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Abstract

The relative entropy for two different degenerate diffusion processes is estimated by
using the Wasserstein distance of initial distributions and the difference between coeffi-
cients. As applications, the entropy-cost inequality and exponential ergodicity in entropy
are derived for distribution dependent stochastic Hamiltonian systems associated with
nonlinear kinetic Fokker-Planck equations.
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1 Introduction

To characterize the stability of stochastic systems under perturbations, a natural way is to
estimate the difference of distributions for two different processes, see [14] for a comparison
theorem on transition densities (i.e. heat kernels) of diffusions with different drifts.

Recently, by using the entropy inequality established by Bogachev, Rockner and Shaposh-
nikov [1] for diffusion processes, and by developing a bi-coupling argument, the entropy and
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probability distances have been estimated in [17, 10] for different non-degenerate SDEs with dis-
tribution dependent noise. In this paper, we aim to establish entropy inequality for degenerate
diffusion processes. As applications, we establish a log-Harnack inequality and study the expo-
nential ergodicity in entropy for stochastic Hamiltonian systems with distribution dependent
noise.

Let us start with a simple stochastic Hamiltonian system whose Hamiltonian function is
given by

H(z) = Vi(zW) + V5(2?@) for z = (2V,2?) e R? x RY,

where V; € C2(R?) with ||V2V;|| < 00,i = 1,2. Then X; = (X", X{?), the speed X" and
the location Xt(g) of the stochastic particle, solves the following degenerate stochastic differential
equation (SDE) on R? x R? :

(1.1) dxV = va(x ),
dX® = v2dw, — (VX)) + Va(X?))dt,

where W, is the d-dimensional Brownian motion on a filtered probability space (2, .Z, (%)>0, P).
It is well known that the distribution density function of X, solves the associated kinetic Fokker-
Planck equation.

When for each i = 1,2, p@(dz®) := e %i=")dz® is a probability measure on R?, SDE
(1.1) has a unique invariant probability measure

i(dz) = pM(dzM)p? (dz®), for z = (zW,2?) € R? x R%
According to Villani [19], suppose that p(?) satisfies the Poincaré inequality
pO?) < p ()2 + CuO (V). Vf e GiRY),i=1,2,

for some constant C' > 0, where and in the sequel p(f) := [ fdu for a measure p and a
function f if the integral exists. Then the Markov semigroup P, associated with (1.1) converges
exponentially to i in H'(ji), i.e. for some constants ¢, A > 0,

A(|Pf — @)+ |VEf?) < ce™a(|f — a(f)]> + |V f]?)

for any ¢t > 0 and f € C}(RY). This property, known as “hypocoercivity 7 due to Villani
[19], has been explored further by various authors in a series of papers for the exponential
convergence of P, in L*(p), such as [2] by Camrud, Herzog, Stoltz and Gordina, as well as [6]
by Grothaus and Stilgenbauer, based on an abstract analytic framework built up by Dolbeaut,
Mouhot and Schmeiser [4], see also the recent work [5] for the study of singular models. In case
the Poincaré inequality fails, slower convergence rates are presented in [7, 11] using the weak
Poincaré inequality developed by Rockner and the third named author [18].

On the other hand, the study of the exponential ergodicity in the relative entropy arising
from information theory, which is stronger than that in L? (see [20]), becomes an important
topic. Recall that if 4 and v are two probability measures, then the relative entropy of p with
respect to v is defined by

,u(log j—’;), if u is absolutely continuous w.r.t. v,

Ent(u|v) := {

0, otherwise.



By Young’s inequality, see for instance [?, Lemma 2.4], for any positive measurable function f
such that v(f) = 1, we have

du du du
log f) = (—1 >< <—1 —> 1 —E ,
pllog f) =v( g f) < v( - log ) +logv(f) = Ent(ulv)
and the equality holds for f = %' Thus,

(1.2) Ent(ulv) = sup p(logf)= sup [u(log f) —logv(f)],
f>0u(f)=1 f>0,v(f)<oco

since the right hand side is infinite if p is not absolutely continuous with respect to v.

By establishing a log-Harnack inequality, the exponential ergodicity in entropy has been been
derived in [20] for stochastic Hamiltonian systems for linear VV5, and has been further extended
in [16, 9] to the case with distribution dependent drift. However, the log-Harnack inequality
and the exponential ergodicity in entropy are still unknown for stochastic Hamiltonian systems
with nonlinear VV5.

To formulate distribution dependent SDEs, we introduce the Wasserstein space Z,(RRY)
for probability measures on R? having finite second moment. It is a Polish space under the
Wasserstein distance

1

2
Wo(p,v) := inf (/ |z — y\zﬂ(dx,dy)) :
TEE (u,v) Rd xRd
where €'(1, v) denotes the set of all couplings for 1 and v. Let .Z; denote the distribution of
the random variable &.
To illustrate our general results, we consider below the distribution dependent stochastic
Hamiltonian system for X; := (X, X?) € R%t x Ré;

13) dxV = {BX? +b(X,)}dt,
' AX? = o(Lx)dW, + Z(XP, Zy)dt, t >0,

where B is a d; x dy-matrix such that BB* is invertible (i.e. Rank(B) = d;), b € CZ(R%11dz2)
such that
{(VPb)B*v,v) > —5|B*|*, veR™

holds for some constant § € (0, 1), where V@ is the gradient in £ € R% and
o PH(RNTER) o REEE 7 RUTER x g2, (RNTE2) — R®

are Lipschitz continuous. According to [21, Theorem 2.1], (1.3) is well-posed for distributions in
Py(RE+42) e, for any Fy-measurable initial value Xy with Ly, € Po(R¥1792) | (respectively,
any initial distribution p € P(R%+%)) the SDE has a unique strong (respectively, weak)
solution with Ly, € Py(R4%42) continuous in t > 0. Let Py := Ly, where X; is the solution
of (1.3) with initial distribution p € 5. If VZ(-, ) is bounded and Lipschitz continuous
uniformly in u, then the following assertions are implied by Theorem 4.1.



e By (4.4) for k = 0, there exists a constant ¢ > 0 such that

Ent (P pulFv) < t%Wz(u, V)2, te (0,1]; p,ve Py(RUTE),

o If P is exponentially ergodic in Wy, i.e. P* has a unique invariant probability measure
fi € Po(RE142) and there exist two positive constants ¢; and A such that

(14) W2(Pt*lj“7 ﬂ)2 < Cle_)\tw2<u7 la)Q
holds for any ¢ > 0 and p € Z,(R%%%) then the exponential ergodicity in entropy holds:
Ent(P; | 1) < cere™ Wy (u, 1)

holds for any ¢ > 0 and pu € P(R47%). See Corollary 4.2 and Example 4.1 below for
some concrete models satisfying (1.4).

