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Abstract

The well-posedness and exponential ergodicity are proved for stochastic Hamiltonian
systems containing a singular drift term which is locally integrable in the component
with noise. As an application, the well-posedness and uniform exponential ergodicity are
derived for a class of singular degenerated McKean-Vlasov SDEs.
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1 Introduction

Let d1, d2 ∈ N. For fixed T ∈ (0,∞], consider the following degenerate SDE for (Xt, Yt) ∈
Rd1+d2 = Rd1 × Rd2 :

E1E1 (1.1)

{
dXt = Z

(1)
t (Xt, Yt)dt,

dYt =
(
Z

(2)
t (Xt, Yt) + bt(Yt)

)
dt+ σt(Yt)dWt, t ∈ [0, T ],

where [0, T ] := [0,∞) when T = ∞, (Wt)t∈[0,T ] is an m-dimensional Brownian motion on a
complete filtrated probability space (Ω,F , {Ft}t∈[0,T ],P), and

Z(i) : [0, T ]× Rd1+d2 → Rdi , i = 1, 2,
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2020YFA0712900) and NNSFC (11831014, 11921001). Martin Grothaus and Panpan Ren acknowledge sup-
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b : [0, T ]× Rd2 → Rd2 , σ : [0, T ]× Rd2 → Rd2 ⊗ Rm

are measurable. We assume that Z
(i)
t (x, y) and σt(y) are continuous in (x, y) ∈ Rd1+d2 as

“regular” coefficients, but bt(y) only satisfies a local integrability condition in (t, y) and is
regarded as a “singular” term. See assumptions (A1)-(A3) below for details.

SDE (1.1) is known as stochastic Hamiltonian system when the drifts are given by the
gradients of a Hamiltonian functional. The associated Fokker-Planck equation is called the
Langevin equation or kinetic Fokker-Planck equation. In particular, when Z

(1)
t (x, y) = y, Xt

and Yt stand for the location and speed of a fluid flow at time t respectively.
In this paper, we investigate the well-posedness and exponential ergodicity of (1.1) with drift

Z
(2)
t (x, y) + bt(y) discontinuous in (t, y). These two properties have been intensively studied

when the coefficients are regular enough or the invariant probability measure is known, which
we summary as follows.

When Z
(1)
t (x, y) and Z

(2)
t (x, y) + bt(y) satisfy a Dini-Hölder continuity condition in (x, y),

the well-posedness of (1.1) has been proved in [2, 18], see also the recent paper [8] for the weak
well-posedness of (1.1) for d1 = d2, Z

(1)(x, y) = y, σ = Id2(the d2 × d2 identity matrix) and
Z(2) + b being in a weighted anisotropic Besov space.

When the SDE is time independent, the exponential ergodicity for special versions of (1.1)
has been studied in many references. When the unique invariant probability measure is given,
the hypocoercivity introduced by Villani [15] has attracted a lot of attentions , and has been
further developed in a series of papers such as [1, 6, 7] based on an abstract analytic frame-
work built up by Dolbeaut, Mouhot and Schmeiser [3]. However, the study in this direction
heavily relies on the explicit formulation of the invariant probability measure, for which the
drifts are given by (weighted) gradient of a Hamiltonian functional. A crucial motivation in
the ergodicity theory is to simulate the invariant probability measure by using the stochastic
system. In this spirit, we study the ergodicity for the above general model with unknown in-
variant probability measure. On the other hand, when the coefficients are regular enough, the
exponential ergodicity follows from some modified dissipativity conditions, see for instance [19]
for the hypercontractivity implying the exponential ergodicity in related entropy, and [14] for
an extension to McKean-Vlasov SDEs.

In Section 2 and Section 3, we investigate the well-posedness and exponential ergodicity
for (1.1) with Z

(2)
t (x, y) only satisfying a local integrability condition in (t, y), such that the

corresponding results derived in the recent papers [13, 16, 21] for non-degenerate SDEs are
extended to the present degenerate setting. Finally, in Section 4 we extend the main results to
McKean-Vlasov SDEs.

2 Well-posedness

In this part we let T ∈ (0,∞) be finite. For any r > 0 and (x, y) ∈ Rd1+d2 , let

Br(x, y) :=
{

(x′, y′) ∈ Rd1+d2 : |x− x′|+ |y − y′| ≤ r
}
, Br(y) :=

{
y′ ∈ Rd2 : |y − y′| ≤ r

}
.

For any

(p, q) ∈ K :=
{

(p, q) : p, q ∈ (2,∞),
d2

p
+

2

q
< 1
}
,
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define the L̃pq-norm of a (vector or real valued) measurable function f on [0, T ]× Rd2 :

‖f‖L̃pq := sup
y∈Rd2

(∫ T

0

‖1B1(y)ft‖qLp(Rd2 )
dt

) 1
q

.

We write f ∈ L̃pq if ‖f‖L̃pq < ∞ and L̃p represents the L̃pq-norm independent of q. We use ∇(1)

and ∇(2) to denote the gradient operators in x ∈ Rd1 and y ∈ Rd2 respectively, so that (∇(i))2 is
the corresponding Hessian operator. In case only one variable is concerned, we simply denote
the gradient by ∇.

(A1) For any n ≥ 1 there exists a constant 0 < Kn <∞ such that

max
i=1,2
|Z(i)

t (x, y)− Z(i)
t (x′, y′)| ≤ Kn(|x− x′|+ |y − y′|), t ∈ [0, T ], (x, y), (x′, y′) ∈ Bn(0).

Moreover,
sup

t∈[0,T ],i=1,2

|Z(i)
t (0)| <∞.

(A2) σσ∗ is invertible with ‖σ‖∞ + ‖(σσ∗)−1‖∞ <∞, and

lim
ε↓0

sup
t∈[0,T ],|y−y′|≤ε

‖σt(y)− σt(y′)‖ = 0.

Moreover, there exist l ∈ N, {(pi, qi)}0≤i≤l and 1 ≤ fi ∈ L̃piqi , 0 ≤ i ≤ l such that

|b| ≤ f0, ‖∇σ‖ ≤
l∑

i=1

fi.

(A3) There exist ε ∈ (0, 1) and 1 ≤ V ∈ C2(Rd1+d2) with

LYLY (2.1) lim
|x|+|y|→∞

V (x, y) =∞, lim sup
|x|+|y|→∞

sup
y′∈Bε(y)

|∇(2)V (x, y′)|+ ‖(∇(2))2V (x, y′)‖
V (x, y)

<∞,

such that

ε sup
y′∈Bε(y)

{
|Z(1)

t (x, y)|‖∇(1)∇(2)V (x, y′)‖+ |Z(2)
t (x, y)|

(
‖∇(2)V (x, y′)‖+ ‖(∇(2))2V (x, y′)‖

)}
+ 〈Z(1)

t (x, y),∇V (·, y)(x)〉+ 〈Z(2)
t (x, y),∇V (x, ·)(y)〉 ≤ ηtV (x, y)

holds for some 0 ≤ η ∈ L1([0, T ]), all t ∈ [0, T ] and (x, y) ∈ Rd1+d2 .

T1 Theorem 2.1. Assume (A1) and (A2). Then for any initial value (X0, Y0) the SDE (1.1) has
a unique strong solution up to the life time ζ. If (A3) holds then ζ = T and

ESTEST (2.2) E
[

sup
t∈[0,T ]

V (Xt, Yt)
∣∣∣F0

]
≤ cV (X0, Y0)

holds for some constant 0 < c <∞.
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By a truncation argument, we first consider the case where {Kn}n≥1 is bounded. In this
case, we may follow the line of [20] to prove the well-posedness by using Zvonkin’s transform.
The only difference is that in the present degenerate setting we apply this transform for the
following time-dependent elliptic operators on Rd2 :

Lt :=
1

2
tr
(
σtσ

∗
t∇2

)
+ bt · ∇, t ∈ [0, T ].

Moreover, since Yt also depends on Xt, we have to reprove the Khasminskii estimate for Yt
which is crucial in the proof of pathwise uniqueness.

L1 Lemma 2.2. Assume (A2) and that ‖Z(2)‖∞ < ∞. Then for any (p, q) ∈ K there exists an
increasing function H : [0,∞)→ [0,∞) such that for any strong solution (Xt, Yt)t∈[0,T ] of (1.1),

E
[
e
∫ T
0 |ft(Yt)|

2dt
]
≤ H(‖f‖L̃pq ), f ∈ L̃pq .

Proof. Let
γs :=

(
σ∗s(σsσ

∗
s)
−1Z(2)

s

)
(Xs, Ys), s ∈ [0, T ].

By (A2) and the boundedness of Z(2), we have

BP0BP0 (2.3) K :=

∫ T

0

∥∥γs∥∥2

∞ds <∞.

