (07} (z,9)), (z,y) € RN,

So, p is an invariant probability measure of P; if and only if
(3.11) fii=po®!

is P-invariant. Therefore, it is sufficient to show that P, has an invariant probability measure.
By the Bogoliov-Krylov theorem, we only need to verify the tightness of

1 /™.
(3.12) ng_/}y@mg@,nzL
0

n
By (Bj3) and (3.8), we find a constant K € (0,00) such that
V(w,0(y)) = V(z,y)| < K{V(z,0(y) AV(z,y)}, (x,y) € RMT®,

so that for 7o := =% € (0,1),

(3.13) (Vo 0)(z,y) < V(z,y) <7 ' (VoO)(z,y).

Combining these with (Bs), (3.7) and applying I[t6’s formula, we find a constant 0 < ¢; < oo
such that

(3.14) d(V 0 0)(X:, Y:) < (K — c1®((V 0 0)(X,, Yt))>dt + dM;
for some martingale (M;);>o. Letting (Xo, Yy) = (0,0), we deduce from (3.14) that

~ 1 n ~
[ 20V o®)din = [ E[e(0(v 0 &)X, ¥,00))]a
Rd1+d2 n Jo

_ K+ Vob(0)/n

< oo, n=>1.
C1

Since @ (7o(V o (:))) has compact level sets, this implies the tightness of {/i, }n>1, and the weak
limit [ of a convergent subsequence gives an invariant probability measure of P, Moreover,

/ @(WO(VOC:)))d/lg — < 0.
Rd41+d2

Therefore, by (3.11) and (3.8), i := i o © is an invariant probability measure of P, and
w(®(eoV)) < oo holds for some constant 0 < gy < 00.

(b) In the situations of (3) and (4), we have ®(r) > cor for some constant 0 < ¢y < oo and
all 7 > 1, so that (1) implies that u(V) < co. By (3.10) and the definition of weighted total
variation norm, we obtain

1P i = P psllv = || By (11 0 ©71) = B (12 © 07 [lyro-1,4

11



B = pllv = 1B (10 ©7Y) = fillyoprs 1, i € P,

where p and fi are the above constructed invariant probability measures of (P;);>o and (P)i=0,
respectively. Combining this with (3.13), we derive

1P i1 — P psllv < 99 |1 By (10 ©7Y) = P (2 0 ©71) |y,
1P = pllv <70t 1P (a0 ©78) — fillv, pa, pi2 € Py

So, it remains to verify (3.4) and (3.5) for P} replacing P;.
By (3.14) and ®(r) > ¢or, we have

AV (z,0(y)) < (K — cicoroV (2, O(y)))dt + dM,.

By invoking (B,) and (3.10), any compact subset of R®*% is P,-petite. Furthermore, from
(3.14) we deduce that (P});>0 admits the Lyapunov condition: for some constant 0 < ky, ko =
c1coYo < oo and for any (r,y) € Ra+dz,

BV (z,0(y) =E(V(z,0(y) < — +e 'V (2,0(y)).

ks

Consequently, the Harris theorem [9, Theorem 1.3] and (3.13) yield that there exist constants
0 < ¢, A < oo such that

1F by — iillv < e_AtHé(x,y) — fillv < e MV (2,y), >0,

Thus, by following the line of part (c) in the proof of [17, Theorem 2.1], we find constants
¢, A > 0 such that

(3.15) 1B i = Prpsllv < ce™lpn = pallv, i, 2 € Py

This immediately implies (3.4) for P/ replacing Py
Next, by (3.15), the semigroup property of (F;);>¢ and the invariance of /i, we have

158wy — Aillv = 15208y — Pl < ce™ 2| Bjdiay) — Allv-
On the other hand, by the proof of [17, (2.35)], (B,) implies

Pg/tV(x,y) < ¢y <1 + H Y H(V(z,y)) — 2%2), 0<c<oo
so that
1P Sy — il < ™ | Byiay) — tllv < cse ™ (Pdagy (V) + (V)
<c (1 + H Y H(V(2,y)) — 2%2)6_’“,0 < cg,04 < 00,
Therefore, (3.5) holds for P replacing P;. O
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Proof of Theorem 3.2. By Proposition 3.3 below, (Bj)-(Bs) and (B}) imply (By) for any to > 0
and v(dx, dy) := inf o ) @ ymep Pro (@, y; 2,y ) 1p (2, y)dady. . O