The remainder of the paper is organized as follows. We establish an entropy inequality in
Section 2 for some SDEs which applies also to the degenerate case, then apply the inequality
to stochastic Hamiltonian systems and the distribution dependent model in Sections 3 and 4
respectively.

2 Entropy estimate between diffusion processes

Let d,m € N,T € (0,00), and (W;)¢epo,r] be an m-dimensional Brownian motion on a filtered
probability space (Q, . Z, (Z)iejo.1], P). Consider the following SDEs on R%:

(2.1) ax = Z,(t, X{Mat + o:(t, XYdW, for t € (0,7,

where
Z; [0, T] x R = R? and o, : [0,T] x R — R%®™

are nice enough measurable maps such that the SDE is well-posed for ¢ = 1,2. Let (Pﬁz)ogsgtST
be the corresponding Markov semigroups, i.e.

Pl f(z) == E[f(X[})] for [ € By(R?) and z € R,

where (X;'jf)te[sj] solves (2.1) for ¢t € [s,T] with X% = . The corresponding generators are
given by .
L = tr{a;(t, )\V?} + Zi(t,-) -V for t € [0,T],
1

where a; := 50,07 which may be degenerate. If v : [0,7] — R? is a path, then

[0]a (2) == sup inf {Jw| : w € R ay(t,z)2w = v(t)} for t € [0, 77,
xER4

where the convention that inf ) = oo is applied.



Let 2(R%) denote the space of all probability measures on R%. For a given v € Z(R?),
X;"” denotes the solution to (2.1) with ,;?Xé,u = v, where and in the sequel, .Z; stands for the
law of a random variable £. Denote

P = Lyiv fortel0,T], ve PR and i = 1,2.
We shall make the following assumptions.

(A;) Forany 0 < s <t <T, P;?C’g(Rd) C C%(R?) so that the Kolmogorov backward equation
holds for any f € CZ(R?):

OIS = ~LEP T for s 0 and € 0.7

(Ay) For any t € (0,T], (a1 — a3)(t,-) is differentiable on R?, and there exists a measurable
function Hy,, 4~ : (0,T] — (0, 00) such that

[ [div{(a1 — a2)(t, )V F}(X )]
< HyY o, (0) (Ellas(t, )2V (X))

holds for any ¢ € (0,7] and f € CZ(R?).

We remark that condition (A;) is satisfied when the coefficients have bounded first and
second order derivatives. For the non-degenerate case, it is satisfied for a class of Holder
continuous oy and by, see for instance [12] and references within. According to [1], condition
(Ay) is satisfied if a is invertible and X" has a distribution density p;”” such that log p;” is in
a Sobolev space. In this case, inequality (2.2) in the following theorem reduces to [1, Theorem
1.1]. In the next section, we shall verify these conditions for some important examples of
degenerate SDEs.

We are now in a position to state and prove the main result.

Theorem 2.1. Assume that (Ay) and (As) are satisfied. Then
Ly p2,v 1 ! . 1v 2
(22)  Ent(P|PM) < / {120 = 22 = div(a) = a3)|us(s) + HY o5} ds

for any t € (0,T].

Proof. Let X} solve (2.1) with initial distribution v, and let Xy = X7". Let CZ, (R?) denote
the space of all functions f € CZ(R?) such that inf f > 0. By (1.2) and an approximation
argument, we have

Ent(PY|PP) = sup  L(f),
(2.3) feCy 4 (RS
L(f) :==Elog f(X;"") — log Ef(X[").



Noting that (X" : # € R¥),cpq is a (time inhomogenous) Markov process, for any f €
C; . (RY), we have

(24) B = [ (R = BIRD £
So, by Jensen’s inequality, we obtain

I,(f) = Elog f(X;") — log E(RY £)(X3")
(2.5) < Elog f(X}" :

-
X
S~—

I
=
—_
)

OS]
—~
=9
o+ ~
~
~—
—~
O><m
X
~—

for every ¢ € (0,T]. By (A;) and using It6’s formula for X!, we derive that

d L pP
d_H“Z"(IOg(lD X)) = E[(L§1> log(P& f) - p<2>} f>(Xs1’”)}

—E|(L{" — L&) log(P £)(X1*) = [{as(s, )V 1og PY f}*(x21)]
- ]E[div{(al — @)(s, ) V1og P [H(X1) = |{aa(s, )3V 1og P 7 (x1)]
+E[({21 - Z dwmy—@»@fxvmga¢ﬁCQ%]

Combining this with (As) gives that

d

L E(log(P 1))

< [H3 0 (5) 4120 = 22 = div(ar = @)l (5)] (Blas(s, )3V log P f12(X1))
—E||as(s, )3V log P (X))

I : 2
< [H 6 + 120 = 2 = diviar — a2)s(9)]

for every s € (0, ], which, together with (2.3) and (3.27), implies the desired estimate (2.2). O

As explained in [17] that |H}" . (s)[? is normally singular for small s, such that the upper
bound in (2.2) becomes infinite. To derive a finite upper bound of the relative entropy, we make
use of the bi-coupling argument developed in [17], which leads to the following consequence
where different initial distributions are also allowed.