So, by Girsanov’s theorem,

W̃t := Wt +

∫ t

0

γsds, t ∈ [0, T ]

is an m-dimensional Brownian motion under the probability measure Q := RP, where

R := e−
∫ T
0 〈γs,dWs〉− 1

2

∫ T
0 |γs|

2ds.

So, Yt solves the SDE
dYt = bt(Yt)dt+ σt(Yt)dW̃t, t ∈ [0, T ].

By [20, Lemma 4.1], (A2) implies that

EQe
∫ T
0 |ft(Yt)|

2dt ≤ H0(‖f‖L̃pq )

holds for some increasing function H0 : [0,∞)→ [0,∞). Thus,

Ee
∫ T
0 |ft(Yt)|

2dt = EQ
[
R−1e

∫ T
0 |ft(Yt)|

2dt
]

≤
(
E[R−2]

) 1
2

(
EQe2

∫ T
0 |ft(Yt)|

2dt
]) 1

2
=
(
E[R−2]

) 1
2

√
H0(2‖f‖L̃pq ).

Then the proof is finished since (2.3) implies

E[R−2] = E
[
e−2

∫ T
0 〈γs,dWs〉+

∫ T
0 |γs|

2ds
]

≤ E
[
e−2

∫ T
0 〈γs,dWs〉−2

∫ T
0 |γs|

2ds+3K
]

= e3K <∞.
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Proof of Theorem 2.1. (a) The well-posedness up to life time. By a truncation argument, in

stead of (A1) we may and do assume that Z
(i)
t are bounded and Lipschitz continuous in (x, y)

uniformly in t ∈ [0, T ], so that the life time of (Xt, Yt) is T . By [20, Themore 3.2], (A2) implies
that for any λ ≥ 0 the PDE

PDEPDE (2.4) (∂t + Lt)ut = −λut − bt, t ∈ [0, T ], uT = 0

for u : [0, T ]× Rd2 → Rd2 has a unique solution with

‖u‖∞ + ‖∇u‖∞ + ‖∇2u‖L̃p0q0 <∞,

where ∇ and ∇2 are the gradient and Hessian operators on Rd2 . Moreover, for ε ∈ (0, 1) there
exits λ > 0 is large enough such that,

W1W1 (2.5) ‖u‖∞ + ‖∇u‖∞ < ε.

We now make the Zvonkin’s transform for Yt:

Ỹt := Θt(Yt), Θt(y) := y + ut(y), t ∈ [0, T ], y ∈ Rd2 .

By (2.4) and generalised Itô’s formula (see [20]), (1.1) becomes

E1’E1’ (2.6)

{
dXt = Z̃

(1)
t (Xt, Ỹt)dt,

dỸt = Z̃
(2)
t (Xt, Ỹt)dt+ σ̃t(Ỹt)dWt, t ∈ [0, T ],

where

Z̃
(1)
t (x, y) := Z

(1)
t

(
x,Θ−1

t (y)
)
,

Z̃
(2)
t (x, y) :=

(
(∇Θt) ◦Θ−1

t (y)
)
Z

(2)
t

(
x,Θ−1

t (y)
)
− λut ◦Θ−1

t (y),

σ̃t(y) :=
(
(∇Θt) ◦Θ−1

t (y)
)
σt ◦Θ−1

t (y), t ∈ [0, T ], (x, y) ∈ Rd1+d2 .

Since ‖∇u‖∞ < 1, Θt is diffeomorphism so that the well-posedness of (1.1) is equivalent to that
of (2.6). Noting that the coefficients of (2.6) are bounded and continuous in (x, y), this SDE
has a weak solution. By the Yamada-Watanable principle, it remains to prove the pathwise
uniqueness of (2.6). This can be done as in [20] by using Khasminskii’s estimate in Lemma 2.2.
Below we present a detailed proof for completeness.

For any nonnegative measurable function f on Rd2 , consider its maximal functional

M f(x) := sup
r∈(0,1)

1

|Br(0)|

∫
Br(0)

f(x+ y)dy, x ∈ Rd2 .

By [20, Lemma 2.1], there exists a constant 0 < c <∞ such that for any function f ∈ L∞(Rd)
with ∇f ∈ L1

loc(Rd),

|f(x)− f(y)| ≤ c|x− y|
(
‖f‖∞ + M |∇f |(x) + M |∇f |(y)

)
, x, y ∈ Rd2 ,

‖M |f |‖L̃pq ≤ c‖f‖L̃pq .
W2W2 (2.7)
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Now, let (X
(i)
t , Ỹ

(i)
t )t∈[0,T ], i = 1, 2, be two solutions of (2.6) with (X

(1)
0 , Ỹ

(1)
0 ) = (X

(2)
0 , Ỹ

(2)
0 ).

By the Lipschitz continuity of Z
(i)
t uniformly in t, (2.7) and ‖∇2u‖L̃pq < ∞, we find functions

1 ≤ gj ∈ L̃
pj
qj (0 ≤ j ≤ l) such that∑

i=1,2

|Z̃(i)
t (x, y)− Z̃(i)

t (x′, y′)|2 + ‖σ̃t(y)− σ̃t(y′)‖2

≤
(
|x− x′|2 + |y − y′|2

) l∑
j=0

(
gj(t, y)2 + gj(t, y

′)2
)
, t ∈ [0, T ], (x, y), (x′, y′) ∈ Rd1+d2 .

Then by Itô’s formula, we find a constant 0 < c <∞ and a martingale Mt such that

ξt := |X(1)
t −X

(2)
t |2 + |Ỹ (1)

t − Ỹ (2)
t |2, t ∈ [0, T ]

satisfies

W3W3 (2.8) dξt ≤ cξt

l∑
j=0

∑
i=1,2

|gj(t, Ỹ (i)
t )|2 + dMt, t ∈ [0, T ], ξ0 = 0.

By Lemma 2.2, for all 0 < θ <∞, we have

E
[
eθ

∫ T
0 |gj(t,Ỹ

(i)
t )|2dt

]
<∞, 0 ≤ j ≤ l, i = 1, 2.

So, by the stochastic Gronwall inequality, see [21, Lemma 3.7], (2.8) implies (X
(1)
t , Ỹ

(1)
t ) =

(X
(2)
t , Ỹ

(2)
t ) for all t ∈ [0, T ].

(b) Now, let (A3) hold, we aim to prove (2.2). By (2.5), we have |Yt − Ỹt| < ε. Combining
this with (2.1) it suffices to prove (2.2) for Ỹt replacing Yt, i.e.

EST’EST’ (2.9) E
[

sup
t∈[0,T ]

V (Xt, Ỹt)
∣∣∣F0

]
≤ cV (X0, Ỹ0)

holds for some constant 0 < c < ∞. By (2.5), (2.6), and Itô’s formula, the boundedness of σ̃
and (A3) imply that for some constant 0 < C <∞,

E0*E0* (2.10) dV (Xt, Ỹt) ≤ C(1 + ηt)V (Xt, Ỹt)dt+ dMt, t ∈ [0, T ]

holds for some martingale Mt with

d〈M〉t ≤ CV (Xt, Ỹt)
2dt, t ∈ [0, T ].

Let τn := T ∧ inf{t ≥ 0, |Xx
t |+ |Ỹ

y
t | ≥ n} and the life time

ζ := lim
n→∞

τn, n ≥ 1.

Then by the Gronwall Inequality we have

E
(
V (Xτn , Ỹτn)1τn<T

∣∣F0

)
≤ V (X0, Ỹ0)ec

∫ T
0 (1+ηs)ds,
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which implies

E
(
1τn<T

∣∣F0

)
≤ V (X0, Ỹ0)ec

∫ T
0 (1+ηs)ds

inf |x|+|y|≥n V (x, y)
.

Then by Fatou’s Lemma, we have
E
(
1ζ≤T

∣∣F0

)
= 0,

which further implies

P(ζ ≤ T ) = E
(
1ζ≤T

)
= E

(
E
(
1ζ≤T

∣∣F0

))
= 0.

With the definition of the life time ζ, when n → ∞, we have ζ = T. Finally, by a standard
argument using the Burkholder-Davis-Gundy and Gronwall inequalities, we prove (2.9) for some
constant c > 0.

3 Exponential ergodicity

In this part we consider the time-homogeneous case such that (1.1) becomes

E3E3 (3.1)

{
dXt = Z(1)(Xt, Yt)dt,

dYt =
{
Z(2)(Xt, Yt) + b(Yt)

}
dt+ σt(Yt)dWt, t ≥ 0,

where

Z(i) : Rd1+d2 → Rdi , i = 1, 2, b : Rd2 → Rd2 , σ : Rd2 → Rd2 ⊗ Rm

are measurable. We investigate the ergodicity of the associated Markov process. To this end,
we make the following assumption, which, according to Theorem 2.1, implies the well-posedness
and non-explosion of this SDE.