In the following Proposition 3.3, (Bs) is weakened as

(Bj) There exist constants € € (0,1), K > 0, and 1 <V € C?(R%+%) with

. / 2)\2 !
LY1| (3.16) lim V(z,y) =00, limsup sup IVV (x, ) ()] + [[(V*)V(z,y)|
el +lyl—o0 [@l+lyl—00 ¥/ €Be (1) V(z,y)

< 00,

such that

e sup (|20 ylIIVOVEV (@, )] + 129 (@, )l (IVPV (2, 5)] + 1(V*)*V (@, 4)]])

y'€B:(y)

(20 (2,), VV (-, y)(2)) + (2P (2,y). VV (2, )(y)) < KV (,y).

Proposition 3.3. Assume that (B1), (B2), (B}) and (B}) hold. If o is Holder continuous, then
P, has a heat kernel py(x,y; 2, y’) with respect to the Lebesque measure such that

inf xz,y;7,y) >0, Vt,k > 0.
()@ )eBr0) 2,457, y)

To prove this result, we apply the Harnack inequality presented in [5] for the PDE

atft(xv y) = -y V(I)ft(xa y) - (2(2) ’ V(2)ft) <I7y)
+ div® (aV(Z)ft) (z,y) + (Uf)(z,y), t>0,z,y€R?

(3.17)

where div'? is the divergence operator in the second component y, and
Z® . R¥ R U:R*¥ 5 R, o:R¥ 5 R®
are measurable satisfying the following assumption.
(B}) ais invertible, V®q exists, such that |Z® |+ |U| + ||a|| + ||a~!|| is locally bounded in R,
The following Harnack inequality is essentially due to [5].

Lemma 3.4. Assume (Bj). Then there exists a constant rq € (0,1) such that for any t > 0
and r € (0,10], there exists a locally bounded function

G s R x R* — (0, 00)
such that any positive weak solution (in the sense of integration by parts) f; of (3.17) satisfies

ft<x/7 y/) S Spt,r(xa Y; [B/, y/>ft+7“ (.’ﬂ, y)a (IE, y)> ('CE,) y/) € R2d'

13
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Proof. By [5, Theorem 3 and Remark 4|, there exist small constants 7,7 € (0, 1), such that
for any ¢ > 0 there exists a locally bounded function

Cy 2 (0,70] x R** — (0, 00)
such that any positive solution f of (3.17) satisfies

ft(xa y) S Otﬂ“(xa y) inf ft+7“(x/7 y/>’ e (07 TOL
(z',y")eB(@,y;r1)

where B(z,y;r) = {(2/,y) € R*: |(x — 2',y — v')| < r1}. For any (z,y), (z/,y') € R¥, let
n=n(z,y;2,y) =inf{n e N: |(z — o',y — /)| < nr},
and denote _
(wo) = (0,9) + -~y —y), 0<i<n.
Then

n—1
fi(@,y) < Cy e (0, 90) fraz (T1,51) < oo < frpr (2, 9) H Crpir = (23, Yi)-
1=0

Therefore, the desired estimate holds for

n—1

el ysa'y) =[] Crpsr 2 (i), ni=nla,y;2'y).
1=0

Next, we extend Lemma 3.4 to the following more general PDE:

Oife(w,y) = — (Z(l) : V(l)ft +Z@. V(2)ft) (z,y)

3.18
( ) + div® (aV(z)ft) (x,y) + (Uf)(z,y), t>0, z,y € R,

Lemma 3.5. Assume (B}) and (B)). Then there exists a constant ro € (0,1) such that for
any t >0 and r € (0,19], there exists a locally bounded function
¢rrt R* x R* — (0, 00)
such that any positive weak solution (in the sense of integration by parts) f; of (3.18) satisfies
fol@'y) < purla,ys 2 ) for(2y), (2y), (2, y') € R
Proof. To transform (3.18) into (3.17), we make the change of variable
(2,9) = (2,9) = (2, (ZW(2,9)) ).
Let ¢(z,-) :== (ZW(x, -))71 and

file, ) = fi(z,¢(x.9), Uz, §) :=U(x,¢(z,7)), t>0z7€R"

14



Then (3.18) implies
Ol ) = = (2090, + 22 - VO L) (2, 6(x.5)

+ div® <av<2> ft> (z, 6(x,9)) + (UL) (2, 8(x,§)), t>0, z,y € R™
By chain rule, we obtain

(VOR) @) = (VO f) (0w, 9) + (V0. 5) ) (VO £i) (@, 62, 5).