Corollary 2.2. Assume that (Ay) and (Ay) are satisfied, Hilx 0 (8) = Hi;‘s,“”@ (s) is measurable
in x € RY such that

H(ill/ as :/R; H(ilx a2( )V(dm)



Suppose that there exist a constant p € (1,00) and a decreasing function n : (0,T] — (0, 00)
such that

(2.6) |P f(x)[P < (P fIP(y))ent—)le—vP

forany 0 < s <t <T and f € By(R?). Then there exists a constant ¢ > 0 such that

t 2
Eut(PPE) < it [ d({z’ [ b= b = divia = o)) + HE, (9} ds
RexR

TEE (1,v) to

+(p—1) logIE{ exp [en(t — t0)|Xt107w1 _ Xf(;wg‘Q} })W(dxl,d@)

for any 0 <ty <t <T and z,y € R%

Proof. For simplicity, denote P,f’m = Pf"s”” where i = 1,2, € R?, and ¢, is the Dirac measure at
x. Let Xy(x1) be the diffusion process starting from the initial value x; with the infinitesimal
generator given by

L, := 1[0’150] (t>L§1> + 1(t0,t] (t)L§2>.

Let P01 = Lx,(z1)- By using (2.2) with v = 0., and P™ iy place of P>, and combining
with [17, (2.4) and (2.9)], we deduce that

1,21 2,22 p ! : 1,z 2
Ent(P,“'|P") < 1 {||b1 — by — div(ay — ag)ley(s) + Hy™ (a1 — ag)} ds
(2.7) fo

+(p-1) logE{ exp [cn(t — t0)|Xt1(;w1 _ Xfom ﬂ }

On the other hand, if 7 € € (u,v), then by using (2.3), (2.4) and Jensen’s inequality, we obtain

Ent(P PPy = sup {Elog f(X") —logEf(X;")}

fec;  (rY)
— { / P (log £)(1)u(day) — log / P§2>f<m2>u<dx2>}
fGCgﬂL(Rd) Rd R4
< swp { [ P0g peutaey - [ 1ogP§2>f<x2>u<dx2>}
feCiJr(Rd) Rd R4

= swp / {PM (log f)(a1) — log P” f(25) }(dzy, )
fec; | (R?) JRIXRY

< / sup  {PY(log f)(x1) — log P f () Ye(day, da)
R

IxRe feC? | (RY)

_ / Ent(P P2 (dxs, das),
R xRd

which, together with (2.7), yields the desired estimate. O



3 Stochastic Hamilton system

3.1 A general result
Let di,ds € N. For any initial distribution v € Z2(R%%), consider the following degenerate
SDEs for X" = (X/W" X/®") e R x R%: (j = 1,2):

i(1),v N2
(31) dXt'( ) (t, X" )dt, |
' AX;P = Zi(t, XP7)dt + o3, Xp) AW, ZLyow = v, for t € [0, T,

where W, is a dy-dimensional Brownian motion on a filtered probability space (2, 7, (F)ico17, P),
and

b:[0,T] x Rt s RE 7. [0, T] x R+ 5 RE g, 0 [0,T] x RU+d2 — Rz

are measurable.

If v = 6, where z € R“+%  then the solution is simply denoted by X}* = (X" xi®)),
Let VO be the gradient in 29 € R% for i = 1,2.

Let us introduce the following technical conditions.

(By) The coefficients o;(t, ), Zi(t,z) (for i = 1,2) and b(t,z) are locally bounded in (t,z) €
0, 7] x RE+42 and twice differentiable in the space variable z. The matrix valued function

Qo = %agag is invertible. There exists a constant KX > 0 such that

for (t,z) € [0,T] x R1+% and j =1,2.

(Bs2) There exists a function £ € C((0,77; (0,00)) such that

B[V (x| < & (BLF(X))?
for t € (0,T], v® € R® with [v®| =1 and f € O} (RH1+%),

It is well known that condition (B;) implies the well-posededness of (3.1) and that condition
(Ap) is satisfied. Let P be the distribution of X;”.
To state our next result we recall that for a vector valued function g on [0, T] x Rd1+dz

9llt00 == sup |g(t, 2)|

z€RA+d2
for ¢t € [0, 7.

Theorem 3.1. Assume that conditions (By) and (Bsy) are satisfied. Let (e;)i1<j<d, be the
canonical basis on R%.
1) The following equality holds:

1 /[t _1 N ?
Ent(PM|P2) < z/ llaz* {2 = 22 = diviar = ap)}||, . + € Y oz *(a1 = anes]], | ds.
0

J=1



2) Suppose (2.6) holds, then there exists a constant ¢ > 0 such that

TEE (1)

Ent(P*|P?) < inf /R o <p1f;t+(p—1)1og1a[ en(t—to)| X"t X”“Dw(dxl,dxg)
1+dg wRd1+do

forany 0 <ty <t <T and p,v € P(RUT%) where

1 &

tht;:4/t [HGQ {2y — Zy — div(a1 — as) }Hsoﬁé‘“ZH@z a — as ej||m]
0

7=1
and &% 1= &% for every x € RU+% and s € [tg, t].

Proof. As explained in the proof of Corollary 2.2, we only need to prove the first estimate.
Since (Bs) is satisfied, we have

(v {ding{Oue, (0 — 2) (1 )}V 1|

—\ZE@ (a1 = a2)(t,) VO F1] (X0

<& Y (Ef(n - a)(t, )V} (X))

= €Y (Bfaalt, ) (02 — a)(t e, aalt, )1V rps (X)2)

M\H

d
<& My (ar = a2)ey oo (Elas(t, )2V £ (X)) 2.
j=1

Thus (As) is satisfied with
d 1
HY (a1 —a9) =&Y lag * (a1 — az)ej||eoc-

j=1

Since (B;) implies (A4;), the desired estimate follows immediately from Theorem 2.1. O

3.2 A class of models

We next discuss a class of degenerate stochastic models for which condition (Bz) is satisfied
and the dimension-free Harnack inequality (2.6) holds.