(B1) For any 1 ≤ n <∞ there exists a constant 0 < Kn <∞ such that

sup
i=1,2
|Z(i)(x, y)− Z(i)(x′, y′)| ≤ Kn(|x− x′|+ |y − y′|), (x, y), (x′, y′) ∈ Bn(0).

(B2) σσ∗ is invertible with ‖σ‖∞ + ‖(σσ∗)−1‖∞ < ∞, and there exists p > (2 ∨ d) such that
|b|+ ‖∇σ‖ ∈ L̃p.

(B3) There exist constants ε ∈ (0, 1), 0 < K <∞, an increasing function Φ : [1,∞) → (0,∞)
with Φ(n)→∞ as n→∞, and 1 ≤ V ∈ C2(Rd1+d2) with

LY11LY11 (3.2) lim
|x|+|y|→∞

V (x, y) =∞, lim sup
|x|+|y|→∞

sup
y′∈Bε(y)

|∇V (x, ·)(y′)|+ ‖∇2V (x, ·)(y′)‖(
V ∧ Φ(V )

)
(x, y)

= 0,

such that

ε sup
y′∈Bε(y)

{
|Z(1)

t (x, y)|‖∇(1)∇(2)V (x, y′)‖+ |Z(2)
t (x, y)|(|∇(2)V (x, y′)|+ ‖∇(2)∇(2)V (x, y′)‖)

}
+ 〈Z(1)

t (x, y),∇V (·, y)(x)〉+ 〈Z(2)
t (x, y),∇V (x, ·)(y)〉 ≤ K − Φ(V (x, y)).
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By Theorem 2.1, under (B1)-(B3) the SDE (3.1) is well-posed. Let {Pt}t≥0 be the associated
Markov semigroup, i.e.

Ptf(x, y) = E[f(Xx,y
t , Y x,y

t )], f ∈ Bb(Rd1+d2), t ≥ 0, (x, y) ∈ Rd1+d2 ,

where (Xx,y
t , Y x,y

t ) solves (3.1) with initial value (x, y). We investigate the ergodicity of Pt, i.e.
it has a unique invariant probability measure µ such that

lim
t→∞

P ∗t ν = µ, ν ∈P,

where P is the space of all probability measures on Rd1+d2 , and

(P ∗t ν)(f) := ν(Ptf) =

∫
Rd1+d2

Ptfdν, f ∈ Bb(Rd1+d2), ν ∈P, t ≥ 0.

In terms of (B3), we consider the convergence under the V -variation norm

‖µ1 − µ2‖V := sup
f∈Bb(Rd1+d2 ),|f |≤V

|µ1(f)− µ2(f)|.

Under this norm, the space
PV :=

{
µ ∈P : µ(V ) <∞

}
is a complete metric sapce. When V ≡ 1, we denote the norm by ‖ · ‖var which is known
as the total variation norm. The Lyapunov condition (B3) implies the existence of invariant
probability measure.

3.1 Main results and example

To prove the ergodicity, we need the following assumption that any compact set is a petite set
of Pt:

(B4) Any compact set D of Rd1+d2 is Pt-petite, i.e. there exists t0 > 0 and a non-trivial finite
measure ν such that

inf
x∈D

Pt0(x, ·) ≥ ν,

where Pt(x, ·) is the transition probability kernel of Pt at x ∈ Rd1+d2 .

T1.6.1 Theorem 3.1. Assume (B1)-(B3). Then the following assertions hold.

(1) Pt has an invariant probability measure µ such that

µ
(
Φ(ε0V )

)
=

∫
Rd1+d2

Φ
(
ε0V (x, y)

)
µ(dx, dy) <∞

holds for some ε0 > 0.

8



(2) If Pt is t0-regular for some t0 > 0, i.e. {Pt0(x, ·) : x ∈ Rd1+d2} are mutually equivalent,
then

EGDEGD (3.3) lim
t→∞

Ptf(x, y) = µ(f), µ ∈P, f ∈ B(Rd1+d2).

(3) If (B4) holds and Φ(r) ≥ δr for some constant δ > 0 and all r ≥ 0, then there exist
constants 1 < c <∞, λ > 0 such that

EX1EX1 (3.4) ‖P ∗t µ1 − P ∗t µ2‖V ≤ ce−λt‖µ1 − µ2‖V , µ1, µ2 ∈PV , t ≥ 0.

Consequently, µ ∈PV is the unique invariant probability measure of Pt, and

‖P ∗t ν − µ‖V ≤ ce−λt‖ν − µ‖V , ν ∈PV , t ≥ 0.

(4) Let (B4) hold and H(r) :=
∫ r

0
ds

Φ(s)
< ∞ for r ≥ 0. If Φ is convex, then there exist

constants 1 < k <∞, λ > 0 such that

EX0EX0 (3.5) ‖P ∗t δ(x,y) − µ‖V ≤ k
{

1 +H−1(H(V (x, y))− k−1t)
}

e−λt, (x, y) ∈ Rd1+d2 , t ≥ 0,

where H−1 is the inverse of H with H−1(r) := 0 for r ≤ 0. Consequently, if H(∞) <∞
then there exist constants 0 < c, λ, t∗ <∞ such that

EX2EX2 (3.6) ‖P ∗t µ1 − µ2‖V ≤ ce−λt‖µ1 − µ2‖var, ∀t ≥ t∗, µ1, µ2 ∈P.

In general, (B4) follows from a Hörmander condition. In this spirit, we use the following
explicit condition replacing (B4).

(B′4) d1 = d2 = d, ∇(2)Z(1) is invertible with

‖∇(2)Z(1)‖∞ + ‖(∇(2)Z(1))−1‖∞ <∞,

∇(2)Z(1) is Hölder continuous, and ‖∇(1)Z(1)‖+ ‖(∇(2))2Z(1)‖ is locally bounded.

TN Theorem 3.2. Assume (B1)-(B3) and (B′4), then (B4) holds and Pt is t0-regular for any t0 > 0,
so that all assertions of Theorem 3.1 apply.

Example 3.1. Simply consider d1 = d2 = d and that σt(y) = Id×d is the identity matrix. We
make the following choices of b, Z(1) and Z(2):

• b satisfies ‖b‖L̃p <∞ for some p > d. For example, it is easy to see that this is true when

b(x) :=

∫
Rd

x− y
|x− y|α+1

ν(dy), x ∈ Rd

for some α ∈ (0, 1) and a finite measure ν on Rd. This type drifts are of interests in
statistical physics, see [11] and references therein. Here, we extend the existing study to
degenerate setting.
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• For some constants c1, c2, c3, δ with 0 < c1, |c2|, c3 <∞ and 0 ≤ δ <∞,

Z(1)(x, y) := −c1(1 + |x|)δx+ c2y, Z(2)(x, y) := Z(x, y)− c3(1 + |y|)δy,

where Z : R2d → Rd is a locally Lispchitz continuous with

lim
|(x,y)|→∞

|Z(x, y)|
|(x, y)|

= 0.

Take, for some constant θ ∈ (0,∞),

V (x, y) = (1 + |x|2 + |y|2)θ, x, y ∈ Rd.

Then (B1), (B2) and (B′4) hold, so that by Theorem 3.2, we have the following assertions.

(1) When δ = 0 and |c2| is small enough, we find a constant 0 < c0 < ∞ such that (B3)
holds for Φ(r) = c0r. Assertions (1)-(3) in Theorem 3.1 imply that Pt has a unique
invariant probability measure µ such that µ(| · |2) <∞, (3.3) and (3.4) for some constants
0 < c, λ <∞ hold.

(2) When δ > 0, then (B3) holds for Φ(r) = c0(1 + r1+δ/(2θ)) for some constant 0 < c0 <∞,
so that Theorem 3.1 (4) implies (3.6) for some constants c, λ > 0.

3.2 Proofs

Proof of Theorem 3.1. Once (1) is proved, (2) follows from Doob’s Theorem [4]. So, below we
only prove (1), (3) and (4).

(a) We prove the existence of invariant probability measure by using Zvonkin’s transform.
Let

L0 =
1

2
tr
(
σσ∗∇2

)
+ b · ∇.