(VOF) @9 = (Y26(x.5)) (VI £,) (2. 6(x,9)).

(V) 7)) = (9200 ) (V¥)'1) (& 002, 5)

+ ((V2)0(,9)) (V2 £i) (@, 62, 5).

(3.19)

So,
(3.20)
So, letting

we derive

d
diV(Q) ((ZV(Z ft ,¢ T y Z 62 @z] (l’ ¢(:C y))

d

= 3 A770P (a0 1) (x, 6(2, 7))

1]k 1

(3.21) Z AG 0 (ayy (. ol ) 45701 fil, §)

,7,k,l=1

= > o ([(A7) alw, oz, 7)) A7) 0 fulw, )

Z 2 AT gy (x, ¢, §) AL fil, )

i,7,k,l=1
= dlv(2 (ELV 2)ft) (z,7) — (Z ' V(Z)ft) (z,9),
where
d

a(z, §) = (A7) a(z, ¢z, §) A", Z:= Y (0P AL )y (z, d(x, §) A, 1 <1< d.

i,5,k=1

15



LN3

Substituting (3.20) and (3.21) into (3.19), and noting that Z;(z, ¢(z, 7)) = g, we derive

Oufi(z,9) = — (§- VI f, + 2@ . VO f) (2,9)
+div®? (aVP £,) (2, 9) + (Ufo)(z,y), >0, v,y € RY,

for the above defined U, a and
22, 5) = Z(x,5) + (VW2 §) 5+ (VP (2,9) 2%z, ¢(.5)), =,§ € R

Combining this with (Bj) and (B}), we may apply Lemma 3.4 to this PDE to derive the desired
estimate. [

We also need the following result for the existence of heat kernel.

Lemma 3.6. Assume that (B1),(B2) and (B}) hold, and the solution to (3.1) is non-explosive.
Then (3.1) has heat kernel p;; namely, for anyt > 0 and the solution (Xy,Y:) starting at (xo, yo),
the distribution of (X;,Y;) has a density pi(xo, yo; ) with respect to the Lebesgue measure.

Proof. (a) We first assume b = 0 and Z((z,y) = y, but allow o also depends on z such that
o is Holder continuous and ||0*||s + [|(00*) ™ ||lse < 00. When Z® is bounded, the existence of
heat kernel follows from [12, Theorem 1.5]. In general, for any n > 1 let

" nx

Let (X™, Y, ™) solve the SDE

ax™ =y ™at,
dYt(n) = Zz,n<Xt(n)’ Y;(”))dt + U(Yt)th, (X0> Yb) = (l’oayo)-

Then for any ¢ > 0 and n > 1, the distribution of (X, ¥,™) is absolutely continuous with
respect to the Lebesgue measure: i.e. for any null set A € R, P((X™,Y,™) € A) = 0. Letting

T, = inf{t > 0: | Xy| V|V > n},

we have (X;,Y;) = (X, V") for t < 7,. By the non-explosion we have 7,, — 00 as n — 00, so
that
P((X,.Y;) € A) < lim {P((X{", ;") € A) +P(r, < 1)} =0
n—oo

holds for all null set A. Thus, the heat kernel exists.

(b) Let b = 0 and for ZW) satisfying (B}). As shown in the proof of Lemma 3.5, with the
transform (z,y) — (2, (ZW(z,y))™") we reduce the situation (a), so that the heat kernel exists.
Finally, when ||b]|;, < oo for some p > d, by [17, Lemma 2.5], when A > 0 is large enough, the
PDE

%tr{aa*VQ}u +b-Vu=—-b+ \u

16
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for u : R — R? has a unique solution such that

1
(3.22) V2ul|z, < 00, [[Vulle < =.