Consider the following SDE for X" = (le(l)’u7 XZ(Q)’V) € Rditdz;

52) {de(l)”’ = {AX;"WY + BX{® 4 b(X]") e,

dXti(z)’V = o, (t)dW, + Zi(t ,XZ”)dt, gxé,y =v fori=1,2,

where A, B, b, 0; and Z; satisfy the following assumption.

9



(Bs) 1) Ais a dy x dy matrix and B is a d; x dy matrix, such that Kalman’s condition
(3.3) Rank [A'B:0<i< k] =d;

holds for some 0 < k < d; — 1.

2) b € C}(R%%42) with Lipschitz continuous Vb, and there exists a constant § € (0, 1)
such that

(3'4) <(V(2)b($))B*U,U> > —5|B*’U|2, v E Rdl,x € RA1+d2

3) o1(t) and o5(t) are bounded, and as(t) := 302(t)os(t)* is invertible with bounded
iverse.

4) Zi(t,x) (for i = 1,2) are locally bounded in [0, T] x R%1+49 and differentiable in z, such
that
VZi(t, 1) — VZilt,
sup {HVZi(t,')H + [VZi( T; - ( y)||} <K

te[0,7)

holds for some constant K > 0.

We introduce &; in two different cases:

(3.5) ¢, = 23 if Zy(t,2) = Zi(t,2?) is independent of 2,
' T %3 otherwise.

Corollary 3.2. Assume that (Bs) is satisfied for either k =0 or k > 1 but b(z) = b(z®) only
depends on . Let PP be the distribution of X" solving (3.2). Then there exist constants
c>0 and e € (0,%] such that for any t € (0,T) and p,v € Po(RU+d2),

)
Wy (p, v Zy— 7 + 2 — 2)d
t4k+3 ( 2\H, / H 1= 2”5 oo) C/(l/\t)4k+3§ Ha1<3) aQ(S)” ) s

Proof. Without loss of generality, we may and do assume that o; = y/2a;. Moreover, by a
standard approximation argument, under (Bj3) we may find a sequence {ZZ»(”)}nzl for each
1 =1, 2, such that

Ent(P|PP") <

sup  |[VFZ(t, )| < K,

n>1,k=1,2,t[0,T]

lim sup {[[(Z — Z")(t, ) loo + [IV(Zi — Z)(E, )]0 = 0.

N0 (0,7

Moreover, let {b(™},~; be a bounded sequence in CZ(R%*%) such that ||b(™ — bl mar+e2y — O

as n — oo. Let P be defined as P for (b, Zi(n)) replacing (b, Z;). It is well known that
P — P} weakly as n — oo, so that (2.3) implies that

Ent(P|PP") < 1i££f Ent(P""|PPH™).

10



Therefore, we may and do assume that ||V*b| + ||[V*Zi(t, )|« < K holds for some constant
K >0 and i,k = 1,2, so that Theorem 3.1 applies.

(a) By (B3), 01 > 0,09 > A, for some constant A > 0, where I, is the dy x dy identity
matrix. So, according to the proof of [13, Lemma 3.3],

&0 2
(3.6) !|01—02|\=H2 [ e = e < 2o - w)
0

By Lemma 3.3 below, there exists a constant ¢; > 0 such that for any v, condition (Bs) holds
with

at 23 if Zy(t,2) = Zy(t,2@),

3.
cit™%~2,  in general.

(3.7) & = aé = {

Moreover, by Lemma 3.4 below, (2.6) holds for the following 7(s),s € (0,T) :
(3.8) n(s) = c(p)s™ 7, s €(0,T].

Combining these with Theorem 3.1, and noting that a, ' is bounded and div(a; — a) = 0, we
can find a constant ¢o > 0 such that for any 0 <ty <t < T,

t
Ent(PPE) <o [ (|20 2+ P lls() - aafo)]F) s
(3.9) o

. t—to)—4k=3| x 1Tl _ x2:72)2
+ ¢y inf log E [662( o) X5 to | 7(day, dzy).
TEG (V) JRd1+d2 xRd1+do

It remains to estimate the exponential expectation in the last term.
(b) By (Bs) and (3.6), there exists a constant ¢z > 1 such that

AX;™ = X2 < e (|X0™ = X2 + 121 = 2l o + llaa(s) — ax(s)|*)ds + d M,

where

dM, = 2(X" — X2%2 {5((s) — oo(s) }dW,)
and therefore the following differential inequality holds:
(3.10) d(M), < ez X" — X272 ds.
It follows that

[ X = X272 P < e|zy — @y

3.11 s s
(30 +/ (| 2y = Zo|} oo + llaa (r) — ao(r)|*)dr +/ e dM,.
0 0

Let
7, =inf {s € [0,T] : [ X" — X2™| > n}, forn=1,2,--

with the convention that inf() := 7. Then 7,, — T as n — co. Let

A= Cg(t — to)_4k_3, Cq = ec3T.

11



By (3.11) and the fact that
E[eANtArn] (E 202(N >t/\7'n)% < (Ee2A2C3<M>t/\Tn)% A >0

holds for the continuous martingale

t
N, ::/ eBEAM,, t >0,
0

we deduce that
1,zq 2 sT
E |:e>\|XS/\7'n s/\'rnl ]

(3.12) 1
< ceMor=aa et [§ (121-Zal o tlar () —as(0)]]?)dr (E[e0nm )i,

While by (3.10) and Jensen’s inequality,

1 2
E[62A202<M>5/\7—n:| < ]E|: 2)\20403 0 |Xr/\z,.1n_ TAZTQ,,LPd ]