According to [17, Lemma 2.5], (B2) implies that there exists λ > 0 such that the PDE

THT0THT0 (3.7) (L0 − λ)u = −b

has a unique solution satisfying

THT’THT’ (3.8) ‖u‖∞ + ‖∇u‖∞ < ε, ‖∇2‖L̃p <∞,

where ε defined in (B2).
Then Θ(y) := y + u(y), y ∈ Rd2 , gives rise to a diffeomorphism on Rd2 . So,

THTTHT (3.9) Θ̃(x, y) = (x,Θ(y)), (x, y) ∈ Rd1+d2

is a diffeomorphism on Rd1+d2 .
Let (Xx,y

t , Y x,y
t )t≥0 solve (3.1) with initial value (x, y) ∈ Rd1+d2 , and let

P̂tf(x, y) := E[(Xx,y
t ,Θ(Y x,y

t ))], t ≥ 0, f ∈ Bb(Rd1+d2), (x, y) ∈ Rd1+d2 .
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Then (Pt)t≥0 and (P̂tf)t≥0 satisfy

PHTPHT (3.10) (P̂tf)(x, y) =
(
Pt(f ◦ Θ̃)

)
(Θ̃−1(x, y)), (x, y) ∈ Rd1+d2 .

So, µ is an invariant probability measure of Pt if and only if

pmpm (3.11) µ̂ := µ ◦ Θ̃−1

is P̂t-invariant. Therefore, it is sufficient to show that P̂t has an invariant probability measure.
By the Bogoliov-Krylov theorem, we only need to verify the tightness of

pm1pm1 (3.12) µ̂n :=
1

n

∫ n

0

P̂s((0, 0), ·)ds, n ≥ 1.

By (B3) and (3.8), we find a constant K ∈ (0,∞) such that

|V (x,Θ(y))− V (x, y)| ≤ K
{
V (x,Θ(y)) ∧ V (x, y)

}
, (x, y) ∈ Rd1+d2 ,

so that for r0 := 1
1+K
∈ (0, 1),

W2’W2’ (3.13) γ0(V ◦ Θ̃)(x, y) ≤ V (x, y) ≤ γ−1
0 (V ◦ Θ̃)(x, y).

Combining these with (B3), (3.7) and applying Itô’s formula, we find a constant 0 < c1 < ∞
such that

W3’W3’ (3.14) d(V ◦ Θ̃)(Xt, Yt) ≤
(
K − c1Φ

(
γ0(V ◦ Θ̃)(Xt, Yt)

))
dt+ dMt

for some martingale (Mt)t≥0. Letting (X0, Y0) = (0, 0), we deduce from (3.14) that∫
Rd1+d2

Φ
(
γ0(V ◦ Θ̃)

)
dµ̂n =

1

n

∫ n

0

E
[
Φ
(
γ0(V ◦ Θ̃)(X

(0,0)
t , Y

(0,0)
t )

)]
dt

≤ K + V ◦ Θ̃(0)/n

c1

<∞, n ≥ 1.

Since Φ
(
γ0(V ◦ Θ̃)

)
has compact level sets, this implies the tightness of {µ̂n}n≥1, and the weak

limit µ̂ of a convergent subsequence gives an invariant probability measure of P̂t. Moreover,∫
Rd1+d2

Φ
(
γ0(V ◦ Θ̃)

)
dµ̂ ≤ K

c1

<∞.

Therefore, by (3.11) and (3.8), µ := µ̂ ◦ Θ̃ is an invariant probability measure of Pt and
µ(Φ(ε0V )) <∞ holds for some constant 0 < ε0 <∞.

(b) In the situations of (3) and (4), we have Φ(r) ≥ c0r for some constant 0 < c0 <∞ and
all r ≥ 1, so that (1) implies that µ(V ) < ∞. By (3.10) and the definition of weighted total
variation norm, we obtain

‖P ∗t µ1 − P ∗t µ2‖V = ‖P̂ ∗t (µ1 ◦ Θ̃−1)− P̂ ∗t (µ2 ◦ Θ̃−1)‖V ◦Θ̃−1 ,
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|P ∗t µ1 − µ‖V = ‖P̂ ∗t (µ1 ◦ Θ̃−1)− µ̂‖V ◦Θ̃−1 , µ1, µ2 ∈PV ,

where µ and µ̂ are the above constructed invariant probability measures of (Pt)t≥0 and (P̂t)t≥0,
respectively. Combining this with (3.13), we derive

‖P ∗t µ1 − P ∗t µ2‖V ≤ γ−1
0 ‖P̂ ∗t (µ1 ◦ Θ̃−1)− P̂ ∗t (µ2 ◦ Θ̃−1)‖V ,

‖P ∗t µ1 − µ‖V ≤ γ−1
0 ‖P̂ ∗t (µ1 ◦ Θ̃−1)− µ̂‖V , µ1, µ2 ∈PV .

So, it remains to verify (3.4) and (3.5) for P̂ ∗t replacing P ∗t .
By (3.14) and Φ(r) ≥ c0r, we have

dV (x,Θ(y)) ≤
(
K − c1c0γ0V (x,Θ(y))

)
dt+ dMt.

By invoking (B4) and (3.10), any compact subset of Rd1+d2 is P̂t-petite. Furthermore, from
(3.14) we deduce that (P̂ ∗t )t≥0 admits the Lyapunov condition: for some constant 0 < k1, k2 =
c1c0γ0 <∞ and for any (x, y) ∈ Rd1+d2 ,

P̂tV (x,Θ(y)) = E
(
V (x,Θ(y))

)
≤ k1

k2

+ e−k2tV (x,Θ(y)).

Consequently, the Harris theorem [9, Theorem 1.3] and (3.13) yield that there exist constants
0 < c, λ <∞ such that

‖P̂ ∗t δ(x,y) − µ̂‖V ≤ e−λt‖δ(x,y) − µ̂‖V ≤ ce−λtV (x, y), t ≥ 0.

Thus, by following the line of part (c) in the proof of [17, Theorem 2.1], we find constants
c, λ > 0 such that

W6W6 (3.15) ‖P̂ ∗t µ1 − P̂ ∗t µ2‖V ≤ ce−λt‖µ1 − µ2‖V , µ1, µ2 ∈PV .

This immediately implies (3.4) for P̂ ∗t replacing P ∗t .
Next, by (3.15), the semigroup property of (P̂t)t≥0 and the invariance of µ̂, we have

‖P̂ ∗t δ(x,y) − µ̂‖V = ‖P̂ ∗t/2P̂ ∗t/2δ(x,y) − P̂ ∗t/2µ̂‖V ≤ ce−λt/2‖P̂ ∗t/2δ(x,y) − µ̂‖V .

On the other hand, by the proof of [17, (2.35)], (B4) implies

P̂2/tV (x, y) ≤ c2

(
1 +H−1(H(V (x, y))− t

2c2

)
, 0 < c2 <∞

so that

‖P̂ ∗t δ(x,y) − µ̂‖V ≤ ce
−λt
2 ‖P̂ ∗2/tδ(x,y) − µ̂‖V ≤ c3e

−λt
2

(
P̂ ∗2/tδ(x,y)(V ) + µ̂(V )

)
≤ c4

(
1 +H−1(H(V (x, y))− t

2c2

)
e−λt, 0 < c3, c4 <∞.

Therefore, (3.5) holds for P̂ ∗t replacing P ∗t .
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Proof of Theorem 3.2. By Proposition 3.3 below, (B1)-(B3) and (B′4) imply (B4) for any t0 > 0
and ν(dx, dy) := inf(x′,y′),(x′′,y′′)∈D pt0(x, y;x′, y′)1D(x, y)dxdy. .

In the following Proposition 3.3, (B3) is weakened as

(B′3) There exist constants ε ∈ (0, 1), K > 0, and 1 ≤ V ∈ C2(Rd1+d2) with

LY1LY1 (3.16) lim
|x|+|y|→∞

V (x, y) =∞, lim sup
|x|+|y|→∞

sup
y′∈Bε(y)

|∇V (x, ·)(y′)|+ ‖(∇2)2V (x, y′)‖
V (x, y)

<∞,

such that

ε sup
y′∈Bε(y)

(
|Z(1)(x, y)|‖∇(1)∇(2)V (x, y′)‖+ |Z(2)(x, y)|(|∇(2)V (x, y′)|+ ‖(∇2)2V (x, y′)‖)

)
+ 〈Z(1)(x, y),∇V (·, y)(x)〉+ 〈Z(2)(x, y),∇V (x, ·)(y)〉 ≤ KV (x, y).

P1 Proposition 3.3. Assume that (B1), (B2), (B′3) and (B′4) hold. If σ is Hölder continuous, then
Pt has a heat kernel pt(x, y;x′, y′) with respect to the Lebesgue measure such that

inf
(x,y),(x′,y′)∈Bk(0)

pt(x, y;x′, y′) > 0, ∀t, k > 0.

To prove this result, we apply the Harnack inequality presented in [5] for the PDE

∂tft(x, y) = − y · ∇(1)ft(x, y)−
(
Z(2) · ∇(2)ft

)
(x, y)

+ div(2)
(
a∇(2)ft

)
(x, y) + (Uft)(x, y), t ≥ 0, x, y ∈ Rd,

PDE’’PDE’’ (3.17)

where div(2) is the divergence operator in the second component y, and

Z(2) : R2d → Rd, U : R2d → R, a : R2d → Rd⊗d

are measurable satisfying the following assumption.