[\

Moreover, by the Sobolev embedding theorem, ||V?u||z, < oo implies that Vu is Hélder con-
tinuous. By It6’s formula, we see that (X, ;) = (X, ©(Y}:)) solves the SDE

dXt = Z(l)(Xt, ?t)dt,
dY;f - Z(2) (Xta Y;f)dt + 5(}/;5)th7 (X07 }/0) = (3:07 @(y0>)7

where

ZW(z, ) == ZW(x,07 (7)),
z<2 7)) : (v9)z<2 (z,))(©7' (1)) + (07 (9)),

Thus, (X,,Y;) := (X, ©(Y;)) solves the SDE of type (3.1) with b = 0, so that by Step (a) it
has a heat kernel. By (3.22), this implies that (X, Y;) has heat kernel as well. O

Proof of Proposition 3.3. By Lemma 3.6, for any ¢ > 0, (X;,Y;) has a distribution density

function (heat kernel) p(zo, yo; ). Let a = 2o0*, so that

S1r(00" V) f = div (a9 1) + (div®a) -V, f e C?

where (div?a); : Z] ) af)alj. As shown in Step (b) in the proof of Lemma 3.6, with Zvonkin’s

transform (X;,Y;) := (X;,0(Y;)) for b + div@a replacing b, we may and do assume that b +
div?a = 0, so that the generator of (X;,Y;) becomes

Lf:= div® (aV(2)f) + 7M. v(l)f + 7. V(Q)f.
It is easy to see that the adjoint operator of L in L?(R%*) is
L f = div® (aV(Q)f) —zn, V(l)f — 7@, V(2)f _ (div(l)Z(l) + diV(Q)Z(Q))f,
Hence, that the heat kernel f; := p;(zo, yo; ) solves the equation (3.18) for
U:= (dlv ) ZM 4 div® Z( 2))
So, by Lemma 3.5 with 3 = fy A £, we derive
(0, yo; 7, y) > Ci(w,y; &',y )pis(wo, yos ', 0)), (w,y), (', y/) € R
for some function C; : R?? x R?? — (0, 00) satisfying

c = inf co(z,y;2',y) > 0.
)= o P BT Y)

17
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Let k > 0 be a constant. For any v > k, we obtain

inf  p(@o,yo; 2, y) > c(y)  sup  pi—p(@o, yo; 2, Y)
(=,y)€B(0) (z',y")€B~(0)

> 5t(’y)/ Pe—p(wo, yo; o',y )da'dy’ = & (y)P((X,,Yy) € B,(0)),
By (0)

where ¢(7) := ‘EW(%§| > 0, for |B,(0)| the volume of B,(0). On the other hand, by Theorem

2.1, (By),(Bs) and (Bj) imply (2.2), so that for k, := inf, e ) U(z,y),

c
P((X0, Y1) ¢ B,(0)) < P(UX:,Y) 2 k) < 1=Ulwo, yo)-
v
Taking large enough N such that é SUD (40.40)ex U (%0, Y0) < %, we obtain
c 1
inf o, Yo, &, ) > & inf (1——Uﬂ:, )>—5 > 0.
Coanper PO Wi T Y) 2 B0) Il L= U (@0 30) ) 2 58 (7)

So, the desired assertion holds.

4 Extension to McKean-Vlasov SDEs

In this part we extend Theorem 2.1 and Theorem 3.2 to McKean-Vlasov SDEs. Consider the
following distribution dependent SDE on R%+42:

41) {dXt — ZM(X,, v))dt,

4Y; = (Z22(X0. Vi, Lixoyy) + bi(V))dt + o (Y)W, t € [0,T],
where L(x,y,) € &, t € [0,T] is the law of (X;,Y;), ZW,b,0 and W are as in (1.1), and
Z@ [0, T] x R4+ x 7 — R%
is measurable. We first study the well-posedness of (4.1), then investigate the uniform ergodicity

for the time-homogeneous model

dX, = ZW(X,. Y,)dt
(42) { t ( ty t) )

dY; = (28X, Vi, Lxowy) + 0(Y2))dt + o(Y;)dW;, > 0.