(3.13) < 1/ E[ 2/\204C3S|XT1AITln—XT2'Az3n|2}dr
S Jo
S Sup E[eQ)\ C4Cgt0‘X71‘/\mT%n _Xf/\z‘r2n|2:|
T'G[O,to]
for s € [0,¢y]. Choosing
1 1 A £ 4k+3
(3.14) ty = 20 3 < 5 > — 5(1/\t)4k+3
4~3

such that
Aoty = 2c2c3(t — to) 3 < 1,

we therefore conclude from (3.12) and (3.13) that

1,z 2 ;T
)\IXS/\Tn s/\‘rnl ]

sup E [e
s€[0,to]

_ 2 to Zi—Z 2 _ 2 1,zq 21:2
< elmi—ma e 0 (121-2a1 ot lar(r)—ax ()] )dr( sup E[eA o XA ]>
s€[0,to]

This together with the definition of A and Fatou’s lemma yields

t—to) 4k~ 3X1””1 X A x Do x2re g2
E[eCS( 0)” \ } < lim 1nf]E[ 1 X o nr =Xt | ]
n—oo

t
< gteaNor—aaf+2ead [ (112222l o Hlar (r)=a2(m)]]?)dr

Combining (3.9) with (3.14), we can therefore find a constant ¢; > 0 such that

t

Ent(P*|P2") g@/ (12 = L2, + l&ar (s) = ax(s)]|") s
e(1At)4k+3 ’

e(tA1)4k+3
b (W2 [ (120 2l + ) - a())ar ).

The desired estimate now follow from (3.7) immediately. O
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3.3 Verify conditions (B;) and (2.6)

Let us consider X; = (X", X!?) taking values in R% x R%, which solves the SDE:

3.15

{dx,f” — {Ax" + BX® 1 b(X,)}dt,
We have the following result which ensures condition (Bx).

Lemma 3.3. Let A, B,b and (Z;, 0;) := (Z,0) satisfy conditions in (Bs), but b is not necessarily
bounded. Let & be in (3.5). Then for any p > 1 there exists a constant c(p) > 0 such that for
any solution Xy of (3.15),

(316)  swp  [E[(V.f)(X0]| < et F(EIFXP)7, e (0,T],f € CHRMH®),

veRATI2 |y|=1

If Z(t,z) = Z't, 2?)) does not depend on V), then

(3.17) sup  [E[(VOS)(X)]| < ep)t 2 (BIF(X)P)?, € (0,T),f € CLRA).

vER2 |v|=1
Proof. We will follow the line of [22, Remark 2.1] to establish the integration by parts formula
E[(va)(Xt)} = E[f(Xt)Mt}

for some random variable M, € Lﬁ(}P’). To this end, we first estimate D, X; and D,(VX;)™!,
where D), is the Malliavin derivative along an adapted process (hs)sejo,q on R? with

t
IE/ K. |?ds < <.
0

(a) For any s € [0,7'), let {K(t,s)}se}s,m) solve the following random ordinary differential
equation on R4 ®d1:
0Ky s = {AXt(l) + Vv Wp(t, X))} Kis, Kss=14 fortelsT).
Since Vb is bounded, K, is bounded and invertible satisfying
(3.18) 1Kol VK <079 for0<s<t<T

for some constant K > 0.
Let

S t _
Qs = / ( > T>Kt,TBB*K;Tdr for 0<s<t<T.
0

By [22, Theorem 4.2(1)] for (¢, s) replacing (T',t), when k& > 1 and b(z) = b(z®?), conditions
(3.3) and (3.4) imply that

(3.19) Qs > %82(k+1)fd1 = &40y, for0<s<t<T

13



holds for some constant ¢y > 0. It is easy to see that this estimate also holds for £ = 0 and
bounded Vb(x) since in this case BB* is invertible.
Let X,(z) = (X/(x))1<j<d,+4, be the solution to (3.15) with X,(z) = 2. Since Vb and VZ
are bounded, we see that _
VXi(2) = (00, X{ (¥)1<ij<ds +4o

exists and is invertible, and the inverse (VX;(z))™' = (VXy(x));, )1<k i<y sa, Satisties

(3.20) {VX:(z)} || <er forte[0,T]

for some constant ¢; > 0.
(b) Since Vb and VZ are bounded, (D, X;)scp0, is the unique solution of the random ODE

Dy XY = Vp,x. Z(s, X,) + o(s)hl, DyXo=0 forsel0,1],

ER

{8S{DhX§1)} — AD X + BDu X + Vi, x,b(X,),

and there exists a constant ¢y > 0 such that
(3.21) |DpX| < 02/ |hl|dr for s € [0,¢].
0

Similarly, since V?b and V2Z are also bounded, for any v € R%*% (D, V,X)e0, solve the
equations

3, { Dy, XY = AD,V, X" + BDV,XP 4 Vp,v,x.b(X,)

+H{v(x) } (DX, V. X,)
9 {DpV, X} = Vp,vux.Z(s, X)) + {V2Z(s, X,) } (Dn X, V, X,

for DV, Xy =0 and s € [0, t]. Moreover, there exists a constant ¢3 > 0 such that

t s t
(3.22) sup | Dn V. X || < 03/ ds/ |h.|dr < 0375/ |h.|ds.
veR41+d2 |y|<1 0 0 0
(c) For any fixed t € (0,T], we may construct h by means of [22, (1.8) and (1.11)] for ¢
replacing 7" with the specific choice ¢(s) := @ satisfying ¢(0) = ¢(t) = 0 as required therein.
For any v = (v, v?)) € R% x R% let

t—s . bt
a5 (V) == 5 v® — st~ 2 )B K, tht / ~BuvPdr
0

s(t — s)B*K},
£t st

gt,s<v) = sOU / Ks rBats

[0

hes(v) = / 1{V (Ger ()0 () O(1, X5) — @aw}dr for s € [0, t].
0

14



Let {e;}1<i<d, +d, e the canonical ONB on R+ According to [22, Remark 2.1], we have

E[(Vez‘f)(Xt] = E[f(AXt)Mt(ei)L

(3.23) Mie) = dlerdQ {é(ht,-(ej))(vXt);il — Dht’_(e]-)(VXt)jil}} )