(B′2) a is invertible, ∇(2)a exists, such that |Z(2)|+ |U |+‖a‖+‖a−1‖ is locally bounded in R2d.

The following Harnack inequality is essentially due to [5].

LN1 Lemma 3.4. Assume (B′2). Then there exists a constant r0 ∈ (0, 1) such that for any t > 0
and r ∈ (0, r0], there exists a locally bounded function

ϕt,r : R2d × R2d → (0,∞)

such that any positive weak solution (in the sense of integration by parts) ft of (3.17) satisfies

ft(x
′, y′) ≤ ϕt,r(x, y;x′, y′)ft+r(x, y), (x, y), (x′, y′) ∈ R2d.
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Proof. By [5, Theorem 3 and Remark 4], there exist small constants r0, r1 ∈ (0, 1), such that
for any t > 0 there exists a locally bounded function

Ct : (0, r0]× R2d → (0,∞)

such that any positive solution f of (3.17) satisfies

ft(x, y) ≤ Ct,r(x, y) inf
(x′,y′)∈B(x,y;r1)

ft+r(x
′, y′), r ∈ (0, r0],

where B(x, y; r1) := {(x′, y′) ∈ R2d : |(x− x′, y − y′)| ≤ r1}. For any (x, y), (x′, y′) ∈ R2d, let

n = n(x, y;x′, y′) := inf
{
n ∈ N : |(x− x′, y − y′)| ≤ nr1

}
,

and denote

(xi, yi) := (x, y) +
i

n
(x′ − x, y′ − y), 0 ≤ i ≤ n.

Then

ft(x, y) ≤ Ct, r
n
(x0, y0)ft+ r

n
(x1, y1) ≤ · · · ≤ ft+r(x

′, y′)
n−1∏
i=0

Ct+ ir
n
, r
n
(xi, yi).

Therefore, the desired estimate holds for

ϕt,r(x, y;x′, y′) :=
n−1∏
i=0

Ct+ ir
n
, r
n
(xi, yi), n := n(x, y;x′, y′).

Next, we extend Lemma 3.4 to the following more general PDE:

∂tft(x, y) = −
(
Z(1) · ∇(1)ft + Z(2) · ∇(2)ft

)
(x, y)

+ div(2)
(
a∇(2)ft

)
(x, y) + (Uft)(x, y), t ≥ 0, x, y ∈ Rd.

PDE’PDE’ (3.18)

LN2 Lemma 3.5. Assume (B′2) and (B′4). Then there exists a constant r0 ∈ (0, 1) such that for
any t > 0 and r ∈ (0, r0], there exists a locally bounded function

ϕt,r : R2d × R2d → (0,∞)

such that any positive weak solution (in the sense of integration by parts) ft of (3.18) satisfies

ft(x
′, y′) ≤ ϕt,r(x, y;x′, y′)ft+r(x, y), (x, y), (x′, y′) ∈ R2d.

Proof. To transform (3.18) into (3.17), we make the change of variable

(x, y) 7→ (x, ỹ) :=
(
x, (Z(1)(x, y))−1

)
.

Let φ(x, ·) :=
(
Z(1)(x, ·)

)−1
and

f̃t(x, ỹ) := ft(x, φ(x, ỹ)), Ũ(x, ỹ) := U(x, φ(x, ỹ)), t ≥ 0, x, ỹ ∈ Rd.
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Then (3.18) implies

∂tf̃t(x, ỹ) = −
(
Z(1) · ∇(1)ft + Z(2) · ∇(2)ft

)(
x, φ(x, ỹ)

)
+ div(2)

(
a∇(2)ft

)(
x, φ(x, ỹ)

)
+ (Uft)

(
x, φ(x, ỹ)

)
, t ≥ 0, x, y ∈ Rd.

R1R1 (3.19)

By chain rule, we obtain(
∇(1)f̃t

)
(x, ỹ) = (∇(1)ft)

(
x, φ(x, ỹ)

)
+
(
∇(1)φ(x, ỹ)

)(
∇(2)ft

)(
x, φ(x, ỹ)

)
,(

∇(2)f̃t

)
(x, ỹ) =

(
∇(2)φ(x, ỹ)

)(
∇(2)ft

)(
x, φ(x, ỹ)

)
,((

∇(2)
)2
f̃t

)
(x, ỹ) =

(
∇(2)φ(x, ỹ)

)2((
∇(2)

)2
ft

)(
x, φ(x, ỹ)

)
+
(

(∇(2))2φ(x, ỹ)
)(
∇(2)ft

)(
x, φ(x, ỹ)

)
.

So, (
∇(2)ft

)(
x, φ(x, ỹ)

)
=
(
∇(2)φ(x, ỹ)

)−1(
∇(2)f̃t

)
(x, ỹ),(

∇(1)ft
)(
x, φ(x, ỹ)

)
=
(
∇(1)f̃t

)
(x, ỹ)−

(
∇(1)φ(x, ỹ)

)(
∇(2)φ(x, ỹ)

)−1(
∇(2)f̃t

)
(x, ỹ).

R2R2 (3.20)

So, letting

Ax,ỹ :=
(
∇(2)φ(x, ỹ)

)−1

,

we derive

div(2)
(
a∇(2)ft

)(
x, φ(x, ỹ)

)
=

d∑
i,j=1

[
∂

(2)
i

(
aij∂

(2)
j ft

)]
(x, φ(x, ỹ))

=
d∑

i,j,k=1

Ax,ỹik ∂
(2)
k

(
(aij∂

(2)
j ft)(x, φ(x, ỹ))

)
=

d∑
i,j,k,l=1

Ax,ỹik ∂
(2)
k

(
aij(x, φ(x, ỹ))Ax,ỹjl ∂

(2)
l f̃t(x, ỹ)

)
=

d∑
k,l=1

∂
(2)
k

([
(Ax,ỹ)∗a(x, φ(x, ỹ))Ax,ỹ

]
kl
∂

(2)
l f̃t(x, ỹ)

)

−
d∑

i,j,k,l=1

(
∂

(2)
k Ax,ỹik

)
aij(x, φ(x, ỹ))Ax,ỹjl ∂

(2)
l f̃t(x, ỹ)

= div(2)
(
ã∇(2)f̃t

)
(x, ỹ)−

(
Ẑ · ∇(2)f̃t

)
(x, ỹ),

R3R3 (3.21)

where

ã(x, ỹ) :=
(
Ax,ỹ

)∗
a(x, φ(x, ỹ))Ax,ỹ, Ẑl :=

d∑
i,j,k=1

(
∂

(2)
k Ax,ỹik

)
aij(x, φ(x, ỹ))Ax,ỹjl , 1 ≤ l ≤ d.
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Substituting (3.20) and (3.21) into (3.19), and noting that Z1(x, φ(x, ỹ)) = ỹ, we derive

∂tf̃t(x, ỹ) = −
(
ỹ · ∇(1)f̃t + Z̃(2) · ∇(2)f̃t

)
(x, ỹ)

+ div(2)
(
ã∇(2)ft

)
(x, ỹ) + (Ũ f̃t)(x, y), t ≥ 0, x, y ∈ Rd,

for the above defined Ũ , ã and

Z̃(2)(x, ỹ) := Ẑ(x, ỹ) +
(
∇(1)φ(x, ỹ)

)∗
ỹ +

(
∇(2)φ(x, ỹ)

)∗
Z(2)(x, φ(x, ỹ)), x, ỹ ∈ Rd.

Combining this with (B′2) and (B′4), we may apply Lemma 3.4 to this PDE to derive the desired
estimate.

We also need the following result for the existence of heat kernel.

LN3 Lemma 3.6. Assume that (B1), (B2) and (B′4) hold, and the solution to (3.1) is non-explosive.
Then (3.1) has heat kernel pt; namely, for any t > 0 and the solution (Xt, Yt) starting at (x0, y0),
the distribution of (Xt, Yt) has a density pt(x0, y0; ·) with respect to the Lebesgue measure.

Proof. (a) We first assume b = 0 and Z(1)(x, y) = y, but allow σ also depends on x such that
σ is Hölder continuous and ‖σ∗‖∞+ ‖(σσ∗)−1‖∞ <∞. When Z(2) is bounded, the existence of
heat kernel follows from [12, Theorem 1.5]. In general, for any n ≥ 1 let

Z2,n(x, y) := Z(2)(ϕn(x), ϕn(y)), ϕn(x) := x1{|x|≤n} +
nx

|x|
1{|x|>n}.