4.1 Well-posedness of (4.1)

Let & be a sub-space of &2. We call (4.1) well-posed for distributions in @, if for any %¢-
measurable random variable (X, Yy) with £ x, vy € & (respectively, any initial distribution

v € 2), (4.1) has a unique strong solution (respectively, unique weak solution) (X;,Y;) such
that R
[O,T] >t — th’%) S
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is continuous in the weak topology.
To extend Theorem 2.1, let &, be the Dirac measure at 0 € R**+% and denote

ZP(w,y) = 23 (@, y,80), t€[0,T),(x,y) € RAFe,
Let

cr((0,T); P) = {pelo,T]— P is weakly continous, sup (V) < 00}
te[0,7

(A) (A;)-(A3) hold for the above defined z? (x,y). Moreover, for any n > 1 and any p €

~

Cy([0,T]; &), there exists a constant K, , > 0 such that
|Zt(2)($71% ,ut) - Zt(2)(xlay/7ﬂt)| S Kn,,qu - x/ay - 3//)‘7 (Q?, 3/)7 (x,ay/> € Bn(o)

The following result extends Theorem 2.1 to the distribution dependent setting as well as [13,
Theorem 1.1] to the present degenerate case.

Theorem 4.1. Assume (A) for P = P or P = Py.
(1) If 2 = 2, and there exists 0 < K € L*([0,T)) such that
(4.3) 122 @,y 1) = 27 (2,9, 0)] < Killpp = ar, v € 2,
then (4.1) is well-posed for distributions in 2.
(2) Let & = Py If
122 @,y pm) = 27 @,y v)| sup (14 VOV ()] + (V)Y (2, y)]))
CD’ | (4.4) y'€B:(y)
S Killu—vlv, (x,y) e RM*E pve Py,
then (4.1) is well-posed for distributions in Py .
Proof. Let (Xo,Yy) be Fp-measurable with v := L x, vy) € 2. For any
pet = {ueCl(0,T;2): uo =1}
assumption (A) together with (4.3) or (4.4) implies (A;)-(As) for Z?(x,y, ) replacing Z>,
so that by Theorem 2.1, the SDE

(45) {dX£‘=Z£1><Xf,n“>dt,

A = {22 (XP Y ) + b)Yt + o (Y)W, ¢ € [0, 7],
is well-posed, where (X}, Y{') = (Xo, Yp). By [10, Theorem 3.1], it suffices to show that

\IJ . Cgﬁy — %’Y, g’t(/ﬁ) = .,%Xf’y'tﬂ)
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has a unique fixed point in 4. Below we prove this for P =P and P = Py respectively.
(1) Let & = & and (4.3) holds. For pu,v € €7, we reformulate (4.5) as

(46) {dX:‘ = 7 (xp Y,

Ay = (Z2(XE Y ) + b(YVE)dt + o (V))dW,, ¢ € [0,T),

where (X{',Yy") = (X0, Yo) and

¢
Wt = Wt — / fﬁ’”ds,
0
0 = (o 00?) V) (V) (2 (X8, Y, w) — ZO(XE, VE, 1)
By (A,) and (4.3), there exists a constant 0 < ¢; < oo such that

(4.7) €877 < et K| ps — vslliar, s € 0,77,

var?

Since [0,T] 2 s — ||its — Vs|var is measurable and bounded, by Girsanov’s theorem, W is a
Brownian motion under the weighted probability measure Q := RrP, where

Rt = efot@gyy’dWS)_% fOt |£é”’y|2d57 t S [07 T]

is a martingale. Then by the weak uniqueness of (4.5), the law of (X}, Y}") under Q satisfies
(48) DE’ﬂ(X{‘,Yt“HQ = ”g’ﬂ(X%Yt") = \I/t(V), t e [O,T]

Combining this with the martingale property of R;, Pinsker’s inequality, (4.7) and letting Eq
be the expectation with respect to Q, we derive

10 (1) — T (v)[|2,, = sp [E[£(X! Y1 - R)]|* < (B[l - Re)”

(4.9) t t
< 9E[R, log R)] = 2Eq|log Ry] = / Eg[l¢#Plds < ¢, / K2|ls — v4|%,,ds.
0 0

This implies that when A > 0 is large enough, ¥ is contractive under the complete metric

/7/\(#7 V) ‘= Ssup ei)\tH/thL - VtHvara JINZAS %77
t€[0,T]

and hence has a unique fixed point.
(2) Let & = &y and (4.3) holds. The following argument is similar to the proof of [13,
Theorem 1.1 (1)], we include here for completeness. Let

Crn = {u c¢ : sup w(V)e ™M < N(1 —l—”y(V))}, N >1.