=1

where .
5(hu.(e5)) = / (B, (e), AW,

0

is the Malliavin divergence of h;.(e;). Consequently

p—1

(3.24) [E(Ve, )XD]| < (BIF (X)) (B[ M(es)|7=1])
for t € (0, 7] and 1 < i < dy + ds.
By (3.20) and (3.22), there is a constant ¢4 > 0 such that

p—1

_p 4\ b1 htds t 2(pp—1) P
325 @M <3 o {B( [ 10meras) T
j=1

for any t € (0,7] and 1 <i < d; + ds.
By (3.19), we have [|Q; || < ¢y 'ts™2*). Combining this with (3.18), we may find a constant
cs > 0 such that

|at73(ej)| S C5t_2k + C5l{j§d1}t_2k_1’
’asat,s(ej)l S C5t72k71 + C51{j§d1}t72k72,
9e.s(e)] < est+cslijeay for 0<s <t <Tand1<j<d+ds

Now noting that ||o(s)7!|| < K, together with the previous estimates, we may conclude that
there is a constant c¢g > 0 such that

asht,s(ej” = ‘G(S)_l{Vgt,s(ej),at,s(ej)b(sa Xs) - asat,s(ej)}‘
S C6t72k71 +C61{j§d1}t72k72

for any 0 < s <t < T and for 1 < j < d; + do. This together with (3.25) enables us to find a
constant ¢; > 0 such that

if sup,4, ||(VXt)j_ilHoO > 0,
otherwise.

p pet t—21~c—g7
(BM (e 7)) < e {“k;

Combining this with (3.24) we derive (3.16) for some constant ¢(p) > 0.
(d) For the case where Z(s,r) = (s,2?) is independent of (), we have V,;X; = 0 for
1 >d; + 1 and j < dy, so that the previous estimate implies that

p—1 1

(E[|M;(e))|7°1]) 7 < et 273 Wi e (0,T),

where d; + 1 < i < d; + dy. Combining this with (3.24) we derive we derive (3.17) with some
constant ¢(p) > 0 and & =t~ %3, O
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Lemma 3.4. Let (3.3) and (3.4) hold, let b € C}, and let Z be locally bounded having bounded
VZ. Then for any p > 1 there exists a constant ¢(p) > 0 such that the semigroup P, associated
with (3.15) satisfies the Harnack inequality

(326)  |RS@)(x) < (RUP@)e T, te (0,T],z,y € RUH, [ € B RI*),

Proof. (a) Let P, be the Markov semigroup associated with (3.15) for b = 0. By [22, Corollary
4.3(1)] for I; = 0, we find a constant ¢;(p) > 0 such that

1 ¢ (p)|e—yl?

(327) Pifl(@) < (BISP @)y e B te (0.1),a,y € RO
holds for all f € %, (R%Td2),
On the other hand, since b is bounded, there exists a constant co(p) > 0 such that
P < e BIP RIS < ORI, te 0.7
Combining this with (3.27) we find a constant c3(p) > 0 such that

Leamlz—yl?

(3.28) Plfl(x) < (PIfP(y) e s te (0,7, 2,y € RUT

holds for all f € %, (RT142).
Finally, since Vb and VZ are bounded, (VX;)cjo,r) is bounded as well. So, there exists a
constant ¢4 > 0 such that

IVEfI <PVl te[0,T], f € CyRM ™).

According to the proof of [15, Theorem 2.2|, this together with (3.28) implies (3.26) for some
constant ¢(p) > 0. O

4 Distribution dependent stochastic Hamilton system

Consider the following distribution dependent SDEs

(4.1)

X" = {AX + BXP + b(X,, Zx,) bdt,
dXt(Q) - Z(t’ Xt? O%Xt)dt + O-(t7 gXt)th

for t € [0, 7], where X; = (X, X?) is R x R% valued process. The coefficients A, B, b, Z
and o satisfy the following assumption.

(C1) A, B and b satisfy conditions 1) and 2) in (Bs), Z(t,z, ) is differentiable in x € R%+d2
and there exists a constant K > 0 such that

IVO(E, -, p) () = Vb(t, - p) ()| < Kz —y],

|b(t7I7:u) - b(tvy’ V)| + ||O'<t,[j,) - U(t7 V)H S K{l(E - y' +W2(:u7 V)}
1Z(t,0,00)] + lo(t, )l + llo(t, ) < K
for t € [0,T), z,y € R4 and p, v € Py(RUT2),
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By, for instance, [21, Theorem 2.1], under this assumption the SDE (4.1) is well-posed for
distributions in Py(R¥+%) and Pru = Zx, for the solution X; with initial distribution p
satisfies

(4.2) sup Wy (P, Pv) < CWo(p,v), Vu,v € Py(RUHER)

te[0,T]
for some constant C' > 0.
Theorem 4.1. Assume that condition (C}) is satisfied.

(1) There exists a constant ¢ > 0 such that
WQ(M7V>27 vt € (O,T]

* * ¢ _
(4.3) Ent(P;u|Pv) < +(4k+2)(4k+3)

If Z(t,z,p) = Z(t,2@, ) does not dependent on ), then

C

2
) < s W)’ VEe (0, 7).