Let (X
(n)
t , Y

(n)
t ) solve the SDE{

dX
(n)
t = Y

(n)
t dt,

dY
(n)
t = Z2,n(X

(n)
t , Y

(n)
t )dt+ σ(Yt)dWt, (X0, Y0) = (x0, y0).

Then for any t > 0 and n ≥ 1, the distribution of (X
(n)
t , Y

(n)
t ) is absolutely continuous with

respect to the Lebesgue measure; i.e. for any null set A ⊂ R2d, P((X
(n)
t , Y

(n)
t ) ∈ A) = 0. Letting

τn := inf{t ≥ 0 : |Xt| ∨ |Yt| ≥ n},

we have (Xt, Yt) = (Xn
t , Y

n
t ) for t ≤ τn. By the non-explosion we have τn → ∞ as n → ∞, so

that
P((Xt, Yt) ∈ A) ≤ lim

n→∞

{
P((X

(n)
t , Y

(n)
t ) ∈ A) + P(τn < t)

}
= 0

holds for all null set A. Thus, the heat kernel exists.
(b) Let b = 0 and for Z(1) satisfying (B′4). As shown in the proof of Lemma 3.5, with the

transform (x, y) 7→
(
x, (Z(1)(x, y))−1

)
we reduce the situation (a), so that the heat kernel exists.

Finally, when ‖b‖L̃p <∞ for some p > d, by [17, Lemma 2.5], when λ > 0 is large enough, the
PDE

1

2
tr
{
σσ∗∇2

}
u+ b · ∇u = −b+ λu
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for u : Rd → Rd has a unique solution such that

ASSASS (3.22) ‖∇2u‖L̃p <∞, ‖∇u‖∞ ≤
1

2
.

Moreover, by the Sobolev embedding theorem, ‖∇2u‖L̃p < ∞ implies that ∇u is Hölder con-
tinuous. By Itô’s formula, we see that (Xt, Ỹt) = (Xt,Θ(Yt)) solves the SDE{

dXt = Z̃(1)(Xt, Ỹt)dt,

dỸt = Z̃(2)(Xt, Ỹt)dt+ σ̃(Yt)dWt, (X0, Ỹ0) = (x0,Θ(y0)),

where

Z̃(1)(x, ỹ) := Z(1)(x,Θ−1(ỹ)),

Z̃(2)(x, ỹ) :=
(
(∇Θ)Z(2)(x, ·)

)
(Θ−1(ỹ)) + λu(Θ−1(ỹ)),

σ̃(ỹ) :=
(
(∇Θ)σ

)
(Θ−1(ỹ)), x, ỹ ∈ Rd.

Thus, (Xt, Ỹt) := (Xt,Θ(Yt)) solves the SDE of type (3.1) with b = 0, so that by Step (a) it
has a heat kernel. By (3.22), this implies that (Xt, Yt) has heat kernel as well.

Proof of Proposition 3.3. By Lemma 3.6, for any t > 0, (Xt, Yt) has a distribution density
function (heat kernel) pt(x0, y0; ·). Let a = 1

2
σσ∗, so that

1

2
tr
(
σσ∗∇(2)

)
f = div(2)

(
a∇(2)f

)
+
(
div(2)a

)
· ∇(2)f, f ∈ C2

where (div(2)a)i :=
∑d

j=1 ∂
(2)
j aij. As shown in Step (b) in the proof of Lemma 3.6, with Zvonkin’s

transform (Xt, Ỹt) := (Xt, θ(Yt)) for b + div(2)a replacing b, we may and do assume that b +
div(2)a = 0, so that the generator of (Xt, Yt) becomes

Lf := div(2)
(
a∇(2)f

)
+ Z(1) · ∇(1)f + Z(2) · ∇(2)f.

It is easy to see that the adjoint operator of L in L2(R2d) is

L∗f = div(2)
(
a∇(2)f

)
− Z(1) · ∇(1)f − Z(2) · ∇(2)f −

(
div(1)Z(1) + div(2)Z(2)

)
f,

Hence, that the heat kernel ft := pt(x0, y0; ·) solves the equation (3.18) for

U :=
(
div(1)Z(1) + div(2)Z(2)

)
.

So, by Lemma 3.5 with β = β0 ∧ t
2
, we derive

pt(x0, y0;x, y) ≥ Ct(x, y;x′, y′)pt−β(x0, y0;x′, y′), (x, y), (x′, y′) ∈ R2d

for some function Ct : R2d × R2d → (0,∞) satisfying

ct(γ) := inf
(x,y),(x′,y′)∈Bγ(0)

ct(x, y;x′, y′) > 0.
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Let k > 0 be a constant. For any γ ≥ k, we obtain

inf
(x,y)∈Bk(0)

pt(x0, y0;x, y) ≥ ct(γ) sup
(x′,y′)∈Bγ(0)

pt−β(x0, y0;x′, y′)

≥ c̃t(γ)

∫
BN (0)

pt−β(x0, y0;x′, y′)dx′dy′ = c̃t(γ)P
(
(Xt, Yt) ∈ Bγ(0)

)
,

where c̃t(γ) := ct(N)
|Bγ(0)| > 0, for |Bγ(0)| the volume of Bγ(0). On the other hand, by Theorem

2.1, (B1), (B2) and (B′3) imply (2.2), so that for kγ := inf(x,y)/∈Bγ(0) U(x, y),

P
(
(Xt, Yt) /∈ Bγ(0)

)
≤ P

(
U(Xt, Yt) ≥ kγ

)
≤ c

kγ
U(x0, y0).

Taking large enough N such that c
kγ

sup(x0,y0)∈K U(x0, y0) ≤ 1
2
, we obtain

inf
(x0,y0),(x,y)∈K

pt(x0, y0;x, y) ≥ c̃t(γ) inf
(x0,y0)∈K

(
1− c

kγ
U(x0, y0)

)
≥ 1

2
c̃t(γ) > 0.

So, the desired assertion holds.

4 Extension to McKean-Vlasov SDEs

In this part we extend Theorem 2.1 and Theorem 3.2 to McKean-Vlasov SDEs. Consider the
following distribution dependent SDE on Rd1+d2 :

E41E41 (4.1)

{
dXt = Z

(1)
t (Xt, Yt)dt,

dYt =
(
Z

(2)
t (Xt, Yt,L(Xt,Yt)) + bt(Yt)

)
dt+ σ(Yt)dWt, t ∈ [0, T ],

where L(Xt,Yt) ∈P, t ∈ [0, T ] is the law of (Xt, Yt), Z
(1), b, σ and W are as in (1.1), and

Z(2) : [0, T ]× Rd1+d2 ×P → Rd2

is measurable. We first study the well-posedness of (4.1), then investigate the uniform ergodicity
for the time-homogeneous model

EQ4.1EQ4.1 (4.2)

{
dXt = Z(1)(Xt, Yt)dt,

dYt =
(
Z(2)(Xt, Yt,L(Xt,Yt)) + b(Yt)

)
dt+ σ(Yt)dWt, t ≥ 0.

4.1 Well-posedness of (4.1)

Let P̂ be a sub-space of P. We call (4.1) well-posed for distributions in P̂, if for any F0-

measurable random variable (X0, Y0) with L(X0,Y0) ∈ P̂ (respectively, any initial distribution

γ ∈ P̂), (4.1) has a unique strong solution (respectively, unique weak solution) (Xt, Yt) such
that

[0, T ] 3 t→ L(Xt,Yt) ∈ P̂
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is continuous in the weak topology.
To extend Theorem 2.1, let δ0 be the Dirac measure at 0 ∈ Rd1+d2 and denote

Z
(2)
t (x, y) := Z

(2)
t (x, y, δ0), t ∈ [0, T ], (x, y) ∈ Rd1+d2 .

Let
Cw
b ([0, T ]; P̂) :=

{
µ ∈ [0, T ]→ P̂ is weakly continous, sup

t∈[0,T ]

µt(V ) <∞
}
.

(Â) (A1)-(A3) hold for the above defined Z
(2)
t (x, y). Moreover, for any n ≥ 1 and any µ ∈

Cw
b ([0, T ]; P̂), there exists a constant Kn,µ > 0 such that

|Z(2)
t (x, y, µt)− Z(2)

t (x′, y′, µt)| ≤ Kn,µ|(x− x′, y − y′)|, (x, y), (x′, y′) ∈ Bn(0).

The following result extends Theorem 2.1 to the distribution dependent setting as well as [13,
Theorem 1.1] to the present degenerate case.

T4.1 Theorem 4.1. Assume (Â) for P̂ = P or P̂ = PV .

(1) If P̂ = P, and there exists 0 ≤ K ∈ L2([0, T ]) such that

CDCD (4.3)
∣∣Z(2)

t (x, y, µ)− Z(2)
t (x, y, ν)

∣∣ ≤ Kt‖µ− ν‖var, µ, ν ∈P,

then (4.1) is well-posed for distributions in P.