t€[0,T]

It suffices to find a constant N > 1 such that ¥%, C €, and ¥ has a unique fixed point in
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Firstly, by (As) for Zt(2) (x,y) :== Zt(2)<£L', y,9p) and (4.4), we find a constant 0 < ¢y < oo such
that

e sup (120G IVTEV () )+ 120 g m) (VY )]+ V2V ()] )
y'€B:(y

(20 (2, y), VV (,9) (@) + (28 (@, y, 1), VV (2, ) () < eV (2, y) + col (V)

holds for all t € [0,T], (z,y) € R"*% and y € 7. As in (2.10), by combining this with (As)
and Ito’s formula for )
(XE, Y1) = (XF, 0:(Y))), tel0,T],

we find a constant 0 < ¢; < oo such that
(410)  d(V(XE V) < e (U4 m) (VIXE T2+ K2u(V)?) )at + M, t € [0,T),

for some martingale M;. Then there exists a constant 0 < c; < oo such that
E[V(XF,V/)?| %) < et oUtmdry (x, ¥4)2 + / t e K 2o [ 0mdr (1792
(4.11) < eV (X0, Y0)? + eoN? (1 +~4(V / KZ2e*Nds
< eV (Xo, Yo)? + ca(N (1 +~(V))eM)? / K2 2NU=9)ds t€[0,T), pecEy.
0

Noting that K € L?([0,T]) implies

t
lim sup / Kfe’2N(t’S)ds:0,

N=oo4ef0,1)

while (A3), (2.5) and Jensen’s inequality yield
(W) (V) := B[V (XL, V2] < BV (XE V) < e | (B(V(XE, V)% %0)°

holds for some constant 0 < ¢3 < 0o, we find a constant 1 < Ny < oo such that (4.11) yields

sup {U, (1) }(V)e ™™ < E[V(Xo, Yp)] + N (1 +y(V / K2 2N(=9)

te[0,7)

t
=y (V) + 2N (1 + (V) / K2 2Nt=9q < N(14+~(V)), N > N,.
0

Therefore, V&, C €y, for N > Nj.

Next, let N > Ny. We intend to prove that ¥ has a unique fixed point in €}, by using the
Girsanov transform defined in (1) to show that for large A > 0, ¥ is contractive in the following
complete metric on Gy

pva, v) = sup e M| — vyly.
te[0,7
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By (4.4) and (As), we find a constant ¢y > 0 such that instead of (4.7),
(4.12) €82 < ek, — vill2, s € [0,7), v € G

So, this together with (4.8), (4.11) and (2.2) yields that for some constants 0 < ¢;(N), co(N) <
Cx}?

1946 = ()l = sup [BL7XE V)1 = B)]| < BV (XYL~ Rl

(4.13) < E[(E(V(Xf, Y/ %0)) (B[ R, — 1I2|%])%}

IN

1
a(NE|V(Xo, Yo) (R — 11F))F |, v e 63,
and due to e” — 1 < re” for r € R,
E[R; — 1|7 <E [e2f3 (€8 W)= fy [65 25 _ 1‘%}

S E |:82fg< Q"V,dWS>—4f0t |£§L’"|2ds—|—fés 3COK§||MS—VSH%/C18

%} .
t
el sttty < el i (st — s
0
t
< 02(]\7)/ K2|js — vi|2ds, v e %0, te[0.T).
0

Combining this with (4.13), we find a constant 0 < ¢3(/N) < oo such that

pA(D(1), ®(v)) = sup ™[ Pe(n) — e(v)lv

t€[0,7)

< e3(N)X+v(V))pa(p,v) sup (/ K2e2A(1=9) s) . WV ECy, t€]0,T].

teOT]

lim sup (/ KZe —2(t=9) ) =0,
A=00 ¢210,T

when A\ > 0 is large enough, W is contractive on the complete metric space (€, pa), so that it
has a unique fixed point in €y as desired.

Since

O

4.2 Uniform ergodicity of (4.2)

Assume that

(B) (By)-(Bs) and (B)) hold for Z®(z,y) := Z®(x,y,dy). Moreover, there exists a constant
0 < k < oo such that for all (x,y) € R1+% and ,, v, € 2,

1ZP(z,y,m) — ZD (2, y,72)| < &ll71 — Y2l lvar-
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To investigate the uniform exponential ergodicity, we consider the following reference SDE
for v € &,

4Y; = (ZO(X]. Y7 7) + b)) de + (V).