(4.4) Ent (P p|Pv
(2) If Z(t,x,u) = Z(z,p) and o(t,pn) = o(p) do not depend on t, and there exist constants
', A >0 such that
Wy (P, Piv)? < deMWy(u,v)?, V>0 and Vu,v € Py(RET2),
then P} has a unique invariant probability measure fi € Po(RUT%2)  and
Ent(P; | i) < ec'e X VWy (u, 1)
for any t > 0 and for every p € Po(RUT42),
Proof. Tt suffices to prove the first assertion. To this end, given (u,v € Py(R%749%), let
Z£2)(t,x) = Z(t,z, P'p), Z§2)(t,x) = Z(t,z, P'v),
o1(t) :=o(t, Pfp) o3(t) :==0o(t, Pjv), tel0,T].
Then the desired estimates in Theorem 4.1(1) follow from Corollary 3.2 and (4.2). O
To illustrate this result, we consider the following typical example for d; = dy = d:
X = o( Ly )W, — (BVV(, L)(X) + 8B (BB) XV + xP ) at,
where 5 > 0 is a constant, B is an invertible d X d-matrix, and
ViR x 2, (R*) — R
is measurable and differentiable in z(!) € R%. Let

$(@,) =/ l2® — yO + [BE® — y@)R for 2,y € R,

[NIES

WY (u,v) ;= inf (/R . d¢2dw) for yu,v € Py(R*).
2d «R2

WSAORY

We assume that the following technical condition is satisfied.
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(Cy) V(-,p) is differentiable such that VV (-, u)(x")) is Lipschitz continuous in (z(!) u) €
R? x 22, (R??). Moreover, there exist constants 6,0, € R with

01+ 62 < B,
such that
(BB{VV (-, 1)(z)) = VV (-, 1) (yM)}, 2V =y + (1 + 8)B(a® —y?))

R ;BB |B{o(1) — o)} }s > —01(w,y)? — 0.W (1, v)?

for any x,y € R?*? and u, v € P25(R?%).
Corollary 4.2. Assume that condition (Cy) is satisfied. Let

2(8 — 61 — 6a)

(4.6) K=
2428+ B2+ /Bt +4

For any k' € (0,k), when ||Vb||o s small enough, P} has a unique invariant probability measure
i € P5(R*), and there exists a constant ¢ > 0 such that

Y
ce 2Kkt

) * —\2 * 7) <
(4 7) W2(Pt u,,u) +Ent(Pt :U“|:U’) — (1 /\t)g

Wa(p, 1)

for any t > 0 and pu € P5(R??).

Proof. The proof is completely similar to that of [16, Lemma 5.2] where o(u) = o does not
depend on p. By Theorem 4.1, it suffices to find a constant ¢ > 9 such that

(4.8) Wy (P p, Pv)? < e Wy (p,v)
for any t > 0 and u, v € Py(R??).
a) Let
(18BN B 1
(4.9) a:= <—1+B ) , ri=a a_\/(1+ﬁ)(1+/3+ﬁ2)6(0’1)'

Define the distance

(110)  Ba.y) = 3fa2lal) — g + BE® — @) + 2ralalh -y, Ba®) — ).
According to the proof of [16, Lemma 5.2], we have

. 242640 ++/p1+4
(4.11) d(a,y)? < 20T 9)

and there exists a constant C' > 1 such that

U(x,y)?, Va,ye R*

(4.12) C o —y| <dY(x,y) <Clz —y|, Vr,yec R
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b) Let X; and Y solve (4.5) with #x, = u, %y, = v such that
(4.13) Wa(p,v)* =E[|Xo — Yol?].
Let =y = Xy =Y}, iy = Pip = %x, and v, := Pfv = %,. By using (Cy), 1t6’s formula, and
noting that (4.9) implies

a?—B—ra=0, 1—ra=ra :i,
b =113

we obtain

1., - 1 - - -

5 (VX0 Y2)?) = ZIIB (o) — o)) s + (°Z;” +raBE, BE? +b(X,) — b(¥))dt
—(B*B={ +raB g, pB*(BB*) = + =)dt
+(B*BE® +raB g, BH{VOVEY,Y 1) - VOV(XY, )} )dt

<{ - -ra)BE + (@ - 8~ ra) @", BEY) + [|Vbllso(a + ra) - raB][Z" P
+(B'BEY + (14 8) ' B'EY, BUYOVYY,n) - VOV(XDY, )} fat

B — 6
1+

0 _
g{ 2 WY (1, 11)? — w<xt,Yt>2+varoo(a?+m>r:£”\2}dt.

1+

By (4.11) and the fact that
W5 (e, ) < B[ (X, V7))

for kK > 0 in (4.6), when ||Vb||~ is small enough we find a constant " € (0, ) such that we
obtain

5 (BIO(X, Yo] ~ E[3(X,, Y.)?)
< (a4 ) [ B PO~ P50 e, Vo

t
< _K'/ E[¢)(X,, Y.))du, t>s>0.

By Gronwall’s inequality, we then deduce that
E[j(X:, Y2)’] < e B[y (Xo, Yp)’]

for t > 0. Combining this with (4.12) and (4.13), we may conclude that there is a constant
¢ > 0 such that (4.8) holds. O

To conclude this paper, we present the following example of degenerate nonlinear granular
media equations, see [3] and [8] for the study of non-degenerate linear granular media equations.
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Example 4.1 (Degenerate nonlinear granular media equation). Let d € Nand W €
C>=(R¢ x R*). Consider the following PDE for probability density functions (p;);>o on R?*? =
R? x R4:

1
Oypi(x) = §tr{U(Pt)U(Pt)*(V(2))2}Pt($) - <V(1)pt(9€), ) + b(x))
+ (VP pu(2), VOW @ pi) (V) + paD +2),

(4.14)

where z = (M, 2®) € R ¢ > 0. > 0 is a constant, and

(W @ py)(«V) := W(zW, 2)py(2)dz, =) € RY
R2m

stands for the mean field interaction.
If there exist constants 6, a > 0 with

a(l+p)

2/8 <67

9(%+ 2+26+B2)+

such that
VW (-, 2)(v) = VW (-, 2)(0)] < (v — 0] + |2 — 2]), Vv,0€R?, and Vz,z € R*,

4.15
W15 o) = 0 )ls < aWaln )%, Vi, € PR,

then for any x’ € (0, k), when || V||« is small enough there exists a unique probability measure
fi € P5(R?!) and a constant ¢ > 0 such that for any probability density functions (p;)io
solving (4.14), p(dz) := pi(z)dx satisfies

(4.16) Wa(ps, 1) + Ent (i) < ce™ "W (uo, )?, Yt >1

where
28 —0—20/24+28+ 32 —a(l+57Y) -
K= .
2420+ p24+ /P44
To prove this claim, let (X, Y;) solve (4.5) for

(4.17) B:=1;, ¢Y(x,y)=|r—y|, and V(z,p):= Wz, z)u(dz).