(2) Let P̂ = PV . If

|Z(2)
t (x, y, µ)− Z(2)

t (x, y, ν)| sup
y′∈Bε(y)

(
1 + |∇(2)V (x, y′)|+ ‖(∇(2))2V (x, y′)‖

)
≤ Kt‖µ− ν‖V , (x, y) ∈ Rd1+d2 , µ, ν ∈PV ,

CD’CD’ (4.4)

then (4.1) is well-posed for distributions in PV .

Proof. Let (X0, Y0) be F0-measurable with γ := L(X0,Y0) ∈ P̂. For any

µ ∈ C γ := {µ ∈ Cw
b ([0, T ]; P̂) : µ0 = γ},

assumption (Â) together with (4.3) or (4.4) implies (A1)-(A3) for Z
(2)
t (x, y, µt) replacing Z

(2)
t ,

so that by Theorem 2.1, the SDE

DEDE (4.5)

{
dXµ

t = Z
(1)
t (Xµ

t , Y
µ
t )dt,

dY µ
t = {Z(2)

t (Xµ
t , Y

µ
t , µt) + bt(Y

µ
t )}dt+ σ(Y µ

t )dWt, t ∈ [0, T ],

is well-posed, where (Xµ
0 , Y

µ
0 ) = (X0, Y0). By [10, Theorem 3.1], it suffices to show that

Ψ : C γ → C γ, Ψt(µ) := L(Xµ
t ,Y

µ
t )
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has a unique fixed point in C γ. Below we prove this for P̂ = P and P̂ = PV respectively.
(1) Let P̂ = P and (4.3) holds. For µ, ν ∈ C γ, we reformulate (4.5) as

DE’DE’ (4.6)

{
dXµ

t = Z
(1)
t (Xµ

t , Y
µ
t )dt,

dY µ
t =

(
Z

(2)
t (Xµ

t , Y
µ
t , νt) + bt(Y

µ
t )
)
dt+ σ(Y µ

t )dW̃t, t ∈ [0, T ],

where (Xµ
0 , Y

µ
0 ) = (X0, Y0) and

W̃t := Wt −
∫ t

0

ξµ,νs ds,

ξµ,νs :=
(
σ∗s(σsσ

∗
s)
−1
)
(Y µ

s )
(
Z(2)
s (Xµ

s , Y
µ
s , νs)− Z(2)

s (Xµ
s , Y

µ
s , µs)

)
.

By (A2) and (4.3), there exists a constant 0 < c1 <∞ such that

XISXIS (4.7) |ξµ,νs |2 ≤ c1K
2
s‖µs − νs‖2

var, s ∈ [0, T ].

Since [0, T ] 3 s 7→ ‖µs − νs‖var is measurable and bounded, by Girsanov’s theorem, W̃ is a
Brownian motion under the weighted probability measure Q := RTP, where

Rt := e
∫ t
0 〈ξ

µ,ν
s ,dWs〉− 1

2

∫ t
0 |ξ

µ,ν
s |2ds, t ∈ [0, T ]

is a martingale. Then by the weak uniqueness of (4.5), the law of (Xµ
t , Y

µ
t ) under Q satisfies

CD2CD2 (4.8) L(Xµ
t ,Y

µ
t )|Q = L(Xν

t ,Y
ν
t ) = Ψt(ν), t ∈ [0, T ].

Combining this with the martingale property of Rt, Pinsker’s inequality, (4.7) and letting EQ
be the expectation with respect to Q, we derive

‖Ψt(µ)−Ψt(ν)‖2
var := sup

|f |≤1

∣∣E[f(Xµ
t , Y

µ
t )(1−Rt)

]∣∣2 ≤ (E[|1−Rt|]
)2

≤ 2E[Rt logRt] = 2EQ[logRt] =

∫ t

0

EQ[|ξµ,νs |2]ds ≤ c1

∫ t

0

K2
s‖µs − νs‖2

vards.

CDNCDN (4.9)

This implies that when λ > 0 is large enough, Ψ is contractive under the complete metric

ρλ(µ, ν) := sup
t∈[0,T ]

e−λt‖µt − νt‖var, µ, ν ∈ C γ,

and hence has a unique fixed point.
(2) Let P̂ = PV and (4.3) holds. The following argument is similar to the proof of [13,

Theorem 1.1 (1)], we include here for completeness. Let

C γ
N :=

{
µ ∈ C γ : sup

t∈[0,T ]

µt(V )e−Nt ≤ N(1 + γ(V ))
}
, N ≥ 1.

It suffices to find a constant N ≥ 1 such that ΨC γ
N ⊂ C γ

N and Ψ has a unique fixed point in
C γ
N .
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Firstly, by (A3) for Z
(2)
t (x, y) := Z

(2)
t (x, y, δ0) and (4.4), we find a constant 0 < c0 <∞ such

that

ε sup
y′∈Bε(y)

(
|Z(1)

t (x, y)|‖∇(1)∇(2)V (x, y′)‖+ |Z(2)
t (x, y, µt)|

(
‖∇(2)V (x, y′)‖+ ‖(∇(2))2V (x, y′)‖

))
+ 〈Z(1)

t (x, y),∇V (·, y)(x)〉+ 〈Z(2)
t (x, y, µt),∇V (x, ·)(y)〉 ≤ ηtV (x, y) + c0Ktµt(V )

holds for all t ∈ [0, T ], (x, y) ∈ Rd1+d2 and µ ∈ C γ. As in (2.10), by combining this with (A2)
and Itô’s formula for

(Xµ
t , Ỹ

µ
t ) := (Xµ

t ,Θt(Y
µ
t )), t ∈ [0, T ],

we find a constant 0 < c1 <∞ such that

CD0CD0 (4.10) d
(
V (Xµ

t , Ỹ
µ
t )
)2 ≤ c1

(
(1 + ηt)

(
V (Xµ

t , Ỹ
µ
t )2 +K2

t µt(V )2
))

dt+ dMt, t ∈ [0, T ],

for some martingale Mt. Then there exists a constant 0 < c2 <∞ such that

E[V (Xµ
t , Ỹ

µ
t )2|F0] ≤ ec1

∫ t
0 (1+ηr)drV (X0, Y0)2 +

∫ t

0

c1K
2
s ec1

∫ t
s (1+ηr)drµs(V )2ds

≤ c2V (X0, Y0)2 + c2N
2
(
1 + γ(V )

)2
∫ t

0

K2
s e2Nsds

≤ c2V (X0, Y0)2 + c2

(
N
(
1 + γ(V )

)
eNt
)2
∫ t

0

K2
s e−2N(t−s)ds, t ∈ [0, T ], µ ∈ C γ

N .

CDSCDS (4.11)

Noting that K ∈ L2([0, T ]) implies

lim
N→∞

sup
t∈[0,T ]

∫ t

0

K2
s e−2N(t−s)ds = 0,

while (A3), (2.5) and Jensen’s inequality yield(
Ψt(µ)

)
(V ) := E[V (Xµ

t , Y
µ
t )] ≤ c3E[V (Xµ

t , Ỹ
µ
t )] ≤ c3E

[(
E(V (Xµ

t , Ỹ
µ
t )2|F0)

) 1
2

]
holds for some constant 0 < c3 <∞, we find a constant 1 ≤ N0 <∞ such that (4.11) yields

sup
t∈[0,T ]

{Ψt(µ)}(V )e−Nt ≤ c2E[V (X0, Y0)] + c2N
(
1 + γ(V )

) ∫ t

0

K2
s e−2N(t−s)ds

= c2γ(V ) + c2N
(
1 + γ(V )

) ∫ t

0

K2
s e−2N(t−s)d ≤ N(1 + γ(V )), N ≥ N0.

Therefore, ΨC γ
N ⊂ C γ

N for N ≥ N0.
Next, let N ≥ N0. We intend to prove that Ψ has a unique fixed point in C γ

N , by using the
Girsanov transform defined in (1) to show that for large λ > 0, Ψ is contractive in the following
complete metric on C γ

N :
ρV,λ(µ, ν) := sup

t∈[0,T ]

e−λt‖µt − νt‖V .
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By (4.4) and (A2), we find a constant c0 > 0 such that instead of (4.7),

XIS’XIS’ (4.12) |ξµ,νs |2 ≤ c0K
2
s‖µs − νs‖2

V , s ∈ [0, T ], µ, ν ∈ C γ
N .