Let (P))'v = %/ x> y» with £ x> y» = v. Denote by (X", Y,""¥) the solution to (4.14
t (XY (Xg:Y0') t t
with the initial value (z,y) € R4+,

Theorem 4.2. Assume (B) If k is small enough and ® in (Bs) is convex with fooo @ds < 00,

then P} associated with (4.2) has a unique invariant probability measure i € & such that
((®(e0V)) < oo for some €g > 0, and there exists constants ¢, A > 0 such that

1Py = ftllvar < ce™ ||t = Vlfvar, t>0,0€ P.

Proof. According to [17, Lemma 3.3|, it is sufficient to find constants 0 < kg,c, A < oo such
that when k < ko, for any p € &, (P/)i>0 has a unique invariant measure p., satisfying

(4.15) H(Pg)*ﬂ - NvHvar < CeiAtHﬂ - N7|’var-

By the uniform Harris type theorem [17, Lemma 3.3], we only need find t5,t; > 0 and a
measurable set B € B(R%*%) such that

(4.16) inf Pl (z,B) >0,

~YEP ,zeRI1 +d2

(4.17) sup  |[(P])*0. — (P) 0 Jvar < 2.

yEP;z,2'€B

Below we prove these two estimates for t; = 1, B = By(0) for large enough k > 0 and some
to > 1.

(a) Proof of (4.16). Let Z\*(z,y) = 72 (z,y, 00), (XY Y, 20"), ¢ solve (3.1) with initial
value (z,y) € R"+% and let (P),;> be the associated Markov semigroup. By Theorem 3.1
(1) and (3), P has a unique invariant probability measure u such that (3.6) holds for some
constants 0 < ¢, A < oo. Consequently, there exists a constant 1 <ty < oo such that

1
||(Pt60)*y - ILLHUG/I" S ZL: 13 Z t07 ZS L.
Taking k > 0 such that y(By(0)) > 3, this implies that for B := By(0),

1
(4.18) Plp(z,y) > 1 — Pllpe(z,y) > 1 — u(B) — ~ > 3 (z,y) € RéTd2,

o |

Now, for any v € Z, let

§ = (0 (o0 ) (XL, Yo (257 (X, Yo ) = 2D (X0, Y0, ).

S
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Then (B;) and (Bz) imply
|£z|§617 s >0, 769

for some constant 0 < ¢; < 0o. Let

R:= efotO (€2,dws)—% [3° €s%ds

Thus,
E[R™! = Ele™ 0 (€. dAW)+5 f° ) < ot
and by Girsanov’s theorem,

(419) D%(Xfo,z,y7}/t50,z,y)|(@ = Dg,ﬂ(X;y,a:,y’Yt'v,w,y)7 t e [O,to]

So that Schwarz inequality and (4.18) yield

E[1 (X% yi0o)])2
P%lB(:Qy) :E[lB(Xgo,x,y7ngo,x,y)R] > ( [ B( to s Yo )])

70%1‘/0 0
= E[R] ¢

>

N | —

for any (z,y) € R4T% and any v € &. Hence, (4.16) holds.
(b) Proof of (4.17): Recall that B = By(0). Let pi(z,y;-) be the distribution density of
P (z,y;-). By Proposition 3.3, we have

0:= inf ;2 y) >0,
(W)’(z/’y/)eBpl( ) y)

where p; is the heat kernel of P;. Then for any z, 2’ € B,

1(PP)*6, — (P°)* 6. ||var = / pi(z52,9) = pu(5 2, y)ldady
]RZ

(4.20) - /RM (p1(z:2,9) + pr(25 2, 9) — 20p1 (32, 9) A pr (25 2, )] ) dardly

<2 —2vol(B) :=4d" < 2.

A

On the other hand, by (B), (4.19) and Pinsker’s inequality as in (4.9), we find a constant
0 < ¢9 < 00 such that

H(P150>*6z - (PY)*5Z||var < ek, ZE€E Rd1+d2.
Combining this with (4.20) we conclude that when « is small enough, (4.17) holds for t; = 1.
O
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