R2d

As shown in the proof of [16, Example 2.2], p; solves (4.14) if and only if py(z) = 2LEmE)

dx
where Pfu = Zx,.
By Corollary 4.2, we only need to verify (Cy) for B,V in (4.17) and

a(B+1)

(4.18) 91:9<%+ 2+2B+ﬁ2), Gzzg 2+26+ 6%+ 5

2

so that the desired assertion holds for

o 2(8 — 61— 6a)
L2428+ 824 /Bi+4
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For simplicity, let V¥ denote the gradient in v. By (4.15) and V(z, p) := pw(W(x,-)), for
any constants aq, as, ag > 0 we have

1= (V*V(@®,0) = vV (0 ), 2 =y 4 (14 8) (@ -y )

< [ (vIWED, ) = WY, 2), 20 =y 4 (14 )@ — y?))p(dz)
RZm

<<vy“>w< W) = (VW™ )2 ® =y 4 (14 ) (e — )
> —=0{[aW —y 1+ Wi, )} - (|2 =y D)+ (14 B)l2® — )
> 9(a2+043)W2(M7 v)?

1 1 1
- 0{ (1 + g + 4—> |2 — W2 4 (1 + p)? (— + —) |2 — y(2)|2}.
Qo

4dovg
Take
V2+26+p2—-1 1 (14 p)?
o = , Qg = , and agz = .
2 24/2 4+ 283 + 32 24/2 + 283 + 32
We have
1 1
l+a+—==++/2+20+ 5?,
4@2 2
(1+ﬁ)<1 + 1)—1+ 2420+ 32
da;  das/) 2 ’

1
Qg + g = 5\/2+2B+62.
Combining this with (4.15) and (4.18), we derive

B+1
25

and therefore condition (Cy) is satisfied for B, and V in (4.17) .

] —

lo(r) = o (W)lls = =iz — )| — 02 Wa(p,v)%,

References

[1] V. 1. Bogachev, M. Rockner, S. V. Shaposhnikov, Distances between transition probabil-

ities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations, J.
Funct. Anal. 271(2016), 1262-1300.

[2] E. Camrud, D. P. Herzog, G. Stoltz, M. Gordina Weighted L?-congractivity of Langevin
dynamics with singular potentials, Nonlinearity, 35(2022), 998-1035.

[3] J. A. Carrillo, R. J. McCann, C. Villani, Kinetic equilibration rates for granular media

and related equations: entropy dissipation and mass transportation estimates, Rev. Mat.
Iberoam. 19(2003), 971-1018.

21



[4]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

J. Dolbeault, C. Mouhot, C. Sschmeiser, Hypocoercivity for linear kinetic equations con-
serving mass, Trans. Amer. Math. Soc. 367(2015), 3807-3828.

M. Grothaus, P. Ren, F.-Y. Wang, Singular degenerate SDEs: well-posedness and expo-
nential ergodicity, arXiv:2305.00129.

M. Grothaus, P. Stilgenbauer, A hypocoercivity related ergodicity method for singularly
distorted non-symmetric diffusions, Integral Equations and Operator Theory 83(2015),
331-379.

M. Grothaus, F.-Y. Wang, Weak poincaré inequalities for convergence rate of degenerate
diffusion processes, Ann. Probab. 47(2019), 2930-2952.

A. Guillin, W. Liu, L. Wu, Uniform Poincaré and logarithmic Sobolev inequalities for
mean field particle systems, Ann. Appl. Probab. 32(2022),1590-1614.

S. Hu, X. Wang, Subexponential decay in kinetic Fokker-Planck equation: weak hypocoer-
civity, Bernoulli 25(2019), 174-188.

X. Huang, P. Ren, F.-Y. Wang, Probability distance estimates between diffusion processes
and applications to singular McKean-Viasov SDEs, arXiv:2304.07562.

X. Huang, F.-Y. Wang, Regularities and exponential ergodicity in entropy for SDEs
driven by distribution dependent noise, to appear in Bernoulli, arXiv:2209.14619.

S. Menozzi, A. Pesce, X. Zhang, Density and gradient estimates for non degenerate Brow-
nian SDEs with unbounded measurable drift, J. Diff. Equat. 272(2021), 330-369.

E. Priola, F.-Y. Wang, Gradient estimates for diffusion semigroups with singular coeffi-
cients, J. Funct. Anal. 236(2006), 244-264.

7. Qian, F. Russo, W. Zheng, Comparison theorem and estimates for transition probability
densities of diffusion processes, Probab. Theory Related Fields 127(2003), 388-406.

P. Ren, Singular McKean-Vlasov SDEs: well-posedness, reqularities and Wang’s Harnack
inequality, Stoch. Proc. Appl. 156(2023), 291-311.

P. Ren, F.-Y. Wang, Fzxponential convergence in entropy and Wasserstein for McKean-
Vlasov SDEs, Nonlinear Anal. 206(2021), 112259.

P. Ren, F.-Y. Wang, Entropy estimate between diffusion processes and application to
McKean-Viasov SDEs, arXiv:2302.13500.

M. Rockner, F.-Y. Wang, Weak Poincaré inequalities and convergence rates of Markov
semigroups, J. Funct. Anal. 185(2001), 564-603.

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202(2009).

F.-Y. Wang, Hypercontractivity and applications for stochastic Hamiltonian systems, J.
Funct. Anal. 272(2017), 5360-5383.

22



[21] F.-Y. Wang, Distribution dependent SDEs for Landau type equations, Stoch. Proc. Appl.
128(2018), 595-621.

[22] F.-Y. Wang, X. Zhang, Deriwvative formula and applications for degenerate diffusion semi-
groups, J. Math. Pures Appl. 99(2013), 726-740.

23