So, this together with (4.8), (4.11) and (2.2) yields that for some constants 0 < c1(N), c2(N) <
∞,

‖Φt(µ)− Φt(ν)‖V = sup
|f |≤V

∣∣E[f(Xµ
t , Y

µ
t )(1−Rt)

]∣∣ ≤ E
[
V (Xµ

t , Y
µ
t )|1−Rt|

]
≤ E

[(
E(V (Xµ

t , Y
µ
t )2|F0)

) 1
2
(
E[|Rt − 1|2|F0]

) 1
2

]
≤ c1(N)E

[
V (X0, Y0)

(
E[R2

t − 1|F0]
) 1

2

]
, µ, ν ∈ C γ

N ,

RPP2RPP2 (4.13)

and due to er − 1 ≤ rer for r ∈ R,

E[R2
t − 1|F0] ≤ E

[
e2

∫ t
0 〈ξ

µ,ν
s ,dWs〉−

∫ t
0 |ξ

µ,ν
s |2ds − 1

∣∣∣∣F0

]
≤ E

[
e2

∫ t
0 〈ξ

µ,ν
s ,dWs〉−4

∫ t
0 |ξ

µ,ν
s |2ds+

∫ t
0 3c0K2

s‖µs−νs‖2V ds

∣∣∣∣F0

]
− 1

= e
∫ t
0 3c0K2

s‖µs−νs‖2V ds − 1 ≤ e
∫ t
0 3c0K2

s‖µs−νs‖2V ds

∫ t

0

3c0K
2
s‖µs − νs‖2

V ds

≤ c2(N)

∫ t

0

K2
s‖µs − νs‖2

V ds, µ, ν ∈ C γ
N , t ∈ [0, T ].

Combining this with (4.13), we find a constant 0 < c3(N) <∞ such that

ρλ(Φ(µ),Φ(ν)) = sup
t∈[0,T ]

e−λt‖Φt(µ)− Φt(ν)‖V

≤ c3(N)(1 + γ(V ))ρλ(µ, ν) sup
t∈[0,T ]

(∫ t

0

K2
s e−2λ(t−s)ds

) 1
2

, µ, ν ∈ C γ
N , t ∈ [0, T ].

Since

lim
λ→∞

sup
t∈[0,T ]

(∫ t

0

K2
s e−2λ(t−s)ds

) 1
2

= 0,

when λ > 0 is large enough, Ψ is contractive on the complete metric space (C γ
N , ρλ), so that it

has a unique fixed point in C γ
N as desired.

4.2 Uniform ergodicity of (4.2)

Assume that

(B̂) (B1)-(B3) and (B′4) hold for Z(2)(x, y) := Z(2)(x, y, δ0). Moreover, there exists a constant
0 < κ <∞ such that for all (x, y) ∈ Rd1+d2 and γ1, γ2 ∈P,

|Z(2)(x, y, γ1)− Z(2)(x, y, γ2)| ≤ κ‖γ1 − γ2‖var.
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To investigate the uniform exponential ergodicity, we consider the following reference SDE
for γ ∈P,

EQ4.2EQ4.2 (4.14)

{
dXγ

t = Z(1)(Xγ
t , Y

γ
t )dt,

dY γ
t =

(
Z(2)(Xγ

t , Y
γ
t , γ) + b(Y γ

t )
)
dt+ σ(Y γ

t )dWt.

Let (P γ
t )∗ν = L(Xγ

t ,Y
γ
t ) with L(Xγ

0 ,Y
γ
0 ) = ν. Denote by (Xγ,x,y

t , Y γ,x,y
t ) the solution to (4.14)

with the initial value (x, y) ∈ Rd1+d2 .

Thm4 Theorem 4.2. Assume (B̂). If κ is small enough and Φ in (B3) is convex with
∫∞

0
1

Φ(s)
ds <∞,

then P ∗t associated with (4.2) has a unique invariant probability measure µ̂ ∈ P such that
µ̂(Φ(ε0V )) <∞ for some ε0 > 0, and there exists constants c, λ > 0 such that

‖P ∗t ν − µ̂‖var ≤ ce−λt‖µ̂− ν‖var, t ≥ 0, ν ∈P.

Proof. According to [17, Lemma 3.3], it is sufficient to find constants 0 < k0, c, λ < ∞ such
that when κ < k0, for any µ ∈P, (P γ

t )t≥0 has a unique invariant measure µγ satisfying

EQ4.3EQ4.3 (4.15) ‖(P γ
t )∗µ− µγ‖var ≤ ce−λt‖µ− µγ‖var.

By the uniform Harris type theorem [17, Lemma 3.3], we only need find t0, t1 > 0 and a
measurable set B ∈ B(Rd1+d2), such that

EQ4.4EQ4.4 (4.16) inf
γ∈P,z∈Rd1+d2

P γ
t0(z,B) > 0,

EQ4.5EQ4.5 (4.17) sup
γ∈P;z,z′∈B

‖(P γ
t1)
∗δz − (P γ

t1)
∗δz′‖var < 2.

Below we prove these two estimates for t1 = 1, B = Bk(0) for large enough k > 0 and some
t0 > 1.

(a) Proof of (4.16). Let Z
(2)
t (x, y) = Z

(2)
t (x, y, δ0), (Xδ0,x,y

t , Y δ0,x,y
t )t≥0 solve (3.1) with initial

value (x, y) ∈ Rd1+d2 , and let (P δ0
t )t≥0 be the associated Markov semigroup. By Theorem 3.1

(1) and (3), P δ0
t has a unique invariant probability measure µ such that (3.6) holds for some

constants 0 < c, λ <∞. Consequently, there exists a constant 1 ≤ t0 <∞ such that

‖(P δ0
t )∗ν − µ‖var ≤

1

4
, t ≥ t0, ν ∈P.

Taking k > 0 such that µ(Bk(0)) > 3
4
, this implies that for B := Bk(0),

FY1FY1 (4.18) P δ0
t0 1B(x, y) ≥ 1− P δ0

t0 1Bc(x, y) ≥ 1− µ(Bc)− 1

4
≥ 1

2
, (x, y) ∈ Rd1+d2 .

Now, for any γ ∈P, let

ξγs :=
(
σ∗(σσ∗)−1

)
(Xδ0,x,y

s , Y δ0,x,y
s )

(
Z

(2)
2 (Xδ0,x,y

s , Y δ0,x,y
s , γ)− Z(2)

2 (Xδ0,x,y
s , Y δ0,x,y

s , δ0)
)
.
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Then (B1) and (B2) imply
|ξγs | ≤ c1, s ≥ 0, γ ∈P

for some constant 0 < c1 <∞. Let

R := e
∫ t0
0 〈ξ

γ
s ,dWs〉− 1

2

∫ t0
0 |ξs|2ds.

Thus,

E[R−1] = E[e−
∫ t0
0 〈ξ

γ
s ,dWs〉+ 1

2

∫ t0
0 |ξs|2ds] ≤ ec

2
1
t0
2 ,

and by Girsanov’s theorem,

FY0FY0 (4.19) L
(X

δ0,x,y
t ,Y

δ0,x,y
t )|Q = L(Xγ,x,y

t ,Y γ,x,yt ), t ∈ [0, t0].

So that Schwarz inequality and (4.18) yield

P γ
t01B(x, y) = E[1B(Xδ0,x,y

t0 , Y δ0,x,y
t0 )R] ≥

(E[1B(Xδ0,x,y
t0 , Y δ0,x,y

t0 )])2

E[R−1]
≥ 1

2
e−c

2
1t0 > 0,

for any (x, y) ∈ Rd1+d2 and any γ ∈P. Hence, (4.16) holds.
(b) Proof of (4.17): Recall that B = Bk(0). Let p1(x, y; ·) be the distribution density of

P δ0
1 (x, y; ·). By Proposition 3.3, we have

δ := inf
(x,y),(x′,y′)∈B

p1(x, y;x′, y′) > 0,

where p1 is the heat kernel of P1. Then for any z, z′ ∈ B,

‖(P δ0
1 )∗δz − (P δ0

1 )∗δz′‖var =

∫
R2d

|p1(z;x, y)− p1(z′;x, y)|dxdy

≤
∫
R2d

(
p1(z;x, y) + p1(z′;x, y)− 2[p1(z;x, y) ∧ p1(z′;x, y)]

)
dxdy

≤ 2− 2δvol(B) := δ′ < 2.

FY2FY2 (4.20)

On the other hand, by (B̂), (4.19) and Pinsker’s inequality as in (4.9), we find a constant
0 < c2 <∞ such that

‖(P δ0
1 )∗δz − (P γ

1 )∗δz‖var ≤ c2κ, z ∈ Rd1+d2 .

Combining this with (4.20) we conclude that when κ is small enough, (4.17) holds for t1 = 1.
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12 [11] N. V. Krylov, M. Röckner, Strong solutions of stochastic equations with singular time
dependent drift, Probab. Theory Related Fields 131(2005), 154-196.

LPP [12] A. Lanconelli, S. Pagliarani, A. Pascucci, Local densities for a class of degenerate diffu-
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